CA2723496C - Improved propane or diesel powered heater with common burner opening - Google Patents

Improved propane or diesel powered heater with common burner opening Download PDF

Info

Publication number
CA2723496C
CA2723496C CA2723496A CA2723496A CA2723496C CA 2723496 C CA2723496 C CA 2723496C CA 2723496 A CA2723496 A CA 2723496A CA 2723496 A CA2723496 A CA 2723496A CA 2723496 C CA2723496 C CA 2723496C
Authority
CA
Canada
Prior art keywords
coolant
casing
tank
heater
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2723496A
Other languages
French (fr)
Other versions
CA2723496A1 (en
Inventor
Les M. Ohno
Nader Kiarostami
Edward Van Ruijven
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Thermal Investments Ltd
Original Assignee
International Thermal Investments Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Thermal Investments Ltd filed Critical International Thermal Investments Ltd
Publication of CA2723496A1 publication Critical patent/CA2723496A1/en
Application granted granted Critical
Publication of CA2723496C publication Critical patent/CA2723496C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2203Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from burners
    • B60H1/2209Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from burners arrangements of burners for heating an intermediate liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00364Air-conditioning arrangements specially adapted for particular vehicles for caravans or trailers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

A coolant heater having a coolant tank and a burner tube within the coolant tank is used for marine and motor coach installations. An expansion tank and an overflow bottle are positioned within the casing of the heater and a valve may be used to supply coolant to an external heater fan or to bypass the heater fan.

Description

TITLE
IMPROVED PROPANE OR DIESEL POWERED HEATER
WITH COMMON BURNER OPENING
INTRODUCTION
This invention relates to a heater and, more particularly, to a heater used primarily in recreational vehicles and boats and which allows the burner opening within the coolant tank to be used for either a diesel or propane fuel burner.
BACKGROUND OF THE INVENTION
Recreational vehicles, motor homes, trucks, boats and the like, particularly those of the larger variety, often t
- 2 -have a plurality of water and coolant circuits. A first circuit may extend from the engine of the vehicle or boat and = is typically used for heating the interior or the vehicle or boat. A second circuit may extend from an auxiliary heater which may also be used for heating when the engine is not operating. A third circuit may extend from a source of potable water used for cooking and other personal use. To assist in ' the significant movement of coolant and potable water, it may be required to use two or more heaters or additional pumps to supply the necessary thermal energy for the heating and also for fluid movement.
For smaller motor coaches and smaller boats, the use of a distribution module and externally located pumps may be unnecessary. In such event, it would be useful to have the burner, the various pumps, the heat exchanger, the expansion tank and the overflow bottle in a single location within a single heater casing. The casing would
- 3 -conveniently be relatively small to take advantage of the reduced space available on a smaller motor coach or a smaller boat.
Heretofore, the exhaust manifold connected to the burner tube has been designed for operation atop the coolant tank. The heater, being used for both RV and for marine use, conveniently requires an exhaust manifold which will allow an exhaust duct to exit the exhaust manifold in an "up" configuration for marine installations and a "down"
configuration for RV installations. The exhaust manifold, therefore, was designed to extend beyond the end of the burner tube within the coolant tank so that the exhaust manifold could have either an up or down type exhaust configuration without modifying the coolant tank. This required more space within the coolant tank which was unnecessary and undesirable.
A further disadvantage with existing systems is that the burner tube is generally located in the center of the coolant tank or at least on the vertical plane defining the center of the coolant tank. The heater heats the coolant fluid unevenly because of the conflicting directions
- 4 -of flow of the heated coolant and there may be zones of coolant at different temperatures within the coolant tank.
This affects efficient operation of the heater where precise coolant temperatures and predictable fluid flow are desirable.
Yet a further disadvantage of existing systems is the use of a pump which is connected directly to the expansion tank which receives coolant from or provides coolant to the coolant tank. A level switch is typically positioned within the coolant tank and when the coolant is low, the level switch terminates operation of the heater.
By this time, however, the expansion tank may be empty and the pump thereafter runs dry before terminating operation.
Air is introduced into the fluid lines which is not desirable and is inconvenient.
If a heater is ordered by a user for use in a propane fueled version as compared to a diesel type version and vice versa, it is disadvantageous to use two different heater configurations. It would be useful to have as many common components as possible to avoid unique heater configurations for each fuel.
- 5 -SUMMARY OF THE INVENTION
According to the invention, there is provided a liquid fuelled heater for a boat or motor home comprising a casing, a liquid fuelled burner within said casing, a coolant tank surrounding said liquid fuelled burner, an exhaust duct extending from said burner to an exit port outside said casing, a heat exchanger within said casing and being adapted to provide coolant to at least one fan located within said boat or motor home, said heat exchanger further supplying hot water to a potable water circuit which extends outside said casing, a mixing valve to adjust the ratio of hot to cold potable water, said mixing valve being accessible from outside said casing, an expansion tank within said casing to receive coolant from and to supply coolant to said coolant tank during operation of said liquid fuelled heater, a level switch within said expansion tank operable to terminate operation of said burner when the level of said coolant drops below a predetermined level, a duct to allow said coolant in said expansion tank to pass to an overflow bottle located within said casing and a valve operable to allow coolant to flow through said fan or to bypass said fan and return to said coolant tank.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
Specific embodiments of the invention will now be described, by way of example only, with the use of drawings in which:
FIG. 1 is a diagrammatic schematic side view of the heater within the heater casing;
FIG. 2 is a diagrammatic partial plan view of
- 6 -the heater casing particularly illustrating the coolant tank and the exhaust manifold within the heater casing; and Figure 3 is a partial diagrammatic view of the coolant tank illustrating the opening for the burner tube and the sidewise location of the exhaust manifold and exhaust pipe; and Figure 4 is a block diagram illustrating the operating components of a propane burner.
DESCRIPTION OF SPECIFIC EMBODIMENT
Referring now to the drawings, a coolant heater is generally illustrated at 100. It includes a heater casing 101 housing most of the components of the coolant heater 100. Such components include the burner 102, the burner tube 103 and the exhaust manifold 104 (Figure 2 which is connected to the burner tube 103 by passageway 110 (Figure 3). An electric element 105 is also mounted within the coolant tank 111 and is used for coolant heating when a shore connection or an RV connection is available for obtaining power. The burner tube 103, the exhaust manifold
-7-104 and the passageway 110 are all positioned within a coolant tank 111 which contains coolant and which coolant is circulated through a heat exchanger 112 and coolant and potable water circuits under the influence of a pump 132 as will be described.
The burner tube 103 has a longitudinal axis 113 which runs generally horizontally within the heater casing 101 as best seen in Figures 1 and 3. The coolant tank 111 similarly has a longitudinal axis 114 (Figures 2 and 3) which runs generally horizontally within the heater casing 101. The longitudinal axis 113 of the burner tube 103 is offset from the longitudinal axis 114 of the coolant tank 111 a distance "d" (Figure 2). This allows substantial room to be left adjacent the burner tube 103 within the coolant tank 111 and such room is used to position the exhaust manifold 104 within the coolant tank 111 with the connecting passageway 110 extending from the burner tube 103 to the exhaust manifold 104.
In heaters used within recreational vehicles, it is generally preferable to have an exhaust duct 120 extending downwardly from the exhaust manifold 104 so that
- 8 -it will extend through and beneath the floor of the recreational vehicle to exhaust the combustion fumes beneath the motor home. If the coolant heater 100 is being used within a boat, it is generally preferable to have the exhaust duct .
120 extending upwardly from the exhaust manifold 104 so that the exhaust duct 120 can conveniently terminate in the transom of the boat within which it is installed as is illustrated in FIGS. 2 and 3. Both such configurations are easily obtained using the position of the offset burner tube 103 as has been described without the requirement for extending the exhaust manifold 104 beyond the end of the burner tube 103 which would otherwise require a larger coolant tank 111.
The expansion tank 121 is connected to the coolant tank 111 by way of coolant hose 122. The expansion tank 121 functions to receive coolant from and to supply coolant to the coolant tank 111 caused by expansion and contraction of the fluid during operation of the heater 100. The level of coolant within expansion tank 121 corresponds generally with the level of coolant within the coolant tank 111. A level switch 123 is positioned within the expansion tank 121 so that if the level of coolant in expansion tank 121 drops
- 9 -below a predetermined quantity, the operation of the burner 102 will terminate. A pressure cap 124 is mounted on the top of expansion tank 121 and extends from the heater casing 101. If the pressure within expansion tank 121 exceeds a predetermined quantity, conveniently seven(7) psi for a diesel fueled heater known as the HURRICANE (Trademark) heater manufactured by International Thermal Research Ltd.
of Richmond, British Columbia, Canada, the pressure cap 124 will allow the coolant to pass to an overflow bottle 130 through duct 131. If the pressure within expansion tank 121 drops below zero psi, the coolant will return to the expansion tank 121.
The bottom of expansion tank 121 exits to circulation pump 132 which pumps the coolant from the expansion tank 121 to heat exchanger 112 and thence to the remainder of the hydronic coolant loop 133 which exits from the heater exchanger 112. One loop 134 extends from the heater casing 101 to radiators or fans 135 where the heated coolant is used for space heating within the boat or coach.
The heated coolant then returns to the coolant tank 111 through a three-way valve 140. If the coach or boat is being heated, the three-way valve 140 will be in the open
- 10 -position to allow such circulation of heated coolant through loop 134. If, however, there is no heating required such as in the summer months, the three-way valve 140 is manually closed thus preventing flow through loop 134 and allowing the coolant from heat exchanger 112 to return directly to coolant tank 111 through coolant hose 141.
A potable water heating loop 142 extends from the heat exchanger 112. The loop 142 enters a mixing valve 143 located outside the heater casing 101 for ready accessibility. The heated potable water from the heat exchanger 112 mixes with cool water entering the mixing valve 143 at inlet 144. The .. mixing valve 143 sets the temperature of the heated potable water which exits the mixing valve 143 at outlet 150 and flows into a potable water loop 151 which may service taps, showers and the like as is illustrated diagrammatically at 155. The cool potable water enters the heat exchanger 112 and mixing valve 143 from line 152 which extends from the source of potable water, conveniently an onboard water tank or a service line connected to a municipal water supply if the boat or motor coach has such a supply available.
- 11 -OPERATION
The coolant heater 100 is compact in size in order to install the heater 100 is spaces of reduced dimensions.
One way the heater 100 is reduced in size is to have the burner tube 103 offset sidewise from the axis 114 of the coolant tank 111. Likewise and to reduce the space required for the heater 100, the major operating components of the coolant heater 100 including the coolant tank 111, the burner tube 103, the exhaust manifold 104, the overflow bottle 130, the expansion tank 121, the circulation pump 132, the heat exchanger 112, the electric element 105 and the three-way valve 140 are all positioned within the heater casing 101.
In operation, cool potable water will be supplied through potable water line 152 to the heat exchanger 112 and to the mixing valve 143. It will be assumed that there is sufficient coolant within the coolant tank 111 to service the space heating loop 134 and that such coolant is also of a depth within the expansion tank 121 to allow the level switch 123 to indicate safe operation of the burner 102.
- 12 -The burner 102 will commence operation under the influence of a thermostat or other control (not shown) and the coolant within the coolant tank 111 will be heated.
Because of the offset location of the burner tube 103 within the coolant tank 111, the heated burner tube 103 will set the coolant in motion due to the uneven heating of the coolant. This coolant motion will more uniformly distribute the temperature of the coolant throughout the coolant tank 111. The exhaust from the combustion within the burner tube 103 will flow through passageway 110 to the exhaust manifold 104. The exhaust will exit the exhaust manifold 104 either from an "up" configuration as is illustrated in Figures 2 and 3 and as is used within a boat or from a "down"
configuration as illustrated in Figure 1 in which the exhaust will exit the exhaust manifold 104 downwardly.
The pump 132 connected to the expansion tank 121 which holds coolant in addition to that coolant in coolant tank 111 will commence operation when the coolant reaches a desired temperature under the influence of a coolant temperature transducer (riot shown) and the coolant will thereby be pumped from the expansion tank 121 through heat exchanger 112 and out hydronic loop line 133. If the three-
- 13 -way valve 140 is open, the coolant will be displaced through space heating loop 134 to fans 135 where space heating within the coach or boat will occur and where, thereafter, the coolant will return to the coolant tank 111 through the three-way valve 140. If the three-way valve 140 is closed, the coolant in line 133 will return directly to the coolant tank 111 through line 141 and three-way valve 140 without passing through the space heating loop 134.
The potable water supply (not shown) is supplying cool potable water to the heat exchanger 112 and to the mixing valve 143 through line 152. The cool water will be heated within the heat exchanger 112 and will pass to the mixing valve 143 where adjustment of the mixing valve 143 will set the outlet water temperature which potable water is then passed to the heated potable water loop 151 at the desired temperature.
In the event there is a coolant leak or if another event causes the level switch 123 to close, thereby indicating a lack of coolant in the expansion tank 121, a control board (not shown) will immediately shut down the burner 102 to prevent any overheating or other damage caused
- 14 -by low coolant. The pump 132 will remain running until the coolant within the coolant tank 111 cools to a predetermined temperature. Since the level switch 123 is within the expansion tank, the heater terminates operation while fluid is still in the tank 121. This prevents the pump 132 from running dry which would require inconvenient air purging of the coolant system.
In the event the pressure within expansion tank 121 exceeds a predetermined level, conveniently seven(7) psi, the pressure cap 124 will open thereby allowing coolant to escape from the expansion tank 121 to the overflow bottle 130. When the coolant cools, the pressure within the expansion tank 121 will reduce and coolant will be returned through negative pressure to the expansion tank 130.
Many modifications are readily contemplated. For example, mixing valve 143 may be manually or automatically adjusted and likewise for three-way valve 140.
It is further contemplated according to a further aspect of the invention, that the heater 100 may be powered by either a liquid or gaseous fuel. To that end, it is
- 15 -desirable to avoid the significant design and component costs which would be necessary if each different burner required a custom produced heater to accommodate the burner.
Reference is made to Figure 4 where a propane supply 201 is connected to an operating valve 202 which terminates or commences the flow of gas 201 to the propane fuel nozzle 203. The fuel nozzle 203 is adapted to fit within the burner tube 103 of Figure 1. Thus, the operating components required by the diesel fueled burner 102 (Figure 1) are deleted in the propane fueled version of Figure 4 and the propane nozzle 203 together with its associated operating components, namely the valve 202 and propane supply 201 are used instead. The outside diameter of the burner tube 103 remains identical to the outside diameter of the burner tube 103 of the diesel fueled configuration in order to avoid unnecessary production costs with two different fueled versions.
Many further modifications will readily occur to those skilled in the art to which the invention relates and the particular embodiments described are given by way of example only and are not intended as limiting the scope of the invention as defined in accordance with the accompanying
- 16 -claims.

Claims

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEDGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A liquid fuelled heater for a boat or motor home comprising a casing, a liquid fuelled burner within said casing, a coolant tank surrounding said liquid fuelled burner, an exhaust duct extending from said burner to an exit port outside said casing, a heat exchanger within said casing and being adapted to provide coolant to at least one fan located within said boat or motor home, said heat exchanger further supplying hot water to a potable water circuit which extends outside said casing, a mixing valve to adjust the ratio of hot to cold potable water, said mixing valve being accessible from outside said casing, an expansion tank within said casing to receive coolant from and to supply coolant to said coolant tank during operation of said liquid fuelled heater, a level switch within said expansion tank operable to terminate operation of said burner when the level of said coolant drops below a predetermined level, a duct to allow said coolant in said expansion tank to pass to an overflow bottle located within said casing and a valve operable to allow coolant to flow through said fan or to bypass said fan and return to said coolant tank.
CA2723496A 2009-12-01 2010-12-01 Improved propane or diesel powered heater with common burner opening Active CA2723496C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26571509P 2009-12-01 2009-12-01
US61/265,715 2009-12-01

Publications (2)

Publication Number Publication Date
CA2723496A1 CA2723496A1 (en) 2011-06-01
CA2723496C true CA2723496C (en) 2019-03-26

Family

ID=44114233

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2723496A Active CA2723496C (en) 2009-12-01 2010-12-01 Improved propane or diesel powered heater with common burner opening

Country Status (2)

Country Link
US (1) US20110185986A1 (en)
CA (1) CA2723496C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2999291C (en) * 2007-11-13 2020-10-27 International Thermal Investments Ltd. Improved coolant and potable water heater
US20150114317A1 (en) * 2013-10-24 2015-04-30 International Thermal Research Compact serviceable diesel heater method and apparatus

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US541739A (en) * 1895-06-25 Gas or oil burner heater
US1938335A (en) * 1927-10-20 1933-12-05 Babcock & Wilcox Co Combined gas and oil burner
US2594914A (en) * 1949-02-12 1952-04-29 Grosskloss John Frederick Burner
US2744568A (en) * 1952-04-21 1956-05-08 Arleigh Q Johnson Gas-oil conversion burner tube
US2758637A (en) * 1953-03-24 1956-08-14 Surface Combustion Corp Control system for furnace alternatively fired by gas and oil fuels
US2737173A (en) * 1953-08-11 1956-03-06 Delta Heating Corp Combustion type unit heater
US3115851A (en) * 1960-05-11 1963-12-31 Foster Wheeler Corp Multi-fuel burner
GB1227343A (en) * 1967-04-11 1971-04-07
US3539284A (en) * 1969-03-12 1970-11-10 John J Wolfersperger Two-chamber fuel burner
US3672349A (en) * 1970-10-05 1972-06-27 Preway Inc Mobile home air conditioning unit
US3794014A (en) * 1971-11-26 1974-02-26 Lear Siegler Inc Hot-air furnace
US5067652A (en) * 1989-03-02 1991-11-26 Enander Harold R Supplemental vehicle heating method and apparatus with long heating cycle
US5527180A (en) * 1993-07-09 1996-06-18 International Thermal Investments Ltd. Infrared burner
US5927961A (en) * 1993-07-09 1999-07-27 International Thermal Investments Ltd. Multifuel burner with pressurized fuel-holding tank
US5391075A (en) * 1993-07-09 1995-02-21 Robinson; Edgar C. Multi-fuel burner
US6085738A (en) * 1993-07-09 2000-07-11 International Thermal Investments Ltd. Multi-fuel burner and heat exchanger
US6332580B1 (en) * 1998-11-30 2001-12-25 Vehicle Systems Incorporated Compact vehicle heating apparatus and method
US6718889B1 (en) * 2002-08-30 2004-04-13 Central Boiler, Inc. Draft controlled boiler fuel nozzle
US9074779B2 (en) * 2004-05-18 2015-07-07 International Thermal Investments Ltd. Distribution module for water heater

Also Published As

Publication number Publication date
US20110185986A1 (en) 2011-08-04
CA2723496A1 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
CA2643827C (en) Improved coolant and potable water heater
US6732940B2 (en) Compact vehicle heating apparatus and method
CN101529061A (en) Engine cooling system
US9464616B2 (en) Portable engine preheater fired by propane
CA2723496C (en) Improved propane or diesel powered heater with common burner opening
KR20070115956A (en) Domestic water heating unit and method for heating domestic water
JP5013130B2 (en) Combined heating / hot water system for vehicles
CA2451934C (en) Combination diesel/electric heating appliance systems
US6883467B2 (en) Narrowboat auxiliary heater and method of controlling same
US20150114317A1 (en) Compact serviceable diesel heater method and apparatus
JP4877580B2 (en) Hot water storage water heater
US9074779B2 (en) Distribution module for water heater
WO2006032137A1 (en) Distribution module for water heater
RU178604U1 (en) FUEL SYSTEM OF THE VEHICLE
RU193286U1 (en) Heat Exposure Unit for a Car Fuel System
CN205638725U (en) Utilize automobile engine waste heat to gain hydrothermal device for
CA2831250C (en) Compact serviceable diesel heater method and apparatus
US20240075792A1 (en) Composite Auxiliary Diesel Heater and Method of Operating Same
CA2941576A1 (en) Improved composite auxiliary diesel heater and method of operating same
CA2810141C (en) Portable engine preheater fired by propane
CA2583645A1 (en) Distribution module for water heater
JP2010174785A (en) Cooling device for internal combustion engine
JP2002022193A (en) Hot-water heating system
JP2000074491A (en) Hot water supply equipment
KR20060099822A (en) Structure preventing trouble and noise of combustion heater for a car

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20160616