CA2187009A1 - Anti-stenotic method and product for occluded arteries - Google Patents

Anti-stenotic method and product for occluded arteries

Info

Publication number
CA2187009A1
CA2187009A1 CA002187009A CA2187009A CA2187009A1 CA 2187009 A1 CA2187009 A1 CA 2187009A1 CA 002187009 A CA002187009 A CA 002187009A CA 2187009 A CA2187009 A CA 2187009A CA 2187009 A1 CA2187009 A1 CA 2187009A1
Authority
CA
Canada
Prior art keywords
vascular graft
artery
step comprises
vascular
graft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002187009A
Other languages
French (fr)
Inventor
Mark Plaia
Gregory N. Nordgren
Vincent A. Reger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EndoVascular Instruments Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CA002187009A priority Critical patent/CA2187009A1/en
Publication of CA2187009A1 publication Critical patent/CA2187009A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/32053Punch like cutting instruments, e.g. using a cylindrical or oval knife
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320758Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • A61B2017/00247Making holes in the wall of the heart, e.g. laser Myocardial revascularization
    • A61B2017/00252Making holes in the wall of the heart, e.g. laser Myocardial revascularization for by-pass connections, i.e. connections from heart chamber to blood vessel or from blood vessel to blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00778Operations on blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B2017/1107Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis for blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B2017/320741Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions for stripping the intima or the internal plaque from a blood vessel, e.g. for endarterectomy

Abstract

This invention concerns methods of artificially lining a vessel, especially an artery (52), of a medical patient to address the existence of a flow inhibiting atheroma and to significantly alleviate the probability of restenosis, and the resulting products.

Description

WO 9G/29027 r~~ r ,45 ANTI-STENOTIC METHOD AND PRODUCT FOR OCCLUDED ARTERIES
Technic~ l Field The present invention relates generally to restoration of flow capacity to occluded and partially occluded vessels, including arteries, and more particularly to a procedure by which at least an interior lining i8 in the form of a vascular graft placed in an artery as an arLti-stenotic measure.
Back~rolln~ Art During the last thirty (30) years the most common technique for treating arterial stenosis has been surgical construction of a bypass conduit around the site of the occlusion. Bypass grafting in a symptomatic patient with a partially or totally occluded or stenotic superficial femoral artery, using a vein or prosthetic graf t, has been the dominant technique for arterial reconstruction. E~ndarterectomy i s also performed in some cases .
In the last decade balloon catheter angioplasty of patients with focal stenosis has dçmonstrated benef it primarily because of its minimal invasiveness, thereby reducing co~t and recovery time.
It is, however, limited to short focal stenoses through which the balloon can be positioned. It has a significant rate of restenosis in longer or diffuse lesions, where its use is not indicated. To address these limitations and to improve the treatment of longer length segments of occlusive disease, a variety of catheter based laser and mechanical atherectomy devices have recently been developed and studied The hope has been to obtain the benefits of reducing costs, morbidity, and recovery time available from using less-invasive, catheter-based methods while .

wo 96~29027 r~l,v~ ~ /45 Z~87~g still obtaining the overa~:l good patient results com~arable to by-pass grafting. Despite these efforts, by-pass grafting has remained the technique generally used in clinical practice, due to its superior overall results compared to the novel catheter-based techniques heretofore developed. The present invention overcomes or substantially alleviates the limitations of previous catheter-based techniques for treating SFA disease, while obtaining the benefits of proven by-pass grafting techniques.

~18~9 :

Disclosure of the Inventign In brief summary, the present invention overcomes or substantially alleviates the above-mentioned pre-existing problems. The present invention provides for~removal of all or nearly all atheroma from within an arterial segment of any length and then placement of a vascular graf t, which may be of any suitable material, with only one point of entry. The atheroma alone can be removed or the atheroma and the tunica intima alone or together with the tunica media of the arterial segment can be removed. Other vessels can also be treated and vascularly lined without departing from the scope of the invention. The present invention provides the benefits of minimally invasiYe surgery, overcomes or subst~nt;~lly alleviates the limitation of recurrent stenosis, and allows treatment of any occlusive lesion regardless of length.
Thus, normal capacity blood flow is provided with no or low probability of recurring stenosis.
While t~e present invention has been applied to occlusion in the superficial femoral artery, it is not limited to any particular artery diseased by stenosis.
With the foregoing in mind, it is a primary object of the present invention to provide an antistenotic method and product by which substantially full blood 10w capacity is restored to a wholly or partially occluded artery.
Another object Df lmportance is the prsvision 3 0 of a method and product by which an atheroma is removed from an artery and provision is made. to prevent or alleviate the 1 ;k.-l ' h--od of a later redevelopment of another atheroma at the removal site.

218700~9 ~ --~, A further significant object i5 to provide a method and product by which substantially full blood f low is surgically restored to a stenotic artery .
Another dominant abject is the provision of a S method and product which substantially eliminates an atheroma from an artery and eliminates or significantly reduces the 1 ;kl-1 ih~-od of restenosis at the prior atheroma site.
An additional object of substantive importance i9 the provision for removal of stenotic deposits from an artery with or without removal of an interior portion of the artery followed by insertion of a vascular graft along the length of the removal site as an anti-stenosis measure.
- One more obj ect of value is the provision of a method of and product for substantially removing stenotic deposits in an artery and subst~nt;ally preventing or alleviating recurrence thereof independent of the arterial length of the deposits.
An additional paramount object is the provision of a novel method and product by which a vessel of a medical patient is lined for the purpose of establishing and/or rn~3;nt~;n;n~ full blood flow.
These and other objects and features of the present invention will be apparent from the detailed description taken with reference to the accompanying drawings .
.

WO 96/t90t7 r.l/~.. ,S.'nl74!;
21~700g Brief Descri~tion of the Drawinqs The Figures described brief ly below are line drawing schematics, predicated upon the existence and commercial availability of the various devices and 5 apparatus as shown therein.
Figure 1 is a line drawing diagrammatically illustrating in cross-section a single arteriotomy in an occluded superficial femoraI artery of a medical patient;
Figure 2A is a line drawing schematically illustrating in cross-section a double arteriotomy in an occluded superficial femoral artery of a medical patent;
Figure 2B is a line drawing schematically illustrating in cross-section access using a hollow needle to a site upstream of an atheroma in a superficial femoral artery of a patient;
Figure 3 is a line drawing diagrammatically illustrating in cross-section the atheroma of Figure 1 with a guide wire extending through the atheroma;
Figure 4 is a line drawing diagrammatically illustrating in cross-section placement of a dynamic wire guide through the arteriotomy sufficient for the distal region of the dynamic wire guide to extend completely through the atheroma accommodating passage of a guide wire through a lumen in the dynamic wire guide before the dynamic wire guide is withdrawn;
Figure 5 is a line drawing diagrammatically illustrating in cross-section the advancement of a dynamic disrupter, over a guide wire for traversing the stenotic obstruction site in the superf icial f emoral artery;
Figure 6 is a line drawing diagrammatically illustrating in cross-section the advancement of a 3 5 coring catheter along a guide wire spanning the WO 96/29027 r~ 745 , , ~
218~009 ~ , atheroma obstruction in the artery to enlarge the lumen by removal of plaque;
Figure 7 is a line drawing diagrammatically illustrating in cross-sectio~ the artery showing an ~ n~ hle cuttïng catheter or atherotome displaceable along the guide wire and expansion of blades of the cutter so as to cut plaque from the atheroma, using as many passes as appropriate with or without flushing or irrigating of the lumen;
Figure 8 is a line drawing diagrammatically illustrating in cross-section removal of the tunica ultima endothelium and tunica media collectively from an artery at a natural interface of weakness existing between the tunica media and the tunica adventitia;
Figure 9 is a line drawing diagrammatically illustrating in cross-section separation of a length of the tunica intima endothelium together with the tunica media from the tunica adventitia along a natural interface of weakness using a Hall loop;
Figure .10 is a line drawing diagrammatically illustrating in cross-section a vascular graft according to the present invention having collapse resistant characteristics placed in the knee of a patient;
Figure 11 is a line~drawing diagrammatically illustrating in fragmentary cross-section use of a Scanlan Endarsector to separate conjointly a length of the tunica intima endothelium and tunica media from the ~unica adventitia along a natural interface of weaknessi Figure 12 is a line drawing diagrammatically in cross-section a Simpson Atherocath performing an atherectomy;

WO 96l29027 r~ A~74s 2~ 0~

Figure 13 is a line drawing diagrammatically illustrating in cross-section performance of a balloon angioplasty;
Figure 14 is a line drawing diagrammatically illustrating in cross-section the performance of an atherectomy using a laser;
Figure 15 is a line drawing diagrammatically illustrating in cross-section performance in an artery of ultrasound angioplasty;
Figure 16 is a line ~ drawing diagrammatically illustrating in perspective one suitable pre-forrned cylindrical or sleeve-shaped vascular graft for lining arteries in accordance with the present invention;
Figure 17 is a line drawing diagra~nmatically illustrating in perspective a tapered, pre-formed vascular graft for carrying out the present invention;
Figure 18 is a line drawing diagrammatically illustrating in perspective, with parts broken away for clarity, the utilization of a vascular graft, pre-formed and cylindrical or sleeve-shaped in configuration, having internal ring reinforcements;
Figure 19 is a line drawing diagrammatically illustrating in perspective, with parts broken away for clarity, a vascular graft, pre-formed and cylindrical or sleeve-shaped in configuration, having internal helically-shaped reinforcement, for carrying out the present invention;
Figure 20 is a line drawing diagrammatically illustrating in perspective a bifurcated vascular graft for carrying out the present invention;
Figure 21 is a line drawing diagrammati~cally illustrating in perspective a vascular graft, pre-formed and cylindrical~ or sleeve-shaped in configuration, having tissue in-growth material along 3 5 a portion of the exterior surf ace thereof;

Wo 96l29027 PCTn~sg5JD374c ~187QOg Figure 22 is a line drawing diagrammatically illustrating in perspective, with a portion broken away fQr clarity, a vascular graft, pre-formed and cylindrical or sleeve-shaped in conflguration, having an expandable stent internally sutured at the distal end thereof in the contracted state, for carrying out the present invention;
Figure .23 is a line drawing diagrammatically illustrating in cross-section placement of a dilator/sheath along a guide wire into the artery for placement of a vascular graf t i Figure 24 is a line drawing diagrammatically illustrating in cross-section the sheath of Figure 23 with the distal portion thereof in the artery after the dilator has been removed;
Figure 25 is a line drawing diagrammatically illustrating in elevation a vascular graft placement mandrel having a vascular graft attached to the mandrel shaft for placement in an artery;
Figure 26 is a line drawing diagrammatically illustrating in cross-section of the vascular graft and the distal end of the mandrel of Figure 25 being advanced into the artery through the sheath of Figure 24;
Figure 26A is a cross-section taken along line 2 6A- 2 6A o f F igure 2 ~;
Figure 27 is a line drawing diagrammatically illustrating in cross-section partial removal of the sheath of Figure 25 after: the distal end of the mandrel shaft and the vascular ~raft has been placed in the desired position in the artery through the sheath, with the graft being held by the mandrel while the sheath is withdrawn;
Figure 28 is a line drawing diagrammatically illustrating in cross-section the existence of the WO 96l29027 ~ 745 2 ~ 8 7 ~ ~ g~ ?
g va6cular graft in the artery after both the sheath and the mandrel have been removed therefrom;
Figure 29 is a line drawing diagrammatically illustrating in cross-section a balloon catheter disposed in the vascular graft after the graft has been positioned as illustrated in Figure 28;
Figure 30 is a line drawing diagrammatically illustrating in cross-section the vascular graft firmly contiguous with the inside surface of the artery after the vascular graft has been Pl~r~nrlP~ by use of the balloon catheter illustrated in Figure 29 and the balloon catheter but not the guide wire has been removed;
Figure. 31 is a line drawing aiagrammatically illustrating in cross-section the disposition of the vascular graft in the artery after all other parA~hPrni~1; A has been removed;
Figure 32 i9 a line drawing diagrammatically illustrating in cross-section the vascular graft of Figure 32 linearly disposed within and sutured proximally near the wall of the superficial femoral artery;
Figure 33 i6 a line drawing diagrammatically illustrating in cro6s-section grasping of the distal end of a vascular graft in the treated artery using f orceps;
Figure 34 is a line drawing diagrammatically illustrating in cross-section a vascular graft, sutured at the distal end thereof to the distal end of a mandrel both disposed in a treated artery;
Figure 35 is a line drawing diagrammatically - illustrating in cross-section placement of the di6tal end of a vascular graft in an artery by use of a placer/suturer;
.

WO 96/29027 . ~J~U_, 'f`~74S
2~8rtU09 Figure 36 is a line drawing diagrammatically illustratlng in fragmentary cross-section the securing of both ends of a vascular graf t in an artery using one or more sutures at each end;
Figure 37 is a line drawlng diagrammatically illustrating in ragmentary cross-section securing of a vascular graft in a treated artery using staples at both the distal and pro~imal ends of the vascular graft;
Figure 38 is a line drawing diagrammatically illustrating in cross-section a vascular graft secured at its distal end in an artery using an ~Tp:ln~
stent;
Figure 39 is a line drawing diagrammatically illustrating in cros6-section placement of a coating on the treated interior surface o an artery to orm in place a vascular grat.
Figure 40 is a line drawing diagrammatically in cross-sectio~ a balloon catheter having the balloon thereof partially inflated-within a vascular graft prior to joint insertion into a treated artery; and Figure 41 is a line drawing diagrammatically in cross-~ection the partially in1ated balloon catheter and vascular graft after place~ent in a Z5 treated artery.

WO 96/29a27 : " F~ 745 oos Modes for Carrvinq Qut the Invention The illustrated embodiments demonstrate and are representative of methods by which a partially or totally occluded artery or other vessel of a patient is recanalized and the risk of restenosis is substantially reduced or eliminated by use of a vascular graft within the treated artery.
While the present invention may be used in a vessel other than an artery, the primary benefit lies in application to an artery. Artery flow is either conduit or branch flow. The iliac, femoral, and more distal arteries are most likely to occlude, either totally or partially. All arteries are strong, durable, three-layer vessels while veins are thin, single layer conduits. The arterial wall layers are, inside out, the tunica intima endothelium (intima), t~le tunica media (media), and the tunica adventitia (adventitia) . It has been found that in diseased arteries typically the interface between the adventitia layer and the media layer becomes a region of naturally occurring weakness. In fact, it has been found that plaque not only accumulates within the lumen of the artery but inf iltrates both the intima and media causing a tissue breakdown there.
Removal of the intima and the media from the adventitia and leaving the adventitia of ~he artery is called an endarterectomy.
The primary cause of artery occlusion is build-up of plaque, the density of which ranges between very soft to rock-hard calcified deposits.
Plaque deposits may form in some arteries and not at all or sliqhtly in other arteries of the same person.
A plaque deposit in a specif ic area or region of an artery is sometimes called an atheroma.

Wo 96/29027 r~ sJw~4s 9 ' ' ~
Under appropriate anesthesia the artery i8 exposed, clamped, and~at Ieast a single arteriotomy is performed distaI to the clamp and proximal to the occlusion. Under some: circumstances two arteriotomies are performed, one upstream and the other downstream of the atheroma although a single arteriotomy is preferred. In some situations access to the artery can be by use of percutaneously placed hollow needle~
instead of by use of an arteriotomy.
In situations where :an arteriotomy is the preferred choice, a guide wire is advanced through an upstream arteriotomy until the guide wire extends beyond the atheroma. Sometimes a guide wire can be advanced through a clogged artery, but not always. In situations where a guide wire alone cannot cross the atheroma, a dynamic wire guide or a dynamic disrupter is preferably used to centrally loosen and/or displace the centrally disposed plaque f ollowed by central insertion of the guide wire through the hollow interior in the dynamic wire guide or disrupter.
Thereafter, the dynamic wire guide or disrupter is removed .
Any technique by which the plaque is severed from the inner wall of the intima is called an atherectomy. Typically, plaque may be so severed by a coring catheter or by using an atherotome having one or more expandable blades to accommodate insertion and one or more passes through the atheroma, each pass at an increased blade diameter.
Atherectomy devices such as a Simpson Atherocath, an Auth Rotablator, a Kensey device, or an Intervertional Technologies Transluminal Extraction Catheter (TEC device) may be used.
In some situations an endarterectomy is the 35 preferred medical choice. For example, an WO 96/29027 r~ 745 ~8~ûg endarterectomy i8 often best when the disease of the artery is substantially advanced, causing a natural interiace of weakness between the media and the adventitia. A cutting atherotome may be used to initially cut through the diseased intima and media to the adventitia at the distal end of the site of the endarterectomy creating a taper at that location followed by advancement in a proximal direction until the entire undesired length of intima and media have been excavated. Alternatively, the intima and media may be cut radially or on a bevel adjacent both a f irst and second arteriotomy located above and below the atheroma. Ideally, a taper is used at both ends of the endarterectomy where the enlarged lumen produced connects across a beveled tapered to the normal lumen of the artery, both distally and proximally the dispensed material is loosened from the wall using any suitable instrument, such as a surgical spatula. Forceps may be used to grasp and pull upon 2 0 a loosened part of the intima and media to be removed causing the intima and media between the two cuts together with the atheroma ~nntil;n~d therein to be removed from the artery as a cylindrical unit.
Alternatively, a Hall loop may be advanced from one arteriotomy to the other after the two above-mentioned cuts have been made. The loop, in the nature of a piano wire loop held on the end of a staf f is positioned at the above-mentioned natural interface of weakness. The loop is positioned at and displaced along the interface by pushing on the staff until the intima, the media, and the atheroma to be removed have been unitarily severed following which the cylindrical unit may be grasped and removed f rom the ar~ery using forceps, for example.

WO 96/29027 ~ 74~
~70~g --14-- ~
Slmllarly, a Scanlan ~n arsector or a cutter having rotating blades may be used to assist in the performance of the endarterectomy.
In situations where an angioplasty, in whole or in part, is the treatment of~choice, an instrument of expansion is used to enlarge or open and enlarge the blood flo~ accommodating lumen at the atheroma.
Mechanical instruments, equipment for performing balloon angioplasty, laser instruments, and instrumentation for ultrasound angioplasty may be used to achieve the angioplasty.
Once the plaque has been excavated, steps are taken to line the ~:~ ;n;n~ treated arterial or vessel wall. The resulting lining is herein referred to as a vascular graft Vascular graft, as used herein, is ;ntGn~ to mean any of the following:
1. conventional and novel artificial grafts made of. any material, including but not limited to fabrics such as dacron, or~P~ntl,~-l PTFE Gortex=' thin wall sleeve material, in any density from very soft and low density to very stiff and high-density, constructed in any shape including straight, tapered, or bifurcated, and which may or may not be reinforced with rings and spirals or other reinforcement, and which may or may not have one or more ~rn~ntl~hl e stents incorporated into the graft at one or both ends or along its length;
2. natural artery or vein material taken from human or animal donors;
3 0 3 . stents;
4. coating applied to the inside of the treated arterial wall which forms a patent lumen or is biologically active and causes the lining of the vessel or duct to form a patent lumen; and WO g6/29027 PCr/US95~0374~
2ls~as ~ ' 5 any combination Qf the foregoing vascular graf t options The exterior Df the vascular graft or part of it may and pref erably does comprise tissue i~-growth material Where a pre-formed tubular vascular graft of synthetic material is used, the material thereof may be and preferably is dimensionally stable However, if desired, it may be radially ~lcr~n~hle material The vascular graft of choice may be introduced into the treated artery or other vessel in any suitable way including but not limited to u~e of a dilator/sheath, placement of the vascular graft upon a mandrel shaft and/or use of long-nose forceps. The distal ends of the tubular graft and the mandrel shaft may be temporarily sutured together or the distal end of the vascular graf t sutured together over the mandrel to accommodate unitary displacement into the vein, for example through a sheath after the dilator 2 0 has been removed .
Where the material of which the vaRcular graft is formed is ~YrAn~l~hle and in tubular or sleeve form, once the sheath has been removed the diametral size of the graft may be enlarged in contiguous relationship with the inside arterial surface using a balloon catheter A balloon catheter may also be used to bring a ~olded or partially collapsed vascular graft which is dimensionally stable i~to contiguous relation with the interior surface of the r,om~;n;n~ artery 3 0 wall The tubular graft may also comprise a biologically inert or biologically active anti-stenotic coating applied directly to the treated area of the , ~ ' n; ng arterial inner surf ace to def ine a lumen of acceptable blood flow capacity WO 96129027 i ~ I/V.. ~ 745 The graft, once cQrrectly positioned and contiguous with the intorinr' vascular wall, is usually inherently secure agai~.s~ inadvertent migration within the artery or other vessel due to friction and 5 infiltration of weeping liquia= ac~l l1;3ting on the inside~artery wall. It is preferred that the length of the vascular graft be selected to span beyond all of the treated region of the artery.
One or both ends of the vascular graf t may be lû sutured or surgically stapled in position on the treated wall to prevent undesired displacement or partial or complete collapse under cardiovascular pressure In particular, the upstream end of a graft placed in an artery must be secure to prevent a f lap of the graft from being pushed, by arterial blood flow, into a position where it occludes, in whole or in part, the vessel. One or both ends may be held open by one or more stents disposed within the tubular graft. Forceps may be used to hold a free end of the vascular graft while the other end is secured to the vascular wall. Currently, it is preferred to secure the proximal end of the tubular vascular graf t to the treated vascular wall and to bias dilate the distal end of the tubular vascular graft by use of a balloon catheter and/or arterial pressure. Where the distal exterior of the sleeve-shaped vascular graft comprises tissue in-growth material, as is preferred as in-growth occurs it becomes immaterial how the initial dilating bias was achieved.

w0 96l29027 r~ ,s,~A~74s 2~s7Qos Reference is now made to the drawings wherein like numerals are used to designate like parts throughout . While ` the drawings are specif ically directed toward the removal of an atheroma in the superficial femoral artery, it is to be appreciated that the principles of the present invention apply to other arteries as well as to ducts and vessels in the body other than arteries . Specif ically, Figure illustrates the juncture between the common femoral artery and the superficial femoral artery and profunda femoris artery, respectively located at a site near the groin of a medical patient. Figure l further illustrates the existence of a surgically created arteriotomy 50 providing access to the superficial femoral artery 52 at a location proximal of an atheroma, generally designated 54. The atheroma 54 comprises a centrally located, relatively soft central plaque portion 56 surrounded by a calcif ied plaque portion 58.
Figure 2A is similar to Figure l and further illustrates a second arteriotomy 50' located distal of the atheroma 54, providing a second access site to the artery 52, as ~lAin~-l herein in greater detail.
Figure 2B illustrates the same artery 52 to which access is provided solely by percutaneous pl ~C~ ~nt of a needle 60 into the hollow of the artery 52 upstream (proximal) of the atheroma 54. Needle 60 accommodates plaque removal and placement of a lining within the artery 52.
While Figures l, 2A, and 2B illustrate an atheroma which completely occludes the artery 52, it is to }:e appreciated that the present invention applies to both partial and complete occlusion due to pla~ue . The overall obj ective is to restore W096l29i)27 ~ i ,. I ~ll~., l45 2187009 ., i.~ --substantially full blQ~ flow to the artery and prevent restenosis. I~:' is to be appreciated that the artery receiving treatment is temporarily deprived of blood flow altogether, using known methods of temporary oc~lusion. Prior to temporary occlusion, systemic or regional heparinization may be effected.
Typically, as illustrated in Figure 3, after the arteriotomy 5 o has been made near the origin of the superficial femoral artery, a guide wire 62, conventlonal in construction, is advanced distally through the arteriotomy 50 and through the atheroma 54 along the softer plaque portion 56 thereof. If the guide wire 62 alone cannot be manually caused to traverse the atheroma 54, as illustrated in Figure 3, other medicaL instruments may be used to create a passageway through the atheroma 54 following which the guide wire 62 may be appropriately inserted 80 as to traverse the atheroma 54. For example, a dynamic wire guide 64 may be advanced and operated so as to create a lumen through the softer plaque 56 of the atheroma 54 ~as diagrammatically illustrated in Figure 4.
Currelltly, the preferred dynamic wire guide is the one disclosed in pending United States Patent Application Serial No. 07/973,514, filed X~,v ' ^r 9, 1993, assigned to EndoVascular Instruments, the assignee of the present application, although other dynamic and static wire guides could be used.
Once the dynamic wire guide 64 has penetrated the central plaque region 56 so as to traverse the hard plaque portion 58, the guide wire 62 is advanced through the lumen within the dynamic wire guide 64, following which the dynamic wire guide is withdrawn leaving the guide wire 62 in posltion, as a guide for instruments by which the soft and hard plaque 56 and 3 5 5 8 are removed .

-W0 96/29027 F~ /45 218700g , - -Alternatively, with reference to Figure 5, a dynamic disrupter 66, having a rotating enlarged rounded tip 67, may be used in lieu of the dynamic wire ~uide described. above to penetrate the softer plaque region 56 sufficient to accommodate concentric insertion of the guide wire 62 through the dynamic disrupter 66, with the dynamic disrupter 66 after being removed along the guide wire while the guide wire i8 retained in its inserted position. Currently, the preferred dynamic disrupter is the one disclosed in pending United States Patent Application Serial No.
07/973,514, filed November 9, 1993, assigned to EndoVascular Instruments, the assigne~ of the present application, although other dynamic disrupters could be used.
While not shown, it is to be appreciated that plaque, separated from the atheroma 54, cannot be allowed to remain uncollected within the artery and, therefore, conv~ntinn~l instruments and procedures are used appropriately downstream of the atheroma 54 to collect and remove all debris released during treatment of ~ the atheroma 54.
Having established the appropriate pl ~c - -t of guide wire 62 through the atheroma 54, the surgeon is in a position to enlarge the arterial lumen at the site of the atheroma 54 by removing plaque 58. Such removal is commonly referred to as an atherectomy.
The severing, grinding, cutting, chipping, and abrading of the plaque 58 may be mechanically accomplished by any suitable cutting instrument.
Exemplary types are illustrated in Figures 6 and 7, respectively. Figure 6 illustrates diagrammatically utili~ation of a coring catheter 70, advanced along the guide wire 62 through the arteriotomy 50 so as to cut the plaque 58 from the artery 52 using as many 2187009 .

passes along the atheroma 54 as necessary. The coring catheter has a cutting head 72'which is caused to be rotated by the surgeon. I~ i~s currently preferred that the coring catheter 7~` be that which is disclosed in the assignee's co-pending United States Patent Application Serial No. 07/973,514, which was filed November 9, 1992, although any suitable coring catheter may be utilized.
Either in conjunction with a coring catheter or in lieu thereof, the lumen across the atheroma 54 can be enlarged using an .~anfl~hle cutter, having diametrally F~r~n~li3hle cutting blades as illustrated in Figure 7. The e~pandable cutter 74 is initially advanced along the guide wire 62 in an llnP~ r~n~
state. ~r~n~lAhl e cutter 74 has a diametrally adju6table cutting head 76 which, when P~ r~nr~ and pulled forward atherectomy 50 will cut or shave the plaque at deposits 58 . Alternatively, the ~ n-l~hl e cutter may be utilized in a fashion in which the f~Rp~n~ hl e cutting blades, when f~Yr;lnrlP~l, engage and grab hold of a section of the plaque. When the nr~hle cutter is pulled, it both cuts the junction with the remaining distal pla(aue and allows a cylindrical length of the plaque which lies proximal of the cutting blades to be removed all in one segment. Typically, a plurality of passes of the cutting head 76, each with a slightly greater diameter are required to completely excavate plaque 58.
Currently, it is preferred that the ~ nfl~hle cutter disclosea in assignee~s U.S. Patent No. 5,211,651 be utilized .
Attention is now turned to those situations where an endarterectomy is the procedure of choice.
Specific reference is now made to Figure 8 which illustrates, in part, one way in which the intima 100 W0 96/29027 r~ . /45 . ~ , i, ~8~09 and the media 102 are collectively separated from the adventitia 104 along a natural interface of weakne8s 106, which typically exists in diseased arteries. A
first and second arteriotomy 50 and 50' may be made proximal and distal of the atheroma and a radial or tapered cut at or near each arteriotomy made through the intima and media layers to the interface 106. By loosening a length of the f~TO interior layers 100 and 102 of the artery 52 ~rom the adventitia along the 10 interface 106 at the radial or beveled cut adjacent the arte~iotomy 50, the loosened part is available for grasping, using a suitable instrument such as forceps 108 illustrated in Figure 8 By pulling one or more times in the general direction of arrow 110 so as to 15 have a substantial axial-component along the length of the artery 52, the cut length of intima and media is severed along interface 106 and pulled from the artery through arteriotomy 50.
While not illustrated in all of the Figures 20 (for simplicity of presentation~, it is to be appreciated that all arteries comprise three layers, the intima, the media, and the adventitia.
It is to be understood that tlle distinction between atherectomy and endarterectomy is somewhat 25 arbitrary, as it depends upon whether the material being removed consists exclusively of atheroma only, or of a combination of atheroma and material characteristic of the inner lining of the vessel.
Pathology analysis of such removed material frequently 3 0 indicates the presence of cells and other material characteristic of both pla~ue and the media and intima, so it is proba~ly most correct to refer to this procedure as an endarterectomy.
In one currently pref erred embodiment, an 35 endarterectomy is performed using the dynamic WO 96l29027 ~ 745 ~1~7~09 ,, disrupter and the ~xr~n~hle cutter. The dynamic disrupter is first advanced~ over the guide wire both to loosen the plaque an~ intima and media along the natural interface.~s~ weakness, and to enlarge the channel Dr lumen through the artery. The dynamic disrupter may be advanced one or more times. If multiple advances are used, the repeated advancements may be done using the same tip size, or they may be done using successively larger tip sizes.
After the dynamic disrupter has been used and withdrawn over the guide wire, the ~xr~n~hl e cutter is employed to remove the material that has been loosened. With the blades lln ~xr~n~ fl, the ~xr~n~l~hl e cutter is advanced a suitable distance into the atheromatous region, and then the blades expanded.
When the expandable cutter is withdrawn, it engages the plague and arterial lining, and exerts force upon the natural interface of weakness. The plaque and arterial lining are withdrawn by the ~xr~n~lAhle cutter in the form of a cylindrical plug of material, which may be short or long ~ rl~n~l; n~ upon how f ar into the plaque the cutter is advanced before it is .oxr~n~
After removing the plug of material from the cutter, the blades are returned to the lln~r~ntl~d position and re-advanced into the artery, this time to a position further than the previous advancement, so that a new length of atheromatous material can be engaged. The blades are once again c~xr~n~lpd~ and a new plug of material is engaged and withdrawn. By a repeated series of such steps, any desired length of artery may be excavated of its plaque and inner lining. When the final advance to the most distal point is performed, the distal tapered shape that the blades assume when ~xr:ln~f~d leaves behind the desired tapered shape as it cuts and removes the final plug of material from the W0 96/29027 r~ A~74s 2t870og ~ .

artery. This eliminates any need to make the second arteriotomy 5 0 ', f or the purpose of makinq the distal radial cut, when the f~ilnr~hl e cutter is employed.
In the alternative, an endarterectomy may be performed using a ~all loop, as diagrammatically illustrated in Figure g. prf~l~;min~rily, the artery containing the atheroma 54 is accessed, as illustrated in Figure 2A, by f irst and second arteriotomies 50 and 50'. The first radial or beveled cut through the intima and media is made, as described above, and the media is severed along interface 106 at one end or the other (usually the upstream, proximal end) for a short distance to allow the loop 110 to be placed at the interface, with the flexible shaft 112 extending in the direction of the pull and through the more remote arteriotomy. WEIen power i8 applied, the loop is caused to oscillate as the Hall loop is advanced along the interface 106 until complete severance has occurred, following which forceps may be used to pull the removed intima and media layers from the artery through the proximal arteriotomy af ter the second radial or beveled cut through the intima and media is made, attempting to leave a tapered contour to the r~m~;n;n~ material at the distal end of the endarterectomy. The Hall loop is more fully described in U . S . Patent No . 3, 73 o, 1~ 5 .
The endarterectomy may similarly be performed using a Scanlan Endarsector, as generally illustrated in Figures 10 and 11. It is to be appreciated that the Scanlan Endarsector 114 is a commercially available instrument, sold by Scanlan Tnt~rn~tional~
Inc., 1 Scanlan Plaza, St. Paul, Minnesota 55107, and may be used alone or in conjunction with other instruments to perform the endarterectomy. The Scanlan Endarsector 114 comprises a handle (not shown) WO 96/29027 PCrlUS9510374~
~18~9 -~ ~

from which an elongated U-shaped shaft extends. By probing with the Scanlan Endarsector along the interface 106 àdjacent portl~s of the media 102 and intima lOG which have been ,~sened, further loosening occurs until the erldartere`~tomy is completed and the severed artery portion removed.
RefereIlce is now made to Figures 12 through 15 which illustrate various ways in which an atherectomy may be performed when that procedure is the treatment of choice, in whole or in part, for enlarging the blood flow lumen of artery 52 at atheroma site 54.
With specific reference to Figure 12, there i8 illustrated a mechanical instrument for the performance of an atherectomy, i . e., Slmpson ~ Atherocath, generally designated 116. The atherocath comprises an outside, hollow shaft 118 through which extends a rotatable inner shaf t 120 to which a rotating cutter head 122 is non-rotatably attached.
The rotating cutting head 122 cuts plaque 58 from the interior of the artery 52 as the atherocath is advanced. A balloon 124 i5 inflated on the side opposite the cutting head 122 to thereby bring pressure to bear against the artery and urge the cutting head firmly against the pla~ue. At the distal end of the atherocath is located a chamber 126, which functions to collect pla~ue shavings removed by the cutting head~l22. The atherocath 116 is inserted and removed along guide wire 62. The Simpson Atherocath is commercially available from Devices for Vascular Intervention, division of Eli ~illy, 26201 YNEZ Road, Temecula, CA 92591.
Figure 13 diagrammatically represents the use of balloon angioplasty to enlarge the lumen of an atheroma-ridden artery. Specifically, a balloon 302 of a balloon catheter 300 is advanced along guide wire .. .. ..... . .. . . .. . . ..

WO 96/29027 I ~IIIJ.,,_'~745 ~8;~oos 62 until it is disposed within the atheroma 54. Using the side port of the balloon catheter 300, the balloon 302 is ~lcp~nrlerl~ which radially expands the plaque 58.
This process o~dinarily creates cracks in the plaque, but nevert~heless results in an enlarged lumen through the plaque 58 although, typically, the plaque 58 is not intentionally removed.
Reference is now made to Figure 14 which diagrammatically illustrates use of a laser instrument, generally designated 13 0 to remove plaque 58 from artery 52. The laser instrument 50 comprises a source 132 of laser energy. The laser energy is processed along a bundle of optical fibers disposed within a catheter 1 34 . Laser beams 136 are emitted from the instrument 130 through a plurality of laser emitters 138. The laser beams 136 cut plaque from deposits 58 as the distal end of the catheter 134 is advanced distally into the plaque 58. The laser instrument 130 is illustrated as being concentrically disposed upon guide wire 62 for insertion, adv~n~m~nt, and ultimate removal. Thus, an atherectomy may be performed in accordance with the principles of the present invention by use of one or more laser beams. A suitable laser instrument is the Laserprobe PLR or La~ercath-PRL, used with the Optilase Laser Source System, all of which are available from Trinedyne, Inc., 1815 East Carnegie Avenue, Santa Ana, CA 92705.
In lieu of ~the above-mentioned ways for performance of an atherectomy, or in conjunction therewith, ultrasound energy may be used. Specific reference is made to Figure 15 which illustrates diagrammatically an ultrasound instrument, generally designated 140. Instrument 140 comprises a source of ultrasound energy, i.e., ultrasound transducer 142.
_ _ -WO 96/29027 ~ 745 21~70~9 . ~ ~
3 ~ _ Transducer 142 colmects via an ultrasound shaft 144 to an ultrasound head 146. The~ ultrasound shaft 144 is substantially concentrie~y disposed within an ultrasound catheter 148. A guide wire is not used.
Release of ultrasound energy from head 146 is caused to impinge upon plaque 58 fracturing the same progressively, thereby enlarging the blood flow lumen of the artery 52. A suitable ultrasound instrument for removal of plaque is the 30nocath, available from Angiosonics, Wayne, New Jersey, (201) 305-1770.
Once the interior of. the partially or totally occluded artery has been treated using an appropriate procedure including one or more of the procedures described above, the present invention includes placement of a lining or vascular graft so as to extend preferably co-extensively along the full length of the treated portion of the artery. The nature of the vascular graft will vary r~ronr~;n~ upon the circumstances, the artery in question, the length over which the artery has been treated, and perhaps other factors. The vascular graft may be of any suitable biologically inert material including, but not limited to, a dacron sleeve of medical grade fabric, a sleeve of expanded PTFE ~such as GOR-TEX' polytetrofluoroethelene vascular graft tubing available from W.L. Gore and Associates, Inc., Medical Products Division, 1505 N. 4th Street, Central Dock 3, Flagstaff, Arizona 86002). Another available sleeve formed of expanded PTFE is available from IMPRA, Inc., P.O. Box 1740, Tempe, Arizona 85280-1740.
The material may be dimensionally stable or capable of being f~r~n~d~ for example, using a balloon catheter and/or one or more stents. For short lengths, vascular graft 200 (Figure 16) may be used.
Vascular graft 200 is illustrated as having blunt WO 96129027 ` r~l~.J . /15 2~8~0`~9 ~

ends, is cut to a length commensurate with the treated artery and comprises exterior and interior surf aces respectively comp~ising a lmiform diameter along the entire length of the vascular graft 200. The wall thickness is also illustrated as being uniform.
For longer lengths, tapered vascular graft 202 ~Figure 17) may be preferable, the degree of taper being selected so as to match the taper of the arte~y subj ected to one or more of the treatments described l O above .
In cases where the artery being lined is bifurcated (e.g., comprise6 a branch from one to two arteries), vascular graft 204 ~Figure 20) may be used, the conf iguration thereof being adapted to conf orm specifically to the nature of the shape, size, and disposition of the ~r~nrhPrl artery sub~ected to treatment. Depending upon the anatomy, vascular graft 204 may be straight or tapered or straight in part and tapered in part.
When strength greater than the mere material from which a vascular graft is formed becomes a consideration, the vascular graft may be reinforced, particularly when no expansion thereof is required during placement. ~wo typical forms of reinforcement are illustrated in Figures 18 and l9, respectively, which depict vascular graft 206 and vascular graft 208, respectively. Vascular graft 206 comprises reinforcement in the form of a plurality of rings 210.
While illustrated as being ~mh~ 1 within the material 212 from which the vascular graft 206 is formed, the reinforcing rings could be placed either internally or externally in respect to the graft 206 itself .
Similarly, vascular graft 208 i5 illustrated in Figure l9 as comprising a ,nnt;nl~ous, helical WO961?.9017 r~I,I /n~745 2~00~J ;~ ;`.

reinforcement 214 embedded in the material 216 from which the vascular graft 208 is formed. The reinf~,L~, -n~ 214 could. be~ placed as well either internally or externally of: the vascular graft 208 itself_ The reinforcement, e.g., rings 210 and helix 24 can be of any suitable biologically inert material such as an implantable grade of thermoplastic material , e . g ., polypropylene or nylon .
Even in cases where sutures, staples, and/or stents are used to initially hold the lining or vascular graft contiguously against the treated artery wall, utilization of tissue in-growth material at the exterior of all or part of the vascular graft may be desirable. In this regard, specific reference is made to Figure 21 which diagrammatically illustrates the existence of tissue in-growth material 220 disposed along approximately the distal one-half of the hollow cylindrically-shaped vascular graft 222. The value of the tissue in-growth material is that it becomes, in due course of time, the primary rnnnf~r~nr between the treated arterial surface and the vascular graft.
With reierence to Figure 22, there is diagrammatically illustrated a hollow cylindrical vascular graft 224 to which an ~n~hle stent 226 has been connected interiorly at the proximal end thereof using sutures 228. Once the vascular graft 224 is properly positioned within a treated artery, the stent 226 is conventionally expanded to bias the proximal end of the vascular graft 224 contiguously against the treated arterial surf ace to retain the position of placement. This condition is illustrated in Figure 38. While illustrated as being placed internally inside of graf t 224, the stent could also be placed ~ct~rn~lly or it could be embedded within Wo 96l29027 1 ~ ~ Q 1745 .

the material from which the vascular graft 224 is f ormed .
Utili7~t;on of a vascular graft within the context of the present invention significantly tends to provide a barrier between the bloodstream and the vessel wall which is believed to reduce restenosis, provides a conduit through which the blood can flow which is known to~ be well-tolerated by the bloodstream, preserves the area available for blood 10 flow, prevents an aneurysm, promotes rapid healing without excessive weeping or adhesion of blood at the lining site between the vascular graf t and the adventitia layer, and provokes minimal scarring.
Plaque, it has been determined, does not form on and 15 adhere to the vascular graf t In lieu of. a pre-formed straight or tapered sleeve (with or without a bifurcation) the treated arterial wall, e.g., at interface 106, may be lined using a liquid coating of suitable material applied as 20 a spray or otherwise and allowed to cure until a hollow lumen is def lned within the cured coating and the treated ~ arterial surface is concealed by the coating, or allowed to remain in place long enough to cause the artery to form a stable, hollow lumen. In 25 this regard, reference is made to Figure 39 which illustrates the presence of a manually controlled nozzle 230 forming a part of a surgical spraying instrument by which a coating 232 is applied to the treated arterial surface at interface 10~. Suitable - 30 coatings, for example, having the requisite biologically inert characteristics and wall adherence characteristics would include pharmaceutical-grade collagen available from Collagen Corp., 1~350 Embariadero Road, Palo Alto, California 94303.

WO 96/29027 P~IJ~ . /45 2~0~
. ,~ .

Once the vascular graf t, of choice has been selected, other than an in-pla~ coating, insertion of the vascular graft into the treated artery must be achieved It is currently preferred to use a commercially available dilator/peel-away sheath generally designated 250 (Figures 23, 24, 26, and 27) .
However, a solid (non-peel-away) sheath may also be utilized or the graft may be inserted directly into the vessel without use of a sheath. As is well known in the art, the dilator/sheath 250, in assembled condition, is passed concentrically along the guide wire 62 through the access opening to the artery 52.
The access opening may be an arteriotomy 5 0 or a percutaneous venipuncture caused by insertion of needle 60 (Figure 2B) fol;Lowed by advancement of the ~uide wire through the needle 60 and subsequent removal of the needle. In the case of a needle puncture, the dilator 252 at the tapered distal tip 254 enlarges the radial size of the puncture as does the sheath 256 (slightly) as the dilator-sheath 250 is advanced through the puncture concentrically around the guide wire 62 until the dilator-sheath 250 is positioned as illustrated in Figure 23. Once the position of Figure 23 has been achieved, the medical atten~ant simply manually retracts the dilator along the guide wire 62 until it is fully removed, leaving the sheath 256 in place with the proximal end thereof exposed, as diagrammatically illustrated in Figure 24.
Next, steps are taken to insert the vascular 3 0 graf t through the sheath and locate the graf t in the treated artery so as to be, preferably, at least co-extensive with the treated artery surface, with the guide wire inside the graft. The treated artery surface shown in Figures 23-24 and 26-27 is interface 106. One way in which insertion may be consummated is .. .. _ _ _ _ . . .

Wo 96/29027 PCTIUS9Sl0374S
~7nn!J

by use of a graft placement long-nose forceps, generally designated_260 (Figure 25) which comprises a control handle 262 from which a mandrel shaft 264 distally extends Activation of the control 262 causes bifurcated tips 266 located at the distal end of the mandrel shaft 264 to open and close, to grasp or clamp and release, respectively, the distal end 268 of a hollow tubular vascular graft 270. By grasping between tips 266 the distal end 268 of the vascular graft 270, the vascular yraft follows the mandrel shaft 264 as it is advanced over the guide wire 62 and through the sheath 256 as illustrated in Figures 26 and 2 7 .
With the graft 270 correctly positioned in the artery 52, the forceps 260 and graft 270 are held in a stationary position, the forceps grasping the graft, as the sheath is withdrawn. In the case of peel-away sheath 256, as the sheath is withdrawn it is manually split into two pieces, as illustrated in Figure Z7, following which each piece is discarded.
At this point, the f orceps 2 6 0 and the graft 270, with the guide wire 62 passing centrally through the graft, are left in position and the sheath 256 has been entirely removed Thereafter, the guide wire and graft 270 are held stationary, the mandrel control 262 manipulated to ope~ the tips 266 causing the distal end 268 of the graft 270 to be released, following which the forceps 260 are withdrawn while the guide wire 62 and the graft 270 are retained in 3 0 position as illustrated in Figure 28 .
Alternatively, the sheath may be placed - correctly in the artery 52 using a hollow mandrel, generally designated 280 (Figure 34). Wherein the sheath 270 is concentrically disposed around the hollow mandrel 280 with the distal ends of each being _ _ . _ . . .

wo 96l29027 F.~ . /4s .
~187~9 sutured together using aper~u~;es 282 located in the distal end of the mandrel ;~80. By placing a suture 284 helically through the apertures 282 and through the adjacent thickness of the vascular graft 270, the vascular graf t and the mandrel are secured together .
Where only one access opening, such as arteriotomy 50, is used, the suture 284 may be extended through the hollow of the mandrel 280 and through the arteriotomy 50 for access by the medical attendant. Once fully positioned in the artery, one end of the suture 284 is pulled by the medical attendant, causing the suture to helically unwind at the distal end of the vascular graft 270 for complete removal of the suture 284, following which the mandrel 280 i6 fully retracted leaving the vascular graft 270 correctly disposed in the artery 52, with the guide wire 62 inside the graf t .
Similarly, with or without a dilator/sheath, used in the l~anner described above, an elongated, long-nose forceps 290 (Figure 35) may be used as well for correct placement of the vascular graft 270.
Long-nose forceps 290 may be of any suitable type, such as commercially available pediatric bronchoscopy forceps or retrieval forceps, such as Storz's. More specifically, the forceps 290 comprise exposed jaws 292 which are controlled at the proximal end of the forceps 290 accommodating opening and closing of the jaws 292. By creasing or folding at 268 the vascular graft 270 and forcing the crease or fold 268 between the jaws 292 when open accommodates clamping of the creased distal end 268 when the jaws 292 are tightly closed. Thereafter, the forceps 290 and the vascular graft 270 are jointly advanced through the access site, such as arteriotomy 50, until the vascular graft 3~ 270 is correctly located in the treated artery 52, as W096/2902? ~ Dg r~ 5 ~, " ~

illustrated ln Figure 35. Thereafter, the jaws 292 are opened, the fold 268 at the distal end of the vascular graft 270 i5 released and the forceps 290 retracted leaving the vascular graft 270 properly disposed within the artery 52.
Independent of the procedure used, the vascular graft 270 is nlow correctly located in the artery 52, with the guide wire 62 passing through the center of the vascular graf t 270, as illustrated in Figure 28.
Insertion of a tubular graft of choice into the treated artery often involves folding or-other forms of reduction in the diametral size occupied by the vascular graft during insertion, for example, to accommodate a size which will allow displacement through the sheath 256. The sheath handle may accept a graft folded shown in Figure 26A. This folded conf iguration may continue the length of the sheath, to allow the ea6ier passage of the graft through the sheath, by de-forming the inside diameter to the shape, or by laying a convPnt;~-ni~l catheter or wire alongside the graft during insertion to create an indentation in the graft. For ~his reason and because, typically, the walls of a synthetic vascular graft are very supple and lack shape-retaining strength, the vascular graft, if left alone, tends to be and remain non-contiguous with the treated surface at the interior of the artery, e.g., surface 106, e.g., retaining the crimped or folded shape it assumes 3 o during insertion . In order to provide a contiguous relationship between the vascular graft and the adjacent arterial wall and to dilate the vascular graft to its full diameter, it i~3 presently preferred that a balloon catheter 300 of conventional, 35 commercially available design be advanced wo s6/2sn2~ ~ - P~U59~137~5 2~7nn~

concentrically around the gun~L wire 62 until the balloon 302 thereof is posi~lonea within the sheath 270 just inside the distal edge 268' of the sheath 270. See Figure 2g.
By sequentially expanding, deflating, slightly displacing and once more inflating, etc., the balloon 302, the vascular graft 270 is caused to become contiguous with and adhered to the adjacent arterial wall surface, following which the balloon 302 is deflated and the balloon catheter 300 retracted along the guide wire and discarded, leaving the vascular graft. 270 postured as illustrated in Figure 30.
Alternatively, one very long balloon catheter can be employed to perform this step in a single balloon expansion, and/or the balloon can be sized to exactly match the graft, e.g., tapered balloon used with tapered graf t, etc .
Thereaf ter, the guide wire 62 is fully retracted, leaving the tubular vascular graft 270 positioned as essentially illustrated in Figure 31.
It has been found that once the tubular vascular graft is f irmly contiguous with the ad] acent arterial wall surface,: a measure of friction exists which both prevents radial collapse and axial displacement of the vascular graft within the artery. In addition, the treated arterial surface tends to weep slightly which weeping adheres to the exterior surface of the tubular graft and tends to infiltrate the material from which the tubular graft i8 formed at least to a limited extent further causing the graft to be retained in its ,oTp~nrl~l stationary position, fully dilated within the artery .
As best illustrated in Figure 32, it is presently preferred that only the proximal end 269 of the vascular graft 270 be physically connected to the Wo 96/29027 . c l/ ~.. ~ /45 ~1 ~7~
adjacent arter~al wall, in this case adventitia layer 104, and that the distal end 268 be left to natural adherence, w~th the arterial blood pressure holding the distal end 268 in its fully dilated position 5 together with friction at the surface 106 and tissue infiltration into the material from which the graft 270 is fabricated. In Figure 32 the utili~ation of one or more sutures 304 is illustrated as the structure by which the proximal end 269 of the vascular graft 270 is physically secured to the arterial wall.
Over the longer term, the graft will be held open and contiguous with the r~m~i n; ng original wall of the artery throughout its length by arterial blood pressure and, in grafts so constructed, by tissue in-growth into the tissue in-growth material. This particular feature of intra-luminal graft plac~
solves a specific problem of by-pass graft pl~- nt where by-pass grafts have previously been placed in tissue tunnels constructed to by-pass the original duct or vessel lumen. Many such grafts are placed in body regions where, under normal activities, the body tends to compress graf ts and thereby cut of f f low through such grafts when they are placed in tissue tunnels .which by-pass the original lumen. The example of the human knee joint is illustrated in Figure 10.
Convention placement of by-pass grafts, which pass through the knee j oint:, results in the surrounding tissue tending to compress the graft and cut off flow when the knee is bent. Conventionally, this problem has been solved by using a reinforced graft, as previously illustrated in Figures 18 and 19, wherein the reinforcing holds the graft lumen open and patent when external tissue pressure is exerted on the graft.

Wo 96l29027 r~ s~o~,~s 2ls7no~

An improved ~ result =~8' obtained using the intra-luminal graft place~ent described herein is illustrated in Figure 10. The original artery lumen remains ope~. and patent in the knee even when the knee is bent. More generally, ducts and vessels naturally remain open and patent during the normal range of actiYities. In Figure 10, the lumen of the graft, which is adhering to the re~Laining original wall of the artery by tissue in-growth and/or due to the arterial pressure inslde the graft, is illustrated as L~ ;nlng open and patent even while the knee is bent.
More generally, intra-luminal grafts held in place in vessels or ducts by tissue in-growth will remain open and patent during the normal range o~ activities, including activities that tend to obstruct by-pass grafts placed in tissue tunnels.
While it is currently preferred that the distal end 268 of the vascular graft 270 be without manmade connection to the vascular wall, i~ desired the distal end 268 may be so secured. Specifically, Figure 36 illustrates utilization of one or more sutures 304 to secure both the proximal and distal ends 269 and 268, respectively, of the vascular graft 270 to the arterial wall 104. Placement of sutures 304 at the distal end 268 of the vascular graft 270 would ordinarily re~uire a second, downstream arteriotomy .
Similarly, one or both ends of the vascular graft 270 may be secured to the arterial wall 104 using medical grade staples 306, as illustrated in F i gure 3 7 .
Furthermore, either or. both ends of the vascular graft 270 can be P~-r~nrlPr~ and held in contiguous relationship with arterial surface 106 w096/29027 2`1~0~9 f~l~u.. ,~ 745 using one Or more stents 226, as explained above and as illustrated in Figure 3 8 .
While ordinarily not necessary, the distal end 268 of the vascular graft 270 may be grasped u~ing suitable forceps 31D for~both positioning the vascular graft 270 and for holding it in position while, for example, the prbximal end of the graft is suitably fastened to the. arterial wall as explained above. See Figure 13.
0 The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range o~
equivalency of the claims are~therefore intended to be embraced therein.

Claims (109)

Claims:
1. A method of restoring reduced or absent blood flow capacity to an artery in a patient, comprising the steps of:
excavating plaque and the like from within a segment of an artery;
placing a vascular graft at a location within and as an internal lining for the artery at least co-extensive with the excavated segment;
securing the vascular graft within said artery at said location.
2. A method according to Claim 1 comprising the step of surgically accessing the artery prior to the excavating step.
3. A method according to Claim 2 comprising the step of surgically closing the artery access following the securing step.
4. A method according to Claim 2 wherein the accessing step comprises performing an arteriotomy.
5. A method according to Claim 2 wherein the accessing step comprises percutaneously using a needle.
6. A method according to Claim 1 wherein the excavating step comprises passing a guide wire through the segment of the artery.
7. A method according to Claim 6 wherein the passing step comprises advancing a dynamic wire guide into the plaque region to assist passage of the guide wire.
8. A method according to Claim 1 wherein the excavating step comprises initially loosening the plaque from artery.
9. A method according to Claim 8 wherein the loosening step comprises engaging the plaque with a dynamic disrupter.
10. A method according to Claim 8 wherein the loosening step comprises using a dynamic wire guide.
11. A method according to Claim 1 wherein the excavating step comprises performing an endarterectomy.
12. A method according to Claim 11 wherein the performing step comprises using an endarterotome.
13. A method according to Claim 11 wherein the performing step comprises using an atherotome.
14. A method according to Claim 11 wherein the performing step comprises using a Hall loop.
15. A method according to Claim 11 wherein the performing step comprises using a ring dissector.
16. A method according to Claim 11 wherein the performing step comprises using a Scanlan Endarsector.
17. A method according to Claim 11 wherein the performing step comprises using an arterial stripper.
18. A method according to Claim 2 wherein the excavating step comprises separating pieces of atheromatous and arterial material from other arterial material along an interface of weakness and pulling the pieces from the artery through the site of surgical access.
19. A method according to Claim 18 wherein the separating step comprises grasping at least one piece of atheromatous and arterial material and pulling thereon causing the piece to separate from the artery along a natural interface of weakness.
20. A method according to Claim 18 wherein the separating step comprises bluntly dissecting along the natural interface of weakness.
21. A method according to Claim 1 wherein the excavating step comprises performing an atherectomy.
22. A method according to Claim 21 wherein the performing step comprises using an atherotome.
23. A method according to Claim 21 wherein the performing step comprises using a Hall loop.
24. A method according to Claim 21 wherein the performing step comprises using a ring dissector.
25. A method according to Claim 21 wherein the performing step comprises using a Scanlan Endarsector.
26. A method according to Claim 21 wherein the performing step comprises using an arterial stripper.
27. A method according to Claim 1 wherein the excavating step comprises performing balloon angioplasty.
28. A method according to Claim 1 wherein the excavating step comprises performing laser atherectomy or angioplasty.
29. A method according to Claim 1 wherein the excavating step comprises performing ultrasound angioplasty.
30. A method according to Claim 1 wherein the excavating step comprises dilating the artery with a vessel dilator.
31. A method according to Claim 2 wherein the placing step comprises displacing the vascular graft through the surgical access site.
32. A method according to Claim 31 wherein the displacing step comprises using a forceps to grasp a distal end of the vascular graft.
33. A method according to Claim 1 wherein the placing step comprises using a balloon catheter to hold a distal end of the vascular graft by inflating the balloon inside the distal end of the vascular graft.
34. A method according to Claim 1 wherein the placing step comprises suturing a distal end of the vascular graft to a mandrel, advancing the mandrel and the vascular graft collectively into the artery, unsuturing the vascular graft from the mandrel and removing the mandrel from the artery.
35. A method according to Claim 1 wherein the placing step comprises holding the distal end of the vascular graft using a placer/suturer, pushing the vascular graft and placer/suturer concurrently into the artery, connecting the distal end of the vascular graft to the artery and removing the placer/suturer.
36. A method according to Claim 35 wherein the connecting step comprises suturing.
37. A method according to Claim 35 wherein the connecting step comprises stapling.
38. A method according to Claim 1 wherein the placing step comprises connecting a distal end of the vascular graft, a stent and a distal end of a catheter and jointly advancing the vascular graft, the stent and the catheter into the artery.
39. A method according to Claim 1 wherein the placing step comprises advancing a stent into the artery.
40. A method according to Claim 1 wherein the placing step comprises applying a coating to the excavated arterial segment.
41. A method according to Claim 1 wherein the placing step comprises inserting a sheath into the artery, advancing the vascular graft through the sheath into the artery and removing the sheath from the artery.
42. A method according to Claim 1 wherein the placing step comprises radially expanding the vascular graft while at the excavated segment of the artery.
43. A method according to Claim 42 wherein the expanding step comprises expanding a balloon inside the graft one or more times.
44. A method according to Claim 42 wherein the expanding step comprises mechanically spreading the vascular graft.
45. A method according to Claim 1 wherein the securing step comprises attaching the vascular graft to the artery by suturing.
46. A method according to Claim 1 wherein the securing step comprises attaching the vascular graft to the artery by suturing only at a proximal end of the vascular graft, leaving the distal end of the vascular graft unattached but dilated at least in part by arterial pressure.
47. A method according to Claim 1 wherein the securing step comprises attaching the vascular graft to the artery by suturing only at a proximal end of the vascular graft and by tissue in-growth, accomplished over a protracted period of time throughout the length including a distal end of the vascular graft.
48. A method according to Claim 1 wherein the securing step comprises attaching the vascular graft to the artery by stapling.
49. A method according to Claim 1 wherein the securing step comprises only attaching the vascular graft to the artery by stapling the proximal end of the vascular graft to the artery.
50. A method according to Claim 1 wherein the securing step comprises holding the vascular graft in the arterial segment by expanding at least one stent inside the vascular graft.
51. A method according to Claim 1 wherein the securing step comprises holding the vascular graft in the arterial segment by expanding at least one stent within a proximal portion of the vascular graft only.
52. A method according to Claim 1 wherein the securing step comprises independently placing the vascular graft and at least one stent within the arterial segment followed by expanding the stent inside the vascular graft.
53. A method according to Claim 1 wherein the securing step comprises connecting at least one unexpanded stent to the vascular graft, jointly inserting the connected stent and vascular graft into the artery followed by expanding the stent in respect to the vascular graft.
54. A method according to Claim 1 wherein the securing step comprises suturing the vascular graft to the artery at both proximal and distal ends thereof, access for suturing being via spaced arteriotomies.
55. A method according to Claim 1 wherein the securing step comprises stapling the vascular graft to the artery at both proximal and distal ends thereof, access for stapling being via spaced arteriotomies.
56. A method according to Claim 1 wherein the securing step comprises suturing one end of the vascular graft to the artery and holding the other end of the vascular graft against the artery by expanding an internal stent.
57. A method according to Claim 56 wherein suturing takes place at the proximal end of the vascular graft.
58. A method according to Claim 1 wherein the securing step comprises stapling one end of the vascular graft to the artery and holding the other end of the vascular graft against the artery by expanding an internal stent.
59. A method according to Claim 58 wherein stapling takes place at the proximal end of the vascular graft.
60. A method according to Claim 1 wherein the securing step comprises expanding a stent within the vascular graft at each of the proximal and distal ends of the vascular graft.
61. A method according to Claim 60 wherein the vascular graft and the stents are separately advanced into the artery.
62. A method according to Claim 60 wherein the vascular graft and the stents are connected and then advanced into the artery.
63. A method according to Claim 62 wherein the stents are connected to the outside of the vascular graft.
64. A method of restoring lost blood flow capacity to an artery of a medical patient, comprising the steps of:
enlarging the flow path size of a plaque-ridden segment of an artery;
placing a vascular lining within the artery at least in part co-extensive with a portion of the segment;
securing the vascular graft within said artery at said location.
65. A method according to Claim 64 wherein the enlarging step comprises expanding the flow path within the artery by performing an angioplasty.
66. A method according to Claim 64 wherein the enlarging step comprises loosening plaque.
67. A method according to Claim 64 wherein the enlarging step comprises cutting plaque.
68. A method according to Claim 64 wherein the enlarging step comprises chipping plaque.
69. A method according to Claim 64 wherein the enlarging step comprises grinding plaque.
70. A method according to Claim 64 wherein the enlarging step comprises applying laser energy to the plaque.
71. A method according to Claim 64 wherein the enlarging step comprises separating and removing both plaque and a portion of the interior of the artery.
72. A method according to Claim 64 wherein the enlarging step comprises applying ultrasound energy to the plaque.
73. A method according to Claim 64 wherein the enlarging step comprises excising pieces of plaque from the artery.
74. A method according to Claim 62 wherein the enlarging step comprises grasping and tearing pieces of plaque from the artery.
75. A method according to Claim 62 wherein the enlarging step comprises diametrally expanding the plaque-ridden segment of the artery.
76. A method of lining a vessel of a medical patient to alleviate reduced blood flow, comprising the steps of:
introducing a vascular graft material into the interior of a vessel;
placing the vascular graft material within the vessel at a predetermined arterial site;
causing adherence between the vascular graft material and the vessel at the site.
77. A method according to Claim 76 wherein the introducing step comprises advancing the vascular graft material through an incision.
78. A method according to Claim 76 wherein the placing step comprises coating the vessel with the vascular graft material.
79. A method according to Claim 77 further comprising surgically closing the incision after the causing step.
80. A method of lining a vessel of a medical patient, comprising the steps of:
enlarging the flow path size of a segment of a vessel;
placing a vascular lining at a location within the vessel at the segment;
securing the vascular lining to the inside of the vessel at said location.
81. A method of lining a vessel of a medical patient, comprising the steps of:
treating the flow path interior of a vessel;
placing a vascular lining at a location within the vessel at the segment;
securing the vascular graft to the inside of the vessel at said location.
82. A vascular graft disposed in a vessel comprising a generally cylindrically-shaped hollow member comprising an outside surface contiguous with the vessel, an inside surface defining a stenosis-resistant blood flow path lumen and at least one adherence site securing the cylindrically-shaped hollow member to the vessel.
83. A vascular graft according to Claim 82 wherein the outside surface of the generally cylindrically-shaped member is contiguous with the adventitia layer of an artery.
84. A vascular graft according to Claim 82 wherein the adherence site comprises at least one physical connection extending only through a proximal end of the generally cylindrically-shaped member into the vessel.
85. A vascular graft according to Claim 84 wherein the physical connections extend through both the proximal end and a distal end of the generally cylindrically-shaped member into the vessel.
86. A vascular graft according to Claim 82 further comprising at least one expanded stent disposed within the generally cylindrically-shaped member biasing the cylindrically-shaped member against the vessel.
87. A vascular graft according to Claim 82 wherein the generally cylindrically-shaped member comprises a coating.
88. A vascular graft according to Claim 82 wherein the generally cylindrically-shaped member comprises a tubular synthetic resinous member.
89. A vascular graft according to Claim 82 wherein the generally cylindrically-shaped member comprises shape-retaining internal reinforcement.
90. A vascular graft according to Claim 89 wherein the tubular synthetic resinous member comprises a biologically inert fabric and a stiff, high density material.
91. A vascular graft according to Claim 88 wherein the tubular synthetic resinous member comprises a soft, low density material.
92. A vascular graft according to Claim 82 wherein the generally cylindrically-shaped member comprises an annulus having a uniform inside bore.
93. A vascular graft according to Claim 82 wherein the generally cylindrically-shaped member is tapered.
94. A vascular graft according to Claim 82 wherein the generally cylindrically-shaped member is bifurcated.
95. A vascular graft according to Claim 89 wherein the reinforcement comprises at least one ring.
96. A vascular graft according to Claim 89 wherein the reinforcement comprises a spirally-shaped member.
97. A vascular graft according to Claim 82 further comprising at least one expandable stent connected to the generally cylindrically-shaped member.
98. A vascular graft according to Claim 82 wherein the generally cylindrically-shaped member comprises at least in part a lumen taken from a human being.
99. A vascular graft according to Claim 82 wherein the generally cylindrically-shaped member comprises at least in part a lumen taken from an animal.
100. A vascular graft according to Claim 82 wherein the generally cylindrically-shaped member comprises tissue in-growth receiving material.
101. A vascular graft according to Claim 82 wherein the generally cylindrically-shaped member comprises a material diametrally expanded while in the vessel.
102. A vascular graft according to Claim 100 wherein the adherence runs the full length of the graft due to tissue in-growth.
103. A vascular graft according to Claim 102 wherein the blood flow path lumen inside the graft remains open and patent in all situations where the original vessel lumen would normally remain open and patent.
104. A vascular graft according to Claim 103 wherein the situations include situations that would tend to occlude vascular grafts placed in by-pass tissue tunnels.
105. A method of enlarging a lumen of an artery comprising the steps of:
placing a radially adjustable cutting head in the artery at a site adjacent to an atheroma;
enlarging the radial size of the cutting head beyond that of radial size of the artery;
rotating the cutting head to engage and excavate tissue from the wall of the artery and displacing the cutting head across the atheroma to remove both wall tissue and plaque to thereby enlarge the lumen of the artery.
106. A method according to Claim 105 wherein the enlarging step is carried out at least in part simultaneously with the rotating and displacing step to provide a taper at the interior arterial wall at one end of the excavation.
107. A method according to Claim 105 wherein the intima and media arterial layers are removed at least in part at the excavation site.
108. A method according to Claim 105 wherein the enlarging steps comprise expanding at least one helically disposed flexible cutting blade.
109. A method of enlarging blood flow in an artery of a patient comprising the steps of:
excavating materials from an arterial segment using an endarterotome, an atherotome, a Hall loop, a ring dissector, a Scanlon endarsector, an arterial stripper, an angioplasty balloon and/or a laser;
placing a vascular graft within the excavated region of the arterial segment as a lining using forceps, a balloon catheter and/or a placer/suturer;
connecting the vascular graft to tissue within the excavated region using suturing stapling and/or a stent.
CA002187009A 1995-03-22 1995-03-22 Anti-stenotic method and product for occluded arteries Abandoned CA2187009A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002187009A CA2187009A1 (en) 1995-03-22 1995-03-22 Anti-stenotic method and product for occluded arteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA002187009A CA2187009A1 (en) 1995-03-22 1995-03-22 Anti-stenotic method and product for occluded arteries

Publications (1)

Publication Number Publication Date
CA2187009A1 true CA2187009A1 (en) 1996-09-26

Family

ID=4159011

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002187009A Abandoned CA2187009A1 (en) 1995-03-22 1995-03-22 Anti-stenotic method and product for occluded arteries

Country Status (1)

Country Link
CA (1) CA2187009A1 (en)

Similar Documents

Publication Publication Date Title
US5904146A (en) Anti-stenotic method and product for occluded and partially occluded arteries
US5865844A (en) Anti-stenotic method and product for occluded and partially occluded arteries
US7357807B2 (en) Integrated anastomosis tool with graft vessel attachment device and cutting device
US6719769B2 (en) Integrated anastomosis tool with graft vessel attachment device and cutting device
US8109947B2 (en) Medical grafting methods and apparatus
US6306151B1 (en) Balloon with reciprocating stent incisor
US20100049305A1 (en) Convertible delivery systems for medical devices
US20040098011A1 (en) Method for cutting tissue
US20040097991A1 (en) Method for sutureless connection of vessels
JP2001522269A (en) Apparatus and method for tissue suturing
AU3953599A (en) Methods and devices for vascular surgery
US20230119672A1 (en) Adjustable ring stripper for more efficiently and effectively removing plaque from arteries
US20030074007A1 (en) Method and apparatus for performing an anastamosis
JP2003507122A (en) Implant connector, device for introducing the same, and method of manufacturing branch connection
CA2187009A1 (en) Anti-stenotic method and product for occluded arteries
US20180070965A1 (en) More Efficiently and Effectively Removing Stenotic And Restenotic Plaque From Arteries
WO2019168491A1 (en) Improvements in treatment of stenosis and restenosis

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued