CA2250559C - Dual-frequency reuse dual server group - Google Patents

Dual-frequency reuse dual server group Download PDF

Info

Publication number
CA2250559C
CA2250559C CA002250559A CA2250559A CA2250559C CA 2250559 C CA2250559 C CA 2250559C CA 002250559 A CA002250559 A CA 002250559A CA 2250559 A CA2250559 A CA 2250559A CA 2250559 C CA2250559 C CA 2250559C
Authority
CA
Canada
Prior art keywords
communication coverage
coverage area
signal
antenna element
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002250559A
Other languages
French (fr)
Other versions
CA2250559A1 (en
Inventor
Joe Huang
Colin Leon Kahn
Philip Lamoureux
Myles Patrick Murphy
Bulin Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia of America Corp
Original Assignee
Lucent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucent Technologies Inc filed Critical Lucent Technologies Inc
Publication of CA2250559A1 publication Critical patent/CA2250559A1/en
Application granted granted Critical
Publication of CA2250559C publication Critical patent/CA2250559C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

Sharing the existing sector antennas at the base station each of which corresponds to one sector of the outer communication coverage area to create an omnidirectional inner communication coverage area. When transmitting or receiving data from a mobile in one sector of the outer communication coverage area only one antenna is used, and when transmitting or receiving data from a mobile in the inner communication coverage area all the antennas are used.
This allows an increase in capacity of the hybrid inner/outer sectored cell without the additional cost of adding further antennas.

Description

-I-DUAL-FREQUENCY REUSE DUAL SERVER GROUP
Field of the Invention This invention is related to hybrid inner/outer sectored cells in wireless communication systems, and more particularly to antenna configurations in such systems.
Background of the Invention Dual server goup configuration cells, hereinafter hybrid inner/outer sectored cells, can be used in a wireless communication system to maximize the capacity of the available spectrum, and to help to reduce the total number of cells required. Figure 1 shows hybrid inner/outer sectored cell 10. Hybrid inner/outer sectored cell 10 has an inner server goup, hereinafter inner communication coverage area 12, and an outer server goup, hereinafter outer communication coverage area 14. The available spectrum is divided into 30 kHz carriers. The carriers assigned to hybrid inner/outer sectored cell 10 are divided into an inner group that are used in inner communication coverage area 12 and an outer goup that is used in outer communication coverage area 14. In the configuration shown in Figure 1, outer communication coverage area 14 is further sectored into three sectors 16, 18, 20 each covered by one of three sector antennas at the base station of hybrid inner/outer sectored cell 10. The inner communication coverage area is not sectored, or as known in the industry it is an omni sector, covered by an omnidirectional antenna. An omni inner communication coverage area is desirable over a three sector inner communication coverage area since more capacity is realized when there is one trunk group of channels, instead of dividing the channels of one trunk group among the three trunk groups of three sectors. The trunk goup of channels is a goup of channels available for assignment to a user on a particular antenna face.
Normally hybrid inner/outer sectored cell 10 having three sectored outer communication coverage area 14 and omni inner communication coverage area 12 can be implemented by adding a dedicated omnidirectional antenna to inner communication coverage area 12. A problem with such a system is that it requires an additional antenna. The additional antenna adds additional installation, maintenance, and lease costs and additional space to the base station. The additional antenna also often detracts from the aesthetics of the surrounding area.
The hybrid inner/outer sectored cell can also be implemented using the same antennas for the inner and outer communication coverage areas, however this requires that the inner and outer communication coverage areas are either both sectored into the same number of sectors, or that they are both omni cell. Unfortunately, this would not allow for a hybrid inner/outer sectored cell as shown in Figure 1.
Summar~of the Invention The invention solves the above problems by sharing the existing sector antennas at the base station used for the sectors of the outer communication coverage area to create an omnidirectional inner communication coverage area without increasing the total number of antennas. This allows an increase in capacity of the hybrid inner/outer sectored cell without the additional cost and additional space requirements of adding further antennas.
A base station for the hybrid inner/outer sectored cell has one antenna corresponding to each of the sectors in the outer communication coverage area. The base station also has a combiner and a divider. The combiner is in the receive path of the base station. The signal received on at least two of the antennas is combined in the combiner to obtain the uplink signal. The divider is in the transmit path of the base station. The divider provides signal generated by the radios of the base station to at least two of the antennas.
In accordance with one aspect of the present invention there is provided a base station providing coverage to an inner communication coverage area and an outer communication coverage area, comprising: a plurality of antenna elements, the plurality of antenna elements are operable to obtain an antenna pattern that covers the entire inner and the entire outer communication coverage areas; a first antenna element of the plurality of antenna elements, the first antenna element having an antenna pattern that covers a first sector of the outer communication coverage area and at least a first portion of the inner communication coverage -2a-area, the first antenna element being operable to transmit a first signal directed to a first mobile terminal in the first sector of the outer communication coverage area;
a second antenna element of the plurality of antenna elements, the second antenna element having an antenna pattern that covers a second sector of the outer communication coverage area and at least a second portion of the inner communication coverage area, the second antenna element being operable to transmit a second signal directed to a second mobile terminal in the second sector of the outer communication coverage area; responsive to the base station communicating with a mobile unit located in the inner communication coverage area, the plurality of antennas being operable to transmit using each of the plurality of antenna elements concurrently a third signal directed to a third mobile terminal in the inner communication coverage area; wherein the furthest point of the inner communication coverage area from the first and second antennas is closer to the first and second antennas than the furthest point of the outer communication coverage area from the first and second antennas; and wherein the inner and outer communication coverage areas are in a hybrid inner/outer sectored cell.
In accordance with another aspect of the present invention there is provided a method for providing coverage to an inner communication coverage area and an outer communication coverage area for use in system having a plurality of antenna elements operable to obtain an antenna pattern that covers the entire inner and the entire outer communication coverage areas, comprising the steps of transmitting a first signal directed to a first mobile terminal in a first sector in the outer communication coverage area using a first antenna element of the plurality of antenna elements; transmitting a second signal directed to a second mobile terminal in a second sector in the outer communication coverage area using a second antenna element of the plurality of antenna elements; responsive to the base station communicating with a mobile unit located in the inner communication coverage area transmitting a third signal directed to a first mobile terminal in the inner communication coverage area using each of the plurality of antenna elements concurrently; wherein the furthest point of the inner communication coverage area from the first and second antennas is closer to the first and second antennas than the furthest point of the outer communication coverage area from the first and second antennas; and wherein the inner and outer communication coverage areas are in a hybrid inner/outer sectored cell.

Brief Description of the Drawings It should be noted that the Figures are drawn to best illustrate preferred embodiments of the invention and are not drawn to scale.
Figure 1 is a schematic representation of a conventional hybrid inner/outer sectored cell;
Figure 2 is a block diagram of a hybrid inner/outer sectored cell;
Figures 3a and 3b is a block diagram of a portion of a transmit path of a base station for a hybrid inner/outer sectored cell having a sectored outer communication coverage area and omni inner communication coverage area;
Figures 4a and 4b is a block diagram of a portion of a receive path of a base station for a hybrid inner/outer sectored cell having a sectored outer communication coverage area and omni inner communication coverage area;
Figure 5 is a block diagram of a cabinet for the base stations of Figures 3 and 4.
Detailed Description Figure 2 illustrates hybrid innerlouter sectored cell 100. Hybrid inner/outer sectored cell 100 has an inner server group, hereinafter inner communication coverage area 112, and an outer server group, hereinafter outer communication coverage area 114. The available spectrum is divided into 30 kHz Garners. The carriers assigned to cell 100 are divided into an inner group that are used in inner communication coverage area 112 and an outer group that is used in outer communication coverage area 114. Outer communication coverage area 114 is further sectored into three sectors 116, 118, 120 each covered by one of three sector antennas at the base station of cell 100. Preferably, Mobile Assisted Handoff (MAHO) is used without digital locate for handoffs among the sectors of the hybrid inner/outer sectored cell and for handoffs among hybrid inner/outer sectored cells 100. Inner communication coverage area 112 is an omni sector configuration. The base station of hybrid inner/outer sectored cell 100 shares the existing three sector antennas that the base station is using for outer communication coverage area 114 to create an omnidirectional inner communication coverage area without increasing the total number of antennas.
The signals for the inner communication coverage area will be simulcast over the outer communication coverage area's three antennas, yet appear omnidirectional.
Simulcasting the ~o signal means that it is transmitted concurrently over the three transmit antennas and received concurrently over the three receive antennas. As known in the art, separate transmit and receive antennas are often used at the base station to transmit and receive signals over the air interface, although a common single antenna and a means of separating the transmitted signal from the received signal can also be used. If a common antenna is used for both transmitting and is receiving the signal, there is one such antenna for each of the sectors in the outer communication coverage area, and the signals directed to the mobiles in the inner communication coverage area are simulcast over all of these antennas.
For the downlink, the transmission of signals from the base station to the mobile unit, the 2o signal is transmitted on all three of the sector antennas. The transmit path is shown in Figures 3a and 3b. The transmit path contains Radio Control Frame (RCF) 200 connected to 1:3 divider 210. The output of 1:3 divider 210 is connected to Linear Amplifier Frame (LAF) 220, which is connected to the antennas (not shown). The transmission signals are generated by the radios 2220 . . . 222" of the RCF 200. The transmission signals .are combined in 4:1 cornbiners 2240 . . . 2242 25 and then in the 9:1 combiners 2260 . . . 2266. The output of 9:1 combiners 2260 . . . 2266 is coupled to 1:3 divider 210 through RCF Transmitter RF Interfaces 2280 . ~. .
2286. 1:3 divider 210 divides the output of one of 9:1 power combiners 2260 . . . 2266 and provides the signal to LAF 220. The LAF has one section 230, 232, 234' for each of the three sector antennas. The LAF may also have a section 236 for an omni antenna, which should have been required in the 3o prior art but is not used in the present invention. If section 236 is in the LAF it is not used, and as can be seen in Figures 3a and 3b, it is not connected to the 1:3 divider.
Each of the three outputs of 1:3 divider 210 is fed to its respective sector 230, 232, 234 in LAF 220 for amplification. It is recommended that the 1:3 divider be mounted on a panel in the LAF. The signal from the outputs of 1:3 divider 200 are fed to the RF2 inputs of LAF
(or to any of available input of the LAF) and then routed to the Antenna Interface Frame (AIF) for filtering and transmission by sector antennas. Although, extra loss is introduced in the transmit path by 1:3 divider 210, since the signal is for the smaller inner communication coverage area 112, the loss can be accounted for by calibrating the software or by hardware adjustments.
o The uplink signal, the signal transmitted from the mobile unit to the base station, is constructed using the signals received on the three sector antennas. The receive path is shown in Figures 4a and 4b. The receive path contains antennas, AIF 300, 3:1 combiner 310. and RCF
200. It is recommended that a new panel be added into the AIF which contains 3:1 combiner 310. The signals are received on the antennas and sent to AIF 300, which contain an AIF
~5 receiver path for each of the antennas. Each AIF receiver path contains test coupler 330, . . .
3303 used to monitor test signals, filters 340, . . . 3403, 350, . . . 3503 to filter the signal, pre-amplifier 360, . . . 3603 and power divider 370, . . . 370, which produces the needed number of the signal outputs, each having the signal typically at a reduced power.
Similar to the LAF, the AIF may also have a receiver path for an omni antenna, which should have been required in the 2o prior art but is not used in the present invention. If this receiver path is in the AIF it is not used, and as can be seen in Figures 4a and 4b, it is not connected to the 3:1 combiner. One signal output fi-om power divider 370, . . . 370, in each of the sectors is coupled to 3:1 combiner 310, which combines the signals and feeds them to 1:9 power divider 380 in RCF 200.
If path loss is a problem (higher noise figure), a 1:6 power divider could be substituted instead of the 1:9 power 25 divider. Each output of the 1:9 divider feeds one of the six 1:4 power dividers, which feed 4 radios. The radios can be any suitable radios, such as Lucent Technologies' Enhanced Digital Radio Unit (EDRU).
The base station can be any suitable base station. Preferably, Lucent Technologies' 30 series II Classic is the selected platform for this technique. It can easily support 56 EDRUs (with vocoder relocation) in the primary frame and provides a composite output power at J4 of 110 Watts. The flexibility of the Series II Classic architecture allows this configuration to be supported with minor modifications to the existing frame hardware. The changes to the frame hardware are such that it can be done by using a total of three transmit antennas for both the inner and outer communication coverage areas.
To sunnort rhP t".~,~a . __.____-.. --- --_ ..,"~", ;;"iGrwu~er sectored cell configuration, minor hardware modifications must be made to the Series II Classic in both the receive path and transmit paths so the paths comply with the above description. It is recommended that the two bottom shelves in 1o the Series II Primary frame be dedicated to the inner communication coverage area. These two shelves can support up to a total of 24 radios. Figure 5 indicates how the primary frame would be partitioned for the configurations of inner group and outer group channels of Table 2, supra.
For illustrative purposes only, the primary frame contains radios to support analog.
is If desired, regular three sector Series Id Classic cells can be deployed.
to the field early in the program and the ~~,~e and softw~,e c~g~ required to support the hybrid inner/outer sectored cell feature can be later accomplished at later phases of the program in the field. These changes can be made in the field once systems are deployed.
2c Other Lucent Technologies' cellular products like the Series IIm, Series IImm, or plan R
Microcell base stations can also be used, however they either require more significant changes to the transmit path, don't have enough transmit power, or don't have the total radio count to as easily support this type of hybrid inner/outer sectored, cell technique. .
2s This modified hybrid inner/outer sectored cell'feature has minimal impact on the existin g call processing for this feature. To support call processing, it is required that 4 Digital Control Channels (DCCH) be assigned to the configuration. 3 DCCHs (1 per sector) would be required for the outer communication coverage area and 1 DCCH for the omnidirectional inner . convnunication coverage area., Also, the call processing' software will need to be told through _7_ translations what channel sets are assigned to the various sectors so handoffs can be properly orchestrated.
Operation, administration and maintenance (OA&M) will be impacted by the modified hybrid inner/outer sectored cell. Alarms for the Linear Amplifier Circuits (LACs) which support the onmidirectional inner communication coverage area will need to be reworked. One to one correspondence of the EDRU to the LAC causes issues with the hardware error handling (HEH).
Call processing is inhibited for all radios associated with a LAC that is in critical alarm. In this co~guration, we want to block only those radios servicing the outer communication coverage ~o area. Radios servicing the inner communication coverage area would be blocked when all three LACs are in critical alarm. In terms of radio diagnostics and antenna functional test, the inner communication coverage area radios need to be tested on all three antenna faces.
It would also be recommended that a new configuration be added to the Recent Change ~5 and Verify (RCV) screen to support this feature.
Software changes to support this co~guration should be minor, but an entire generic, i.e.
software that runs the cell, must be downloaded.
20 _ Hybrid inner/outer sectored cell 100 maximizes the capacity of the available spectrum in the cellular band allotted, and helps to reduce the total number of cells required. The hybrid iinner/outer sectored cell approach is presented for wireless systems such as TDMA cellularlPCS
systems. The outer communication coverage area uses three sector configuration while the inner communication coverage area can be either omni or three sector cbafiguration.
The approach 25 takes advantages of the fact that the inner communication coverage area radiates less power, hence causing less interference to other cells as compared to the outer communication coverage area. As a result, a smaller frequency reuse factor can be used for the inner communication coverage area, giving more capacity to the overall system.
3o For example, when the available spectrum is 4.41 MHz, a total of 147 30 kHz carrier channels are available for use. For a regular 3 sector cell configuration and a frequency reuse of 7, the calculates Erlang capacity of the cell is 39.6. This capacity can be exceeded by using the _8_ hybrid inner/outer sectored cell approach. As and example two different inner communication coverage area configurations will be considered, an omni and a three sector configuration. The omni configuration has the advantage of pooling the TDMA channels among all the channels in the inner communication coverage area while the three sector configuration enjoys less interference due to sectoring and hence can use a lower frequency reuse factor. In the former case (omni) a reuse of 4 is used and in the latter case (three sector) a reuse of 3 is used as an example throughout this document.
To take advantage of the hybrid inner/outer sectored cell technique, many possible ~o configurations are available to partition the total number of carrier channels. Table 1 shows a number of possible co~gurations. As shown in Table 2, the number of available carriers for the inner and outer communication coverage areas vary depending on the number of carriers selected for the inner and outer communication coverage areas in Table 1.
Similarly, the total Eriang capacity shown in Table 3 and Table 4 varies based on the number of time slots available ~5 for the inner and outer communication coverage areas. It is assumed that one time slot is used for DCCH on each logical antenna face).
Table 1. Total Number of 30 kHz Carriers Available for 4.41 MHz (Freq. Reuse) Configuration Configuration Conligoration A B C

Inner (K=4) 84 Carriers 63 Carriers 42 Carriers Outer (K=~ _63 Carriers _84 Carriers 105 Carriers Total Ch$nnels 147 Carriers 147 Carriers 147 Carriers Table 2. Number of30 klIz Carriers Available per Base Station {Freq. Reuse) ConB~urationConfigurationConfiguration A B C

Inner -Omni (K~i) 21 Carriers 15.75 Carriers10.5 Carriers , Inner -Three Sector 28 Carriers 21 Carriers 14 Carriers (K=3) Outer -Three Sector 3 Carriers/Sector4 Carriers/Sector5 Carriers/Sector (K=7) 2s I
Table 3. Number of Traffic Time Slots & Capacity(Omni Inner communication coverage area) !
(Freq. Reuse) Configuration Configuration Configuration A B C

TrafficErlang TrafficErlang TrafficErlang Time CapacityTime CapacityTime Capacity Slots Slots slots Inner -Omni (K=4) 62 53 46 37 30 22 ' Outer Three Sector(K=7)8 _l l 11 _18 14 _25 ;

Total Erlang Capacity 64 55 47 Table 4. Number of Traffic Time Slots & Capacity (Three Sector Inner communication coverage area) (Freq. Reuse) Configuration Configuration Configuration j A B C

TrafficErlang TrafficErlang TrafficErlang Time CapacityTime CapacityTime Capacity Slots Slots slots Inner -Three Sector27 58 20 40 13 22 (K--3) Outer=Three Sector(K=7)8 _l l 11 _18 14 _25 Total Erlang Capacity b9 58 47 For example, for configuration C, 105 carriers would be available to all the outer communication coverage areas, and 42 carriers would be available to the inner communication c coverage areas. The inner communication coverage areas would be designed to be omnidirectional with a frequency reuse designed to be 4 (K=4) and have all 10 carries in %x of the 7s cell and all 11 carriers in the other %Z of the cells (42 carriers/4 frequency reuse) available on the inner communication coverage area. The outer communication coverage area would be designed i i for three sectors with the frequency reuse designed- to be 7 (K=7) and have 5 carriers available per sector ((1 OS carrier~s/7 frequency reuse)/3 sectors).

With this particular design, total Erlang capacity at 2% blocking can be increased to 47 Erlangs compared to 39.6 Erlangs if a conventional 3 sector, K=7 configuration is used. 22 Erlangs are from the inner communication coverage area and 25 Erlangs are from the outer communication coverage area. For the inner communication coverage area, 30 time slots (10 carriers x 3 time slots) are available, but only 29 time slots (30 minus 1 DCCH omnidirectional channel) are available for traffic. In the outer communication coverage area, I S time slots (5 carriers x 3 time slots) are available: per sector, but only 14 time slots (15 minus 1 DCCI~ are available for traffic.
Note that a trade-off exists between the uniformity of Erlang capacity distribution and total Erlang capacity. Configuration A provides a large Erlang capacity by putting most of the channels on the inner communication coverage area, while starving the outer communication coverage area's capacity. On the other hand, configuration C provides a more unifonm Erlang capacity and the distribution is fairly equal on the inner and outer communication coverage areas 95 with less total Erlang capacity.
To take full advantage of the hybrid inner/outer sectored cell systems, the EDRU using y the Algebraic Coded Exiting Lines= Prediction ACELP vocoder algorithm shall be utilized.
From link budget analysis, the minianum requirement of a C/I of 17 dB 90% of the time can be i 2o met with a K=4 on the inner communication coverage area and K=7 on the outer communication coverage area with the use of the ACELP vocoder deployed in the areas where propagation attenuation slope is higher than 40 dB/decade (~4).
i The outer communication coverage area is ~a K=7 three sector system which meets the 25 minimum 17 dB C/I requirement.. Analyzing the inner communication coverage area; a three sector K=7 reuse which meets the minimum C/I requirement of 17 dB is roughly equal to an omni system with K=12 reuse. Using Equation 1:
1 Mean C ' 1 _D y __ 1 ( r ( ) { I} ~.~m.~ruo,~a.~r=6/m(R) 6/m' 3K) m= Number of sectors per cell D= Frequency Reuse Distance Cells R= Coverage Radius of Cell y= Propagation Path Loss Slope K= Frequency Reuse Pattern it can be seen that ~ ( 3 * 7)'~3 ,~,~. = 6 ( 3 * 12)'~«"~;. Next considering an omni system with K=3 (i.e. D/R = 3K ), and assuming the radius of the inner communication coverage area is %z that of the omni system:
D l t o (2) ~ R l 2l ~°'n°''°°u commuaicatioa covaaae ma - ( 3 K ) where K'= 4K = 12 ~5 That is, an omni inner communication coverage area with K=3 has the same C/I level as that of an omni cell with K'=12. Clearly, if an inner communication coverage area with K=3 meets the 17 dB C/I requirement, K=4 will meet that same requirement.
Table 5 shows a number of possible configurations for an available spectrum of 4.4 MHz, 2o a total of 146 30 kHz carrier channels. As shown in Table 6, the number of available carriers for the inner and outer ,communication coverage areas vary depending on the number of carriers selected for the inner and outer communication coverage areas in Table 5.
Similarly, the total Erlang capacity shown in Table 7 varies based on the number of time slots available for the inner and outer communication coverage areas. It is assumed that one time slot is used for DCCH on 25 each logical antenna face).
Table 5. Total Number of 30 kHz Carriers Available for 4.4 MHz Outer (K=7) 66 Carriers 86 Carriers 106 Garners Total Channels 146 Carriers 146 Carriers 146 Carriers Table 6. Number of 30 kHz Carriers Available per Base Station (Freq. Reuse) ConfigurationConfigurationConfiguration A B C

Inner-Omni (K=4) 20 Carriers 15 Carriers 10 Carriers Outer Three Sector 3 Carriers/Sector4 Carriers/Sector5 Carriers/Sector (K--~

Table 7. Number of Traffic Time Slots & Capacity(Erlang B- 2% Blocking) (Freq. Reuse) Configuration Configuration Configuration A B C

TrafficErlang Tragic Erlang TrafficErlang Time CapacityTime CapacityTime Capacity slots slots slots Inner -Omni (K=4) 59 49 44 35 29 21 Outer-Three Sector(K='n8 11 11 18 14 25 Total Erlang Capacity 60 53 46 ~o While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art having reference to the specification and drawings that various modifications may 'be made and various alternatives are possible therein without ~ s departing from the spirit and scope of the' invention.

Claims (9)

1. A base station providing coverage to an inner communication coverage area and an outer communication coverage area, comprising:
a plurality of antenna elements, the plurality of antenna elements are operable to obtain an antenna pattern that covers the entire inner and the entire outer communication coverage areas;
a first antenna element of the plurality of antenna elements, the first antenna element having an antenna pattern that covers a first sector of the outer communication coverage area and at least a first portion of the inner communication coverage area, the first antenna element being operable to transmit a first signal directed to a first mobile terminal in the first sector of the outer communication coverage area;
a second antenna element of the plurality of antenna elements, the second antenna element having an antenna pattern that covers a second sector of the outer communication coverage area and at least a second portion of the inner communication coverage area, the second antenna element being operable to transmit a second signal directed to a second mobile terminal in the second sector of the outer communication coverage area;
responsive to the base station communicating with a mobile unit located in the inner communication coverage area, the plurality of antennas being operable to transmit using each of the plurality of antenna elements concurrently a third signal directed to a third mobile terminal in the inner communication coverage area;
wherein the furthest point of the inner communication coverage area from the first and second antennas is closer to the first and second antennas than the furthest point of the outer communication coverage area from the first and second antennas; and wherein the inner and outer communication coverage areas are in a hybrid inner/outer sectored cell.
2. The base station of claim 1, further comprising a third antenna element of the plurality of antenna elements, the third antenna element having an antenna pattern that covers a third sector of the outer communication coverage area and at least a third portion of the inner communication coverage area.
3. The base station of claim 2, wherein the first, second, and third portions of the inner communication coverage area comprise the entire inner communication coverage area.
4. The base station of claim 1, further comprising a signal combiner having:
a first input coupled to the first antenna element for receiving a first signal from the first antenna element;
a second input coupled to the second antenna element for receiving a second signal from the second antenna element; and an output that provides a signal formed from the first and second signals.
5. The base station of claim 4, wherein the signal combiner further includes a third input coupled to a third antenna element for receiving a third signal from the third antenna element; and the signal provided by the output comprises the third signal.
6. A method for providing coverage to an inner communication coverage area and an outer communication coverage area for use in a system having a plurality of antenna elements operable to obtain an antenna pattern that covers the entire inner and the entire outer communication coverage areas, comprising the steps of:
transmitting a first signal directed to a first mobile terminal in a first sector in the outer communication coverage area using a first antenna element of the plurality of antenna elements;
transmitting a second signal directed to a second mobile terminal in a second sector in the outer communication coverage area using a second antenna element of the plurality of antenna elements;
responsive to the base station communicating with a mobile unit located in the inner communication coverage area transmitting a third signal directed to a first mobile terminal in the inner communication coverage area using each of the plurality of antenna elements concurrently;
wherein the furthest point of the inner communication coverage area from the first and second antennas is closer to the first and second antennas than the furthest point of the outer communication coverage area from the first and second antennas; and wherein the inner and outer communication coverage areas are in a hybrid inner/outer sectored cell.
7. The method of claim 6, further comprising the step of transmitting a fourth signal to a third sector in the outer communication coverage area using a third antenna element of the plurality of antenna elements and wherein the step of transmitting a third signal further comprises using the third antenna element.
8. The method of claim 6, wherein the first signal is transmitted at a first power level, the second signal is transmitted at a second power level and the third signal is transmitted at a third power level, the third power level being less than the smaller of the first power level and the second power level.
9. The base station of claim 1, further comprising a signal divider having a first output that provides at least a first part of a signal to the first antenna element and a second output that provides at least a second part of the signal to the second antenna element.
CA002250559A 1997-10-23 1998-10-15 Dual-frequency reuse dual server group Expired - Fee Related CA2250559C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6302797P 1997-10-23 1997-10-23
US60/063,027 1997-10-23

Publications (2)

Publication Number Publication Date
CA2250559A1 CA2250559A1 (en) 1999-04-23
CA2250559C true CA2250559C (en) 2002-12-31

Family

ID=22046425

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002250559A Expired - Fee Related CA2250559C (en) 1997-10-23 1998-10-15 Dual-frequency reuse dual server group

Country Status (3)

Country Link
JP (1) JPH11215055A (en)
BR (1) BR9803926A (en)
CA (1) CA2250559C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1832135B1 (en) * 2004-12-30 2012-08-29 Telefonaktiebolaget LM Ericsson (publ) An improved system for cellular radio coverage and an antenna for such a system
US8144658B2 (en) * 2005-02-11 2012-03-27 Qualcomm Incorporated Method and apparatus for mitigating interference in a wireless communication system
US8666333B2 (en) * 2005-12-12 2014-03-04 Telefonaktiebolaget Lm Ericsson (Publ) Using antenna arrays to produce omni-directional transmissions
EP2068577B1 (en) 2006-09-29 2016-10-05 Fujitsu Limited Base station device and cell configuration method

Also Published As

Publication number Publication date
BR9803926A (en) 1999-12-21
CA2250559A1 (en) 1999-04-23
JPH11215055A (en) 1999-08-06

Similar Documents

Publication Publication Date Title
US6351654B1 (en) Antenna configuration for a hybrid inner/outer sectored cell
US6405018B1 (en) Indoor distributed microcell
US6104930A (en) Floating transceiver assignment for cellular radio
EP0593822B1 (en) Base station antenna arrangement
US5909649A (en) Space division multiple access radio communication system and method for allocating channels therein
US5559866A (en) Method of reuse through remote antenna and same channel cell division
US6434406B2 (en) Antenna system for a cellular telephone network
EP0795257B1 (en) A beamed antenna system
CA2101159C (en) Manifold antenna structure for reducing reuse factors
JP4491654B2 (en) Antenna diversity apparatus and method
KR100306522B1 (en) Cellular wireless phone system
EP0652644B1 (en) Base station transmission-reception apparatus for cellular system
EP0531090A2 (en) Cells re-use partition in a mobile communication system
US5884166A (en) Multidimensional cellular mobile telecommunication system
US6898431B1 (en) Dynamic channel allocation in a sectored cell of a cellular communication system
WO1996006510A1 (en) Method of improving rf coverage in a microcell environment
EP1871123B1 (en) Wireless network system in a vehicle
US7570615B2 (en) Resource-sharing cells
JP4481508B2 (en) Adaptation sector
US5845199A (en) Simulcasting system with diversity reception
EP1676456B1 (en) Radio resource-sharing cells
CA2250559C (en) Dual-frequency reuse dual server group
JP2001503213A (en) Cell coverage method for base station and cellular mobile radio system
EP0717577B1 (en) Cellular communications network with directional antennae
WO1995006369A1 (en) A method for adding capacity of a base station

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed