CA2860042A1 - A system for controlling ambient conditions within a given area with automated fluid register - Google Patents

A system for controlling ambient conditions within a given area with automated fluid register Download PDF

Info

Publication number
CA2860042A1
CA2860042A1 CA2860042A CA2860042A CA2860042A1 CA 2860042 A1 CA2860042 A1 CA 2860042A1 CA 2860042 A CA2860042 A CA 2860042A CA 2860042 A CA2860042 A CA 2860042A CA 2860042 A1 CA2860042 A1 CA 2860042A1
Authority
CA
Canada
Prior art keywords
vent
area
recited
temperature
relation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2860042A
Other languages
French (fr)
Inventor
Daniel Martindale
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2860042A1 publication Critical patent/CA2860042A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/81Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the air supply to heat-exchangers or bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • F24F13/1426Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre characterised by actuating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A system for controlling temperature within a given area or room by regulating the inflow of heated or cooled air thereto.
At least one vent communicates with the area and is positionable in either an open orientation or a closed orientation, thereby respectively facilitating or restricting the flow of conditioned air into the area. A control assembly is operatively associated with the one vent and structured to control its disposition between the open and closed orientations. A temperature sensor is disposed within the area and determines "temperature data"
therein. In turn the temperature data is determinative of positioning the vent in either the open or closed orientations.
Wireless communication facilities may be associated with the temperature sensor and the control assembly to transmit, by wireless communication, the determined temperature data from the temperature sensor to the control assembly.

Description

2 WITH AUTOMATED FLUID REGISTER
3 BACKGROUND OF THE INVENTION
4 Field of the Invention 6 The invention relates to systems for controlling and/or 7 maintaining a predetermined, adjustable ambient condition within 8 a given area by regulating the flow of fluid into the area 9 through an automated fluid register. The present embodiment is directed to a system for controlling and/or maintaining a 11 predetermined, adjustable temperature within an area or room by 12 regulating the flow of heated or cooled conditioned air into the 13 area, from a source of conditioned air, through at least one 14 vent. As a result, the source of conditioned air does not have to be directly regulated, such as by being turned on or shut-16 off.

19 A common problem in multi-roomed and air conditioned buildings is the difficulty of maintaining a uniform temperature 21 throughout the entire building. In, for example, a multi-room 22 dwelling, the air-conditioning unit is located exteriorly of the 23 dwelling, and fluid ducts are disposed throughout the dwelling, 24 generally with at least one diffuser vent and at least one 1 return vent in each room. A thermostat is disposed, usually, in 2 a central location such as a living room or great room. A user 3 sets the thermostat to a predetermined temperature and a 4 temperature sensing assembly within the thermostat controls the air conditioning unit, generally by allowing the unit to run 6 until the temperature around the thermostat reaches the 7 predetermined temperature at which point the thermostat 8 deactivates the air conditioning unit. Once the temperature 9 around the thermostat deviates from a specified temperature range, the thermostat will reactivate the air conditioning unit.

A bedroom, offset from the central location, will generally 12 reach the predetermined temperature at a different time than the 13 common area. This can be due to a number of reasons such as the 14 location of the bedroom relative to the thermostat and the air conditioning unit, as well as the volume of air within the 16 bedroom relative to the central location. For example, as most 17 air conditioning systems rely on a pressure differential to 18 generate a fluid flow through the building, a room located 19 between the air conditioning unit and the thermostat-containing room will receive a higher flow rate of conditioned air than the 21 thermostat-containing room, and require less time to reach the 22 predetermined temperature. Similarly, a smaller room than the 23 thermostat-containing room will contain a smaller volume of air 24 to be replaced with conditioned air, and therefore require less 1 time as well. Accordingly, such a room may reach substantially 2 lower, or higher, temperatures before the thermostat reaches the 3 predetermined temperature.
4 In certain circumstances, such wildly deviating temperatures between rooms in a building is undesirable. On the 6 other hand, some users may desire to take advantage of such a 7 temperature difference, but standard heating, air conditioning, 8 and ventilation systems do not possess the capability to 9 precisely control the temperature in each room of a building.

12 The present invention relates to systems for controlling 13 one or more ambient conditions within a given area by regulating 14 the flow of fluid into or out of the given area via one or more automated registers. The automated registers are each 16 operatively controlled by a control assembly which can include 17 servomechanisms, drive structures, and drive linkages, which 18 open or close the automated registers. The control assembly is 19 in communication with one or more ambient condition sensors which are programmable or at least selectively adjustable to 21 determine when one or more ambient conditions in the given area 22 reach a predetermined point or concentration. Such ambient 23 condition sensors may be operatively configured to sense, for 24 example, temperature, humidity, pressure, gas/liquid 1 concentrations, element concentrations, or chemical 2 concentrations, in either a liquid or gas medium. Wireless 3 communication facilities can be included with the ambient 4 condition sensors as well as the control assemblies such that the ambient condition sensors may communicate wirelessly with 6 the control assemblies such that the automated registers may be 7 opened or closed in relation to the ambient condition data 8 sensed by the ambient condition sensors.

As such, the present invention could be utilized to automate the operation of, for example, a fluid mixing chamber 11 whereby one or more registers are positioned within a chamber 12 providing a port for the introduction of fluid into the chamber.
13 One or more ambient condition sensors may be disposed within the 14 chamber and operatively connected to one or more corresponding control assemblies of the automated registers. The ambient 16 condition sensors are then programmed or selectively adjusted to 17 a predetermined point. The ambient condition sensors then sense 18 ambient condition data relative to the present state of the 19 chamber and wirelessly communicate with the control assemblies to operatively control the automated registers, either allowing 21 fluid to flow into the chamber or preventing fluid from flowing 22 into the chamber, until the predetermined point is reached. The 23 invention can then maintain the chamber at the predetermined 24 point by continuing to monitor the ambient condition data and 1 operate the control assemblies accordingly.
2 One embodiment of the invention is directed to a system for 3 establishing, maintaining and/or regulating the temperature 4 within a room or other area by controlling the inflow of heated or cooled "conditioned" air into the area. As explained in 6 greater detail hereinafter, the temperature within the room or 7 area may be predetermined and/or selectively adjusted to 8 accommodate the needs of one or more occupants and/or the 9 purpose for which the room or area is intended for use.
More specifically, the system of the present invention 11 includes an automated register in the form of at least one vent 12 disposed in communicating relation with the room or area and is 13 further disposed in airflow regulating relation between a source 14 of conditioned air and the interior of the area. As should be apparent, the conditioned air source may be a conventional 16 domestic or industrial air conditioner, air handler, furnace, or 17 other source of conditioned air which may be used to cool or 18 heat a given room or area. While at least one preferred 19 embodiment of the present system will be described herein with relation to a single vent, it is emphasized that a given area or 21 room may include a plurality of vents in order to provide 22 adequate conditioned air flow to the interior thereof.
23 As is well established in the heating and cooling industry, 24 the size of the room or area, its intended use, as well as other
5 1 factors are determinative of the number of vents and/or sources 2 of conditioned air necessary for establishing and maintaining a 3 predetermined and adjustable temperature. Accordingly, one or 4 more preferred embodiments of the system of the present invention include a plurality of vents. As a result, the present
6 invention contemplates each of a plurality of vents being
7 disposed in airflow communication with a different room or area.
8 In the alternative, a plurality of two or more vents may be
9 disposed and structured to regulate the inflow of conditioned air to a common room or area.

Therefore structural and operative features of the system 12 of the present invention include at least one vent disposed in 13 airflow controlling relation between a source of conditioned air 14 and the room or area in which the temperature is being controlled. The one vent may include a variety of different 16 structural and operative features which facilitate it being 17 selectively disposed in an open orientation and a closed 18 orientation. When in the open orientation airflow is facilitated 19 from the source of conditioned air into the interior of the area or room. As a result, the temperature of the area or room will 21 be raised or lowered, depending on the temperature of the 22 incoming conditioned airflow. In contrast, when the vent is in 23 the closed orientation, airflow from the source of conditioned 24 air into the interior of the area or room is prevented or 1 significantly restricted.
2 In addition, a control assembly is operative with the one 3 vent and is structured to control the positioning of the vent 4 between the open and closed orientations. Further in this embodiment, the ambient condition sensor comprises a temperature 6 sensor, which is disposed and structured to monitor the 7 effective temperature and determine the "temperature data"
8 within the room or area. Moreover, wireless communication 9 facilities are associated with the temperature sensor and the control assembly associated with the at least one vent. As a 11 result, the temperature data determined by the temperature 12 sensor may be wirelessly transmitted therefrom to the control 13 assembly. The received or transmitted temperature data, as 14 determined by the temperature sensor, serves to activate the control assembly. In turn the control assembly is operative to 16 position the one vent in either the open orientation or the 17 closed orientation. As should be apparent, the opening or the 18 closing of the one vent is dependent, at least in part, on 19 whether the temperature within the room or area needs to be altered, so as to be within the predetermined or selected 21 temperature range.
22 In more simplistic terms, when the temperature of an area 23 is intended to be maintained at or within a predetermined 24 "cooled" temperature range, the control assembly will be 1 operative to position the one vent in an open orientation when 2 it is desired to lower the existing temperature within the area.
3 In contrast when a predetermined or intended temperature range 4 has been established, based on the temperature data received by the control assembly from the temperature sensor, the control 6 assembly will be operative to position the one vent in a closed 7 orientation, in order to prevent further cooling. Naturally, a 8 similar procedure is followed when a room or area is intended to 9 be maintained within a predetermined "heated" temperature range.
Additional structural and operative features of one or more 11 preferred embodiments of the system of the present invention 12 include the control assembly comprising a servomechanism and a 13 drive structure. As such the servomechanism serves to control 14 activation or deactivation of the drive structure, wherein the drive structure is interconnected in driving relation to the one 16 vent. As such, the cooperative activation and operation of the 17 servomechanism and drive structure serve to dispose the one vent 18 in the aforementioned open or closed orientations. In more 19 specific terms, the servomechanism or "servo" is at least generally defined herein as a device which is used to provide 21 the control of a desired operation based on feedback. As applied 22 to the system of the present invention, the "feedback" may be 23 the receipt and processing of the aforementioned temperature 24 data determined by and transmitted from the temperature sensor.

1 Further, a servo control may be associated with or integrated in 2 the servomechanism thereby further facilitating the processing 3 of the temperature data.
4 Also, the aforementioned drive structure may be in the form of any type of drive motor or appropriate drive mechanism such 6 as, but not limited to, a servo motor, stepper motor, etc.
7 Associated with the drive structure is the provision of drive 8 linkage operatively interconnected between the drive structure 9 and the one vent. The drive linkage is connected in driving or moving attachment or relation to the various components of the 11 vent which facilitate its being disposed in either the open 12 orientation or the closed orientation. Therefore, the drive 13 linkage is structured for "reverse operation" and may include a 14 substantially opposing or reversible driving movement and/or driving engagement with the vent, which facilitates its 16 disposition between the open and closed orientations. By way of 17 example only, the drive linkage may be a rack and pinion 18 assembly known for facilitating the above noted reverse or 19 opposing driving or positioning movement.
Yet additional structural and operative features of the 21 present invention include the system comprising a self-contained 22 power source operatively connected to the control assembly in 23 energizing relation thereto. Further, the self-contained power 24 source may include a rechargeable battery or battery pack. In 1 order to facilitate the independent, maintenance-free operation 2 of the system of the present invention, a "charging station" may 3 be provided and be operative to recharge the self-contained 4 power source, when appropriate. In at least one embodiment, the charging station may be in the form of an air flow driven 6 turbine structured to generate the required electrical energy 7 needed to recharge the self-contained power source. Moreover, 8 the charging turbine may be disposed within the path of a 9 continuous airflow passing through the corresponding one vent.
Additional operative features associated with a charging station 11 would be the automatic disposition of the one vent in an open 12 orientation when the self-contained power source has reached a 13 minimum reserve power. The opening of the vent would serve to 14 establish airflow through the vent, which in turn activates the air driven turbine, which would then serve to recharge the power 16 source.

Another embodiment of the charging station may comprise a 18 solar panel operatively connected to the power source but 19 disposed remotely therefrom, preferably in a light gathering location. Yet another embodiment of the charging station may 21 comprise a thermoelectric generator, such as those that operate 22 on the Seebeck or Peltier effect, which may be disposed across a 23 heat differential of the conditioned air source and associated 24 systems and parts, thereby generating electricity to recharge 1 the power source.
2 The aforementioned temperature sensor may be disposed in an 3 appropriate location within the area or room being monitored and 4 in a remote location from the one vent and the control assembly associated therewith. Further, the temperature sensor may be 6 selectively adjustable so as to establish a predetermined 7 temperature range in the monitored area. In the alternative, at 8 least one preferred embodiment includes the temperature sensor 9 including a micro-sensor assembly connected to or immediately adjacent the one vent and/or control assembly associated 11 therewith. In this latter embodiment the micro-sensor may also 12 be capable of wireless communication with the corresponding 13 control assembly or in the alternative may be hardwired thereto.
14 As set forth above, a given room or area in which a predetermined temperature is to be established and/or maintained 16 may vary in size and or include other features which require the 17 establishment of a plurality of such vents. Accordingly, in this 18 preferred embodiment each of the plurality of vents, even when 19 associated with a common area or room, includes an independent control assembly, drive structure, drive linkage, etc.
21 associated therewith. Further, each of the independent control 22 assemblies preferably include the structural and operative 23 features as described above and as further described 24 hereinafter. However, when a plurality of vents are structured 1 to regulate airflow into a common area or room, each vent may be 2 operatively associated with a common temperature sensor or 3 individual temperature sensors. In the former application, a 4 common temperature sensor may include wireless communication facilities or capabilities serving to wirelessly transmit the 6 determined temperature data of the common room to each of the 7 plurality of control assemblies associated with different ones 8 of the plurality of vents.

These and other objects, features and advantages of the present invention will become clearer when the drawings as well 11 as the detailed description are taken into consideration.

14 For a fuller understanding of the nature of the present invention, reference should be had to the following detailed 16 description taken in connection with the accompanying drawings 17 in which:

Figure 1 is a plan view of a system for controlling 19 temperature within an area.
Figure 2 is a depiction of several operative features of 21 the present system for controlling temperature within an area.
22 Like reference numerals refer to like parts throughout the 23 several views of the drawings.

2 As described above, the present embodiment of the invention 3 is directed to a system for establishing, maintaining and/or 4 regulating one or more ambient conditions, such as the temperature within a room or other area by controlling the 6 inflow of air into the area, which may be heated or cooled 7 "conditioned" air. As explained in greater detail hereinafter, 8 the ambient conditions such as temperature within the room or 9 area may be predetermined and/or selectively adjusted to accommodate the needs of one or more occupants and/or the 11 purpose for which the room or area is intended for use.As 12 depicted in Figure 1, a system for controlling air temperature 13 10 can utilize a plurality of vents 100 in fluid communication 14 with a conditioned air source 1000. Each vent is disposable between at least an open orientation and a closed orientation, 16 which will be further discussed below. Each vent 100 is further 17 disposed in one or more areas 2000 in which the temperature is 18 desired to be controlled and in airflow controlling relation to 19 the one or more areas 2000.
One or more ambient condition sensors 300 may be deployed 21 in conjunction with each vent 100 in controlling relation 22 thereto. The ambient condition sensor 300 may comprise a digital 23 thermostat 310 with wireless communication facilities 500. Thus, 24 as depicted, the digital thermostat 310 may be disposed 1 essentially anywhere desired by the user, in a temperature 2 sensing location remote from the vent 100 such as on a wall 3 opposite the vent 100. As the digital thermostat 310 is limited 4 to sensing the temperature of the environment immediately surrounding the digital thermostat 310, it may be desirable to 6 place the digital thermostat 310 in strategic locations 7 depending upon the use of the room. For example, in embodiments 8 where the invention is deployed in a bedroom, it may be 9 desirable to place the digital thermostat 310 in close proximity to the bed, similarly, in an office, it may be desirable to 11 place the digital thermostat 310 close to the desk, as these 12 regions will be the most often inhabited of the room. As the 13 invention calls for certain embodiments of the digital 14 thermostat 310 to include wireless communication facilities 500, it may be possible to dispose the digital thermostat 310directly 16 on a desk, for example, as opposed to a wall near a desk.

Yet another benefit of providing a digital thermostat 310 18 with wireless communication facilities 500 is the ability to 19 relocate the digital thermostat 310in response to changing heating and/or cooling requirements. For example, buildings 21 located in Earth's northern hemisphere that include south-facing 22 windows will receive a substantial amount of direct sunlight 23 during the day. The precession of the Earth about its axis will 24 cause this direct sunlight to enter the windows at different 1 angles, depending upon the time of year. Thus, it may be 2 desirable to move the digital thermostat 310accordingly in 3 response to the precession in order to maintain the desired 4 temperature in the room as it receives more or less direct sunlight.
6 With reference to Figure 2, depicted are several operative 7 elements of the system 10 of the present invention which 8 operatively dispose the vent 100 between a closed orientation 9 and an open orientation. The vent 100 includes a fluid port 110, through which air may flow when the vent is disposed in an open 11 configuration. Furthermore, the vent 100 may include a plurality 12 of slats 120 disposed across the fluid port 110 and rotatably 13 mounted thereto. The slats 120 may comprise substantially 14 rectangular and relatively thin members formed of plastic, metal, or any of a variety of suitable materials providing the 16 slats 120 an at least partially rigid character.
17 When in an open orientation, the slats 120 may be rotated 18 such that they do not impede the flow of fluid through the fluid 19 port 110. As depicted in Figure 2, the slats 120 have been rotated to be substantially aligned with the flow of fluid 21 through the fluid port 110, thus providing an open orientation.
22 The slats 120 may be cooperatively dimensioned with the 23 fluid port 110 such that the slats 120 may be rotated into a 24 substantially perpendicular orientation to the fluid flow, thus 1 impeding the flow of fluid through the fluid port 110. In a 2 preferred embodiment, however, the slats 120 are dimensioned so 3 as to substantially seal the fluid port 110 when disposed in a 4 closed orientation in order to divert fluid flow to others of the plurality of vents 100 in the system 10.
6 The slats 120 may be operatively controlled by a control 7 assembly 200 disposed in controlling relation thereto. As 8 depicted in Figure 2, the control assembly 200 includes a 9 servomechanism 210 connected to a drive structure 220, the drive structure 220 being connected to the slats 120 via a drive 11 linkage 230 connected in driving relation thereto.
12 As depicted in Figure 2, at least one embodiment comprises 13 the drive linkage 230 including a rack 231 and pinion 232 14 assembly. Each slat 120 is connected to a portion of the rack 231 and is operably driven by the motion of the rack 231 as the 16 rack 231 is driven by the pinion 232. The pinion 232 is 17 connected in reversibly driven relation to a drive motor 221, 18 which may comprise any of a variety of electronic motors such as 19 a DC stepper motor. The drive motor 221 is in turn controlled by a servo controller 211 of the servomechanism 210. The servo 21 controller 211 can include wireless communication facilities 500 22 in order to dispose the servomechanism 210 in wireless 23 communication with one or more temperature sensors 300.
24 In at least one embodiment, the servo controller 211 may 1 comprise a position controller, operatively determinative of and 2 able to maintain the pinion 232 in a plurality of discrete 3 positions with respect to its rotational angle. For example, an 4 open orientation of the vent 100 may be defined with reference to a predetermined position of the pinion. Accordingly, a closed 6 orientation of the vent 100 may be defined with reference to a 7 known angle of rotation from the predetermined position. The 8 maintenance and referencing of discrete positions by the 9 position controller may be further enhanced when deployed with a stepper motor comprising the drive motor 221.
11 The control assembly 200 may be powered by an integral 12 power source 400, but in other embodiments may be powered by a 13 central power source of the structure in which the system 10 is 14 deployed. The power source 400 can include a rechargeable battery 410 as well as a charging station 420 connected to the 16 rechargeable battery 410.
17 In at least one embodiment, the charging station 420 may 18 comprise a turbine 421 operatively connected to the battery and 19 structured to be powered by the passage of fluid thereby. As the turbine 421 rotates it will generate electricity to recharge the 21 rechargeable battery 410. The system 10 may be further 22 programmed to dispose the vent 100 in an open orientation upon 23 reaching a predetermined voltage of the rechargeable battery 24 410. Thusly programmed, the system 10 can avoid completely 1 depleting the rechargeable battery 410 due to the vent 100 2 remaining in a closed orientation and failing to allow fluid 3 flow to operate the turbine 421.
4 Now generally referring to Figures 1 and 2, a user may desire to set the digital thermostat 310 to a predetermined 6 temperature point, or range, in each area 2000 in which a 7 digital thermostat 310 is disposed. The control assembly 200 8 then maintains each vent 100 in an open orientation until the 9 temperature in the corresponding area 2000 around the digital thermostat 310 reaches the predetermined temperature point, or 11 range. Then the control assembly 200 disposes the corresponding 12 vent 100 into a closed orientation. The control assembly 200 13 maintains the vent 100 in a closed orientation until the 14 temperature in the corresponding area 2000 around the digital thermostat 310 deviates from the predetermined temperature 16 point, or range, at which point the control assembly 200 will 17 dispose the vent 100 back to an open orientation.
18 In yet another embodiment, a given area 2000 in which a 19 predetermined temperature is to be established and/or maintained may vary in size and or include other features which require the 21 establishment of a plurality of vents 100. Accordingly, each of 22 the plurality of vents 100, even when associated with a common 23 area 2000, includes an independent control assembly 200, drive 24 structure 220, drive linkage 230, etc. associated therewith.

1 Further, each of the independent control assemblies 200 2 preferably include the structural and operative features as 3 described above. However, when a plurality of vents 100 are 4 structured to regulate airflow into a common area 2000, each vent 100 may be operatively associated with a common digital 6 thermostat 310 or individual digital thermostats 310. In the 7 former application, a common digital thermostat 310 may include 8 wireless communication facilities 500 serving to wirelessly 9 transmit the determined temperature data of the common room 2000 to each of the plurality of control assemblies 200 associated 11 with different ones of the plurality of vents 100. Conversely, 12 it may also be desirable to operatively associate a plurality of 13 digital thermostats 310with a single vent 100.

It will be appreciated by those skilled in the art that alternate embodiments of an ambient condition sensor 300 may 16 include facilities to detect ambient condition data such as 17 humidity, pressure, chemical or element concentration data in 18 addition to or in lieu of temperature data. Such an alternative 19 embodiment is depicted as 310' in Figure 1. It will be further appreciated that the function and operation of the control 21 assemblies 200 is the same whether it functions relative to 22 temperature data, as with the digital thermostat 310, or 23 relative to any one of the other ambient condition data listed, 24 namely, temperature, humidity, pressure, chemical compound 1 concentrations, or chemical element concentrations of the 2 alternative embodiment ambient condition sensor 310' 3 Alternative embodiments of the charging station 420' may 4 include, for example, a charging station 420' operative to produce electricity via a exposure to a temperature gradient of 6 the present invention, such as, for example, a thermoelectric 7 generator. Alternatively, a charging station 420' may include a 8 solar panel disposed in a path of light.
9 Since many modifications, variations and changes in detail can be made to the described preferred embodiment of the 11 invention, it is intended that all matters in the foregoing 12 description and shown in the accompanying drawings be 13 interpreted as illustrative and not in a limiting sense. Thus, 14 the scope of the invention should be determined by the appended claims and their legal equivalents.
16 Now that the invention has been described,

Claims (27)

What is claimed is:
1. A system for controlling temperature within an area by regulating conditioned airflow into the area, said system comprising:
at least one vent disposed in airflow controlling relation between a source of conditioned air and the area, said one vent structured for disposition in at least an open orientation and a closed orientation;
said open and closed to orientations respectively operative to facilitate and restrict conditioned airflow through said one vent into the area, a control assembly operative with said one vent and structured to position said one vent between said open and closed to orientations, a temperature sensor disposed and structured to monitor and determine temperature data within the area, wireless communication facilities associated with said temperature sensor and said control assembly and operative to communicate said temperature data from the area to said control assembly, and said temperature data determinative of disposition of said one vent, by said control assembly, into at least said open orientation or said closed orientation.
2. A system as recited in claim 1 wherein said control assembly includes a servomechanism and drive structure interconnected in driving relation to said one vent and operable to dispose said one vent in said open orientation and said closed orientation.
3. A system as recited in claim 2 further comprising drive linkage interconnected between said drive structure and said one vent; said drive linkage connected in driving relation to said one vent.
4. A system as recited in claim 3 wherein said drive linkage is structured for reverse operation; said reverse operation comprising a substantially opposing driving engagement with said one vent facilitating disposition of said one vent in said open orientation and said closed orientation.
5. A system as recited in claim 4 wherein said drive linkage comprises a rack and pinion assembly.
6. A system as recited in claim 3 wherein said drive structure comprises a reversible drive motor connected in reversibly driving relation with said drive linkage.
7. A system as recited in claim 1 further comprising drive linkage interconnected between said control assembly and said one vent; said drive linkage connected in driving relation to said one vent.
8. A system as recited in claim 1 further comprising a self-contained power source connected to said control assembly.
9. A system as recited in 8 wherein said self-contained power source comprises a rechargeable battery.
10. A system as recited in claim 9 further comprising a charging station connected in charging relation to said power source and disposed in fluid communicating, driven relation to airflow passing through said one vent.
11. A system as recited in claim 10 wherein said charging station comprises an airflow driven turbine structured for electrical energy generation concurrent to activation thereof by continuous airflow through said one vent.
12. A system as recited in claim 10 wherein said charging station comprises a solar panel structured for electrical energy generation concurrent to being disposed in light.
13. A system as recited in claim 10 wherein said charging station comprises a thermoelectric generator structured for electrical energy generation concurrent to being disposed across a temperature gradient.
14. A system as recited in claim 1 further comprising a self-contained, rechargeable power source connected in energizing relation to said control assembly; a charging station connected in charging relation to said power source and disposed in fluid communicating, driven relation to airflow passing through said one vent.
15. A system as recited in claim 1 wherein said temperature sensor comprises a digital thermostat.
16. A system as recited in claim 15 wherein said temperature sensor is disposed within the area in a temperature sensing location remote from said one vent.
17. A system as recited in claim 1 wherein said temperature sensor is disposed within the area in a temperature sensing location remote from said one vent.
18. A system for controlling temperature within an area by regulation of conditioned airflow into the area, said system comprising:
a plurality of vents each disposed in flow regulating relation between a source of conditioned air and a corresponding area, each of said plurality of vents structured for disposition in at least an open orientation and a closed orientation, a plurality of control assemblies; each control assembly operatively associated with a different one of said plurality of vents, each of said plurality of control assemblies structured to position a corresponding one of said plurality of vents into and out of said open orientation and said closed orientation, at least one temperature sensor disposed within each area corresponding to each of said plurality of vents, each of said temperature sensors structured to monitor and determine temperature data within the corresponding area, and said temperature data determinative of disposition of each of said vents in at least said open orientation or said closed orientation.
19. A system as recited in claim 18 wherein each of said plurality of control assemblies and corresponding ones of said temperature sensors include wireless communication capabilities operative to communicate said temperature data from each temperature sensor to corresponding ones of said plurality of control assemblies.
20. A system as recited in claim 19 wherein each of at least some of said temperature sensors is disposed within a corresponding area and in a temperature sensing location remote from said one vent.
21. A system as recited in claim 18 wherein each of said control assemblies include a servo mechanism and drive structure interconnected in driving relation to a corresponding one of said vents and operative to dispose a corresponding one of said vents in said open orientation and said closed orientation.
22. A system as recited in claim 20 further comprising drive linkage interconnected between each of said drive structures and a corresponding one of said vents; said drive linkage connected in driving relation to said corresponding one vent.
23. A system as recited in claim 18 further comprising a plurality of self-contained, rechargeable power sources each connected in energizing relation to a different one of said control assemblies; a plurality of charging stations each connected in charging relation to different one said power sources and each disposed in fluid communicating, driven relation to airflow passing through a corresponding one of said vents.
24. A system as recited in claim 23 wherein each of at least some of said charging stations comprises an airflow driven turbine structured for electrical energy generation concurrent to activation by continuous airflow pressure through a corresponding one of said vents.
25. A system as recited in claim 18 wherein each of at least some of said temperature sensors is connected and adjacent relation to a corresponding one of said vents.
26. A system for controlling ambient conditions within an area by regulating fluid flow into the area, said system comprising:
at least one vent disposed in airflow controlling relation between a source of conditioned air and the area, said one vent structured for disposition in at least an open orientation and a closed orientation;
said open and closed orientations respectively operative to facilitate and restrict conditioned airflow through said one vent into the area, a control assembly operative with said one vent and structured to position said one vent between said open and closed to orientations, an ambient condition sensor disposed and structured to monitor and determine ambient condition data within the area, wireless communication facilities associated with said ambient condition sensor and said control assembly and operative to communicate said ambient condition data from the area to said control assembly, and said ambient condition data determinative of disposition of said one vent, by said control assembly, into at least said open orientation or said closed orientation.
27. A system for controlling ambient conditions as recited in claim 26 wherein said ambient condition sensor consists of at least one selected from the group of temperature, humidity, pressure, chemical element concentration, or chemical compound concentration sensors.
CA2860042A 2014-07-28 2014-08-18 A system for controlling ambient conditions within a given area with automated fluid register Abandoned CA2860042A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14444195 2014-07-28
US14/444,195 US20160025362A1 (en) 2014-07-28 2014-07-28 System for controlling ambient conditions within a given area with automated fluid register

Publications (1)

Publication Number Publication Date
CA2860042A1 true CA2860042A1 (en) 2016-01-28

Family

ID=55166460

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2860042A Abandoned CA2860042A1 (en) 2014-07-28 2014-08-18 A system for controlling ambient conditions within a given area with automated fluid register

Country Status (2)

Country Link
US (1) US20160025362A1 (en)
CA (1) CA2860042A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8382565B2 (en) 2008-06-09 2013-02-26 International Business Machines Corporation System and method to redirect and/or reduce airflow using actuators
CN105763629B (en) * 2016-04-12 2019-01-18 江苏华泰建设工程有限公司 A kind of building sloping roof beam monitoring structural health conditions device
US10136288B2 (en) * 2016-10-17 2018-11-20 Uber Technologies, Inc. Determining service provider performance with ranged transmissions
US20180222284A1 (en) * 2017-02-09 2018-08-09 Ford Global Technologies, Llc Method of mitigating temperature buildup in a passenger compartment
US10962242B1 (en) * 2017-11-20 2021-03-30 United Services Automobile Association (Usaa) Systems for workstation-mounted radiant panels

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364211B1 (en) * 2000-08-30 2002-04-02 Saleh A. Saleh Wireless damper and duct fan system

Also Published As

Publication number Publication date
US20160025362A1 (en) 2016-01-28

Similar Documents

Publication Publication Date Title
US10900682B2 (en) HVAC controller with indoor air quality scheduling
US20160025362A1 (en) System for controlling ambient conditions within a given area with automated fluid register
US10731888B2 (en) Fan coil thermostat with activity sensing
US8621881B2 (en) System and method for heat pump oriented zone control
US7398821B2 (en) Integrated ventilation cooling system
US11353225B2 (en) Fan coil thermostat with automatic fan reset
US20110253796A1 (en) Zone-based hvac system
US9157646B2 (en) Automatic changeover control for an HVAC system
US20040159713A1 (en) Thermostat controlled vent system
CN102252408A (en) Systems and methods for motorized vent covering in environment control system
CN110173844A (en) The method of intelligent air management system, intelligent pipeline and relevant control room temperature
US10520212B1 (en) Heating and cooling control system
US10948215B2 (en) System and method for wireless environmental zone control
US20220341611A1 (en) System and method for wireless environmental zone control with positioning feedback
CA2982718A1 (en) Communications between thermostat and rooftop unit of climate control system
US20050082053A1 (en) System for controlling a ventilation system
CN210267648U (en) Air handling unit adjusting system based on Internet of things
US7063140B1 (en) Multiple climate air system
WO2024043915A1 (en) Apparatus and method for fresh air cooling of a residence or building utilizing a thermostat
AU2016100030A4 (en) Roof exhaust fan
JP2813910B2 (en) Natural opening and closing vent device
KR20120003893U (en) Auto Opening/Closing Apparatus for Ventilation of Diffuzor Using Thermoelectric Generator
KR20130006771U (en) / A Diffuzor for remotely controlling air volume and wind direction
JPH06257787A (en) Branch chamber for duct type air conditioner system
US20240151423A1 (en) Automatic changeover control of a fan coil unit of a building

Legal Events

Date Code Title Description
FZDE Discontinued

Effective date: 20170818