CA2224536A1 - Capacitive sensor sensing circuit - Google Patents

Capacitive sensor sensing circuit

Info

Publication number
CA2224536A1
CA2224536A1 CA002224536A CA2224536A CA2224536A1 CA 2224536 A1 CA2224536 A1 CA 2224536A1 CA 002224536 A CA002224536 A CA 002224536A CA 2224536 A CA2224536 A CA 2224536A CA 2224536 A1 CA2224536 A1 CA 2224536A1
Authority
CA
Canada
Prior art keywords
ref
plate
capacitive sensor
voltage
ref2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002224536A
Other languages
French (fr)
Inventor
Bruno Tardif
Jean Pronovost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vibrosystm Inc
Original Assignee
Vibrosystm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vibrosystm Inc filed Critical Vibrosystm Inc
Priority to CA002224536A priority Critical patent/CA2224536A1/en
Priority to CA002255225A priority patent/CA2255225A1/en
Publication of CA2224536A1 publication Critical patent/CA2224536A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/2405Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by varying dielectric
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/2403Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by moving plates, not forming part of the capacitor itself, e.g. shields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2417Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

CA 02224~36 1997-12-30 CIRCUIT DE MESURE POUR UN CAPTEUR CAPACITIF

CHAMP DE L'INVENTION
La présente invention porte sur un circuit de mesure pour un capteur 5 capacitif, et plus particulièrement sur un circuit de mesure produisant un signal ayant une période qui varie en fonction des temps de charge et décharge du capteur capacitif. Le circuit peut être avantageusement utilisé en combinaison avec un capteur capacitif installé sur un arbre tournant, afin de mesurer sa vibration .
HISTORIQUE
Habituellement, dans le cas de la vibration d'un arbre tournant, le capteur capacitif utilise une technique inductive impliquant des courants de Foucault.
L'emploi de cette technique a pour conséquence que l'utilisateur doit calibrer ou 15 interpréter les mesures du capteur selon le type de matériau dont est construit l'arbre. De plus, une variation de densité du matériau sur la circonférence de l'arbre provoque une variation de la mesure difficile à différencier des vibrations réelles faisant l'objet de l'observation.

La présente invention permet d'éliminer ces deux problèmes puisque le circuit et la méthode de mesure sont insensibles au type ou à la variation de densité du matériau conducteur impliqué dans le processus.
Le circuit de mesure selon l'invention comporte un circuit oscillateur 25 générant un signal ayant une période qui varie en fonction des temps de charge et décharge du capteur capacitif entre deux seuils de tension prédéterminés. La charge et la décharge du capteur capacitif se fait par le biais d'un jeu de résistances reliées à un circuit oscillateur ayant une première sortie contrôlant la charge et la décharge du capteur capacitif, et une deuxième sortie générant le 30 signal de mesure. Les plaques du capteur capacitif sont connectées à un circuit suiveur, dont la sortie est connectée au circuit oscillateur. La deuxième sortie du CA 02224~36 1997-12-30 circuit oscillateur peut être reliée à un circuit de traitement pour rendre la mesure linéaire.

DESCRIPTION BREVE DES DESSINS
Une description détaillée des réalisations préférées de l'invention sera donnée ci-après en référence avec les dessins suivants, dans lesquels les mêmes numéros font référence à des éléments identiques ou similaires:
Figure 1 est un diagramme schématique d'un capteur capacitif apte à
fonctionner avec un circuit de mesure selon l'invention;
Figure 2 est un diagramme schématique d'un capteur capacitif muni d'un - anneau de garde, selon l'invention;
Figure 3 est un diagramme schématique d'une première réalisation du circuit de mesure selon l'invention, connecté à un capteur capacitif;
Figure 4 est un diagramme schématique d'une deuxième réalisation du 15 circuit de mesure selon l'invention, connecté à un capteur capacitif;
Figure 5 est un graphe montrant une courbe typique de la période du signal produit par le circuit de mesure selon l'invention par rapport à la distance faisant l'objet d'une mesure par le capteur capacitif;
Figure 6 est un diagramme schématique d'une première réalisation d'un 20 circuit pour rendre la mesure linéaire, selon l'invention; et Figure 7 est un diagramme schématique d'une seconde réalisation d'un circuit pour rendre la mesure linéaire, selon l'invention.

DESCRIPTION DÉTAILLÉE DES RÉALISATIONS PRÉFÉRÉES
En référence à la Figure 1, il est montré un diagramme schématique d'un capteur capacitif apte à fonctionner avec le circuit de mesure selon l'invention.
Ce capteur capacitif est semblable à celui montré dans le brevet US No.
4,675,670. Le capteur capacitif 9 (condensateur de mesure) est formé de deux plaques conductrices parallèles 1 et 4, isolées électriquement l'une de l'autre par un diélectrique 5. La plaque 1 et la matière conductrice ou semi-conductrice 2 forment un condensateur Cm 3 dont la valeur de la capacité suit la relation:

CA 02224~36 1997-12-30 Cm = K-A/D ( 1 ) où:
K = ~0 ~" ~0 étant la permittivité du vide (8,854 pF/m) et ~r étant la permittivité relative du diélectrique 11 entre les plaques 1 et la matière 2;
A est la surface de la plaque 1;
D est la distance séparant la plaque 1 de la matière 2.
L'équation (1 ) démontre bien que la mesure est indépendante du type, de la densité et de la variation de densité du matériau dont est construit la matière conductrice ou semi-conductrice 2.
De plus, I'équation (1) révèle certaines autres applications. Par exemple, la capacité Cm 3 peut varier également si la distance D est fixe et que la surface A demeure constante, tandis que la valeur du diélectrique ~, entre la plaque 1 et la matière 2 varie. On obtient ainsi un capteur qui peut être utilisé pour mesurer l'humidité dans une pièce de bois insérée entre la plaque 1 et la matière 2, ou encore, un capteur mesurant la variation des propriétés d'un fluide présent entre la plaque 1 et la matière 2. Si la caractéristique diélectrique du milieu entre la plaque 1 et la matière 2 et la distance D demeurent constantes, on obtient un capteur dont la valeur de la capacité Cm 3 varie en fonction de la surface A, oùA n'est plus seulement la surface de la plaque1, mais plutôt la surface de la plaque 1 qui est placé directement devant la matière 2. On obtient alors un capteur par recouvrement qui est utile pour mesurer les déplacements latéraux de la matière 2.
En référence à la Figure 2, la plaque 4 sert de blindage car elle est maintenue à une tension semblable à celle de la plaque 1 durant l'opération du capteur 9, tel qu'expliqué plus loin. Ceci permet d'obtenir une capacité Cd 10, entre les plaques 1 et 4, la plus faible possible et de blinder le condensateur de mesure contre toute perturbations pouvant exister derrière la plaque 4. Les plaques latérales 6 sont au même potentiel que la cible 2. Celles-ci permettent de rendre insensible le capteur 9 à des objets extérieurs latéraux mais aussi de fixer mécaniquement le capteur 9 à une armature lors de l'utilisation. Les plaques 6 ont cependant le désavantage de former une capacité parasite Cp 7. Les méthodes CA 02224~36 1997-12-30 de blindage discutées ici ont pour objectif que seul Cm 3 varie avec la distanceséparant la plaque 1 de la surface conductrice ou semi-conductrice 2.
Une fason de diminuer la valeur de la capacité parasite Cp 7 est d'augmenter la distance entre la plaque 1 et les plaques 6 en les éloignant de 5 fason radial ou en les déplaçant vers la plaque 4. Cependant, en agissant ainsi, les perturbations extérieures sont plus plausibles. Une autre fason de diminuer Cp7 est d'ajouter un anneau de garde 23 au condensateur de mesure 9 tel qu'illustré à la figure 2. L'anneau de garde 23 est, en opération, soumis au même potentiel que la plaque 4, tel qu'expliqué plus loin, ce qui diminue Cp 7 puisque 10 les surfaces formant cette capacité parasite sont moins grandes et plus éloignées.
En référence à la Figure 3, il est montré un circuit de mesure selon l'invention, basé sur un oscillateur 22 connecté au condensateur de mesure 9. Laplaque 1 du condensateur de mesure 9 est reliée à l'entrée positive d'un amplificateur opérationnel 13 qui sert de tampon avec le reste du circuit. La 15 plaque de blindage 4 est reliée avec l'entrée négative du tampon 13 ce qui, par la propriété inhérente d'un amplificateur opérationnel, assure une tension semblable entre les plaques 1 et 4 (et 23 si on utilise un anneau de garde). Le principe de l'oscillateur 22 est que la capacité totale vue par la plaque 1 est chargée à travers les résistances Ra 21 et Rb 12 par une tension fixe Ref3 8 20 jusqu'à l'atteinte d'une tension de référence Ref2 16. A ce moment, le comparateur 15 actionne une bascule 18 qui elle, actionne un commutateur 19.
Dès lors, la capacité totale vue par la plaque 1 se décharge à travers la résistance Rb 1 2 jusqu'à l'atteinte d'une tension fixe Ref 1 17. Le comparateur 14 actionne la bascule 18 qui actionne à son tour le commutateur 19. Le cycle recommence 25 alors avec la recharge de la capacité.
Pendant la charge (en mode permanent), la tension présente sur la plaque 1 suit la relation:
Vcharge(t) = ( Ref 3-Ref 1 ) - ( 1 e-t/((Ra + Rb) c)) + Ref l ( 2 ) Pendant la décharge (en mode permanent), la tension présente sur la 30 plaque 1 suit la relation:
Vdécharge(t) = Ref2-e "

CA 02224~36 1997-12-30 Pendant la charge (en mode permanent), le temps de montée est de:
TCharge = -(Ra + Rb)-C-ln{[(Ref2-Ref 1 )/(Ref3-Ref 1 )] + 1 } (4) Pendant la décharge (en mode permanent), le temps de descente est de:
TdéCha~ge = -Rb-C-ln(Ref 1 /Ref2) (5) Par conséquent, le signal de sortie T 20 aura une période représentée par:
T = TChar9e + Tdecharge (6) Il est à noter que pour ces équations:
C=Cm+Cp+Cr (7) soit Cm 3 et Cp 7 des figures 1 et 2, mais aussi Cr qui comprend tout effet parasite qui est propre au condensateur de mesure 9 et plus globalement à
l'oscillateur 22.
Pour simplifier, on peut poser que:
Cpt = Cp + Cr (8) En reprenant l'équation (1), on peut conclure que:
1 5 C = Cpt + K-A/D (g) d'où l'équation de la période de sortie en fonction de D, soit la distance entre les plaques 1 et 2:
T = {Cpt + K-A/D}-{-(Ra + Rb)-ln{[(Ref2-Ref 1 )/(Ref3-Ref 1 )] + 1 }-Rb-ln(Ref 1 /Ref2)}
(10) ll faut que la tension Ref 1 1 7 soit plus petite que la tension Ref2 16 et que la tension Ref2 16 soit plus petite que la tension Ref3 8.
En référence à la Figure 4, il est montré une autre façon de réaliser un oscillateur selon l'invention. L'oscillateur 48 fonctionne sensiblement de la même façon que l'oscillateur 22 illustré à la Figure 3, à l'exception de quelques éléments. En effet, la charge et la décharge du condensateur de mesure 9 ne s'effectuent que par une seule et même résistance Rc 46. De plus, la référence Ref 3 est enlevée et la tension de charge du condensateur est maintenant la tension Vo 47.
Pendant la charge (en mode permanent), la tension présente sur la plaque 1 suit la relation:
Vcharge(t) = (Vo-Ref 1 ) ( 1 e-t/(Rc c~) + Ref 1 CA 02224~36 1997-12-30 Pendant la décharge (en mode permanent), la tension présente sur la plaque 1 suit la relation:
VdéCharge(t) = Ref2-e ~ ~ (12) Pendant la charge (en mode permanent), le temps de montée est de:
Tcharge = -Rc C ln{l(Ref 2-Ref 1)/(V0-Ref 1)] + 1 } (13) Pendant la décharge (en mode permanent), le temps de descente est de:
Tdécharge = -Rc-C-ln(Ref 1 /Ref2) (14) Par conséquent, en reprenant le même raisonnement que pour l'oscillateur 22 de la Figure 3, le signal de sortie T 20 aura une période représentée par:
T = {Cpt + K A/D} {-Rc ln{l(Ref2-Ref 1)/(V0-Ref 1)] + 1 }-Rc-ln(Ref 1 /Ref2)}
(15) Il faut que la tension Ref1 17 soit plus petite que la tension Ref2 16.
- D'après les équations (10) et (15), la relation entre la période et la distance a l'allure de la courbe illustrée à la Figure 5.
Selon la relation de l'équation (9) et son illustration à la figure 5, la période produite par le capteur 9 ne varie pas de façon linéaire en regard de la distance D présente entre les surfaces 1 et 2. La détermination de la valeur du déplacement de la matière conductrice ou semi-conductrice 2 aurait avantage à
devenir linéaire par l'intermédiaire de dispositifs électroniques conçus et/ou 20 programmés en fonction des divers paramètres physique de l'oscillateur 22 ou 48, pour déterminer la valeur du déplacement réel tout en tenant compte des effets parasites.
En référence à la Figure 6, il est montré un exemple de dispositif électronique conçu pour rendre linéaire la valeur du déplacement. A l'entrée du 25 dispositif, on retrouve le signal T 20 qui est dirigé vers un intégrateur 26 et un monostable 24. Le monostable 24 contrôle le commutateur 25 qui, grâce à un délai d 35, permet à l'intégrateur 26 de faire une remise à zéro entre chaque période tel qu'illustré par la forme d'onde 44. Par la suite, un détecteur de crête 37 et un échantillonneur-bloqueur 38 amènent un niveau continu à partir du 30 plateau 45 obtenu à la sortie de l'intégrateur 26. A la sortie de l'échantillonneur-bloqueur 38, il y a une tension V qui suit la relation:

CA 02224j36 1997-12-30 .

V=KA-T (16) L'allure de la tension V en fonction de la distance D plaque 1-matière conductrice 2 est la même que celle représentée à la Figure 5. En reprenant les équations (10) et (15), et en posant:
KB = -(Ra + Rb)-ln{[(Ref2-Ref 1)/(Ref3-Ref 1)] + 1 }-Rb-ln(Ref 1 /Ref2) (17) ou KB = -Rc-ln{[(Ref2-Ref 1)/(V0-Ref 1)] + 1 }-Rc-ln(Ref 1 /Ref2) (18) selon l'oscillateur utilisé, on obtient:
V = KA-KB-(Cpt + K-A/D) (19) soit:
V = KA-KB-Cpt + KA-KB-K-A/D (20) En posant:
Ref4 = KA-KB-Cpt (21) alors, à la sortie du sommateur 39, on aura:
V= KA-KB-K-A/D (22) En posant, au diviseur 41,1'équation suivante:
K = KA-KB-K-A (23) on aura, à l'entrée du tampon 42:
V = D (24) Le signal est alors linéaire par rapport à la distance D plaque 1-matière conductrice 2. Le tampon de sortie 42 peut alors amplifier et/ou filtrer le signal pour fournir un signal analogique de sortie 43.
En référence à la Figure 7, il est montré une seconde façon de rendre le signal linéaire par rapport au déplacement. Dans ce cas-ci, à la sortie de I'intégrateur 25, on place un convertisseur analogique à numérique 27. Le signalnumérique peut ainsi être traité par un microcontrolleur 29 programmé qui peut rendre linéaire ou modifier le signal. ll est à noter que cette méthode permet de corriger tout effet parasite provenant de l'oscillateur 22 ou 48. A la sortie dumicrocontrolleur 29, un tampon 31 permet de sortir directement une valeur numérique 33, tandis que l'utilisation d'un convertisseur numérique à analogique30 permet de produire une sortie analogique 32.

CA 02224~36 1997-12-30 Bien que des réalisations de l'invention ont été illustrées dans les dessins ci-joints et décrites ci-dessus, il apparaîtra évident pour les personnes versées dans l'art que des changements et des modifications peuvent être apportées à
ces réalisations sans s'écarter de l'essence de l'invention.
CA 02224 ~ 36 1997-12-30 MEASUREMENT CIRCUIT FOR A CAPACITIVE SENSOR

FIELD OF THE INVENTION
The present invention relates to a measuring circuit for a sensor.
5 capacitive, and more particularly on a measurement circuit producing a signal having a period which varies according to the charge and discharge times of the capacitive sensor. The circuit can be advantageously used in combination with a capacitive sensor installed on a rotating shaft, in order to measure its vibration.
HISTORICAL
Usually, in the case of the vibration of a rotating shaft, the sensor capacitive uses an inductive technique involving eddy currents.
The use of this technique results in the user having to calibrate or 15 interpret the sensor measurements according to the type of material from which it is constructed the tree. In addition, a variation in density of the material over the circumference of the tree causes a variation of the measurement difficult to differentiate from vibrations observed.

The present invention eliminates these two problems since the measurement circuit and method are insensitive to the type or variation of density of the conductive material involved in the process.
The measurement circuit according to the invention comprises an oscillator circuit 25 generating a signal having a period which varies according to the charging times and discharging the capacitive sensor between two predetermined voltage thresholds. The charging and discharging of the capacitive sensor is done through a set of resistors connected to an oscillator circuit having a first output controlling the charge and discharge of the capacitive sensor, and a second output generating the 30 measurement signal. The capacitive sensor plates are connected to a circuit follower, the output of which is connected to the oscillator circuit. The second exit from CA 02224 ~ 36 1997-12-30 oscillator circuit can be connected to a processing circuit to make the measurement linear.

BRIEF DESCRIPTION OF THE DRAWINGS
A detailed description of the preferred embodiments of the invention will be given below with reference to the following drawings, in which the same numbers refer to identical or similar elements:
Figure 1 is a schematic diagram of a capacitive sensor capable of operate with a measurement circuit according to the invention;
Figure 2 is a schematic diagram of a capacitive sensor provided with a - guard ring, according to the invention;
Figure 3 is a schematic diagram of a first embodiment of the measurement circuit according to the invention, connected to a capacitive sensor;
Figure 4 is a schematic diagram of a second embodiment of the Measurement circuit according to the invention, connected to a capacitive sensor;
Figure 5 is a graph showing a typical curve of the signal period produced by the measuring circuit according to the invention with respect to the distance making the object of a measurement by the capacitive sensor;
Figure 6 is a schematic diagram of a first embodiment of a 20 circuit for making the measurement linear, according to the invention; and Figure 7 is a schematic diagram of a second embodiment of a circuit for making the measurement linear, according to the invention.

DETAILED DESCRIPTION OF THE PREFERRED ACHIEVEMENTS
Referring to Figure 1, there is shown a schematic diagram of a capacitive sensor capable of operating with the measurement circuit according to the invention.
This capacitive sensor is similar to that shown in US Patent No.
4,675,670. The capacitive sensor 9 (measurement capacitor) is formed by two parallel conductive plates 1 and 4, electrically isolated from each other by a dielectric 5. The plate 1 and the conductive or semiconductive material 2 form a capacitor Cm 3 whose value of the capacity follows the relationship:

CA 02224 ~ 36 1997-12-30 Cm = KA / D (1) or:
K = ~ 0 ~ "~ 0 being the permittivity of the vacuum (8.854 pF / m) and ~ r being the relative permittivity of the dielectric 11 between the plates 1 and the material 2;
A is the surface of plate 1;
D is the distance from plate 1 to material 2.
Equation (1) clearly demonstrates that the measurement is independent of the type, density and density variation of the material from which the material is constructed conductive or semi-conductive 2.
In addition, equation (1) reveals certain other applications. For example, the capacity Cm 3 can also vary if the distance D is fixed and the surface A remains constant, while the value of the dielectric ~, between plate 1 and material 2 varies. This produces a sensor that can be used to measure the humidity in a piece of wood inserted between the plate 1 and the material 2, or still, a sensor measuring the variation of the properties of a fluid present between plate 1 and material 2. If the dielectric characteristic of the medium between the plate 1 and the material 2 and the distance D remain constant, we obtain a sensor whose value of the capacity Cm 3 varies as a function of the surface A, where A is no longer only the surface of the plate 1, but rather the surface of the plate 1 which is placed directly in front of the material 2. We then obtain a overlap sensor which is useful for measuring lateral displacements of matter 2.
With reference to Figure 2, the plate 4 serves as a shield because it is maintained at a voltage similar to that of plate 1 during the operation of the sensor 9, as explained below. This allows to obtain a Cd 10 capacity, between plates 1 and 4, as low as possible and to shield the capacitor measure against any disturbances that may exist behind the plate 4. The side plates 6 are at the same potential as target 2. These allow to make the sensor 9 insensitive to lateral external objects but also to fix mechanically the sensor 9 has an armature during use. Plates 6 have however the disadvantage of forming a stray capacitance Cp 7. The methods CA 02224 ~ 36 1997-12-30 shielding discussed here have the objective that only Cm 3 varies with the distance from the plate 1 of the conductive or semi-conductive surface 2.
One way of decreasing the value of the stray capacitance Cp 7 is increase the distance between plate 1 and plates 6 by moving them away from 5 radially or by moving them towards the plate 4. However, by doing so, external disturbances are more plausible. Another way to decrease Cp7 is to add a guard ring 23 to the measurement capacitor 9 such as illustrated in FIG. 2. The guard ring 23 is, in operation, subjected to the same potential than plate 4, as explained below, which decreases Cp 7 since 10 the surfaces forming this parasitic capacity are smaller and more distant.
With reference to Figure 3, a measurement circuit is shown according to the invention, based on an oscillator 22 connected to the measurement capacitor 9. The plate 1 of the measurement capacitor 9 is connected to the positive input of a operational amplifier 13 which acts as a buffer with the rest of the circuit. The 15 armor plate 4 is connected with the negative input of the buffer 13 which, by the inherent property of an operational amplifier, ensures a voltage similar between plates 1 and 4 (and 23 if a guard ring is used). The principle of oscillator 22 is that the total capacity seen by plate 1 is charged across resistors Ra 21 and Rb 12 by a fixed voltage Ref3 8 20 until reaching a reference voltage Ref2 16. At this time, the comparator 15 actuates a flip-flop 18 which actuates a switch 19.
Therefore, the total capacity seen by the plate 1 is discharged through the resistance Rb 1 2 until reaching a fixed voltage Ref 1 17. The comparator 14 operates flip-flop 18 which in turn actuates switch 19. The cycle begins again 25 then with the recharging of the capacity.
During charging (in permanent mode), the voltage present on the plate 1 follows the relationship:
Vcharge (t) = (Ref 3-Ref 1) - (1 and / ((Ra + Rb) c)) + Ref l (2) During discharge (in permanent mode), the voltage present on the 30 plate 1 follows the relationship:
Vload (t) = Ref2-e "

CA 02224 ~ 36 1997-12-30 During charging (in permanent mode), the rise time is:
TCharge = - (Ra + Rb) -C-ln {[(Ref2-Ref 1) / (Ref3-Ref 1)] + 1} (4) During the discharge (in permanent mode), the descent time is:
TdéCha ~ ge = -Rb-C-ln (Ref 1 / Ref2) (5) Consequently, the output signal T 20 will have a period represented by:
T = TChar9e + Tdecharge (6) It should be noted that for these equations:
C = Cm + Cp + Cr (7) or Cm 3 and Cp 7 of Figures 1 and 2, but also Cr which includes any effect noise which is specific to the measurement capacitor 9 and more generally to oscillator 22.
To simplify, we can pose that:
Cpt = Cp + Cr (8) Using equation (1), we can conclude that:
1 5 C = Cpt + KA / D (g) hence the equation for the exit period as a function of D, i.e. the distance between the plates 1 and 2:
T = {Cpt + KA / D} - {- (Ra + Rb) -ln {[(Ref2-Ref 1) / (Ref3-Ref 1)] + 1} -Rb-ln (Ref 1 / Ref2)}
(10) The voltage Ref 1 1 7 must be smaller than the voltage Ref2 16 and that the voltage Ref2 16 is smaller than the voltage Ref3 8.
With reference to Figure 4, there is shown another way of making a oscillator according to the invention. Oscillator 48 works much the same so that the oscillator 22 shown in Figure 3, with the exception of a few elements. Indeed, the charging and discharging of the measurement capacitor 9 does not are made only by a single resistor Rc 46. In addition, the reference Ref 3 is removed and the charging voltage of the capacitor is now the voltage Vo 47.
During charging (in permanent mode), the voltage present on the plate 1 follows the relationship:
Vcharge (t) = (Vo-Ref 1) (1 and / (Rc c ~) + Ref 1 CA 02224 ~ 36 1997-12-30 During discharge (in permanent mode), the voltage present on the plate 1 follows the relationship:
VdéCharge (t) = Ref2-e ~ ~ (12) During charging (in permanent mode), the rise time is:
Tcharge = -Rc C ln {l (Ref 2-Ref 1) / (V0-Ref 1)] + 1} (13) During the discharge (in permanent mode), the descent time is:
Download = -Rc-C-ln (Ref 1 / Ref2) (14) Therefore, using the same reasoning as for the oscillator 22 of Figure 3, the output signal T 20 will have a period represented by:
T = {Cpt + KA / D} {-Rc ln {l (Ref2-Ref 1) / (V0-Ref 1)] + 1} -Rc-ln (Ref 1 / Ref2)}
(15) The voltage Ref1 17 must be smaller than the voltage Ref2 16.
- According to equations (10) and (15), the relationship between the period and the distance looks like the curve shown in Figure 5.
According to the relation of equation (9) and its illustration in figure 5, the period produced by sensor 9 does not vary linearly with respect to the distance D is present between surfaces 1 and 2. The determination of the value of displacement of the conductive or semi-conductive material 2 would be advantageous to become linear through designed electronic devices and / or 20 programmed according to the various physical parameters of oscillator 22 or 48, to determine the value of the actual displacement while taking into account the parasitic effects.
With reference to Figure 6, an example of the device is shown electronics designed to make the displacement value linear. At the entrance of 25 device, there is the signal T 20 which is directed to an integrator 26 and a monostable 24. Monostable 24 controls switch 25 which, thanks to a delay d 35, allows the integrator 26 to reset between each period as illustrated by waveform 44. Thereafter, a peak detector 37 and a sampler-blocker 38 bring a continuous level from the 30 plate 45 obtained at the outlet of the integrator 26. At the outlet of the sampler-blocker 38, there is a voltage V which follows the relationship:

CA 02224j36 1997-12-30 .

V = KA-T (16) The shape of the voltage V as a function of the distance D plate 1-material conductor 2 is the same as that shown in Figure 5. By taking the equations (10) and (15), and by posing:
KB = - (Ra + Rb) -ln {[(Ref2-Ref 1) / (Ref3-Ref 1)] + 1} -Rb-ln (Ref 1 / Ref2) (17) or KB = -Rc-ln {[(Ref2-Ref 1) / (V0-Ref 1)] + 1} -Rc-ln (Ref 1 / Ref2) (18) depending on the oscillator used, we obtain:
V = KA-KB- (Cpt + KA / D) (19) is:
V = KA-KB-Cpt + KA-KB-KA / D (20) By asking:
Ref4 = KA-KB-Cpt (21) then, at the exit of the summator 39, we will have:
V = KA-KB-KA / D (22) By posing, to the divider 41,1 the following equation:
K = KA-KB-KA (23) we will have, at the entrance to buffer 42:
V = D (24) The signal is then linear with respect to the distance D plate 1-material conductive 2. The output buffer 42 can then amplify and / or filter the signal to provide an analog output signal 43.
With reference to Figure 7, there is shown a second way of rendering the linear signal with respect to displacement. In this case, at the exit of The integrator 25, an analog to digital converter 27 is placed. The digital signal can thus be processed by a programmed microcontroller 29 which can linear or modify the signal. It should be noted that this method allows correct any parasitic effect coming from oscillator 22 or 48. At the output of microcontroller 29, a buffer 31 allows a value to be output directly digital 33, while using a digital to analog converter 30 produces an analog output 32.

CA 02224 ~ 36 1997-12-30 Although embodiments of the invention have been illustrated in the drawings attached and described above, it will appear obvious to the versed in the art that changes and modifications can be made to these achievements without departing from the essence of the invention.

CA002224536A 1997-12-30 1997-12-30 Capacitive sensor sensing circuit Abandoned CA2224536A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002224536A CA2224536A1 (en) 1997-12-30 1997-12-30 Capacitive sensor sensing circuit
CA002255225A CA2255225A1 (en) 1997-12-30 1998-12-15 Capacitance measuring circuit for a capacitive sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA002224536A CA2224536A1 (en) 1997-12-30 1997-12-30 Capacitive sensor sensing circuit

Publications (1)

Publication Number Publication Date
CA2224536A1 true CA2224536A1 (en) 1999-06-30

Family

ID=29275383

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002224536A Abandoned CA2224536A1 (en) 1997-12-30 1997-12-30 Capacitive sensor sensing circuit

Country Status (1)

Country Link
CA (1) CA2224536A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644966A (en) * 2013-12-29 2014-03-19 中国科学技术大学 Periodic signal enhancement detection device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644966A (en) * 2013-12-29 2014-03-19 中国科学技术大学 Periodic signal enhancement detection device and method

Similar Documents

Publication Publication Date Title
EP0065458B1 (en) Capacitive detector for the displacement of objects
FR2785046A1 (en) Measuring permittivity between probes by charging measuring probe from direct current supply of controlled amplitude and then connecting it to integrating and processing stages
CA2041231C (en) Dynamic monitoring without mobile or permittivity contact, using a capacitive sensor
FR2570190A1 (en) DEVICE FOR DETECTION OF SPATIAL HETEROGENEITIES IN A DIELECTRIC
WO1998048287A1 (en) Device with wide pass band for measuring electric current intensity in a conductor
FR2545218A1 (en) ELECTROMAGNETIC DETECTOR FOR METALLIC MATERIALS
EP1417457A2 (en) Detection device
GB2063485A (en) Contactless Detection of the Distance of a Metal Surface from a Counter-surface
EP0401136B1 (en) Detection circuit and method for temperature-compensating of the oscillation of a resonating circuit
FR2787880A1 (en) DEVICE AND METHOD FOR ULTRASONIC MEASUREMENT OF FLUID FLOW COMPRISING A SIGMA-DELTA BAND PASS ANALOGUE DIGITAL CONVERTER
US4214483A (en) Apparatus for measuring angular speed
FR2663751A1 (en) DIRECTIONAL MAGNETOMETER WITH RESONANCE.
FR3006793A1 (en) DEVICE, SENSOR AND METHOD FOR DETECTING THE PRESENCE OF A USER FOR OPENING ACCESS TO A MOTOR VEHICLE
CA2224536A1 (en) Capacitive sensor sensing circuit
EP1934559A1 (en) Sensor and method for measuring position and speed
EP0441074B1 (en) Inductive sensor and device for measuring displacements of a movable object
EP0523794A1 (en) Iron with motion detector
EP0194911B1 (en) Displacement measuring apparatus with a code wheel
EP3430443A1 (en) Factor 1 inductive sensor device
EP2307897B1 (en) Magnetic field measurement device and method
EP3222975B1 (en) Detection circuit for inductive motion sensor
EP1293806A2 (en) Method for detecting an object of conducting material and corresponding sensor
FR2751074A1 (en) Fuel level capacitive sensor for automotive applications
CH712293A2 (en) Detection circuit for inductive displacement sensor.
BE877618A (en) ELECTRICAL ENERGY METER COMPRISING A MUTUAL INDUCTANCE INTENSITY TRANSDUCER

Legal Events

Date Code Title Description
FZDE Discontinued