CA2149693A1 - Gland permitting leak testing of lead penetrations - Google Patents

Gland permitting leak testing of lead penetrations

Info

Publication number
CA2149693A1
CA2149693A1 CA 2149693 CA2149693A CA2149693A1 CA 2149693 A1 CA2149693 A1 CA 2149693A1 CA 2149693 CA2149693 CA 2149693 CA 2149693 A CA2149693 A CA 2149693A CA 2149693 A1 CA2149693 A1 CA 2149693A1
Authority
CA
Canada
Prior art keywords
gland
sealing gland
glands
air space
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2149693
Other languages
French (fr)
Inventor
Ranjit S. Gill
Alexander J. Smolenski
Jeffrey D. Erno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
Ranjit S. Gill
Alexander J. Smolenski
Jeffrey D. Erno
General Electric Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ranjit S. Gill, Alexander J. Smolenski, Jeffrey D. Erno, General Electric Company filed Critical Ranjit S. Gill
Publication of CA2149693A1 publication Critical patent/CA2149693A1/en
Abandoned legal-status Critical Current

Links

Abstract

This invention provides an improved sealing gland for wire penetrations of a generator wall which also incorporates means for checking gas tightness of the lead penetrations prior to generator start-up. In an exemplary embodiment, the invention essentially incorporates a pair of conventional gland arrangements within a single gland body, with a center air space between the two glands used for detecting leakage and/or checking gas tightness. The center cavity or air space is channeled out of the gland througha drilled hole in the adjacent spacer plates and then axially through the gland body. A conduit extends from the gland body to a hydrogen detection device which alerts the operator to a hydrogen gas leak in the first or inner of the two axially aligned glands. The second or outer gland insures against leakage of the hydrogen beyond the first or inner gland. The invention also permits testing of multiple glands and easy determination of gas leakage from any one of the glands.

Description

GLAND PERMITTlNG LEAK TESTING
OF LEAD PEI!~ETRATIO~S

TECHNICAL ~IELD
s This invention broadly relates to generators and more particularly to an improved gland design which will allow lead, i.e., wire, pen~t~ation~ to be tested for air tightn~ss prior to start-up of the generator.

BACKGROUND

GenP~tors typically include inshu~ n and other devices which require the generator frame to admit wires ~ t~ with such devices. At the same time, it is of critical importance to prevent hyd~o&cn gas within the 5 gcne.ator from leaking to ~tmosphP~e. One source of potential hydlogen gas leakage is the point at which ina~ nl~l;nn and/or other wires enter/exit the grn. ..~tor frame and thus, it is ,c~u~ to provide an cffective seal or gland which will allow the wires to pPn-tratP the gcn. ,llo~ frame but without pf.",;ll;n~ hy~rogcn gas to leak out along the wires.

One conventional gland construction is shown in Figure 1 where a gland 10 is i~ str~tpd in place within the wall 12 of a genP~ator. The g!and 10, as alrcady noted, is de~ignpA to allow wires to enter/e~cit the genc~or frame while pl~cnting hydrogen gas leakage. The gland 10 in this 25 conventional arrangement includes a subst~nti~lly cylin~nc~l steel gland body14 in~lt)~inE an outer ~iphe.~l wall 16 and radial wall 18 at one end, the radial wall having a centrally located apc,lu~e 20. The O~pOaitc end of the gland body 14 is provided with a plurality of threaded bolt holes 22 so that a disk-like pressure plate 24 with aligned bolt holes 26 can be secured to the 30 body 14 via a cGl,c~nding plurality of bolts 28. The prcsaule plate 24 is -also provided with a centrally located opening 30 of approximately the same di-q-mete~ as (and axially aligned with) opening 20 in radial wall 18.

The gland body receives a pair of disk-like Textalite~ spacer plates 32, s 34 on either side of a disk-shaped rubber packing gasket 36. These spacer plates 32, 34 and the rubber gasket 36 are sized to fit within the gland body as shown. In addition, a compressible gasket 38 of rubber or other suitable mqt~riql is inserted between the spacer plate 32 and the radial wall 18. A
wire 40 is shown passing through the gland 10 and out of the ~ A~or wall 0 12, the wire 40 in-~lu~ing a copper strand 42 and an inclllqtin~ sleeve 44. The wire 40 is stripped of its sleeve 44 in arus on either side of, and within, the rubber packing 36. This arrangement, upon tight nine of the pressure plate 24, results in 360~ co"lp-ession of the packing 36 directly against and about the metal wire strand 42 to insure gas tight sealing.
While this conventional qrrangem~nt has provided g~n~lly ~ccept~ble sealing ~- rv~ n~e~ it is disadvantageous in that it does not permit p~,SSIIlc rh~ing of the gland for gas tightn~cc prior to geh~ Ator start-up.

DISCLOSU~F. OF l~F INVFl~IION

This invention has for its prinrip~l ob,e.li-e an effective sealing gland which improves the sealing properties of the gland, allows for the quick 25 ~et~ction of gas leakage, and also inco~ tes means for checl~ing gas tightn~ss of the lead pCncL~,tions prior to generator start-up. In an eYemp embo~im.-nt the invention essPnti~lly incGl~olAtes a pair of conventional gland arrange."cr,t~ within a single gland body, with a center cavity between the two glands used for detecting leakage and/or ch~inP gas tightn~s5 The 30 center cavity is ch~nn~led out of the gland through a drilled hole in the -a~jacl~nt spacer plates and then axially through the gland body. A conduit extends from the gland body ~o a hydrogen detection device which alerts the operator to a hydrogen gas leak in the first or inner of the two axially alignedglands. The second or outer gland insures against leakage of the hydrogen 5 beyond the first or inner gland.

The invention also permits pL~;,a,,re testing of the gland prior to gene.~,tor start-up.

0 The invention also permits continuous monitoring of mllltiple glands in a manner which permits accurate detection and id~ntifi~ on of the leaking gland.

In its broader aspects, the.~fo~c, the invention relates to a sealing gland 5 for ~,llPiuing at least one wire to p~ t~ a wall of a vcssel while preventing leakage of a gas from the vessel, the gland comrn~ing a gland body; a pair of seals located within the body with an air space formed b~ n the seals; at least one wire passing through the gland, the pair of packing seals and the air space; and a conduit comml~ni~ting the air space with a gas det~tioll device.
Other objects and advantages of the invention will become apparent from the detailed d~c~ ion which follows.

BRIE:F DESCRI~IO~ OF T~IE DRAW~GS
FIGIJRE 1 is a side elevation, partly in section, illustrating a cG-,~cnLional gland;

FIGURE 2 is a side elevation, partly in section, illustrating a gland in 30 accordance with this invention;

21~96~3 FIGURE 3 is a partial end view of the gland illustrated in Figure 2;

FIGURE 4 is an enlarged detail A taken from Figure 2; and FIGURE 5 is a sc~Pm~tiC diagram of a multiple gland continuous monitoring arrangement in accordance with the invention BEST MODE FOR CARRYING OUT ~IE INVENTION

With reference now to Figure 2, a gland 50 in acco,-lance with this invention is shown welded in place within a gcne~ltor wall 52. The gland 50 in~ d~s a cylin~ri~l gland body which in~ludes a p~ . ;p~ ",l wall 56 and a radial end wall 58 at the genelalor end of the gland. As in the conventional gland, the radial end wall 58 has a centrally located opcning 60 therein to 5 permit passage of any number of wires W (one shown) through the gland.

The ~liph~l wall 56 in accG,~ncc with this invention has an axial length greater than the conventional gland 10 decrrihed above, in order to accommod~te a pair of packing arrange.llcn~ as des~ nhed below. The open 20 end of the gland (remote from the gcnelator) is provided with a plurality of bolt holes 62 in a circular array (see also Figure 3).

Within the gland body are inserted the following el~ "- .t~ from left to right: a solid disk gasket 64; a first spacer plate 66; a first packing seal 68; a 25 second spacer plate 70; a third spacer plate 72; a sccond packing seal 74; and a fourth spacer plate 76.

The gasket 64, which may be rubber, is provided in the form of a solid disk-like ,ne..iber formed with one or more holes for receiving one or more of 30 the wire leads W exiting the generator wall 52.

21~969~
-The first and fourth spacer plates 66 and 76 are formed of a solid non-metallic but relatively rigid material such as Textaliten' (other suitable material may also be used), and are shaped as solid disks having a slight clearance fit or friction fit within the gland body. The second and third spacer plates 70 5 and 72 are formed of a similar m~n~l but these two confronting spacer plates are m~hin~d or molded to include aligned recesses which, when arranged in facing relationship, provide a central air space 78 between the second and third plates 70, 72. Space 78 is concen~ ;c with the plates 70 and 72, and with the gland body 56.

The packing seals 68 and 74 are solid disk-like members which may be formed of rubber or other suitable m~t~n~l With reference also to Figure 3, a radially eYt~n~ing hole or bore 80 is 5 forrned through the gland body and radially through the spacer plates 70 and 72 to commllni~te with the center space 78. The gland body is also axially drilled to form an axial passageway 82 cYt~n~ling from passageway 80 to the outer axial edge 84 of the gland body. The bore 82 a~j~ren~ to the edge 84 is threaded to receive a sealing con~ or 86 which, in turn, corln~ to a 20 conduit 88 which extends to gas leakage monitoring apparatus (not shown in Figure 2), as desl~nl)ed further below.

A plcs~ e plate 90 in~ludes a cylin~n~l body portion 92 and a radial flange portion 94. The body portion 92 is sized to snugly fit within the gland 25 body 56 and the radial flange portion 94 is provided with a plurality of boltholes 96 which enable a plurality of bolts 98 to be threaded into the co~ onding bolt holes 62 forrned in the gland body 54.

As shown in Figure 2, a single lead or wire W is shown penetrating 30 the generator wall 52 through the gland 50. Thus, the wire W which inclu~eS~ for example, a .064, 14 AWG varnished metal strand 100 covered with an inc~ ting sleeve 102, passes through the opening 60, and then through the first spacer plate 66, first packing seal 68, second spacer plate 70, centerspace 78, the third spacer plate 72, second packing seal 74 and fourth spacer 5 plate 76. The in5ul~ing sleeve material 102 is removed from the wire for those portions of the wire which extend through the packing seals 68 and 74 and adjacent portions, as best seen in Figure 2. The in~ ting sleeve 102 remains in place, however, within the space 78. While only one wire W is shown exiting the generator, it will be appreciated that the size and o configuration of the gland, in combination with the size of the opening 60, allow many wires to exit the generator through the same gland if required.

With the wire W shown in place, the p.~ssulc plate 90 may be secured to the outer end of the gland body 54 and tighte-~ed down via bolts 98. The 5 col,lpf~ssive forces exerted by the p~Saulc plate col,.~.ess the el~ within the gland body and particularly the gasket 64 and the packing seals 68 and 74.
These colllpressive forces result in a 360 radial squeezing of the packing seals 68 and 74 against the bare metal strand 100 in the stripped portions to thereby p~ .ely seal the strand and thus prevent leakage of hydlugo, gas 20 along the strands.

Further in this regard, and with particular reference to Figure 4 (detail A from Figure 2), the annular edge 104 of the p.es~ule plate 90 is beveled and exerts uniform plessu.e on an O-ring 106 located between the fourth 2s spacer plate 76 and the inner end of the pressure plate. In turn, the p.esi~
plate 90 exerts uniform pressure on the plates 76, 72, 70 and 66. As a result, uniform pressure is also applied to the packing seals 68 and 74 and then to the wire W.

By providing the center space 78 within the gland body 56, one is able to detect any gas leakage through the first seal comprising the first and secondspacer plates 66 and 70 in combination with a packing seal 68, in that any gas leaking beyond plate 70 into space 78 will flow via cQI-dllitc 80, 82 and 88 to s gas detection apparatus similar to that shown rh-~m~tic~lly at 122 in Figure 5.
At the same time, the presence of a second sealing arrangement formed by the third and fourth spacer plates 72 and 76 and second packing seal 74, insures against gas leakage out of the generator.

0 With ,~fc.~,~ce now to Figure S, the present gland design permits a gas leakage monitoring scheme to be set up to identify and isolate leaks in several glands which may be spaced at various loc~ nc about thc gçn~rator. Thus, in Figure 5, three glands 108, 110 and 112 are shown in an ~ng~om.ont where conl;.-~,ous ,--on;~o~;ng of all three glands can occur cimnlt~n~oucly.
Thus, the gland 108 is conn~ted by gas leakage branch conduit 114 to a common manifold conduit 116. Glands 110 and 112 are similarly connrct~
to the manifold conduit 116 by branch co~;d~ 118 and 120, l~i~ely.
Between the branch condllitc 114 and 118, the .I.~irold gland 116 innllldes a first valve 122, and ~.OeA branch condllitc 114 and 118, the m~nifi~ki conduit 116includes a second valve 124. The manifold conduit 116 e~ctends beyond the glands to a conventional h~d~gen de~ecti~n device 126 which is vented to ~..o~yk~ G at 128. In the event the gas det~tion device 126 detects leakage, the op~.<,tor can selectively close the normally open valves 118 and 120 to pinpoin~ the source of the leakage. In this way, k~kage in any one of 2S the glands can be isolated and repaired before any cig~ifiç~nt danger arises by reason of the leakage. At the same time, the utili7~tion of a double seal design plc~ents gas leakage beyond the gland itself.

It will also be appr~iated from the new gland design illustrated in 30 Figures 3 and 5, that air can be ~mit~,d into the glands 108, 110 and 112 selectively via co~dl~it~ 114, 118 and 120, ~es~ .vely, to pll-s~ule test one ormore of the glands prior to start-up of the generator. This ability to presa~le test the gland is, of course, equally applicable to single gland arrangements asshown in Figure 2. Thus, the present gland design provides distinct 5 advantages over the previously described conventional gland design.

While the invention has been described in co~n~ ;on with what is pl~ tly considered to be the most pra~t~ and p~ef~ d embo~limpn~ it is to be understood that the invention is not to be limited to the rlicrloc~d 0 embo~lim~nt but on the contrary, is intc~ndcd to cover vanous m~ific~ti~ nc and equivalent arrangements in~luded within the spirit and scope of the appended claims.

Claims (12)

1. A sealing gland for permitting at least one wire to penetrate a wall of a vessel while preventing leakage of a gas from said vessel, said gland comprising:
a gland body;
a pair of packing seals located within said body, with an air space formed between said seals;
at least one wire passing through said gland, said pair of packing seals and said air space; and a conduit communicating said air space with a gas detection device.
2. The sealing gland of claim 1 wherein each seal includes a pair of rigid members supported within said body, sandwiched around a resilient packing member.
3. The sealing gland of claim 2 wherein said pair of rigid members include a first solid disk having flat sides and a second solid disk having a recess formed in one side thereof.
4. The sealing gland of claim 3 wherein the second solid disk of each seal are in abutting relationship with each other such that the recesses in eachcombine to form said air space.
5. The sealing gland of claim 1 wherein said wire includes a solid metal strand covered by an insulation sleeve, wherein said sleeve is removed along a portion of said wire passing through said resilient packing members.
6. The sealing gland of claim 2 and further including a pressure plate adapted for partial insertion into said body so that said pair of seals may be compressed between said pressure plate and an opposite end wall of the body.
7. The sealing gland of claim 6 wherein said pressure plate includes a cylindrical axial portion and a radial flange portion.
8. The sealing gland of claim 7 wherein a radially outer edge of said cylindrical axial portion is beveled for engagement with an O-ring between said pressure plate and a rigid member of one of said seals.
9. The sealing gland of claim 6 and including means for securing said pressure plate to said gland body.
10. The sealing gland of claim 1 wherein said air space communicates with a gas detection device.
11. The sealing gland of claim 10 in combination with one or more additional glands, all of said glands in communication with said gas detection device.
12. The sealing gland of claim 11 wherein a valve means are provided for selectively isolating each gland relative to said gas detection device.
CA 2149693 1994-06-02 1995-05-18 Gland permitting leak testing of lead penetrations Abandoned CA2149693A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25279594A 1994-06-02 1994-06-02
US08/252,795 1994-06-02

Publications (1)

Publication Number Publication Date
CA2149693A1 true CA2149693A1 (en) 1995-12-03

Family

ID=22957585

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2149693 Abandoned CA2149693A1 (en) 1994-06-02 1995-05-18 Gland permitting leak testing of lead penetrations

Country Status (2)

Country Link
AT (1) AT402547B (en)
CA (1) CA2149693A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624412A (en) * 2021-06-24 2021-11-09 上海江南长兴造船有限责任公司 Combustible gas leakage identification system of marine generator and ship
CN117028572A (en) * 2023-10-08 2023-11-10 之江实验室 Dynamic seal structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624412A (en) * 2021-06-24 2021-11-09 上海江南长兴造船有限责任公司 Combustible gas leakage identification system of marine generator and ship
CN117028572A (en) * 2023-10-08 2023-11-10 之江实验室 Dynamic seal structure

Also Published As

Publication number Publication date
ATA77795A (en) 1996-10-15
AT402547B (en) 1997-06-25

Similar Documents

Publication Publication Date Title
EP0735269B1 (en) Head port sealing gasket
EP0857297B1 (en) A device for detecting leakage in flange joints
US5056758A (en) Valve stem packing structure
US3989285A (en) Compatible vacuum seal
EP0206451B1 (en) Sensing probe holder system
EP1373853B1 (en) Arrangement at a pipe flange seal
AU730247B2 (en) Cryogenic coupler
US4235674A (en) Pressurizer system for electric penetration assemblies
US4214809A (en) Fiber optic penetrator
US20040103600A1 (en) Modular bulkhead for sealing passage of cables and pipes in structures of all kinds
US4993720A (en) Self-sealing mechanical seal gland for pumps and other machinery
CA2149693A1 (en) Gland permitting leak testing of lead penetrations
US6457717B1 (en) Method for constructing a fluid barrier
KR100334760B1 (en) Variable length pipe assembly
CA1104678A (en) Sealing device for portions of electric cables in the holes of housings of electric motors or the like
CN220230863U (en) Dual seal termination assembly and dual seal termination assembly test system
GB2143596A (en) Improvements in and relating to the sealing of electrical cable joints equipment housings or the like
KR200267881Y1 (en) Electrical penetration assemblies with pressure monitoring system used of tube-lock assembly
RU2186965C1 (en) Cable connector for armored load-bearing cables
KR101600892B1 (en) Electrical Penetration Assembly
HU186672B (en) Flange seal and method for producing same
WO2005059421A1 (en) Pipe seal
US20220042874A1 (en) Tightness testing system for a cable gland feed-through of a partition in particular of an immersible electrical connector
KR100437280B1 (en) Electrical penetration assemblies with pressure monitoring system used of tube-lock assembly
CA2221421C (en) Tantalum lined probe

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead