CA3178708A1 - Improved mobile dust extraction device - Google Patents

Improved mobile dust extraction device Download PDF

Info

Publication number
CA3178708A1
CA3178708A1 CA3178708A CA3178708A CA3178708A1 CA 3178708 A1 CA3178708 A1 CA 3178708A1 CA 3178708 A CA3178708 A CA 3178708A CA 3178708 A CA3178708 A CA 3178708A CA 3178708 A1 CA3178708 A1 CA 3178708A1
Authority
CA
Canada
Prior art keywords
air
extraction device
dust extraction
fan
mobile dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CA3178708A
Other languages
French (fr)
Inventor
Andrew Fanning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanca Technologies Pty Ltd
Original Assignee
Fanca Technologies Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanca Technologies Pty Ltd filed Critical Fanca Technologies Pty Ltd
Priority to CA3178708A priority Critical patent/CA3178708A1/en
Publication of CA3178708A1 publication Critical patent/CA3178708A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

A mobile dust extraction device for filtering air, the mobile dust extraction device including a filter housing having at least one air filter, an inlet housing fluidly connected to the filter housing, the inlet housing having at least one inlet for introducing air, one or more auxiliary air inlets located adjacent the filter housing for introducing additional air into the filter housing, a fan assembly including a fan, a fan inlet and a fan outlet, the fan assembly fluidly connecting the filter housing to the fan outlet, and a support frame for supporting the filter housing, inlet housing and the fan assembly.

Description

IMPROVED MOBILE DUST EXTRACTION DEVICE
FIELD OF INVENTION
The present invention relates to a mobile dust extraction device. Reference will be made in the specification to use of the invention for filtering air.
This use is by way of example only and the invention is not limited to this use.
BACKGROUND OF THE INVENTION
Dust extraction systems are used to remove dust (including other airborne particulates) from an environment. Dust extraction is important as excess exposure to dust and particulates can cause illness and damage to lungs. Industrial premises such as factories that produce dust and airborne particulates typically have dedicated dust extraction systems.
Dedicated dust extraction systems are generally large purpose built systems that extract dust and particulates from captured air and exhaust cleaned air.
A
problem with these dedicated systems is that that they are installed at a particular location. Being in a fixed location, the extraction systems cannot adequately service other nearby locations should the industrial processes be relocated or new processes commenced. These fixed extraction systems are not transportable. The fixed extraction systems also require significant cost and time to install and decommission.
In some instances, the dust generating source can move and an extensive ducting system is required to connect the dust generating source to a dust extraction system. The moving dust generating source requires the ducting system to be continuously repositioned, this process is labour intensive and time consuming.
OBJECT OF THE INVENTION
It is an object of the present invention to overcome or at least alleviate one or more of the above mentioned problems with dust extraction systems and/or provide the consumer with a useful or commercial choice.
SUMMARY OF THE INVENTION
In one aspect the present invention broadly resides in a mobile dust extraction device for filtering air, the mobile dust extraction device including:
Date Recue/Date Received 2022-10-07
- 2 -a filter housing having at least one air filter;
an inlet housing fluidly connected to the filter housing, the inlet housing having at least one inlet for introducing air;
one or more auxiliary air inlets located adjacent the filter housing for introducing additional air into the filter housing;
a fan assembly including a fan, a fan inlet and a fan outlet, the fan assembly fluidly connecting the filter housing to the fan outlet; and a support frame for supporting the filter housing, inlet housing and the fan assembly.
Preferably the mobile dust extraction device includes a drive mechanism for propelling the mobile dust extraction device.
In another aspect the present invention broadly resides in a mobile dust extraction device for filtering air, the mobile dust extraction device including:
a filter housing having at least one air filter;
an inlet housing fluidly connected to the filter housing;
a fan assembly including a fan, a fan inlet and a fan outlet, the fan assembly fluidly connecting the filter housing to the fan outlet;
a support frame for supporting the filter housing, inlet housing and the fan assembly; and a drive mechanism for propelling the mobile dust extraction device.
The drive mechanism is preferably attached to the support frame. The drive mechanism preferably includes one or more drive motors to propel the mobile dust extraction device. The one or more drive motors is preferably one or more diesel motors. Each of the one or more diesel motors is preferably a variable speed diesel motor. Alternatively, each of the one or more drive motors may be a hydraulic motor, electric motor, internal combustion motor, or the like.
The drive mechanism preferably includes continuous tracks. More preferably the drive mechanism includes two continuous tracks. The two continuous tracks are preferably located on opposed lateral sides of the mobile dust extraction device. The two continuous tracks are preferably driven by the one or more drive motors.
More preferably the two continuous tracks are driven by two hydraulic motors. Each of the two continuous tracks is preferably driven by a separate one of the two hydraulic motors. The continuous tracks preferably include a tread made of synthetic rubber reinforced with steel wires.
Date Recue/Date Received 2022-10-07
- 3 -In one embodiment, the drive mechanism includes a plurality of wheels. Two of the plurality of wheels are preferably driven by the one or more drive motors.
The support frame preferably has substantially the same base dimensions as a 20' intermodal container. The support frame is preferably adapted to be transported on 20' intermodal container bolsters. The support frame preferably complies with ISO standard 668. The support frame preferably complies with ISO

standard 1496-1.
The inlet housing preferably includes at least one inlet for introducing air.
The inlet housing preferably includes at least one baffle plate. The at least one baffle plate preferably deflects the introduced air. The at least one baffle plate is preferably tilted in a backwards direction relative to the direction of flow of the introduced air through the at least one inlet.
Preferably the mobile dust extraction device further includes a hopper. The hopper is preferably located beneath the inlet housing. The hopper is preferably fluidly connected to the inlet housing. The hopper is preferably located beneath the filter housing. The hopper is preferably fluidly connected to the filter housing. More preferably the hopper is located beneath the inlet housing and the filter housing. The hopper preferably has a separator that inhibits flow of air between the inlet housing and the filter housing via the hopper. The hopper preferably collects dust that drops down from the inlet housing and from the filter housing.
Preferably the mobile dust extraction device further includes a conveyor. The conveyor is preferably located below the hopper. The conveyor is preferably fluidly connected to the hopper. The conveyor is preferably adapted to convey dust collected by the hopper towards a discharge outlet. The discharge outlet preferably discharges dust from the mobile dust extraction device. The conveyor is preferably an auger conveyor. The conveyor is preferably hydraulically driven. A valve is preferably located between the conveyor and the discharge outlet. The valve preferably inhibits air from being introduced into the mobile dust extraction device via the discharge port. The valve is preferably a rotary valve.
The fan is preferably driven by a motor. The motor is preferably a diesel motor. The diesel motor is preferably a variable speed diesel motor.
Alternatively, the motor can be a hydraulic motor, electric motor, internal combustion motor, or the like.
Date Recue/Date Received 2022-10-07
- 4 -The fan preferably produces a vacuum to move air through the mobile dust extraction device. The fan is preferably a centrifugal fan.
Each of the at least one air filter is preferably a fibrous media filter. More preferably each of the at least one air filter is a pleated fibrous media filter. In one embodiment, each of the at least one air filter is a pleated paper air filter.
Preferably the mobile dust extraction device further includes a controller to control the drive mechanism. The controller is preferably a wireless controller. In one embodiment, the controller is connected to the mobile dust extraction device by a control cable. The controller preferably controls the speed and direction of the mobile dust extraction device. In one embodiment, the controller controls the fan.
More preferably the controller controls the speed of the fan. The controller preferably has a number of pre-set settings for the speed of the fan.
Preferably the dust extraction device further includes an air compressor. The air compressor is preferably located in an air compressor housing. The air compressor preferably provides compressed air which is blown across the at least one air filter to displace dust that has been filtered from the air. The displaced dust preferably drops down to the hopper.
Preferably the mobile dust extraction device further includes a computer processing unit (CPU). The CPU is preferably located in a control housing. The CPU is preferably adapted to control and monitor the mobile dust extraction device.
The CPU is preferably adapted to control the fan. More preferably the CPU is adapted to control the motor that drives the fan. The CPU is preferably adapted to control the conveyor. The CPU is preferably adapted to control the valve. The CPU
is preferably adapted to control the air compressor. The CPU is preferably adapted to monitor the fan. More preferably the CPU is adapted to monitor at least one sensor attached to the fan. The CPU is preferably adapted to control the drive mechanism. More preferably the CPU is adapted to control the drive mechanism in response to signals received from the controller.
The CPU is preferably adapted to monitor an emission sensor. More preferably the CPU is adapted to receive sensor readings from the emission sensor.
The emission sensor is preferably located in or in fluid communication with the fan outlet. The emission sensor is preferably a broken bag detector.
The CPU is preferably adapted to monitor the at least one air filter. The CPU
is preferably adapted to monitor airflow through the mobile dust extraction device.
Date Recue/Date Received 2022-10-07
- 5 -The mobile dust extraction device preferably includes differential pressure sensors.
The differential pressure sensors are preferably located before and after the at least one air filter to indicate if the at least one air filter is blocked or if there are higher than normal dust readings. The CPU is preferably adapted to receive sensor readings from the differential pressure sensors The CPU is preferably adapted to communicate sensor readings to a remote device. The CPU is preferably adapted to communicate sensor readings to a remote device via a cellular network. In one embodiment, the CPU is adapted to communicate sensor readings to the controller. The sensor readings are preferably .. displayed on a screen of the controller.
In one embodiment the support frame has a plurality of extendable legs attached thereto, extendable between a raised position and a lowered position.

Each of the plurality of extendable legs are preferably extendable in a vertical direction. Each of the plurality of extendable legs are preferably further extendable in a lateral direction relative to a longitudinal axis of the support frame.
The plurality of extendable legs preferably assist in loading and unloading the mobile dust extraction device from a carrier such as a flatbed truck. The plurality of extendable legs are preferably retracted to allow movement of the mobile dust extraction device after it has been unloaded from the carrier. The plurality of extendable legs are preferably hydraulically extended and retracted. The CPU is preferably adapted to control the plurality of extendable legs.
Preferably the mobile dust extraction device further includes a hydraulic pump. The hydraulic pump preferably provides hydraulic force to extended and retracted the plurality of extendable legs. In one embodiment, the hydraulic pump provides hydraulic force to the one or more hydraulic drive motors. In another embodiment, the hydraulic pump provides hydraulic force to the hydraulic motor that drives the fan. The support frame preferably supports the hydraulic pump. The hydraulic pump is preferably driven by a motor. The motor that drives the hydraulic pump is preferably a diesel motor.
In one embodiment, the mobile dust extraction device further includes one or more auxiliary air inlets. Preferably the one or more auxiliary air inlets are located adjacent the filter housing. Preferably each of the one or more auxiliary air inlets are closable. Preferably each of the one or more auxiliary air inlets includes a removable cover. Preferably each of the one or more auxiliary air inlets can be used Date Recue/Date Received 2022-10-07
- 6 -to introduce air from a different source to the introduced air through the at least one inlet. Preferably the one or more auxiliary air inlets are a plurality of auxiliary air inlets. Preferably the one or more auxiliary air inlets are located on a side of the mobile dust extraction device transverse to the at least one inlet of the inlet housing.
Preferably each of the one or more auxiliary air inlets includes a sensor to determine if the inlet is open or closed.
Preferably the speed of the fan is adjustable. Preferably the speed of the fan is adjustable based on how many of the auxiliary air inlets are open.
Preferably the speed of the fan is adjustable based on the sensors which determine how many of the auxiliary air inlets are open. Preferably each of the at least one air inlets are closable. Preferably each of the at least one air inlets includes a removable cover.
Preferably the speed of the fan is adjustable based on how many of the at least one inlet of the inlet housing are open. Preferably each of the at least one inlet of the inlet housing has a sensor to determine if the inlet is open or closed.
Preferably the speed of the fan is adjustable based on the sensors which determine how many of the air inlets are open.
Preferably the mobile dust extraction device further includes one or more emergency stops. Preferably at least one of the emergency stops is a lanyard stop.
Preferably the lanyard stop includes a lanyard. Preferably the lanyard of the lanyard stop is located substantially adjacent a perimeter of the mobile dust extraction device. Preferably the lanyard stop can be activated by pulling on the lanyard.
Preferably the lanyard stop includes a tension indicator to indicate the tension of the lanyard.
In a further aspect the present invention broadly resides in a mobile dust extraction device for filtering air, the mobile dust extraction device including:
a filter housing having at least one air filter;
an inlet housing fluidly connected to the filter housing;
a fan assembly including a fan, a fan inlet and a fan outlet, the fan assembly fluidly connecting the filter housing to the fan outlet; and a support frame for supporting the filter housing, inlet housing and the fan assembly; and a drive mechanism attached to the support frame for propelling the mobile dust extraction device, Date Recue/Date Received 2022-10-07
- 7 -wherein in use, the fan moves air from the inlet housing through the filter housing, through the fan inlet and out through the fan outlet, and wherein the at least one air filter filters the air.
In a further aspect, the present invention broadly resides in a method of filtering air, including the steps of:
fluidly connecting a movable dust generating source to a mobile dust extraction device;
introducing air from the movable dust generating source into the mobile dust extraction device;
moving the air through a filter housing having at least one air filter to filter the air; and moving the mobile dust extraction device, such that the mobile dust extraction device remains within a predetermined distance of the movable dust generating source.
The mobile dust extraction device is preferably a mobile dust extraction device as described in this specification.
Preferably the step of fluidly connecting a movable dust generating source to a mobile dust extraction device includes using ducting to fluidly join the dust generating source to the mobile dust extraction device.
Preferably the step of moving the mobile dust extraction device includes moving the mobile dust extraction device while air is being moved through the filter housing.
Preferably the step of moving the mobile dust extraction device includes controlling the movement of the mobile dust extraction device with a controller. The controller is preferably a wireless controller.
Preferably the method further includes the step of diverting the introduced air using a baffle plate.
Preferably the step of moving the air through a filter housing having at least one air filter to filter the air includes using a fan to move the air.
Preferably the fan is a centrifugal fan.
In another aspect, the present invention broadly resides in a method of filtering air, including the steps of:
introducing air from a dust generating source into a mobile dust extraction device via an inlet housing;
Date Recue/Date Received 2022-10-07
- 8 -introducing additional air from other dust generating source(s) via one or more auxiliary air inlets; and moving the air through a filter housing having at least one air filter to filter the air the filter housing being fluidly connected to the inlet housing and the auxiliary air inlets being located adjacent the filter housing.
Preferably the step of moving the air through a filter housing includes using a fan to move the air through the filter housing.
Preferably the method further includes adjusting the speed of the fan.
Preferably the method further includes closing one or more of the auxiliary air inlets.
Preferably the step of adjusting the speed of the fan includes adjusting the speed based on the number of auxiliary air inlets that are closed.
In a further aspect the present invention broadly resides in a mobile dust extraction device for filtering air, the mobile dust extraction device including:
a filter housing having at least one air filter;
an inlet housing fluidly connected to the filter housing;
a fan assembly including a fan, a fan inlet and a fan outlet, the fan assembly fluidly connecting the filter housing to the fan outlet; and a support frame for supporting the filter housing, inlet housing and the fan assembly.
Preferably the mobile dust extraction device further includes a drive mechanism for propelling the mobile dust extraction device.
The features described with respect to one aspect also apply where applicable to all other aspects of the invention. Furthermore, different combinations of described features are herein described and claimed even when not expressly stated.
BRIEF DESCRIPTION OF THE DRAWINGS
In order that the present invention can be more readily understood reference will now be made to the accompanying drawings which illustrate a preferred .. embodiment of the invention and wherein:
Figure 1 is an isometric front view of a mobile dust extraction device according to an embodiment of the present invention;
Figure 2 is an isometric rear view of the mobile dust extraction device of Figure 1;
Date Recue/Date Received 2022-10-07
- 9 -Figure 3 is a schematic side view of an inlet housing according to an embodiment of the present invention;
Figure 4 is a perspective view of a mobile dust extraction device according to another embodiment of the present invention; and Figure 5 is a side view of the mobile dust extraction device of Figure 4.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
With reference to Figures 1 and 2 there is shown a mobile dust extraction device 10. The mobile dust extraction device 10 has an inlet housing 12, having two inlets 14. The inlet housing 12 is fluidly connected to a filter housing 16 containing air filters (not shown). The filter housing 16 is fluidly connected to a fan inlet 18 of a fan in the form of a centrifugal fan 20, which is fluidly connected to a fan outlet in the form of an exhaust 22.
A hopper 24 is located beneath the inlet housing 12 and the filter housing 16 and fluidly connected to both the inlet housing 12 and the filter housing 16.
A
conveyor in the form of an auger conveyor 26 is located beneath the hopper 24.
The auger conveyor 26 is connected to a discharge port 28 via a rotary valve 30.
A motor in the form of a diesel engine 33 drives a hydraulic pump 32. The hydraulic pump 32 drives a hydraulic motor 21 which drives the centrifugal fan 20.
The mobile dust extraction device 10 has an air compressor 34. The air compressor 34 is fluidly connected to the filter housing 16. The use of the air compressor 34 will be explained in greater detail below.
The mobile dust extraction device 10 has a frame 36. The frame 36 supports the inlet housing 12, the filter housing 16, the centrifugal fan 20, the hopper 24, the auger conveyor 26, the hydraulic pump 32 and the air compressor 34. The frame has substantially the same base dimensions as a 20' intermodal container.
The mobile dust extraction device 10 has a drive mechanism in the form of two continuous tracks 40. The continuous tracks 40 are located on each lateral side of the mobile dust extraction device (only one side shown). The continuous tracks 40 are propelled by hydraulic motors (not shown). The hydraulic pump 32 provides hydraulic force to the hydraulic motors (not shown).
The mobile dust extraction device 10 has a CPU in the form of a control unit 48. The control unit 48 controls the hydraulic pump 32, which drives the centrifugal fan 20. The control unit 48 controls the auger conveyor 26 and the rotary valve 30.
Date Recue/Date Received 2022-10-07
- 10 -The control unit 48 controls the air compressor 34. The control unit 48 monitors the centrifugal fan 20 using a sensor (not shown) to determine if the centrifugal fan 20 is rotating. The control unit 48 monitors the air leaving the exhaust 22 using an emission sensor (not shown). The control unit 48 monitors the air filters (not shown) using sensors (not shown) which measures the amount of dust on the air filters. The control unit 48 controls the continuous tracks 40 in response to signals received from a wireless controller (not shown). By controlling the continuous tracks 40, the control unit 48 can control the speed and direction of movement of the mobile dust extraction device 10.
In use with reference to Figures 1-2, the inlets 14 of the mobile dust extraction device 10 are fluidly connected to a moving dust generating source (such as a piece of earth moving machinery not shown) by ducting (not shown). The centrifugal fan is driven by the hydraulic pump 32 to move air to be filtered from the moving dust generating source through the inlets 14, through the inlet housing 12, through the 15 filter housing 16 and through the air filters (not shown), through the fan inlet 18, through the centrifugal fan 20 and out through the exhaust 22.
As the air moves through the inlet housing 12, heavier particles of dust that drop down are collected by the hopper 24. As the air moves through the air filters (not shown) in the filter housing 16, the dust that is filtered by the air filters (not 20 shown) and drops down is collected by the hopper 24. The dust collected by the hopper 24 is funnelled down to the auger conveyor 26, which conveys the dust to the discharge port 28. The rotary valve 30 enables the dust to discharge from the discharge port 28 while inhibiting air from being sucked into the mobile dust extraction device 10 via the discharge port 28.
As dust collects on the air filters (not shown), compressed air from the air compressor 34 is blown across the air filters (not shown) to dislodge the dust. The dislodged dust then falls down towards the hopper 24.
As the moving dust generating source moves, the mobile dust extraction device 10 is moved by the continuous tracks 40 to remain within proximity of the moving dust generating source. The continuous tracks 40 are controlled by a person (not shown) through the use of a wireless controller (not shown) that is in communication with the control unit 48. The direction of the mobile dust extraction device 10 is controlled through skid steering.
Date Recue/Date Received 2022-10-07
- 11 -With reference to Figure 3, there is shown a side view of the inlet housing
12.
The inlet housing 12 has a baffle plate 54 (shown in dotted line format). The baffle plate 54 is tilted towards the inlets 14 of the inlet housing 12.
In use with reference to Figure 3, the air entering the inlet housing 12 through inlets 14 (indicated by arrow 60) is deflected by the baffle plate 54. Heavy dust particles (indicated by arrow 62) drop towards the bottom of the inlet housing 12 and into the hopper 24 (best seen in figure 1). Lighter dust particles (as indicated by arrow 64 are carried by the air over the baffle plate 54 and leave the inlet housing 12 (as indicated by arrow 66). The lighter dust particles are then filtered by air filters (not shown) in the filter housing 16 (best seen in figures 1-2).
With reference to Figures 4 and 5, there is shown a mobile dust extraction device 110. The mobile dust extraction device 110 has an inlet housing 112, having an air inlet 114. The air inlet 114 can be closed by a cover (not shown). The inlet housing 112 is fluidly connected to a filter housing 116 containing air filters (not shown). A plurality of auxiliary air inlets 115 are located adjacent the filter housing 116. The auxiliary air inlets 115 are fluidly connected to the filter housing 116. The auxiliary air inlets 115 are adapted to introduce additional air into the filter housing to be filtered by the filters. The auxiliary air inlets 115 are shown in a closed condition with covers 117 covering the auxiliary air inlets 115.
The mobile dust extraction device 110 further includes an emergency stop in the form of a lanyard stop 119. A lanyard (not shown) is attached to the lanyard stop 119 in use, the lanyard extends substantially around a perimeter of the mobile dust extraction device 110. Pulling on the lanyard activates the lanyard stop 119.
The filter housing 116 is fluidly connected to a fan inlet 118 of a fan in the form of a centrifugal fan 120, which is fluidly connected to a fan outlet in the form of an exhaust 122. The speed of the fan 120 can be adjusted depending on how many of the air inlet 114 and auxiliary air inlets 115 are open.
The rest of the mobile dust extraction device 110 is similar to the mobile dust extraction device 10 shown in Figures Ito 3.
ADVANTAGES
An advantage of the preferred embodiment of the mobile dust extraction system includes that the mobile dust extraction system can be easily transported and can be operational in a very short period of time. An advantage of having a diesel or Date Recue/Date Received 2022-10-07 petrol motor powering the fan is that the mobile dust extraction system does not require an external power supply such as a mains connection. A further advantage of the preferred embodiment of the mobile dust extraction system includes the ability to relocate during operation. Another advantage of the preferred embodiment of the mobile dust extraction system includes the ability to be used with moving equipment.
Another advantage of the preferred embodiment of the mobile dust extraction system is that there is no requirement for long and expensive ducting between the dust generating source and the mobile dust extraction system. A further advantage of the preferred embodiment of the mobile dust extraction system includes the ability to filter air from multiple different sources. Another advantage of the preferred embodiment of the mobile dust extraction system includes the ability to adjust a speed of the fan based on how many air inlets are open or closed.
VARIATIONS
While the foregoing has been given by way of illustrative example of this invention, all such and other modifications and variations thereto as would be apparent to persons skilled in the art are deemed to fall within the broad scope and ambit of this invention as is herein set forth.
Throughout the description and claims of this specification the word "comprise" and variations of that word such as "comprises" and "comprising", are not intended to exclude other additives, components, integers or steps.
Date Recue/Date Received 2022-10-07

Claims (20)

- 13 -
1. A mobile dust extraction device for filtering air, the mobile dust extraction device including:
a filter housing having at least one air filter;
an inlet housing fluidly connected to the filter housing, the inlet housing having at least one inlet for introducing air;
one or more auxiliary air inlets located adjacent the filter housing for introducing additional air into the filter housing;
a fan assembly including a fan, a fan inlet and a fan outlet, the fan assembly fluidly connecting the filter housing to the fan outlet; and a support frame for supporting the filter housing, inlet housing and the fan assembly.
2. A mobile dust extraction device as claimed in claim 1, further including a drive mechanism for propelling the mobile dust extraction device. and wherein the drive mechanism includes two continuous tracks.
3. A mobile dust extraction device as claimed in claim 2, wherein the two continuous tracks are driven by two hydraulic motors.
4. A mobile dust extraction device as claimed in any one of claims 2 or 3, wherein the drive mechanism is attached to the support frame.
5. A mobile dust extraction device as claimed in any one of claims 2 to 4, wherein the drive mechanism is controlled by a wireless controller.
6. A mobile dust extraction device as claimed in any one of the preceding claims, wherein the support frame has substantially the same base dimensions as a 20' intermodal container.
7. A mobile dust extraction device as claimed in any one of the preceding claims, wherein the one or more auxiliary air inlets are closable.
Date Recue/Date Received 2022-10-07
8. A mobile dust extraction device as claimed in claim 7, wherein a speed of the fan is adjustable.
9. A mobile dust extraction device as claimed in claim 8, wherein the speed of the fan is adjustable based on how many of the one or more auxiliary air inlets are closed.
10. A mobile dust extraction device as claimed in any one of the preceding claims, further including a hopper, an auger conveyor and a discharge port, wherein in use the hopper funnels dust from the inlet housing and the filter housing to the auger conveyor and the auger conveyor conveys the dust to the discharge port.
11. A mobile dust extraction device as claimed in any one of the preceding claims, further including an emission sensor in fluid communication with the fan outlet, and a CPU to receive sensor readings from the emission sensor.
12. A mobile dust extraction device as claimed in claim 11, further including differential pressure sensors located before and after the at least one air filter, wherein the CPU receives sensor readings from the differential pressure sensors.
13. A mobile dust extraction device as claimed in claim 12, wherein the CPU

communicates the sensor readings to a remote device.
14. A method of filtering air, including the steps of:
introducing air from a dust generating source into a mobile dust extraction device via an inlet housing;
introducing additional air from other dust generating source(s) via one or more auxiliary air inlets; and moving the air through a filter housing having at least one air filter to filter the air the filter housing being fluidly connected to the inlet housing and the auxiliary air inlets being located adjacent the filter housing
15. A method of filtering air as claimed in claim 14, wherein the step of moving the air through a filter housing includes using a fan to move the air.
Date Recue/Date Received 2022-10-07
16. A method of filtering air as claimed in claim 15, wherein a speed of the fan can be adjusted.
17. A method of filtering air as claimed in claim 16, wherein each of the one or more auxiliary air inlets are closable.
18. A method of filtering air as claimed in claim 17, wherein the speed of the fan can be adjusted based on the number of auxiliary air inlets that are closed.
19. A method of filtering air as claimed in any one of claims 16 to 18, wherein the inlet housing includes at least one air inlet, and wherein each of the at least one air inlet is closable.
20. A method of filtering air as claimed in claim 19, wherein the speed of the fan can be adjusted based on the number of air inlets that are closed.
Date Recue/Date Received 2022-10-07
CA3178708A 2022-10-07 2022-10-07 Improved mobile dust extraction device Pending CA3178708A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3178708A CA3178708A1 (en) 2022-10-07 2022-10-07 Improved mobile dust extraction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA3178708A CA3178708A1 (en) 2022-10-07 2022-10-07 Improved mobile dust extraction device

Publications (1)

Publication Number Publication Date
CA3178708A1 true CA3178708A1 (en) 2024-04-07

Family

ID=90566554

Family Applications (1)

Application Number Title Priority Date Filing Date
CA3178708A Pending CA3178708A1 (en) 2022-10-07 2022-10-07 Improved mobile dust extraction device

Country Status (1)

Country Link
CA (1) CA3178708A1 (en)

Similar Documents

Publication Publication Date Title
EP3437711A1 (en) Mobile dust extraction device
US20230045711A1 (en) System for conveying proppant to a fracking site hopper
EP1757350A2 (en) Vacuum loader
US20060283880A1 (en) Bulk bag unloading system
AU2017101033A4 (en) Mobile dust extraction device
EP0265869A2 (en) Dust control in hoppers
AU2016101414A4 (en) Dust extraction device
CA3178708A1 (en) Improved mobile dust extraction device
US20190388856A1 (en) Vacuum dust extractor
AU2024200913A1 (en) Mobile dust extraction device
US4227997A (en) Mobile non-polluting cleaning and processing apparatus and method
CA3187157A1 (en) A mobile dust extraction device
US6482078B1 (en) System for separation of debris from shot blast media
US4760968A (en) Integrated dust containment system for rotary crusher/breakers and the like
AU2023219878A1 (en) Dust extraction device
AU2010224310B2 (en) Pneumatic Material Delivery Apparatus and Method
CN208450101U (en) Pull-type vacuum intake cleaning plant
US6299667B1 (en) Method and device for removing dust from areas with high dust loading
CN209835115U (en) Vortex type unloading and dust removing system
US20220118396A1 (en) Dust extraction device
US20220220682A1 (en) Dry filtration system
EP0246106A2 (en) Improvements in decontamination apparatus
KR20040007845A (en) method and apparatus for loading feed grains
CN115432459A (en) Movable grain elevator
ZA201006940B (en) A material handling apparatus