CA2117383A1 - Loudspeaker system - Google Patents

Loudspeaker system

Info

Publication number
CA2117383A1
CA2117383A1 CA002117383A CA2117383A CA2117383A1 CA 2117383 A1 CA2117383 A1 CA 2117383A1 CA 002117383 A CA002117383 A CA 002117383A CA 2117383 A CA2117383 A CA 2117383A CA 2117383 A1 CA2117383 A1 CA 2117383A1
Authority
CA
Canada
Prior art keywords
loudspeaker
enclosure
frequency range
degrees
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002117383A
Other languages
French (fr)
Inventor
Sevag Hrair Arzoumanian
Hal Perry Greenberger
Richard Harold Lyon
Bradley Mark Starobin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technicolor USA Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2117383A1 publication Critical patent/CA2117383A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/02Spatial or constructional arrangements of loudspeakers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)

Abstract

A center channel loudspeaker system for use with a Dolby four channel sound system is presented. A first loudspeaker (18) is mounted at the front of an enclosure (10). Second and third loudspeakers (12, 14), each having a larger cone size than the first loudspeaker (18), and having a lower frequency range than the first loudspeaker (18), are mounted at the front of the enclosure (10) one on each side of the first loudspeaker (18), at an angle of approximately 40 degrees in the vertical plane back from the first loudspeaker (18). With this arrangement, destructive cancellation of the sound emanating from the closely spaced center channel loudspeakers is minimized.

Description

3/l4606CA21 17383 Pcr/l~ss3too~
''' LOUDSPE_YSTEM

BA~GROVND
5The present invention relates to loudspeaker systems, and more particularly to a center channel loudspeaker system for a DOLBY PRO LOG~C home theater system. ,.
Briefly, the Dolby system is a stereophonic system ~, which includes surround sound encoding based upon 4-2-4 matrix 10 methods for four-channel recording devised in the early 1970's.
The four original signals are mixed to make a two channel stereo ~ . -recording which is decoded upon playback to recover an approximation of the original four channels, which are left, center, right, and surround. To produce a two-channel Dolby stereo 1~ recording, the center channel signal is added to the left and right channels as a monophonic in-phase signal. The surround channel signal is added to the left and right channel signals but as an out~
of-phase signal. For playback, the total left and total right channels (L+R) are added~together in a decoder to recover the 20 center channel signal while the L-R subtraction extracts the out-of-phase surround channel signal. Logic steering circuitry is used upon decoding to increase the apparent separation of the left, center, right, and surround signal. The ~surround channel signal is delayed by about 20 milliseconds to prevent unwanted location of 2 ~ frontal sounds in the surround channel loudspeakers.
The center channel provides most of the dialogue for a motion picture or a television ~ program, and carries music and effècts sounds ~as wcll. The~ purpose of the center channel is to insure that volces and other sounds originating from on-screen~
30~ sources, will appear to come froml the screen even when viewers `~
are seated off-center. Thus, the requirements for the center loudspeaker system are different from the left and right channel loudspeakers which are concerned mainly with music and the .
directionality of stereophonic music.
:
~. ~. ':

CA2~ 1 7383 WO 93/14606 PC7`tUS93/001~

2 ' ~ :
, .
The center channel loudspeaker system must be capable of generating the same acoustic output levels as the left `~
and right loudspeakers over its operating frequency range. These 5 output requirements demand that the center channel loudspeaker system have a minimum volume velocity capability, which translates into a minimum sound radiating area. Additionally, the ~center channel loudspeaker system should be located as ; -physically close to the television screen as possible to maintain 10 the fusion of the visual and auditory images. The mo3t practical location to locate the center channel loudspeaker system in a typical living room is either on top of or underneath the television receiver. This requires that the center channel loudspeaker ~
system be compact. Thus, the need for compactness, along ~,vith a 15 minimum radiating area requirement, are important design considerations for a center channel loudspeaker system.
A problem arises in the off axis behavior of two ~ ~;
closely spaced loudspeakers that are radiating the same signal. At certain frequencies related to the spacing between the two 20 sourcesl the acoustic outputs from the two sources will interfere destructively causing large notches in the frequency response of the system. This "notching", similar to a comb filter, causes a perceptible degradation in the quality of the sound. It is desirable to minimize this destructive interference so that off axis listeners 2 5 will not suffer from degraded sound quality.
The destructive interference that occurs due to the two woofers displaced in space having the same acoustic radiation can als o occur in the crossover frequency range where jthe ~woofers and tweeter are ~oth oper?ting. It is desirable to ~ -30 minimize this source of destructive interference.
. , .' :~ '.
SUMMARY OF THE rNVENTlON -Briefly, a center channel loudspeaker system for use ~ ~-with a Dolby four channel sound system is presented. A first ~ ~ ~
3 5 loudspeaker is mounted at the front of an enclosure. Second and - ~ :
third loudspeakers, each having a lower frequency range than ~he , ~
.

~,',, "~ .

93/14606 PCI/US93/00151 `: ~:
~. . :-,.

first loudspeaker, are mounted at the front of the enclosure, one on each side of the first loudspealcer, at an angle of approximately 40 degrees in the vertical plane back from the first loudspeaker.
S With this arrangement, destructive cancellation of the sound emanating from the closely spaced center channel loudspeakers is minimized. ;

BREF DESCRIP~QN OF THE DRAWING~ `
FIG. 1 shows a representation of a prior art center loudspeaker system with the listeners being exposed to cancellation of sound due to destructive interference.
FIG. 2 shows a representation of a center loudspealcer system, according to aspects of the present invention, showing 15 how cancellation of the sound due to destructive interference is minimized. ;

DETAII ED DESCRIP~ON OF T~ PREFl~RRED EMBODIMENT
FIG. 1 shows loudspeaker enclosure arrangement 20 according to the prior art. The loudspeaker enclosures shown are for three cbannels, i.e., left, right, and center, for a Dolb)~ Pro-Logic system, with the surround loudspeakers not shown. The left and right stereophonic loudspeakers are any appropriate loudspeakers suitable for the purpose, and receive standard left and right 25 signals. The structure and operation of the left and right i ~ ;
stereophonic sound radiating loudspeakers form no part of the present invention and will not be discussed further.
;; FIG. 1 shows a prior art center loudspeaker system ~ `
comprised of a pair of 5.25 inch drivers 12 and 14 mounted- ' 30 within a common enclosure 16. Drivers 12 and 14 cover the low and middle frequency ranges. A horn tweeter 18, covering the high frequency range, is mounted between drivers 12, 14. For the shown prior art system where the loudspeakers are mounted to radiate straight ahead, i.e., mounted on a common planar front 3 5 baMe, the loudspeaker radiation would produce nulls in the combined response of the two drivers 12, 14. Only in regions A, B, ' WO 93/14606 C A 2 1 1 7 3 8 3 PCI`/US93/00151~

and C would the response be reasonably accurate. In regions D
and E, the radiation from both drivers 12, 14 would be sufficiently strong to cause cancellation effects, since the path length S differences between a listener in these regions and the two drivers is a significant fraction of a wavelength, or even multiple wavelengths within the similar passbands of the two drivers. The polar response for non-optimized loudspeakers includes wide angular spaces in which destructive interference between the 10 acoustic radiation of drivers 12, 14 occurs.
Referring now to FIG. 2, there it is shown a center channel loudspeaker arrangement for overcoming the cancellation effects shown in FIG. 1. As shown in FIG. 2, each of the 5.25 inch drivers 12, 14 of the exemplary embodiment are mounted at a 15 backward angle of approximately 40 degrees, e.g., 37.~ degrees, within the vertical plane, with respect to loudspeaker 18. The optimum angle will be different for different sized and different frequency range loudspeakers. With such a mounting angle, as one moves o~f-axis to center loudspeaker 18, one moves on-axis to 20 one of drivers 12, 14, and further off-axis to the other one of -;
drivers 12, 14. Thus, in the frequency range where cancellation ~ -due to destructive interference would otherwise occur, the output from the off-axis loudspeaker is reduced by its own directivity and the interference cancellation is reduced and/or minimized. ;~
2 5 In the exemplary ennbodiment, horn loudspealcer 18 is mounted so that its acoustic center is approximately 4.5 cm behind the front panel of the speaker (not shown) with the optimal displacement depending on the characteristics of the , -particular loudspeakers used. This places the acoustic center of 30 loudspeaker 18 in close but not in exact alignment with the acoustic centers of loudspeakers 12 and 14. This displaced ~ `
alignment is designed to further minimize destructive ' ~;
interference effects by minimizing the path length variations -between the tweeter loudspeaker 18 and each woofer 35 loudspeaker 12, 14 in the range from zero degrees up to 4~
degrees off axis, which are the normal television viewing angles.

3/14606 PCI'/US93/00151,~
S

FIG. 2 sbows the approximate coverage of the two mid-woofers 12, 14 just below the frequency at which the crossover frequency for the tweeter 18 occurs in the exemplary ~: :
S center channel loudspeaker system. In region A, the acoustic outputs of drivers 12, 14 arrive essentially in phase and no ::
cancellations occur. In regions B and C, the acoustic outputs of loudspeakers 12 and 14 will be shifted in phase with respect to each other. However, even if a large phase difference were to 10 oc~ur, the net effect on the system is small because the mounting angle of loudspeakers 12, 14 significantly reduces the sound level from the further loudspeaker with respect to the nearer loudspeaker.

. -....

., ~, i :., ~

.

: -: ' ~ ' .~.

Claims (3)

?? 93/14606 PCT/US93/00151 CLAIMS:
1. A loudspeaker system (10) for the center channel of a Dolby four channel sound system, comprising:
a first loudspeaker ( 18) mounted on the front of an enclosure, a second loudspeaker ( 12,14), of a lower frequency range than the first loudspeaker (18), mounted at the front of the enclosure on one side of the first loudspeaker (18), at an-angle of approximately 40 degrees in the vertical plane from the first loudspeaker ( 18), and a third loudspeaker (12,14), of a lower frequency range than the first loudspeaker (18), mounted at the front of the enclosure (10) on the other side of the first loudspeaker (18), at an angle of approximately 40 degrees in the vertical plane from the first loudspeaker (18).
2. A loudspeaker system (10) for a Dolby sound system, comprising:
a first loudspeaker (L) including a first enclosure for providing left channel audio information, a second loudspeaker (R) including a second enclosure for providing right channel audio information, the first and second loudspeaker enclosures (L, R) being spaced apart, and a third loudspeaker enclosure: (10) for providing a center audio sound channel information and disposed between: the first and second loudspeaker enclosures (L, R), the third loudspeaker enclosure (10) comprising:
a third loudspeaker (18) mounted on the front of the third loudspeaker enclosure(10), a fourth loudspeaker (12,14), of a lower frequency range than the third loudspeaker (18), mounted at the front of the third loudspeaker enclosure (10) on one side of the third loudspeaker (18), at an angle of approximately 40 degrees in the vertical plane from the third loudspeaker(18), and ?? 93/14606 PCT/US93/00151 a fifth loudspeaker (12,14), of a lower frequency range than the third loudspeaker (18), mounted at the front of the third loudspeaker enclosure ( 10) on the other side of the third loudspeaker (18), at an angle of approximately 40 degrees in the vertical plane from the third loudspeaker (18).
3. A loudspeaker system comprising:
a first loudspeaker (18) mounted on the front of an enclosure (10), a second loudspeaker (12,14), of a lower frequency range than the first loudspeaker ( 18), mounted at the front of the enclosure ( 10) on one side of the first loudspeaker ( 18), at an angle of approximately 40 degrees in the vertical plane from the first loudspeaker (18), and a third loudspeaker (12,14), of a lower frequency range than the first loudspeaker (18), mounted at the front of the enclosure (10) on the other side of the first loudspeaker (18), at an angle of approximately 40 degrees in the vertical plane from the first loudspeaker (18).
CA002117383A 1992-01-08 1993-01-08 Loudspeaker system Abandoned CA2117383A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB929200302A GB9200302D0 (en) 1992-01-08 1992-01-08 Loud speaker systems
GB9200302.9 1992-01-08

Publications (1)

Publication Number Publication Date
CA2117383A1 true CA2117383A1 (en) 1993-07-22

Family

ID=10708255

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002117383A Abandoned CA2117383A1 (en) 1992-01-08 1993-01-08 Loudspeaker system

Country Status (6)

Country Link
EP (1) EP0639317A1 (en)
JP (1) JPH07503112A (en)
KR (1) KR940704110A (en)
CA (1) CA2117383A1 (en)
GB (1) GB9200302D0 (en)
WO (1) WO1993014606A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7676047B2 (en) 2002-12-03 2010-03-09 Bose Corporation Electroacoustical transducing with low frequency augmenting devices
US8139797B2 (en) 2002-12-03 2012-03-20 Bose Corporation Directional electroacoustical transducing
US7688992B2 (en) 2005-09-12 2010-03-30 Richard Aylward Seat electroacoustical transducing
US8483413B2 (en) 2007-05-04 2013-07-09 Bose Corporation System and method for directionally radiating sound
US9100748B2 (en) 2007-05-04 2015-08-04 Bose Corporation System and method for directionally radiating sound
RU2013158172A (en) * 2011-06-09 2015-07-20 Конинклейке Филипс Н.В. DEVICE FOR AUDIO SPEAKERS
EP3041265B1 (en) 2014-09-08 2019-12-18 Adamson Systems Engineering Inc. Loudspeaker with improved directional behavior and reduction of acoustical interference

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2143175A (en) * 1937-10-23 1939-01-10 Samuel A Waite Sound reproducing system
US3026957A (en) * 1959-06-02 1962-03-27 Gladstone Lewis Loudspeaker system
US3983333A (en) * 1974-03-01 1976-09-28 Allison Acoustics Inc. Loud speaker system
US4073365A (en) * 1977-07-11 1978-02-14 Johnson Joseph W Speaker system
JPS54148501A (en) * 1978-03-16 1979-11-20 Akg Akustische Kino Geraete Device for reproducing at least 2 channels acoustic events transmitted in room
US4888804A (en) * 1988-05-12 1989-12-19 Gefvert Herbert I Sound reproduction system
FI81471C (en) * 1988-11-08 1990-10-10 Timo Tarkkonen HOEGTALARE GIVANDE ETT TREDIMENSIONELLT STEREOLJUDINTRYCK.

Also Published As

Publication number Publication date
EP0639317A1 (en) 1995-02-22
KR940704110A (en) 1994-12-12
JPH07503112A (en) 1995-03-30
EP0639317A4 (en) 1994-10-17
WO1993014606A1 (en) 1993-07-22
GB9200302D0 (en) 1992-02-26

Similar Documents

Publication Publication Date Title
US5850457A (en) Multi-dimensional sound reproduction system
US5301237A (en) Surround sound loudspeakers
JP2529933B2 (en) Sound reproduction method with realism and sound image
US5212732A (en) Effects speaker system
US6118876A (en) Surround sound speaker system for improved spatial effects
US5027403A (en) Video sound
US20060165247A1 (en) Ambient and direct surround sound system
US20060126878A1 (en) Audio playback method and apparatus using line array speaker unit
US5117459A (en) Ambient imaging loudspeaker system
JPH06197293A (en) Speaker system for television receiver
US5708719A (en) In-home theater surround sound speaker system
US20050025318A1 (en) Reproduction system for video and audio signals
US20060050907A1 (en) Loudspeaker with variable radiation pattern
US20040013271A1 (en) Method and system for recording and reproduction of binaural sound
JP3281181B2 (en) Speaker system for sound field reproduction
US8767984B2 (en) Apparatus and method for reproduction of stereo sound
CA2117383A1 (en) Loudspeaker system
US6343132B1 (en) Loudspeaker
EP0370619A2 (en) Multiple loudspeaker sound system for a video display device
Julstrom A high-performance surround sound process for home video
EP0060097B1 (en) Split phase stereophonic sound synthesizer
JPH114500A (en) Home theater surround-sound speaker system
JPH02296498A (en) Stereophonic reproducing device and television set incorporating stereophonic deproducing device
KR20090109425A (en) Apparatus and method for generating virtual sound
US5594801A (en) Ambient expansion loudspeaker system

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead