CA2770247A1 - Homing system and method for an autonomous underwater vehicle - Google Patents

Homing system and method for an autonomous underwater vehicle Download PDF

Info

Publication number
CA2770247A1
CA2770247A1 CA2770247A CA2770247A CA2770247A1 CA 2770247 A1 CA2770247 A1 CA 2770247A1 CA 2770247 A CA2770247 A CA 2770247A CA 2770247 A CA2770247 A CA 2770247A CA 2770247 A1 CA2770247 A1 CA 2770247A1
Authority
CA
Canada
Prior art keywords
acoustic
narrow
receiver
submarine
acoustic signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2770247A
Other languages
French (fr)
Inventor
Garry J. Heard
Carmen E. Lucas
Nicos Pelavas
Derek A. Clark
Gordon R. Ebbeson
Richard A.G. Fleming
George Schattschneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minister of National Defence of Canada
Original Assignee
Minister of National Defence of Canada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minister of National Defence of Canada filed Critical Minister of National Defence of Canada
Priority to CA2770247A priority Critical patent/CA2770247A1/en
Publication of CA2770247A1 publication Critical patent/CA2770247A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/20Steering equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/72Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using ultrasonic, sonic or infrasonic waves
    • G01S1/725Marker, boundary, call-sign or like beacons transmitting signals not carrying directional information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/86Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves with means for eliminating undesired waves, e.g. disturbing noises
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0692Rate of change of altitude or depth specially adapted for under-water vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2203/00Communication means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/004Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/02Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring
    • B63H25/04Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring automatic, e.g. reacting to compass

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

A submarine homing system includes an acoustic emitter configured to emit an acoustic signal comprising at least two narrow-band tones, each narrow-band tone having a respective predetermined center frequency. An acoustic receiver is configured to receive the acoustic signal from the acoustic emitter, and produce one or more receiver signals. A
processor is operatively connected to the acoustic receiver. The processor is configured to process the receiver signals to calculate a direction between the acoustic receiver and the acoustic emitter.

Description

HOMING SYSTEM AND METHOD FOR AN AUTONOMOUS
UNDERWATER VEHICLE
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is the first application filed for the present invention.
MICROFICHE APPENDIX
[0002] Not Applicable.
TECHNICAL FIELD
[0003] The present invention relates generally to a homing systems for use in a marine environment, and particular to systems and methods for long range homing of autonomous underwater vehicles.
BACKGROUND
[0004] Autonomous underwater vehicles (AUV's) are used in a variety of marine environments to explore beneath the water's surface. For example, AUV's may be used to perform marine surveys and to explore geological features of a sea bed as well as take various measurements of the underwater environment. AUV's are typically operated by a controller that may be installed on a ship. The ship controlling the AUV's mission may be referred to as a controller ship. The controller may be stationed at the surface of the water near to the area that the AUV is exploring. The controller may also assist with entry and extraction of the AUV into the marine environment. The AUV may be lowered into the water by the controller ship. When the AUV has completed its mission, it will typically return to the controller ship for recovery. The AUV may be given an acoustic homing signal in order for the AUV to navigate to the controller ship for recovery.
[0005] Recently, with advances in AUV technology and in particular, advances in fuel cells, underwater vehicles may travel for tens or even hundreds of kilometres before they must be re-fuelled. Hence, AUV's may be, at times, great distances from a controller ship. For example, an AUV may travel 50 kilometres from a controller ship. The controller ship may be immobile or it may be disadvantageous for the controller ship to move depending on the conditions of the marine environment. For example, when exploring in the arctic, it may be necessary to introduce an AUV into the water through a hole in an ice sheet. With thick ice covering, it may be impracticable for a ship to follow the AUV. Moreover, with a thick ice covering, the controller ship may drift with the ice flow, so that the AUV must navigate to a location for retrieval that is =
some distance from the point of launch. Hence, the homing system used to extract the AUV
from the water must allow for transmission over reasonably large distances.
[0006] As is known in the art, low frequency acoustic signals suffer lower attenuation than high frequency acoustic signal, and so are favoured for use in long range homing systems.
However, low frequency homing signals may coincide with the frequencies that are generated by other acoustic sources in the water (such as wave action, ships or wild-life). The AUV may become lost if it attempts to follow a false homing signal.
[0007] Techniques that overcome deficiencies in existing homing systems remain highly desirable.
SUMMARY
[0008] A submarine homing system comprises an acoustic emitter configured to emit an acoustic signal comprising at least two narrowband tones, each narrowband tone having a respective predetermined center frequency. The homing system further comprises an acoustic receiver configured to receive the acoustic signal from the acoustic emitter, and to produce one or more receiver signals. A processor is communicably coupled to the acoustic receiver and is configured to process the receiver signals to calculate the direction from which the acoustic signal was received by the acoustic receiver.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] Embodiments will now be described by way of example only with reference to the appended drawings wherein:
[0010] FIG. 1 is a block diagram schematically illustrating principal elements of a submarine homing system in accordance with a representative embodiment of the present invention; and
[0011] FIG. 2 is a chart schematically illustrating a representative tone combination usable in the submarine homing system of FIG. I.
[0012] It will be noted that throughout the appended drawings, like features are identified by like reference numerals.

=
DETAILED DESCRIPTION
[0013] It will be appreciated that for simplicity and clarity of illustration, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the example embodiments described herein. However, it will be understood by those of ordinary skill in the art that the example embodiments described herein may be practised without these specific details. In other instances, well-known methods, procedures and components have not been described in detail so as not to obscure the example embodiments described herein.
[0014] Turning to FIG. 1, there is shown a system 2 comprising an acoustic emitter 4 configured to emit an acoustic signal 6 into a body of water 8, comprising at least two narrow-band tones, each narrow-band tone having a respective predetermined center frequency; a receiver 10 configured to receive acoustic signals and produce corresponding receiver signals;
and a processor 12 configured to analyse the receiver signals to calculate at least a direction from which the acoustic signal 6 was received by the receiver 10. Each of these elements may be constructed of any suitable combination of hardware and software. Such construction details are considered to be well within the purview of persons of ordinary skill in the art, and thus will not be described in detail herein.
[0015] The body of water 8 may be referred to interchangeably as a marine environment, and may be a lake, river or ocean, or any other body of water in which an acoustic homing signal may be used.
[0016] The acoustic emitter 4 may be configured as any suitable combination of hardware and software configured to emit the acoustic signal 6 into the body of water, and may have any suitable form (e.g. sonobouy etc.). In some embodiments, the acoustic emitter 4 may comprise a Super Subcomms Multi-Mode Pipe Projector (SSMMPP), which is known in the art. The SSMMPP is capable of generating a nearly omni-directional acoustic field having an intensity of 190 dB at 1370 Hz. The acoustic emitter 4 may be configured to operate at or near the water surface 14, or may be lowered to a desired depth below the surface. It is contemplated that the acoustic emitter 4 will normally be associated with a controller ship or vessel being used to retrieve an Autonomous Underwater Vehicle (AUV), but this is not essential.
More generally, the acoustic emitter 4 may be used in any application where it is desired to provide an acoustic beacon that can be reliably detected by the receiver at long range.
[0017] The receiver 10 and processor 12 will normally be incorporated in an Autonomous Underwater Vehicle (AUV) 16, as shown in FIG. 1. However, this is not essential. More generally, the receiver and processor may be used in any application in which it is desired to detect an acoustic beacon at a long range from the emitter, and calculate a direction back toward the emitter.
[0018] As noted above, the acoustic signal 6 comprises a combination of at least two low-frequency narrowband tones. More generally, the emitter 4 may emit an acoustic signal comprising a combination of n (where n is an natural number, 1-12) low-frequency narrowband tones, which are selected from a set of m (where m is a natural number) possible tones. The number of possible tones, m, is primarily dependent on the range of frequencies over which the acoustic emitter 4 is designed to operate, as well as the desired spacing between the center frequencies of each of the possible tones. By way of example, if the acoustic emitter 4 emits at frequencies between 1000 Hz and 1800 Hz, and the spacing between the center frequencies of each tone is 50 Hz, m would be17.
[0019] FIG. 2 illustrates an example combination of n=4 tones 18-24 The band-width of each tone will typically be a function of the respective wave-function of each tone. Any desired wave-function may be used, including, without limitation, square-wave, triangular wave, saw-tooth, sinusoidal and combinations thereof. Preferably, the tones 18-24 forming a given combination are selected such that each of the tones can be readily distinguished from the other tones at the receiver 10. Preferably, the frequency range or width of each tone is minimized so as to limit dispersive effects in the marine environment 8. In some embodiments, each tone 18-24 is composed of a pure-tone sinusoidal signal.
[0020] In some embodiments, each of the n tones 18-24 of a given combination are emitted sequentially in time, and in a predetermined order. In such embodiments, the order in which the tones are emitted is preferably selected such that the time series of tones in any given combination is unique, at least among a set of possible tone combinations that can be emitted by a given emitter 4. For example, the number of possible n=4 tone combinations is (n-1)!=6, meaning that 6 unique combinations (of n=4 tones each) can be constructed in which no tone combination is a mere rotation of any other tone combination in the set. This enables the processor 12 to use known signal processing techniques to detect the time series of tones in the noisy acoustic signal received by the receiver 10 and so identify the specific tone combination being sent by the emitter 4.
[0021] In other embodiments, the n tones of a given combination may be emitted simultaneously. In such embodiments, the center frequency of each tone within a given tone combination is preferably selected to minimize interference with the other tones of that tone combination. This enables the processor 12 to use known signal processing techniques to identify the specific tone combination in the acoustic signal received by the receiver 10. Thus, for example, the processor 12 can distinguish the acoustic signal 6 from noise arising from other sources in the marine environment 8, including broadband noise from passing ships.
[0022] In some embodiments, one or more tone combinations may encode information. For example, in some embodiments, a selected tone combination may be used as an identifier associated with either the emitter 4 or the receiver 10. With this arrangement, the processor 12 can use known signal processing techniques to identify a desired one acoustic signal 6 from among two or more acoustic signals received by the receiver 10. Thus, for example, the AUV
16 may operate in a marine environment 8 in which two or more emitters 4 are being used.
When each emitter 4 is controlled to emit a respective acoustic signal having a unique identifier (tone combination), the processor 12 can identify and use the respective acoustic signal 6 from a selected one of the emitters 4. In some embodiments, a selected tone combination may be used as a command. With this arrangement, the acoustic signal can be used to trigger desired behaviours of a AUV associated with the receiver 10 and processor 12.
[0023] The acoustic receiver 10 generates a set of one or more receiver signals indicative of the local acoustic field in the vicinity of the receiver 10. This local acoustic field will normally include the acoustic signal emitted from the emitter 4 and noise from other acoustic sources in the marine environment. In some embodiments, the acoustic receiver 10 comprises a plurality of acoustic transducers (such as, for example, acoustic hydrophones) arranged such that the receiver signals contain information that can be used to calculate a direction from which a received acoustic signal was received. One possible arrangement capable of this operation comprises seven acoustic transducers arranged in three orthogonal 3-element arrays, wherein each of the orthogonal arrays shares a common center transducer. With this arrangement, each 3-element array generates respective detector signals that are indicative of the acoustic field component in a respective orthogonal axis, so that the direction from which a selected acoustic signal was received can be calculated from the relative intensities of the respective detector signals obtained from each of the three arrays. For example, the processor 12 may process the respective detector signals from each array, as described above, to identify the desired acoustic signal and determine the intensity of that acoustic signal as detected by each transducer array. The respective intensities of the desired acoustic signal detected by the three arrays can then be used to calculate the direction (e.g. horizontal and vertical angles) from which the desired acoustic signal was received. Multi-element transducer arrays of the type described are known in the art, and so will not be further described herein.
[0024] In an embodiment in which one or more tone combinations are used to encode information in the form of commands, the processor 12 may also operate to compare the tone combination of the received acoustic signal to a set of predetermined tone combinations (for example stored in a memory), to identify a specific command encoded in the acoustic signal.
The identified command can then be passed to a controller unit of the AUV 16 for execution.
[0025] Although the above has been described with reference to certain specific example embodiments, various modifications thereof will be apparent to those skilled in the art without departing from the scope of the claims appended hereto.

Claims (18)

Claims
1. A submarine homing system comprising:
an acoustic emitter configured to emit an acoustic signal comprising at least two narrow-band tones, each narrow-band tone having a respective predetermined center frequency;
an acoustic receiver configured to receive the acoustic signal from the acoustic emitter, and produce one or more receiver signals; and a processor operatively connected to the acoustic receiver, the processor being configured to process the receiver signals to calculate a direction between the acoustic receiver and the acoustic emitter.
2. The submarine homing system of claim 1 wherein the respective predetermined center frequency of each narrow-band tone is less than 2000Hz.
3. The submarine homing system of claim 1 wherein the respective predetermined center frequency of a first one of the narrow-band tones is selected to avoid interference with the respective predetermined center frequency of a second one of the narrow-band tones.
4. The submarine homing system of claim 1 wherein the at least two narrow-band tones of the acoustic signal are emitted simultaneously.
5. The submarine homing system of claim 1 wherein the at least two narrow-band tones of the acoustic signal are emitted sequentially.
6. The submarine homing system of claim 5 wherein the at least two narrow-band tones of the acoustic signal are emitted in a predetermined sequence having a selected repetition period.
7. The submarine homing system of claim 6 wherein the predetermined sequence encodes information.
8. The submarine homing system of claim 7 wherein the information comprises any one or more of: a status indication, an identifier, and a command.
9. The submarine homing system of claim 1 wherein at least the acoustic receiver is coupled to an Autonomous Underwater Vehicle (AUV), the AUV having a propulsion means and a control system for controlling the movement of the vehicle, wherein the control system is responsive to the processor to cause the AUV to follow a desired path relative to the calculated direction between the acoustic receiver and the acoustic emitter.
10. A method of submarine homing, the method comprising the steps of:
emitting an acoustic signal comprising at least two narrow-band tones, each narrow-band tone having a respective predetermined center frequency;
receiving the acoustic signal emitted by the acoustic emitter, and producing one or more receiver signals; and processing the receiver signals to calculate a direction between the acoustic receiver and the acoustic emitter.
11. The method of claim 10, the method further comprising emitting the respective predetermined center frequency of each narrow-band tone at less than 2000Hz.
12. The method of claim 10, the method further comprising selecting the respective predetermined center frequency of a first one of the narrow-band tones to avoid interference with the respective predetermined center frequency of a second one of the narrow-band tones
13. The method of claim 10, the method further comprising emitting the at least two narrow-band tones of the acoustic signal simultaneously.
14. The method of claim 10, the method further comprising emitting the at least two narrow-band tones of the acoustic signal sequentially.
15. The method of claim 14, the method further comprising emitting and repeating the at least two narrow-band tones of the acoustic signal in a predetermined sequence and having a selected repetition period.
16. The method of claim 15, the method further comprising encoding information in the predetermined sequence of information.
17. The method of claim 16, wherein the information comprises any one or more of a status indication, an identifier, and a command.
18. The method of claim 10 wherein at least the acoustic receiver is coupled to an Autonomous Underwater Vehicle (AUV), the AUV having a propulsion means and a control system for controlling the movement of the vehicle, wherein the control system is responsive to the processor to cause the AUV to follow a desired path relative to the calculated direction between the acoustic receiver and the acoustic emitter.
CA2770247A 2012-03-02 2012-03-02 Homing system and method for an autonomous underwater vehicle Abandoned CA2770247A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2770247A CA2770247A1 (en) 2012-03-02 2012-03-02 Homing system and method for an autonomous underwater vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA2770247A CA2770247A1 (en) 2012-03-02 2012-03-02 Homing system and method for an autonomous underwater vehicle

Publications (1)

Publication Number Publication Date
CA2770247A1 true CA2770247A1 (en) 2013-09-02

Family

ID=49111727

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2770247A Abandoned CA2770247A1 (en) 2012-03-02 2012-03-02 Homing system and method for an autonomous underwater vehicle

Country Status (1)

Country Link
CA (1) CA2770247A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049678A1 (en) * 2013-10-01 2015-04-09 Elta Systems Ltd. Underwater system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049678A1 (en) * 2013-10-01 2015-04-09 Elta Systems Ltd. Underwater system and method
US10000263B2 (en) 2013-10-01 2018-06-19 Elta Systems Ltd. Underwater system and method
US10457365B2 (en) 2013-10-01 2019-10-29 Elta Systems Ltd. Underwater system and method

Similar Documents

Publication Publication Date Title
US8600592B2 (en) Homing system and method for an autonomous underwater vehicle
US4974213A (en) Passive active underwater sound detection apparatus
Hildebrand Sources of anthropogenic sound in the marine environment
CA2924151C (en) System for detecting and locating submerged objects having neutral buoyancy such as moored mines and associated method
KR101281630B1 (en) Apparatus for dectecting underwater target and method thereof
MX2013009072A (en) Adaptive sweep method and device for seismic exploration.
US20210141072A1 (en) Method of recording sonar data
SE1551424A1 (en) System for detecting subsurface objects and unmanned surfacevessel
MX2013008884A (en) Device and method for synchronized marine acquisition with reduced interference noise.
Bjørnø Developments in sonar and array technologies
AU2009333192B2 (en) System and method for reducing signature variation of seismic sources
NO329316B1 (en) Process for suppressing multiples based on phase rows
Bjørnø Underwater acoustic measurements and their applications
JP5593204B2 (en) Underwater acoustic imaging device
KR102234484B1 (en) Sonar system and detecting method using the same
CA2770247A1 (en) Homing system and method for an autonomous underwater vehicle
US20150168577A1 (en) Method and device for measuring source signature
RU2383899C1 (en) Method and system for target acquisition in hydrolocation
US9823367B2 (en) Seismic shooting with mammal mitigation system and method
Dinn Field experience with a new sub-bottom investigation tool: Acoustic 3-D imaging of the sub-seabed
KR101136399B1 (en) A method for estimating the self propelled decoy's deceiving capability of the sonar system passive mode
US11668821B2 (en) Position correction using towed sensor
US20170248723A1 (en) Positioning along a streamer using surface references
de Campos Carvalho et al. Proper environmental reduction for attenuation in multi-sector sonars
US20150092516A1 (en) Determining the position of seismic equipment using pingers

Legal Events

Date Code Title Description
FZDE Discontinued

Effective date: 20180302