CA3077993C - Method for prioritizing data processing of a plurality of ultrasonic scan data files - Google Patents

Method for prioritizing data processing of a plurality of ultrasonic scan data files Download PDF

Info

Publication number
CA3077993C
CA3077993C CA3077993A CA3077993A CA3077993C CA 3077993 C CA3077993 C CA 3077993C CA 3077993 A CA3077993 A CA 3077993A CA 3077993 A CA3077993 A CA 3077993A CA 3077993 C CA3077993 C CA 3077993C
Authority
CA
Canada
Prior art keywords
scan data
weld
data file
files
file
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA3077993A
Other languages
French (fr)
Other versions
CA3077993A1 (en
Inventor
John Mark Davis
Archibald Leach COBBS
Charles Allan Hansen
Nicholas James Bublitz
Samuel Matthew Davis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stonegate Partners LLC
Original Assignee
Veriphase Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/375,611 external-priority patent/US10598636B2/en
Priority claimed from US16/402,715 external-priority patent/US10641745B2/en
Application filed by Veriphase Inc filed Critical Veriphase Inc
Priority claimed from PCT/US2019/033011 external-priority patent/WO2020204968A1/en
Publication of CA3077993A1 publication Critical patent/CA3077993A1/en
Application granted granted Critical
Publication of CA3077993C publication Critical patent/CA3077993C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

A method is disclosed provide a method of collecting a group of scan data files and organizing those files for batch data processing to produce a weld indications table for each scan data file in a prioritized manner. The invention also provides a procedure for controlling the pre-processing of each file by extracting meta-data held in an ultrasonic data file and from such data determine whether the testing data is valid for review. A series of rules may be used by a selection engine to control a batch list of files for data processing and for review after data processing so that time by a weld inspector may be optimized for each construction project.

Description

Description METHOD FOR PRIORITIZING DATA PROCESSING OF A
PLURALITY OF ULTRASONIC SCAN DATA FILES
Technical Field The present invention relates generally to batch processing of computer files. In greater particularity, the present invention relates to batch prioritization of data processing of scan data files created during the testing of materials using ultrasonic testing equipment.
Backeround Art Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested.
In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A
common example is ultrasonic thickness measurement, which tests the thickness of a targeted object to determine the thickness of the object. Pipeline walls are routinely measured in this manner from the exterior of the pipeline to check for internal laminations and wall loss (corrosion and erosion) Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminum construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors.
In ultrasonic testing, an ultrasound transducer connected to a diagnostic machine is passed over the object being inspected. The transducer is typically separated from the test object by a "couplant" such as oil or water. Phased array ultrasonics (PA) is an advanced method of ultrasonic testing that has applications 10 in medical imaging and industrial nondestructive testing. Common industrial applications are noninvasive examination of manufactured materials such as welds joining large sections of pipes or steel decking for bridges.
Ultrasonic testers are typically separated into two classes of devices.
Single-element (non-phased array) probes, known technically as monolithic probes, emit a beam in a fixed direction. To test or interrogate a large volume of material, a single-element probe must be physically scanned (moved or turned) to pass or traverse the beam through the area of interest. In contrast, multi-element (phased array) probes emit beams that can be focused and swept electronically without moving the probe. The beam is controllable because a phased array probe is made up of multiple small elements, each of which can be pulsed individually at a computer-calculated timing. The term "phased" refers to the timing, and the term "array" refers to the multiple elements. Phased array ultrasonic testing or "PAUT" is based on principles of wave physics, which also have applications in fields such as optics and electromagnetic antennae.
In the non-destructive testing of material and welds, the phased array probe emits a series of beams to flood the weld with sound and a flaw can be seen or "read" on a display screen attached to the phased array ultrasonic tester, usually highlighting a weld "indication" or potential flaw as a colored indication on the instrument display screen.
=
2D There are two main methods of receiving the ultrasound waveform:
reflection and attenuation. In reflection mode sometimes referred to as "pulse-echo" mode, the transducer performs both the sending and the receiving of the pulsed waves as the "sound" is reflected back to the device. Reflected ultrasound comes from an interface, such as the back wall of an object, geometry reflections, or other foreign objects or from an imperfection within the object such as a weld defect. The diagnostic machine displays these results in the form of a signal with an amplitude representing the intensity of the reflection and the distance, representing the arrival time of the reflection. In attenuation mode sometimes referred to as "through-transmission" mode, a transmitter sends ultrasound through one surface, and a separate receiver detects the amount that has reached it on another surface after traveling through the medium. Imperfections or other conditions in the space between the transmitter and receiver reduce the amount of
2 =

sound transmitted, thus revealing their presence. However, as is known, couplants are needed to provide effective transfer of ultrasonic wave energy between the transducer probes and the objects being inspected to reduce or eliminate the attenuation from air to ensure enough ultrasonic energy is present inside the object so a useable ultrasonic response can be obtained.
For the testing of materials and in particular for the testing of welds, the pulse-echo method is preferred and various PAUT devices are offered in the non-destructive testing industry for such testing. For example, Olympus Scientific Solutions Americas Inc., (aka Olympus NDT) based in Waltham, MA, offers a product under the name OmniScan/OmniPC which may be used to test steel structures for determining inspection compliance. Using such a product is often referred to as -scanning" a weld and such testing produces -scan data"
representing the area tested which can be read back and reviewed at a time of choosing by an inspector. Such captured scan data can be saved in common data storage systems, such as cloud-based storage, and retrieved at any time for review using known PC based systems. Further, later and evolving systems can access such weld scan data and assist in the identification of potential weld defects by removing nominal or non-suspect scan data to lessen the amount of time required for an inspector to review the data and to focus attention on suspected areas that may represent a potential weld flaw.
A suitable procedure for taking scans, recording those scans, and then analyzing the scans to reduce the examination burden for the inspector is found in U.S. Pat. Appl. Ser. No. 14/986,195, pages 7-22, and all referenced figures.
In association with standard ultrasonic weld analysis techniques, and using the procedure disclosed in the above referenced application for determining ultrasonic reflection amplitudes (i.e.
voxels"), weld seams may be non-destructively tested to determine code or procedural compliance. Further discussion regarding the use of a PAUT system, understanding the testing procedures for welds using such a system, the reading of a PAUT display, the reading of a display produced by an associated PC
application to view testing data, and how to calculate the distances and dimensions provided by such a testing application shall not be provided as such
3 Date Recue/Date Received 2021-04-08 information is either well understood or fully disclosed in the above referenced application, or not necessary for a complete and full understanding of the herein described invention.
However, such UT data processing (also referred to herein as UT data analyzer or a UT data analyzation) as described in the above referenced application, irrespective of the sophistication of a PAUT device used to capture the data, may be of little usefulness if the inspector has not correctly configured the system prior to or during testing of the targeted weld area, even if the scanning was done with automated motorized scanners. Phased array inspectors io must be trained and certified in the use of PAUT systems, their settings and limitations, and well understand the materials being targeted by the PAUT
device for scanning, and the operator must be vigilant to configure the testing device correctly in order to obtain valid scan results. If a device is incorrectly configured, the UT data processing will not assist the examiner and, worse, may delay the discovery of a flawed data file until that data file is well past data processing when access to the tested area may be difficult or impossible in an ongoing construction environment.
As will be understood, the arrangement, scheduling, and organization of testing of welds in a construction project are complicated in their own right, and the rescanning of a weld area to produce a valid scan data file may cause costly delays in a construction project, or even interfere with other scheduled processes causing cascading schedule delays. Moreover, an inspector may spend a great deal of time reviewing scan data only to discover during their data inspection that the captured data itself is flawed and not usable for their code or procedural compliance objectives, sometimes causing confusion as to the source of the data capture flaw causing even more lost time to determine the source of the scanning error. Hence, the incorrect configuration of a testing device by a PAUT
inspector can cause confusion and cost in a construction project.
Responsive to this need, the inventors have discovered a method for so checking scan data files produced per the above described procedure for faults and inconsistencies. A series of tests for setup and configuration inconsistencies, and for quality testing of the data file, has been developed so that further data
4 processing per the above procedure is not undertaken and wasted on a non-compliant data file. The process is a method of extracting meta-data held in an ultrasonic data file and from such data determine whether the testing data is valid for review. A series of configuration parameters held in the scan data file are analyzed for inconsistencies and a select set of parameters are reviewed for compliance with indications given. Additional qualitative tests may be implemented on the scan test file and results provided as guidance to the inspector as to whether continued review of the scan data file is worthwhile.
The testing set is minimized so that a small core of tests can discern with a high level of probability whether the scan file is flawed and unsuitable for further data processing. A suitable process developed by the inventors may be found in U.S.

Pat. Appl. No. 16/402,715 filed May 3, 2019, for a Method for Checking for Consistency and Quality Compliance in an Ultrasonic Scanning Data File, pages 7-20, along with all referenced figures.
One challenge created by the above described data processing and pre-testing procedures is that inspectors may wish to prioritize which files are to be processed and tested, so that they can prioritize the review of such data files in a manner that best fits the priorities of the construction project. For example, some inspection areas may have a higher priority due to construction schedules, and the inspection certification may be stopping the continuation of construction of certain parts of the project, thereby reducing the release of funding for the whole project. Alternatively, as may be understood, certain problems during welding operations may be noticed for certain sections of a construction project, and a construction manager may wish for such potentially problematic welds to be inspected before other pending weld inspections, even if those welds were scanned well after other welds were scanned. Since the above described data processing and pre-testing methods are new and not previously known in the industry, the automated processing and the control of such processing will now cause the availability of scan data files to become more rapidly available for an inspector's review, and an automated batch processing procedure, under priority
5 Date Recue/Date Received 2020-10-20 control, is needed so that scan data files having a higher priority may be processed ahead of other scan data files.
Therefore, what is needed is a method for batching the processing of scan data files for consistency control and for data processing, and further a method for controlling the priority of such batch processing so that an inspector's time may be focused on reviewing indications data files in a controlled and prioritized manner.
Disclosure of the Invention It is the object of the present invention to provide a method of collecting a group of scan data files and organizing those files for batch data processing to produce an indication table for each scan data file in a prioritized manner.
The present invention also provides a procedure for controlling the pre-processing of each file by extracting meta-data held in an ultrasonic data file and from such data determine whether the testing data is valid for review, thereby providing a method to exclude a data file from batch processing if the data is unreliable.
A
series of rules may be used by a selection engine to control a batch list of files for data processing and for review after data processing so that time by an inspector may be optimized for each project in accordance with the project priorities.
Brief Descrintion of the Drawings A method incorporating the features of the invention is depicted in the attached drawings which form a portion of the disclosure and wherein:
Figure 1 a flow diagram showing the steps in collecting and data processing of scan data on a weld and the production of a listing of weld indications;
Figure 2 is a flow diagram of steps to verify the integrity and validity of a scan data file by applying a set of consistency and quality tests, and from which a determination may be made as to its suitability for data processing for weld defects;
6 Figure 3 is a flow diagram of the first embodiment of the invention where an operator determines a prioritized list of scan data files for data processing in accordance with the disclosed workings of the invention;
Figure 4 is a flow diagram of a second embodiment of the invention where a file pre-check determines a prioritized list of scan data files for data processing in accordance with the disclosed workings of the invention; and, Figure 5 is a flow diagram of a third embodiment of the invention where a file pre-check and a selection engine determines a prioritized list of scan data files for data processing and a prioritized list of indications files for review by a weld inspector, in accordance with the disclosed workings of the invention.
Best Mode for Carrying Out the Invention Referring to the drawings for a better understanding of the function and structure of the invention, Fig. 1 shows a method for collecting weld scanning data and the saving of such data into a scan data file for further analysis as disclosed in the above referenced U.S. Pat. Appl. Ser. No. 14/986,195. As shown, system 10 shows a system that reduces the number of weld scan indications that an inspector must review in order to more efficiently produce a report meeting applicable welding examination codes and requirements, such as those published by ASME, AWS, or other organizations. The system 10 is a standard software application that may run on a standard WindowsTM operating system, such as for example Windows 7 or Windows 10 sold by Microsoft Corporation, running on a standard PC configuration. The system may also be incorporated as a module directly into existing testing and/or scan analysis software.
Initially, an inspector assesses a weld situation and then configures their PAUT equipment for a scan, including the positioning of the UT probe 12 adjacent to a target weld. The weld is scanned by the inspector 14 and a data file recording the weld scan data saved 16. The data may be saved locally on the UT
device, transferred to a connected drive storage 17, or uploaded to a network drive via Wi-Fi or other data connection, depending upon the size of the data file.
The scan file is then processed 18 by extracting all data cuboids that include
7 potential weld flaw indications, essentially extracting all cuboids that have amplitudes greater than 0, and then creates a file recording those indications and saves it in a local, fast access storage location 19. Further processing occurs on the indications file by applying a series of filters 21 that ranks and categorizes the indications into a usable form. In particular, a ranked list of indications is created in a table based on a ranking value for each indication which consists of multiple data cuboids. That priority listing of indications is then produced 22 and displayed 23 for the inspector's analysis at a place and time of their choosing.
The process shown in 10, referred to hereinafter as a UT data analyzer io typically removes over 95 percent of the non-relevant data stored in a scan data file, and presents a focused list of only a fraction of the overall indications held by a scan data file, without degrading an inspector's ability to properly review the scan data in accordance with applicable code or procedural requirements.
However, in process 10 an assumption is made by the inspector reviewing the scan data file created in step 16 that the integrity of the data is consistent with acceptable testing practices in the weld scanning industry, and that such data meets minimum standards of weld practice analysis. Obviously, that may not be the case, so a system 30 is shown in Fig. 2 that can determine whether those minimum standards are met prior to the initiation of processing step 18.
The system 30 in Fig. 2 is a software application held as an executable that may be initiated to pre-analyze a scan data file prior to further data processing. When invoked, the application reads the relevant configuration parameters from the data file. It then performs an analysis on the configuration parameters to verify that they, together in combination, represent a valid, correct and usable configuration. The results of this analysis are then presented to the human operator. The application may also work in conjunction with the UT data processing application described in Fig. 1, or work in a stand-alone configuration for processing a group of scan data files one after the other.
As shown in Fig. 2, a scan data file is accessed 36 from storage 33.
so Storage 33 may hold a plurality of scan data files 32 so that the system 30 may quickly process a group of scan data files in serial succession and report on each of those files in a processing order determined by the operators of the system.
8 Such a configuration allows for the instant processing of files deposited in storage 33 or the delayed processing of select files to take advantage of scalable processing systems such as Amazon's AWS services. Irrespective, the order and timing of processing of each file may be done in a non-collocated manner so that cloud file storage 34 may be utilized for both processing and the saving of data files to a central cloud-based storage location as may be understood. Further discussion regarding the data processing of scan files 10 per Fig. 1 to produce an indications table, or the use of tests as a pre-processing step as shown in process 30 of Fig. 2 shall be omitted as such information is either fully disclosed in the above referenced applications, or not necessary for a complete and full understanding of the herein described invention.
Fig. 3 shows a system and method 60 for ordering a group of scan data files for processing. The system 60 is a standard software application that may run on a standard WindowsTM operating system, such as for example Windows 7 or Windows 10 sold by Microsoft Corporation, running on a standard PC
configuration. The system 60 runs as a software application held as an executable that may be initiated from a standard windows interface to allow the listing, selection, and designation movements of files, as is known in standard human machine interface structures in windows and similar operating system environments.
A collection of scan data files 52 are held in computer data storage 53, such as cloud data storage accessible via an intemet high-speed connection 54.
A
windowed interface is provided that allows an operator, such as a weld inspector, to select 57 a plurality of files stored in cloud storage 53 for processing, and order those files in a prioritized batch listing as desired by the operator 56. That prioritized listing 56 is cached in memory 58 and displayed to the operator 61 for confirmation. The system 60 then presents the prioritized listing of files to the data analysis application, such as described in Fig. 1 application 10, in a batch processing structure for data processing 62. As each scan data file is processed 62, the resulting indication files are saved in computer storage 63, such as local or cloud-based drive, and those processed indications files displayed 67 as each is
9 completed 66. The weld inspector may then proceed to review each weld indications file in the order in which each is completed 68.
Referring to Fig. 4, a second embodiment is presented 70 in which a pre-check application directs the order of further data processing. In in the embodiment 60 of Fig. 3, scan data files are kept in storage 53 and accessed over a network, such as a high-speed intemet connection 54. Each scan file as it becomes available in storage 53 is pre-processed using a consistency checking system 30 such as presented in Fig. 2 as application 30. If the scan data file passes the testing 30, each file is either passed on to a local storage location 74 or io held in cloud storage 53 for later retrieval. If a scan data file does not pass testing step 30, a display signal is sent to an operator via an attached computer display to signify non-compliance and the file is excluded from the batch data processing list (step 76). At the direction of an operator, a report may also be printed recording the testing non-compliance. Depending upon the basis for the failure, is the operator may take remedial action to correct a scan file configuration error by editing the file directly, and from which the file may be re-submitted for testing pursuant to step 30. If the data file cannot be corrected, further remediation action in the form of a second scanning of the weld may be necessary and a replacement scan data file processed in accordance with process 70. The storage zo 74 ends up either holding or designating a collection of files 72 suitable for data analysis 62 as described above. That file listing held in storage 74 automatically creates a priority list of files as a batched list of files 76, with such a list updated with more recently tested files as they become available after testing 30 as a dynamically updated listing. The order of the batched list is processed in data 25 processing step 62 on a first in first out (FIFO) basis, and files holding weld indications after analysis step 62 being held in storage 74. Alternatively, a score may be produced during consistency check testing in step 30 and based on that scoring the files prioritized based on the test score for each file. In either case, a prioritized review list 77 is then presented 78 to a weld inspector 68 for review.
30 The review list 77 is dynamically updated as files finish processing in step 62 and reviewed in a FIFO basis by the inspector 68. As per process 10, the inspector may produce a report associated with each scan data file displaying information characteristic of the processed scan data file.
While system 70 presents a method to create a batched order of files based upon the FIFO passage of a consistency checking system 30, it may be desirable to process out of sequence each file and review each process file based on a set of rules or with user specified prioritization. Fig. 5 presents a third embodiment capturing that capability. The prior consistency pre-check step and cloud-based file access are the same as process 80. However, embodiment 80 includes a selection engine 86 to determine a batched list 83 for data analysis 62 io to create a weld indications file. Selection engine 86 accepts rules input 88 to order batch list 83. Alternatively, based on user input 87 from a standard windows interface window, the selection engine may conform the selection to a FIFO prioritization list, dynamically updated, based on consistency check results as in embodiment 70 of Fig. 4. As a further alternative, selection input 87 may simply allow the operator to select certain files which will be kept at the top of the batch processing list in an order determined by the operator based on a ranked order presented in the selection window, or include a priority value, say from 100, that determines priority.
As each file is analyzed per step 62, selection engine 86 records the availability of each file as there are processed and dynamically ranks the files for review in a list 89 for the weld inspector to review 68 through display 78. As with the processing batch listing 83, rules 88 also impact the dynamic listing of indications files in step 89 by taking inputs from rules 88, and also accepting inputs from user selection 87 to selectively determine the review list based on an operator preference.
Rules 88 may be created in any manner typical for the batch processing of data files. For example, a file serial number may be assigned to each file as the file is created with each assigned file number including alpha-numerical character sequencing that corresponds to certain construction identification information.
An operator may assign weighting rules for different scan data files based on such construction information, thereby allowing for prioritization of different scan data review based on construction timeline priorities. Alternatively, a characteristic of the actual scan data file may determine its priority per the rules list. For example, processing or transfer communications demands may at a priority and an operator may wish to prioritize processing of a file based on the size of the file, smaller files processed first, so that such resources may be optimized. Further, a time stamp may be added to the scan data file structure and the time stamp may determine priority, for example FIFO or LIFO (last in last out).
While I have shown my invention in one form, it will be obvious to those skilled in the art that it is not so limited but is susceptible of various changes and io modifications without departing from the spirit thereof.

Claims (18)

WE CLAIM:
1. A method for prioritizing data processing of a plurality of ultrasonic scan data files, comprising steps of:
a. scanning a plurality of welds and storing scan data files representative of each said scanned weld in computer cloud storage;
b. presenting a list of said scan data files for data processing to an operator through a human machine interface on a computing device, wherein each said scan data file has been tested to confirm readiness for data processing;
c. through said human machine interface, selecting one or more of said scan data files from said list for batch data processing in an order fixed by said human operator;
d. under computer control, data processing each scan data file pursuant to a priority order established in said selecting step to produce a processed weld indications data file for each scan data file processed; and, e. after said data processing step, presenting a list of said processed weld indications data files to said human operator for review through said computer interface.
2. The method as recited in claim 1, wherein said step of presenting said list of said processed weld indications data file to said human operator further comprises a step of prioritizing said list in accordance with a computer programmed predetermined criteria.
3. The method as recited in claim 2, wherein said predetermined criteria comprises a file name parameter.
4. The method as recited in claim 3, wherein testing of each said scan data file to confirm readiness for data processing comprises a step of calculating an examination score associated with each scan data file resulting from a plurality of tests conducted on each scan data file and wherein said score determines the priority order of each scan data file being data processed.
5. The method as recited in claim 4, further including a step of using a selection engine to determine the priority order of each scan data file to be data processed based upon said computer programmed predetermined criteria.

Date Recue/Date Received 2021-09-09
6. The method as recited in claim 5, wherein said step of using a selection engine further comprises utilizing a rules set input into said selection engine to determine the priority order of each scan data file to be data processed.
7. The method as recited in claim 5, wherein said step of using said selection engine further comprises utilizing a rules set input into said selection engine to determine a priority of said processed weld indications data file in said list to be reviewed by said human operator.
8. The method as recited in claim 1, wherein said data processing step comprises steps of:
i. wherein each said scan data file holds a plurality of two dimensional, coordinate based cell matrices representing slices of known thickness of each said scanned weld, and wherein each cell holds a reflection amplitude value representing a potential weld flaw along the scanned weld, using a computer processor to extract weld indications from said scan data file by saving all non-zero magnitude values in each said cell into a table recording weld indications while preserving location information of each said cell along said scanned weld in said table;
ii. assigning a significance score to each said weld indication saved in said table based on a preselected criteria;
iii. ranking each said weld indication based upon said significance score and saving said ranking in said table;
iv. integrating said table into said scan data file; and, v. based on said significance score, electronically producing a human perceivable account showing a portion of said ranked weld indications along with associated location information for each in said scanned weld for review by said human operator.
9. The method as recited in claim 8, wherein said step of presenting said list of said processed weld indications data file to said human operator further comprises a step of prioritizing said list in accordance with a computer programmed predetermined criteria.
10. The method as recited in claim 9, wherein an availability of said scan data files comprises a dynamically available set of scan data files held in said computer cloud storage continually receiving additional scan data files ready for data processing.

Date Recue/Date Received 2021-09-09
11. The method as recited in claim 10, wherein testing of each said scan data file to confirm readiness for data processing further comprises a step of calculating an examination score associated with each scan data file resulting from a plurality of tests conducted on each scan data file, and wherein said score determines said priority order of each scan data file being data processed.
12. A method for batch data processing of a plurality of ultrasonic scan data files, comprising steps of:
a. scanning a weld seam and storing a plurality of scan data files in computer data storage;
b. testing each scan data file to determine if the scan data file is usable for extracting weld indications via a data processing step;
c. for scan data files that are usable for further data processing, producing a list of those usable scan data files and presenting the list to a human operator via a computer display screen;
d. said human operator selecting an order of data processing for said list of scan data files via a human computer interface screen;
e. responsive to said selected order, data processing each scan data file in the selected order to produce a weld indications data table annotated into each scan data file; and, f. after said data processing step, presenting a list of said processed weld indications data files to said human operator for review.
13. The method as recited in claim 12, wherein said testing step further includes steps of retrieving configuration values in each said scan data file to determine existence of configuration inconsistencies in each said scan data file based upon one or more predetermined consistency expectations to meet known industry compliance standards and excluded from being presented to said human operator prior to said selection step any scan data files which fail testing.
14. The method as recited in claim 13, wherein said data processing step comprises steps of:
Date Recue/Date Received 2021-09-09 i. wherein each said scan data file holds a plurality of two dimensional, coordinate based cell matrices representing slices of known thickness of each weld seam, and wherein each cell holds a reflection amplitude value representing a potential weld flaw along the weld seam, using a computer processor to extract weld indications from said scan data file by saving all non-zero magnitude values in each said cell into a table recording weld indications while preserving location information of each said cell along said weld seam in said table;
ii. assigning a significance score to each said weld indication saved in said table based on a preselected criteria;
iii. ranking each said weld indication based upon said significance score and saving said ranking in said table;
iv. integrating said table into said scan data file; and, v. based on said significance score, electronically producing a human perceivable account showing a portion of said ranked weld indications along with associated location information for each in said weld seam for review by said human operator.
15. The method as recited in claim 12, wherein said step of storing said plurality of scan data files comprises dynamically receiving a stream of scan data files held in cloud-based computer storage which continually receives additional scan data files available for data processing.
16. The method as recited in claim 12, further including a step of using a selection engine to determine a priority of scan data files to be data processed based upon a computer programed predetermined criteria.
17. The method as recited in claim 16, wherein said step of using said selection engine further comprises utilizing a computer programed rules set input to determine said priority of scan data files to be data processed and a priority of scan data files to be reviewed by said human operator.
18. A method for batch data processing of a plurality of ultrasonic scan data files, comprising steps of:
a. after the scanning of a plurality of welds and storing scan data files representative of each said scanned weld in computer storage, a weld inspector accessing a Date Recue/Date Received 2021-09-09 computer screen interface listing a plurality of said scan data files ready for extraction of weld indications via a data processing step;
b. said weld inspector causing via a computer screen interface for each scan data file in said listing to be processed for configuration data inconsistencies to determine if each scan data file merits further data processing;
c. said weld inspector receiving via said computer screen interface a list of tested scan data files, said list excluding any scan data files having data inconsistencies;
d. said weld inspector selecting via said computer screen interface an order of data processing for said list of tested scan data files;
e. data processing each scan data file in the order selected by said weld inspector in order to extract meritorious weld indications held by each said scan data file; and, f. producing a data processed listing of all data processed files on said computer screen interface for said weld inspector to review, wherein said data processed listing orders said data processed files in an order determined by a computer programed predefined set of file constraints.

Date Recue/Date Received 2021-09-09
CA3077993A 2019-04-04 2019-05-18 Method for prioritizing data processing of a plurality of ultrasonic scan data files Active CA3077993C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US16/375,611 US10598636B2 (en) 2015-12-31 2019-04-04 Ultrasonic weld analysis for orthotropic steel decking systems in bridges
US16/375,611 2019-04-04
US16/402,715 US10641745B2 (en) 2015-12-31 2019-05-03 Method for checking for consistency and quality compliance in an ultrasonic scanning data file
US16/402,715 2019-05-03
PCT/US2019/033011 WO2020204968A1 (en) 2019-04-04 2019-05-18 Method for prioritizing data processing of a plurality of ultrasonic scan data files

Publications (2)

Publication Number Publication Date
CA3077993A1 CA3077993A1 (en) 2020-07-17
CA3077993C true CA3077993C (en) 2022-02-15

Family

ID=71608239

Family Applications (1)

Application Number Title Priority Date Filing Date
CA3077993A Active CA3077993C (en) 2019-04-04 2019-05-18 Method for prioritizing data processing of a plurality of ultrasonic scan data files

Country Status (1)

Country Link
CA (1) CA3077993C (en)

Also Published As

Publication number Publication date
CA3077993A1 (en) 2020-07-17

Similar Documents

Publication Publication Date Title
US10551351B1 (en) System and method for efficiently reviewing weld scan data by a weld inspector
US9228980B2 (en) Non-destructive evaluation methods for aerospace components
US11467129B2 (en) NDT data referencing system
US4744250A (en) Method for classification of point and elongated single defects in workpieces by means of ultrasonics
US10557833B2 (en) Method for prioritizing data processing of a plurality of ultrasonic scan data files
Lin et al. Advanced ultrasonic testing technologies with applications to evaluation of steel bridge welding-an overview
JP2011208978A (en) Ultrasonic inspection method and device for turbine blade fitting section
CA3077993C (en) Method for prioritizing data processing of a plurality of ultrasonic scan data files
JP5738684B2 (en) Ultrasonic flaw detection test method, ultrasonic flaw detection test apparatus and ultrasonic flaw detection test program incorporating surface shape identification processing of ultrasonic flaw detection test specimen
US20210096246A1 (en) Method and system for generating a merged b-scan for assisted ultrasonic inspection flaw screening
WO2020204968A1 (en) Method for prioritizing data processing of a plurality of ultrasonic scan data files
JP2021047091A (en) Method and device for ultrasonic inspection
CA3077465C (en) Method for checking for consistency and quality compliance in an ultrasonic scanning data file
US10641745B2 (en) Method for checking for consistency and quality compliance in an ultrasonic scanning data file
CA3077555C (en) System and method for efficiently reviewing weld scan data by a weld inspector
CA3077548C (en) System and method for the improved analysis of ultrasonic weld data
JP7180494B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection method
WO2020204978A1 (en) Method for monetization of the data processing of ultrasonic scan data files
WO2020204965A1 (en) Method for checking for consistency and quality compliance in an ultrasonic scanning data file
US10636064B2 (en) Method for monetization of the data processing of ultrasonic scan data files
CA3077284C (en) Method for monetization of the data processing of ultrasonic scan data files
Richard et al. Advanced software tools for design and implementation of phased array UT inspection techniques on complex components
dos Anjos Detection and characterization of structural defects in composite materials
Torres et al. Ultrasonic NDE technology comparison for measurement of long seam weld anomalies in low frequency electric resistance welded pipe
Lesage Phased Array Ultrasonic Testing