CA2083073C - Fiber length analyzer - Google Patents

Fiber length analyzer

Info

Publication number
CA2083073C
CA2083073C CA002083073A CA2083073A CA2083073C CA 2083073 C CA2083073 C CA 2083073C CA 002083073 A CA002083073 A CA 002083073A CA 2083073 A CA2083073 A CA 2083073A CA 2083073 C CA2083073 C CA 2083073C
Authority
CA
Canada
Prior art keywords
tube
housing
measurement portion
measurement
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002083073A
Other languages
French (fr)
Other versions
CA2083073A1 (en
Inventor
John A. Ayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andritz Sprout Bauer Inc
Original Assignee
Andritz Sprout Bauer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andritz Sprout Bauer Inc filed Critical Andritz Sprout Bauer Inc
Publication of CA2083073A1 publication Critical patent/CA2083073A1/en
Application granted granted Critical
Publication of CA2083073C publication Critical patent/CA2083073C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/34Paper
    • G01N33/343Paper pulp
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble
    • G01N2015/0057Investigating dispersion of solids in liquids, e.g. trouble of filaments in liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Glass Compositions (AREA)
  • Housing For Livestock And Birds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
  • Artificial Filaments (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A measuring cell (22) in a fiber sample analysis system (10) contains housing member (76) which removably supports a transparent flow tube (82) and an optical device (26) which projects a beam (124) across the tube for detecting and measuring individual fibers in a dilute sample fluid which flows through the tube at a constant velocity. The tube includes a gradually narrowing transition portion (86) leading to a measurement portion (88) situated at the optical device and having a flow diameter in the range of about 1.0 to 3.0 mm.

Description

2~8~3 FIBER LENGTH ANALYZER

Backqround of the Invention The present invention relates to the detection of particulates in a fluid, and more particularly, to the measurement of the size distribution of fibers in a fluid sample.
In papermaking and other processes of a similar nature, a dispersion of fibers in a carrier liquid is deposited on webs or the like for undergoing various consolidation, drying, and perhaps coating operations, eventually to emerge as a finished sheet product, i.e., paper. The manufacture of paper spans a variety of specifications as to weight, surface texture, and other physical and chemical criteria to be satisfied. As is well known, the quality of the manufactured paper is very strongly dependent on the quality of the fibers. This quality depends in part on the source of the fibers, and on the manner in which the fibers were refined prior to introduction into the paper manufacturing equipment. An indicator of refining quality is the size distribution of the refined fibers.
In papermaking plants, it is desired that the machinery be adjusted, or controlled, in response to the deviation of the fiber size distribution relative to the targets associated with the particular type of paper manufactured during a given run. To date, on-line equipment for measuring or analyzing the size distribution of fibers, has been very expensive and susceptible to plugging.
Traditionally, "accurate" fiber size distribution has been determined by flowing a diluted sample through various tanks and meshes, on which the fibers are physically classified into four or five size intervals. The deposits - 2 - ~083~3 on each mesh must be dried and weighed. As a practical matter, this procedure cannot be carried out on line, because the steps of precisely diluting the samples, weighing the meshes before and after classification, and the like, can only be performed in a laboratory or a well-equipped room away from the actual paper manufacturing equipment. The standard types of procedures are generally referred to as either the Clark method or the Bauer-McNett method, and are more fully described in TAPPI Standard T233SU-64 (1964).
More recent attempts of on-line measurement have utilized an optic counting technique, whereby a diluted sample of the fluid is passed through a transparent tube, where a standing light beam is interrupted commensurate with the length of the fiber passing therethrough. It is believed that one type of optic analyzer, available in two models, utilizes measuring tubes having diameters of about 0.2 mm and 0.4 mm, and counting rates of 50 and 100 fibers per second, respectively. Since relatively large fibers, or the occasional agglomeration of fibers, better known as shives, may have a diameter on the order of 0.2 mm to 0.4 mm, this type of equipment is prone to plugging by oversize fibers or shives. When plugging occurs, a backwash or vacuum assist operation is performed to clear the tubes and resume analysis.
Another type of optic analyzer has a generally square flow tube on the order of at least 8.0 mm per side. In this arrangement, the flow area is large enough to avoid blockage by oversized fibers and shives, but it is so large that two light beams projecting perpendicularly to each other, must be used to assure that the fibers can be characterized. Precision is lost and, as a result, the fibers are classified only into only a few categories, e.g., relatively large, average, or relatively small.

- - ~D~07~
Summary of the Inventlon It ls an ob~ect of the present lnventlon to provlde an optlc fibre size analyzer whlch may be used on line, ls less susceptible to plugging, and can accurately dlscrlminate slight size variatlons from fibre to fibre.
It is a further ob~ect of the invention, that the flbre analyzer exhlbit very high sensltlvlty to the presence of particulates in an otherwise relatively pure llquld medlum, whereby such partlculates may be dlscrlmlnated and counted at very low concentratlons.
It ls yet another ob~ect of the lnvention to provlde an optic-based fibre length analyzer in which a measurement cell containlng a transparent flow tube and an optlc measuring devlce, can be replaced easlly.
These and other ob~ects and advantages of the invention are provided ln accordance with the lnventlon, by a systern ln whlch a flow of diluted sample fluid is dlrected through a rlgld tube whlch tapers gradually wlth a flow area reductlon to a substantlally cylindrical, transparent, measurement portlon across which a single light beam is pro~ected for measuring each of the fibres as it lntercepts the beam. By gradually reduclng the flow cross-sectlon into an elongated, cylindrlcal, measurement portion, the tube has the effect of directlng the fibres gradually toward the longitudinal axis of the tube. As the flbres move toward the axls, they accelerate to a known veloclty and lnherently settle on a flow path that produces equal pressure on all lateral surfaces of the flbre. Thls pressure equallzation occurs substantlally only on the axis of the tube, by analogy to the pressure dlstributlon within a pipe havlng laminar, i.e., non-turbulent flow.
The flow tube measurement portion can have a flow diameter of between about 1 and 3 mm, preferably 1.5 to 2.5 mm, and can accommodate a flow velocity in the range of about 2~X~073 feet per second. It is believed that the high flow friction at the walls of the narrowing tube in comparison with the lower flow resistance at the axis of the tube, tends to orient each fiber axially and maintain it on the axis, i.e., off the tube wall. It is believed that this phenomena begins to occur in the conical, or transition portion of the tube, such that the fiber has nearly oriented itself on the axis as it enters the measurement portion of the tube, where it remains centered. Even the larger fibers and shives which may enter the narrow, measurement portion of the tube, tend not to hang up and accumulate to plug the tube.
Since the fibers tend to pass serially through the measurement tube on the axis, each fiber intercepts the light beam at substantially the identical position in the beam. This consistency in the measurement position, contributes to the sensitivity to fiber size variations.
For example, in the preferred embodiment having a tube measurement portion diameter of about 1.5 mm, 256 length intervals are easily discriminated within the range of fiber length from about 0.0-7.20 mm and width up to about 1.0 mm. High sensitivity is also achieved by the use of a slotted optical switch which projects an infrared ribbon beam from a gallium-arsinide LED, and generates an analog output signal from which indications of both fiber length and width are sensed.
In the preferred embodiment, the optical device and an elongated, tapered, glass flow tube are supported in a housing or holder, which itself is substantially tubular.
Generally annular support and/or sealing structure are provided in the housing interior near the narrow, measurement portion of the tube, adjacent the optical device, which is rigidly attached to the housing. The internal support member, preferably near the outlet end of the housing, defines a small receiving aperture on the 1-- 2 ~ 3 axis. In this manner, the small-diameter measurement portion of the tube, which is more fragile, can easily pass through the inlet end of the housing and continue moving substantially centrally in the housing so as to pass through the support member adjacent the optic device as the larger, trailing portion of the tube fully enters the housing. Thus, the tube can be readily replaced without removing the housing from its support within the analyzer package and without detaching the optic device from the housing. The measurement cell including tube, housing, and optical device can also be easily replaced as a unit.
The analyzer package is preferably arranged such that the measurement cell is secured to a hinged wall or door of the package. When the tube or cell requires replacement, the door can be swung open to expose the cell. The inlet and outlet conduits to the cell can easily be detached, and the cell or tube replaced.

Brief Description of the Drawings Figure 1 is a schematic view of one embodiment of the invention, for analyzing the fiber size distribution of a sample deposited in a sample tank;
Figure 2 is a flow diagram showing the preferred functional capabilities of the system shown in Figure 1;
Figure 3 is a longitudinal section view of the measuring cell of the system shown in Figure 1;
Figure 4 is an enlarged schematic view of the measurement portion of the flow tube that is intercepted by the light beam, showing how the fibers align themselves for serial passage through the light beam;
Figure 5 is a view along the axis of the measuring tube, showing the light beam;
Figure 6 is a circuit schematic for the preferred signal processing associated with the cell shown in Figure 3;

- 6 - 2~307~

Figure 7 is a perspective view of the preferred packaging of the analyzer of Figure 1;
Figure 8 is a detailed view of the hinged wall of the package of Figure 7, open to expose the measuring cell for servicing; and Figure 9 is one example of the kind of fiber length distribution information that can be obtained from the present invention; and Figure 10 is another example of fiber length and width distribution information that can be obtained from the present invention.

Description of the Preferred Embodiment Figure 1 shows the main components of one embodiment of the fiber analyzer system 10 in accordance with the present invention. The fibers are introduced into a sample tank 12 where agitation or other means are preferably provided, such as bubbling or mixing, to maintain the fibers in a suspended, or dispersed condition in the liquid, typically water. The concentration of fibers in the sample tank 12 should preferably less than about 0.001%. A pump 14 or other means for drawing the fluid from the tank, without cutting the fibers, is provided to generate a substantially constant volumetric flow rate through line 16 to solenoid 18 and then into a first conduit or cell inlet line 20. This conduit 20 is connected to a measurement cell shown generally at 22, where individual fibers pass through a beam of light and are sensed as to length and, preferably, width, in a manner to be described in greater detail below.
In the embodiment of Figure 1, the fluid discharged from the cell outlet into a second conduit 24, is returned to the sample tank 12 but in another embodiment the discharge flow can be discarded. A valve 34 or other automatic or manually operated device and associated 2~3~73 pressure are preferably provided in the first conduit 20 immediately upstream of the measuring cell 22, to produce a constant, and preferably predetermined, flow velocity through the cell.
The optical detector 26 at the cell 22, is preferably connected to a special purpose digital computer or programmable logic device 28 and/or a personal computer 32, where data are gathered, reduced, and recorded or printed 30, and where the operator can control various functions in the process. These functions will now be further described with reference to Figures 1, 2 and 7.
The computer 28 can be under the control of a straightforward program having the menu and function architecture shown in Figure 2, via a simplified interface shown in Figure 7. The analyzer 10 is configured by selecting variables and functions from a simple menu. The operator selects the functions that are to be performed and the type of output that will be sent from the instrument to printer 30 or remote computer 32 once a run has been completed. All user operation can be achieved using the "Select" potentiometer 34 and "Enter" button 36 that are located on the face of the computer box. The operator simply finds the desired function on the menu displayed window 38 using the "Select" potentiometer 34 and then chooses it by pressing the "Enter" button 36. Of course, other interfaces available to one ordinarily skilled in this field can optionally be incorporated into the system 10 .
When the power is turned on, the display 38 on the front of the control box will read "USE EXTERNAL AIR" 40.
The operator must choose yes or no. If "no" is selected, the instrument will use its own internal compressor 42 to supply the air or other mixing means for agitation of the tank to keep the fibers dispersed. If "yes" is selected, an external source 43 of clean laboratory air can be connected to the air inlet 44 via solenoid 45.

- 8 - 2~3~7~

Next, the instrument will ask the operator to choose the number of fiber lengths. The display will read "#
FIBER LENGTHS" 46. This will determine the number of classes that the fibers will be put in when they are recorded by the computer. The operator chooses, for example, either 64, 128, or 256 classes. The range of fiber lengths is preferably the same for all three of the classes, e.g. from 0.028 mm to 7.16 mm. However, the steps in length vary proportionally for each class. In the case of 256 classes, the steps are .028 mm. The steps for 128 and 64 are .056mm and .112 mm, respectively. The device preferably also classes into a plurality, e.g., eight widths of equal intervals ranging from small to large, with the upper limit approximately equal to the tube minimum diameter.
Once these preliminary selections have been made, the instrument will put the operator into the main menu. From this menu, the operator can control all the functions necessary to run the instrument. These are: "RUN SAMPLE"
46, "FILL TANK" 50, "DRAIN and CLEAN TANK" 52, "FILTER
TANK" 54, and "CHANGE PRINTOUTS" 56.
Before any runs can be made, the operator first fills the tank 12 with water via solenoid 13. The instrument must be connected to external sources water 58, air 43, and a drain 60. This is to allow the water in the system to be changed between runs to ensure that no fibers remain in the system from one run to another. If the operator selects "FILL TANK" 50, the instrument will fill the tank 12 to the level set by the adjustable level detector 47 on the tank.
The operator should set this detector to the height of the desired water level.
Once the sample tank 12 has been filled, the water may need to be run through the filter 62 to eliminate any foreign particles or air bubbles that could give erroneous readings during a run. The user selects "FILTER TANK" 54 2~3~73 g to begin the cleaning process. The instrument will pump the water through the filter 62 via solenoid 64 for enough time to eliminate any foreign particles in the water. The amount of filtering needed will depend on the purity of the water used and how clean the tank was after the last run.
While cleaning, the instrument will test the water every 60 seconds for 4 seconds until a count below 200 is obtained.
This ensures that there will be a minimum of false readings in the run caused by impurities or fines in the water. The filter is good for 2000 gallons of liquid and depending on the purity of the water used, the life of the filter will vary greatly. Pre-filtered water should be used, if available, to extend the life of the filter.
After the water in the system has been purified, the operator adds the sample fibers to the tank, through a hole in the top cover 66 of the tank 12, whereby the fibers drop into the tank. The fiber length analyzer is now ready to make runs with these fibers.
There are two run modes available to the user. These are timed runs and batch runs. To make a run, the operator selects "RUN SAMPLE" 48 from the main menu. The user will now be asked which type of run is to be made.
If a timed test is desired, the operator selects "TIMED RUN" 68 from the "RUN SAMPLE" menu 48. Next, the time of the run must be selected. The display will read "TIME = ". The time is selected by the operator by turning the select potentiometer 34 until the desired run time is reached and pushing "Enter" 36 to select this time. The time can be from 1 to 60 seconds. The operator can select "REPEAT RUN", by turning the select potentiometer fully counter clockwise anytime after the run has started but before it ends. The instrument will do a continuous repeat test at the previously selected time interval. This will continue until the select potentiometer is moved away from the fully counter clockwise position. The computer will 2~3~73 store in memory all the data for the fibers that pass through the cell over the selected time.
The operator also may select a batch test by selecting IlCOUNT = 10Kll 70. This run type will continue to run fibers through the cell until the count reaches ten thousand. The output will consist of the time to reach a count of ten thousand and the length and width for the fibers stored in memory.
If the user wishes to return to the main menu at any time from the run menu, the select potentiometer should be turned fully clockwise. This can only be done when a run is not in progress.
Once the operator has finished making runs with one batch of fibers, the tank must be drained and cleaned.
This is to ensure that all the previous fibers are removed from the system. The user selects IIDRAIN and CLEANII 52 from the main menu. The instrument will then drain the system and wait for the operator to select "FILL TANK" 50 again in preparation for another run.
The "CHANGE PRINTOUTS" 56 menu allows the operator to select the amount and format of the output that is sent to the printer. The default setting will send the printer a summary of the run with only basic information included.
The computer will first ask if the operator wishes to IlPRINT HISTOGRAMS". If the operator selects "no", the computer will return to the main menu and no histogram will be printed. If the operator selects "yes", the computer will ask if it should be printed in black and white. The display will read "PRINT B/W". Then, the computer will print out a histogram such as shown in Figure 9 for the selected number of lengths (64, 128, or 256). A similar histogram can be printed for the width categories.
Alternatively, the data can be arranged in matrix format.
If the user selects "no", the output will be printed in color form if a color printer is connected. The color ~ 2083073 histogram output gives the number of fibers in each length category and the different widths that are in each length, represented by different colors in each length. Figure 10 is an enlarged portion of a "color" histogram, in which eight width categories are schematically represented by the numerals 1-8 instead of colors. The printout can be set up so that if there is ever a length category where no fibers are found, the relevant matrix entry will show a back-slash.
The basic method of operating the system 10 is to fill the system with water, introduce a batch of fibers into the system, make all desired runs with the fibers, and drain and clean the system via solenoid 72. Alternatively, a sample may be supplied directly to tank 12 from a sample source line (not shown) originating at the refiner and having intermediate dilution.
The fluid pressure in the system is constantly monitored via 74 by the computer 28, and will be displayed and updated on the display for as long as a run is in progress. This is to quickly detect plugging of the cell and to ensure that the velocity of the fibers through the cell is constant during a run. Due to the importance of the predetermined flow rate, the pressure is preferably verified as being within a narrow acceptance range before fiber length data are acquired. The pressure across the cell should preferably remain at about 3 psi for a measurement portion tube diameter of 1.5 mm, producing a preferred flow velocity of about 160 feet per second at the measurement portion. If the pressure goes up drastically during a run, this is an indication that the cell has become plugged with fibers and must be cleaned or replaced before subsequent runs can be made. The pressure in the system is controlled by a small valve 34 located in the line after solenoid 18 and upstream of the cell.
Figures 3 and 4 show a preferred form of the measuring cell 22. In general, the substantially tubular, rigid 2~83~1~3 housing 76 has a first or inlet end 78 adjacent the terminus of the first conduit 20, and a second end or outlet 80 adjacent the second conduit 24 or other discharge path. The housing 76 supports and protects an elongated rigid flow tube 82 having a relatively large diameter first end 84, a conical, tapered portion 86, leading into a substantially cylindrical small diameter measurement portion 88 adjacent the second end 90 of the tube. The measurement portion 88, is within a notch or cutout 92 in the housing 76. The housing includes internal structure near the housing ends 78,80, shown for example at 94, 95 and 96 for supporting the tube 82 coaxially within the housing 76.
The tube 82 may have a variety of dimensional relationships for effective operation, but, in general, the flow cross-section at the cylindrical, measurement portion 88 should be no greater than 25%, and preferably between about 10% and 20% of the flow area at the beginning 98 of the tapered portion 86 of the tube. In general, the taper angle 102 relative to the axis loO, should be less than 30, and preferably less than 15.
Figure 4 shows in greater detail, the effect on individual fibers, of the shape of the tube 82. It should be appreciated that, in practice, the individual fibers such as 104,106,108, etc., would be in a more dilute concentration, resulting in somewhat greater separation between fibers, but are shown for illustrative purposes in Figure 4. For convenience in referring to specific regions of the tube 82, identifying letters A, B and C are provided. At A, which represents the nominal diameter of the tube before tapering, the fibers are distributed in a somewhat random orientation relative to the tube axis.
This results from the relatively large diameter, typically at least 8 mm. From regions A to B, the tube wall tapers inwardly to a diameter of less than one-half the diameter 2~30~

at A, with a resulting decrease in flow cross section, by a factor of at least four, i.e., the flow cross section at B
is less than 25% of the flow cross section at A.
At C, representing the measurement portion of the tube, the flow diameter is approximately equal to the flow diameter at B. In general, the distance parallel to the axis from B to C, should be long enough for the fibers to be fully accelerated upon emerging from the tapered portion 86. The flow cross section at C, should be less than 20%, and can be less than five percent of the cross section at A. In one implementation of the invention having a flow diameter of 1.5 mm at C, the distance A to B is at least one inch and A to C at least about 1.5 inches, with a flow area reduction of about 80 per cent from A to C. This corresponds to a convergence angle of less than five degrees from A to B.
The shape of the tube 82 in accordance with the foregoing general parameters, is believed to cause the fibers 104, which are at best only mildly oriented at A, to reorient gradually as they accelerate through the tube, until each is oriented essentially on the tube axis as the fiber reaches region C. The gradual orientation of the fibers is represented by the particular fibers 104,106,108 and 110. Thus, although some fiber lengths may be greater than the diameter of the tube at and downstream of point B, the fibers have, between points A and B, become sufficiently axially oriented to virtually eliminate plugging as a problem during the analysis of a typical refiner output sample. Moreover, even if a typical shive, such as depicted at 112, should be present in the sample, it will have oriented itself sufficiently to avoid plugging. Very large shives (2-3 mm in width) should be filtered out before the size measurement begins.
With particular reference to Figure 3, the fiber detection feature of the present invention will be 2~ 73 described in greater detail. The notch 92 in housing 76 preferably extends about 180 to provide a convenient cradle into which optical detector 26 is secured, as by small screws 116 passing through flanged portion 118 of the detector into the housing 76. The detector device 26 includes a light source for illuminating the cylindrical wall portion 88 of the tube as the fluid passes therethrough and sensor means for detecting the variations in the intensity of the light that passes through the cylindrical wall portion in response to the passage of each dispersed fiber as the fluid passes therethrough.
Preferably, the detector 26 is a slotted optical switch which projects an infrared beam from a gallium arsinide LED
situated in lobe 116, for receipt at a sensor situated in lobe 118, whereby an analog output signal can be amplified and processed in a manner to be described below.
The light beam 122 is depicted in Figures 4 and 5. In the preferred embodiment, where the diameter at C, the measurement portion 88 of tube 82, is about 1.5 mm, the beam width shown in Figure 4 is preferably no greater than 0.25 mm. The beam width can be greater than the desired fiber length measurement interval, but should be less than the smallest fiber length for which very accurate measurements are desired. In general, the beam height shown in Figure 5, is at least equal to the tube diameter at the measurement portion 88. Thus, in the preferred embodiment, the optical device 26 projects a light beam which has a width dimension parallel to the axis, that is less than the inner diameter of the measurement portion of the tube, and a height dimension perpendicular to the axis and to the beam direction, that is greater than the diameter of the tube. Generally, the beam resembles a rectangular slab or ribbon spanning the gap between lobes 120 and 122.
The cell housing 76 as shown in Figure 3, preferably has a connector plate 126 secured thereto, whereby the 2~8~U73 electrical leads 128 from the detector 26 may be connected to respective leads 130 by which the sensor signals are electronically, and preferably digitally, processed.
Figure 6 is a schematic of the preferred form of signal processing 114. The tube measurement portion 88 in which the fibers are traveling forms part of the detector, indicated generally at 26, which includes a light emitting diode 172 and a phototransistor or photodiode 174. As the fibers move in single file through the transparent tube, which is interposed between the LED 172 and the photodetector 174, the amount of light which is seen by the photodetector 174, will be a function of the length and width of each fiber. Thus, presuming that the rate of motion of the fibers is constant, the period of time the light received by the photodetector is below a nominal value commensurate with no interruption of the light path between the LED and photodetector, will be a function of the length of the fiber. The amount by which the light seen by the photodetector 174 is reduced will be a function of the diameter of the fiber. Thus, photodetector 174 will provide output pulses having a length and magnitude which are respectively commensurate with the length and diameter of a fiber which passes through the optical path between LED 172 and photodetector 174. The intensity of the light produced by LED 172 may be controlled via a variable resistance R1 which is connected in series with LED 172 between a current source and ground potential.
The photodetector 174 is connected as an emitter follower and the output pulses thus produced will appear across resistor R2. These output pulses are capacitively coupled, via a first coupling capacitor Cl, to a first input terminal of a first of three series connected linear operational amplifiers 176. The amplified phototransistor output signal provided by amplifier 176 is delivered as an ~83~

input to the second series connected operational amplifier 178. Amplifier 178, by virtue of its feedback circuit, further amplifies and shapes the pulses commensurate with fiber dimensions. The output of amplifier 178 is, in turn, delivered as an input to the third operational amplifier 180 which, again because of its feedback circuit, provides additional gain as well as offset control to reduce the noise below cutoff. The three amplification stages more easily provides high gain relative to the use of a single amplifier.
The information-containing pulses which appear at the output of amplifier 180 are delivered as inputs to a pair of low offset voltage quad comparators 182 and 184. As indicated schematically in Figure 6, each of comparators 182 and 184 comprises four linear comparator amplifiers.
The information-containing pulses are applied, in parallel, to the positive polarity input terminals of all eight comparators. A different reference voltage or logic level, derived from a voltage divider indicated generally at R3, is applied to the negative polarity input of each of the comparator amplifiers. The number of comparator amplifiers which are biased into conduction by the information containing pulse will, accordingly, be an indication of the magnitude of that pulse.
The eight outputs of the comparators 182 and 184 are delivered as separate inputs to an integrated circuit 186.
In one reduction to practice of the invention, circuit 186 consists of a fuse programmable logic circuit configured to generate a three-bit digital signal commensurate with the state of the eight comparator output signals. This three-bit signal is indicative of fiber width. As will be appreciate by those skilled in the art, more than two of the quadcomparators could be employed if a higher degree of accuracy is desired. The output of IC 186 is delivered to a digital computer, not shown, for further processing.

20~3073 The information containing pulses appearing the output of amplifier 180 are also provided to an input of a monostable multivibrator 188. Multivibrator 188 will provide, at its Q output terminal, a gating pulse having a preselected duration. This gating pulse, and the information-containing pulse, are applied to the inputs of a first NAND gate 190. The output of gate 190 is connected to both inputs of a further NAND gate 192. Gates 190 and 192 cooperate to define a filter to eliminate the effects of tiny specks which have little importance in fiber analysis. The output of gate 192 will be a "counting length" pulse, i.e., a pulse having a preselected magnitude and a width which is commensurate with the length of time the light received by photodetector 174 is reduced by the passage of a fiber through the tube. Thus, the output of gate 192 will be a direct measure of fiber length.
The output of multivibrator 188 is also provided as an input to a further NAND gate 194. The second input to gate 194 is provided as a reset pulse from the computer to reset the width-related IC 186. The output of NAND gate 194 is delivered to both inputs of a further NAND gate 196 and the output of gate 196 is connected to the reset input of IC
186.
Under the preferred conditions, e.g., concentrations of less than about 0.001 per cent fiber flowing at a velocity of about 160 feet per second through a tube measurement portion having a diameter of 1.5 mm, in excess of 12,000 fiber length and width measurements can be made in a one-minute run.
Thus, the sensor means 26,114 is preferably responsive to both the duration and magnitude of the variation in the intensity of detected light resulting from the passage of each fiber through the light beam. Significantly, both fiber length and fiber width can accurately be analyzed using a single light beam. Although the embodiment - 18 - 2033~73 described herein utilizes an infrared LED, the invention can also be implemented using other forms of light, for example coherent, i.e., laser beam.
Referring again to Figure 3, it should be appreciated that flow tube 82, which is preferably clear, rigid material such as blown glass, is supported coaxially within housing 76, at least at two locations, e.g., annular support 94 and annular support 96. These support members 94,96 are preferably permanently attached to the interior walls of housing 76 to provide apertures of different size for receiving and supporting tube 82.
Support 94 defines a relatively large aperture, for receiving and retaining the large diameter portion of tube 84, preferably at a circumferential recess or detent which thereby assures proper longitudinal registry of the tube 82 within the housing 76. It may be appreciated that, generally, the inlet end 84 of tube 82 is very nearly the same diameter as the diameter of inlet conduit 20, so that a simple overlapping of the preferably plastic or rubber tube onto end 84 provides sufficient sealing therebetween.
Optionally, resilient conduit 20 may bear against the inside wall 94' of the end 84 of housing 76, for providing equivalent support without a distinct structure 94.
On the other hand, support member 96 also serves a sealing function because the diameter at the second or outlet end 90 of the tube 82 may be much smaller than the diameter of the discharge conduit 24. Preferably, discharge conduit 24 and member 96 are permanently bonded to the discharge end 80 of the housing 76. A guide member 95 is preferably permanently situated within the housing 76 immediately adjacent the optical detector 26, and provides a tapered bore for guiding the leading end 90 of flow tube 82 through the detector 26 and into engagement with the member 96, which is also adjacent the detector 26.
Due to the low cost of the tube 82 used in the illustrated embodiment, it is considered disposable. This ~ ~û830~

eliminates the need for difficult and time-consuming cleaning of the tube 82 when it becomes plugged or dirty.
The tube 82 is simply removed and thrown away and a new tube 82 is fitted into place in the housing 76.
The tube 82 is removed by first lifting the cell access lid 132 in the top of the instrument package 140, as shown in Figures 3, 7 and 8. Preferably, the housing 76 is attached to the access lid 132 by means of a fixture 136 and associated screws 134. The screw 142 holding the retaining bracket 144 for inlet conduit 20 to the cell housing 76,is removed. With a slight twisting motion, the tube 82 is pulled out of the housing 76. The old tube 82 is removed from the inlet hose 20 and a new tube is connected to hose 20. The lead end 90 of the new tube is carefully inserted into the housing 76, using a slight twisting motion to insert the fine end 90 of the tube 82 into the aperture at support member 96 near the return hose 24. The retaining bracket 144 is replaced. The access lid 132 is then returned while being sure that the return hose 24 is fed into the tank or drain. The fiber length analyzer is now ready for continued operation. In particular, it may be seen in Figures 7 and 8 that any of the walls of the analyzer box may be formed as a hinged door to which the detector cell 22 is attached.
It should be appreciated that, although the preferred embodiment of the invention is intended for analyzing the size distribution of fibers in a dilute concentration of less than about 0.001 weight percent in water, the invention in the preferred form described above, can advantageously be used to assess the particulate content of a very dilute concentration of particles disbursed in an otherwise substantially pure liquid, at concentrations on the order of 10 ppm. Moreover, once the carrier liquid, such as water, has been filtered and purified so as to provide a substantially uniform output from the processing 2 1) ~ 3 circuitry 114 (Figure 6), the introduction of particulates or chemical substances, such as glucose, can be detected.
Each glucose molecule generates a corresponding, identifiable pulse in the circuitry 114. Although particulates of this size, i.e., less than about 0.01 mm, cannot be classified as to length and width, the ability to detect the presence of "foreign" particulates at such low concentrations, and to obtain an output pulse for each such microscopic or submicroscopic particulate, is of major importance in fields such as environmental monitoring, medicine, and clean room operations. This high sensitivity is not necessarily dependent on assuring axial alignment of the particulates through the measurement portion of the tube, as is the case with fibers, so that the gradual transition in the flow tube is not believed critical in the particulate analyzer embodiment of the invention.
Similarly, the portion 182, 184, and 186 of the circuitry of Figure 6, which is specially adapted to classify fibers by width, is not required for general low concentration particle counting. Moreover, pulse duration, which is indicative of fiber length as determined at 188, 190, 192, 194, and 196, is not important, as long as a discernible, individual pulse is obtained from the passage of each particulate through the light beam. The important aspect of this high sensitivity, is the use of multiple, e.g., three high grain operational amplifiers 176, 178, and 180 (such as Type 741) for enhancing the sensor signal relative to noise.
It should also be appreciated that when measuring microscopic and submicroscopic particulates, the measuring tube diameter can be provided at the low end of the specified range, i.e., about 1.0 mm, without substantial risk of plugging, since particulates having a dimension on the order of 1.0 mm should not be present in the particulate sample. On the other hand, the upper end of - 21 - 2~3Q~

the indicated range of measurement tube portion diameter, 3.0 mm, would accommodate most shives encountered in practical refiner applications. With the preferred diameter of 1.5 mm, typical shives are accommodated, but if the tube does plug, the ease with which the measuring tube can be cleaned and replaced, does not delay significantly, the data acquisition.

Claims (24)

1. A system for analyzing the size distribution of a fiber sample comprising:
(a) source means for providing a fluid consisting essentially of the fiber sample dispersed in a liquid;
(b) a measurement station including a measurement cell having an inlet and an outlet for said fluid and means for measuring the size of each fiber that passes through the cell from the inlet to the outlet;
(c) first conduit means for delivering said fluid from the source means to the inlet of the measuring cell;
(d) means for maintaining a substantially constant volumetric flow rate of fluid through the first conduit and measuring cell;
(e) wherein the measurement cell includes (1) a flow tube having a first end fluidly connected at the cell inlet to the first conduit and at a second end fluidly connected to the cell outlet, said flow tube further having a substantially transparent measurement portion intermediate the ends and a transition portion that gradually narrows in the direction of flow between the first end and the measurement portion, such that the fibers accelerate in forward velocity through the transition portion and pass through the measurement portion on the tube axis in spaced-apart, serial order, (2) a light source for projecting a single beam of light at a preestablished intensity through the measurement portion transversely to the tube axis, as the fluid passes therethrough, (3) sensor means for detecting variations in the intensity of the light that passes through the measurement portion in response to the passage of each dispersed fiber through the beam as the fluid passes through the measurement portion; and (f) wherein the measurement station includes processing means responsive to the sensor means for recording fiber size distribution values commensurate with the variations in detected light intensity.
2. The system of claim 1, wherein the cross sectional flow area of the tube reduces in the transitional portion by at least about 75 per cent.
3. The system of claim 1, wherein the inner diameter of the measurement portion is between about 1.0 and 3.0 mm.
4. The system of claim 1, wherein the source means provides a fluid dispersion in which the fibers have a volume per cent concentration in water, of less than about 0.001 per cent.
5. The system of claim 1, wherein the tube has a round flow cross section and the gradual narrowing of the transition portion is at an angle of convergence of less than about 30° with the tube axis.
6. The system of claim 1, wherein the measuring cell includes a substantially tubular housing having first and second ends, a longitudinal axis, and a cut out intermediate the ends and transverse to the axis;
said flow tube is situated coaxially in the housing such that the tube first end is adjacent the housing first end and the tube second end is adjacent the housing second end, with said measurement portion of the tube situated in radial registry with said cut out;
said light source is supported by the housing at the cut out so as to project a ribbon beam of light through the measurement portion of the tube from only one side of and perpendicular to the axis; and said sensor means is supported by the housing at the cut out on the other side of the axis.
7. The system of claim 2, wherein the inner diameter of the measurement portion is between about 1.0 and 3.0 mm.
8. The system of claim 7, wherein the measuring cell includes a substantially tubular housing having first and second ends, a longitudinal axis, and a cut out transverse to the axis and intermediate the ends;
said flow tube is situated coaxially in the housing such that the tube first end is adjacent the housing first end and the tube second end is adjacent the housing second end, with said measurement portion of the tube situated in radial registry with said cut out;
said light source is supported at said cut out so as to project a ribbon beam of light through the measurement portion of the tube from only one side of and perpendicular to the axis; and said sensor means is situated at the cut out on the other side of the axis.
9. The system of claim 8, wherein the light beam has a width dimension parallel to said axis, that is less than the inner diameter of the measurement portion, and a height dimension perpendicular to the axis and to the beam direction, that is greater than said inner diameter.
10. The system of claim 9, wherein the light beam width is no greater than about 0.25 mm.
11. The system of claim 8 wherein the sensor means is responsive to the duration and magnitude of the variation in the intensity of detected light resulting from the passage of each fiber through said light beam.
12. The system of claim 8, wherein the housing includes means for removably supporting the flow tube within the housing.
13. The system of claim 12, wherein the first end of the flow tube is connected directly and removably on the first conduit and the second end of the flow tube is removably connected to seal means within the second end of the housing.
14. A system for analyzing the size distribution of a fiber sample comprising:
(a) source means for providing a fluid consisting essentially of the fiber sample dispersed in a liquid;
(b) a measurement station including a measurement cell having an inlet and an outlet for said fluid and means for measuring the size of each fiber that passes through the cell from the inlet to the outlet;
(c) first conduit means for delivering said fluid from the source means to the inlet of the measuring cell;
(d) means for maintaining a substantially constant volumetric flow rate of fluid through the first conduit and measuring cell;
(e) wherein the measurement cell includes (1) a flow tube fluidly connected at a first end to the first conduit and at a second end to the second conduit, said flow tube having a substantially transparent measurement portion intermediate the ends and a transition portion that gradually narrows at an angle of convergence of less than about 30° to the axis in the direction of flow between the first end and the measurement portion, such that the fibers pass through the measurement portion aligned with the tube axis in spaced-apart, serial order, (2) a light source for projecting a single beam of light at a preselected intensity through the measurement portion transversely to the tube axis, as the fluid passes therethrough, (3) sensor means for detecting variations in the intensity of the light that passes through the measurement portion in response to the passage of each dispersed fiber through the beam as the fluid passes through the measurement portion; and (f) wherein the measurement station includes processing means responsive to the sensor means for recording fiber size distribution values commensurate with the variation in detected light intensity.
15. The system of claim 14, wherein the cross sectional flow area in the measurement portion is between about 15 and 25 per cent of the flow area at the tube inlet.
16. The system of claim 14, wherein the tube diameter at the measurement portion is between about 1.0 and 3.0 mm.
17. The system of claim 16, wherein the transition portion extends at least about one inch in the axial direction and the measurement portion is situated at least about one-half inch downstream of the transition portion.
18. The system of claim 16, wherein said angle of convergence is less than about 15°.
19. The system of claim 17, wherein the transition portion diameter is about 1.5 mm.
20. A system for analyzing the size distribution of a fiber sample comprising:

(a) source means for providing a fluid consisting essentially of the fiber sample dispersed in a liquid;
(b) a measurement station including a measurement cell having an inlet and an outlet for said fluid and means for measuring the size of each fiber that passes through the cell from the inlet to the outlet;
(c) first conduit means for continuously maintaining a flow of said fluid from the source means to the inlet of the measuring cell;
(d) second conduit means for continuously maintaining a discharge flow of said fluid out from the outlet of the measuring cell;
(e) means for maintaining a substantially constant volumetric flow rate of fluid through the first conduit, measuring cell, and second conduit;
(f) wherein the measurement cell includes (1) a hollow, elongated housing defining a flow axis, (2) a flow tube coaxially and removably supported within the housing and fluidly connected at a first end to the first conduit and at a second end to the second conduit, said flow tube having a substantially transparent, measurement portion intermediate the ends, such that the fibers pass through the measurement portion on the tube axis in spaced-apart, serial order, (3) a light source secured to the housing for projecting a single beam of light through the measurement portion transversely to the tube axis, as the fluid passes therethrough, (4) sensor means secured to the housing for detecting variations in the intensity of the light that passes through the measurement portion in response to the passage of each dispersed fiber through the beam as the fluid passes through the measurement portion; and (g) wherein the measurement station includes processing means responsive to the sensor means for recording fiber size distribution values commensurate with the variation in detected light intensity.
21. The system of claim 20, wherein the housing is substantially tubular, has first and second ends, and a cutout intermediate the ends and transverse to the axis;
said flow tube is situated coaxially in the housing such that the tube first end is adjacent the housing first end and the tube second end is adjacent the housing second end, with said measurement portion of the tube situated in radial registry with said cut out;
said light source is supported by the housing at the cutout so as to project a ribbon beam of light through the measurement portion of the tube from only one side of and perpendicular to the axis; and said sensor means is supported by the housing at the cutout on the other side of the axis.
22. The system of claim 21, including means within the housing adjacent the light source, for removably receiving and supporting the second end of the tube coaxially in the housing.
23. The system of claim 20, wherein the system is enveloped by a console package having at least one movable wall, the measuring cell housing is attached to the movable wall, and the wall is selectively movable between a closed position in which the measuring cell is within the console and an open position in which the cell is outside the console, whereby the tube can be replaced in the housing without detaching the housing from the wall and without detaching the light source and sensor means from the housing.
24. A system for analyzing the particulate content of a liquid sample comprising:
(a) source means for providing a fluid consisting essentially of said particulates dispersed in an otherwise substantially pure liquid at a concentration of less than about 0.001 per cent, (b) a measurement station including a measurement cell having an inlet and an outlet for said fluid and means for sensing each particle that passes through the cell from the inlet to the outlet;
(c) first conduit means for continuously maintaining a flow of said fluid from the source means to the inlet of the measuring cell;
(d) second conduit means for continuously maintaining a discharge flow of said fluid out from the outlet of the measuring cell;
(e) means for maintaining a substantially constant volumetric flow rate of fluid through the first conduit, measuring cell, and second conduit;
(f) wherein the measurement cell includes (1) a flow tube fluidly connected at a first end to the first conduit and at a second end to the second conduit, said flow tube having a substantially transparent measurement portion intermediate the ends such that the particles pass through the measurement portion in spaced-apart, serial order;
(2) a slotted optical switch light source for projecting a single beam of light through the measurement portion transversely to the tube axis, as the fluid passes therethrough;
(3) sensor means for detecting variations in the intensity of the light that passes through the measurement portion in response to the passage of each dispersed particle through the beam as the fluid passes through the measurement portion and for generating a sensor signal commensurate with said intensity; and (g) wherein the measurement station includes processing means including a cascaded series of high gain operational amplifiers, responsive to the sensor signal, for counting particles commensurate with the variation in detected light intensity.
CA002083073A 1991-12-31 1992-11-17 Fiber length analyzer Expired - Fee Related CA2083073C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US815,258 1991-12-31
US07/815,258 US5293219A (en) 1991-12-31 1991-12-31 Fiber length analyzer

Publications (2)

Publication Number Publication Date
CA2083073A1 CA2083073A1 (en) 1993-07-01
CA2083073C true CA2083073C (en) 1996-07-23

Family

ID=25217313

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002083073A Expired - Fee Related CA2083073C (en) 1991-12-31 1992-11-17 Fiber length analyzer

Country Status (8)

Country Link
US (1) US5293219A (en)
EP (1) EP0549895B1 (en)
AT (1) ATE160013T1 (en)
BR (1) BR9205210A (en)
CA (1) CA2083073C (en)
DE (1) DE69223029T2 (en)
FI (1) FI925938A (en)
NO (1) NO924335L (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410401A (en) * 1990-03-14 1995-04-25 Zellweger Uster, Inc. Methods and apparatus for mechanically and electronically correcting presentation of entities in a fluid flow
FI111102B (en) 1997-09-22 2003-05-30 Metso Automation Oy Method for measuring particles in suspension and measuring device
CA2329294C (en) * 2000-12-21 2007-01-02 Pulp And Paper Research Institute Of Canada Method and apparatus for measuring fibre properties
ATE389052T1 (en) * 2001-04-20 2008-03-15 Enzymatic Deinking Technologie RAPID TRIGLYCERIDE DETERMINATION METHOD FOR USE IN PREVENTING PITCH EXECUTATION FROM PULPS
GB2411002B (en) * 2004-02-11 2006-12-20 Facility Monitoring Systems Lt Particle counter for liquids
US20060196621A1 (en) * 2005-03-01 2006-09-07 Johansson Ola M Virtual hand sheet method and system for estimating paper properties
FI120163B (en) * 2005-04-04 2009-07-15 Metso Automation Oy Changing and measuring consistency
US7701575B2 (en) * 2007-04-09 2010-04-20 Johansson Ola M Fiber quality transducer
US8120769B2 (en) * 2007-08-03 2012-02-21 North Carolina State University Method and system for fiber properties measurement
WO2010022346A2 (en) * 2008-08-22 2010-02-25 Pioneer Hi-Bred International, Inc. Methods for counting corn silks or other plural elongated strands and use of the count for characterizing the strands or their origin
US8233146B2 (en) * 2009-01-13 2012-07-31 Becton, Dickinson And Company Cuvette for flow-type particle analyzer
WO2014047206A1 (en) * 2012-09-18 2014-03-27 Cytonome/St, Llc Flow cell for particle sorting

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3498719A (en) * 1965-02-18 1970-03-03 Continental Can Co Photoelectric consistency indicator for pulp
CH441814A (en) * 1965-07-23 1967-08-15 Papirind Forskningsinst Method for the continuous determination of the concentration of fiber suspensions
US3461030A (en) * 1965-10-22 1969-08-12 Beloit Corp Determination of fiber characteristics in paper making
NL129608C (en) * 1967-07-31
GB1309551A (en) * 1969-05-22 1973-03-14 Nat Res Dev Measurement of optical density
US3739183A (en) * 1970-10-15 1973-06-12 Ici Ltd Apparatus and process for measuring fiber lengths
US3724957A (en) * 1971-03-04 1973-04-03 Yokogawa Electric Works Ltd Concentration measuring apparatus
JPS5418596B2 (en) * 1971-09-07 1979-07-09
DE2201507C2 (en) * 1972-01-13 1974-01-24 Theo Dipl.-Ing. Dr. 8000 Muenchen Pilhofer Device for determining the size of the disperse elements of a fluid, immiscible two-component system
NL7208307A (en) * 1972-06-16 1973-12-18
US3980517A (en) * 1974-07-17 1976-09-14 Sentrol Systems Ltd. Continuous on-machine control of bleaching chemicals
SE390458B (en) * 1975-05-14 1976-12-20 Tellusond Ab PROCEDURE AND DEVICE FOR DETECTING SPECIES IN THE MASS
DE2543310C2 (en) * 1975-09-27 1982-04-29 Gesellschaft für Strahlen- und Umweltforschung mbH, 8000 München Device for counting and classifying particles suspended in a liquid
FR2408117B1 (en) * 1977-11-07 1982-04-16 Agronomique Inst Nat Rech METHOD AND APPARATUS FOR MEASURING THE DIMENSIONS OF WOOD FIBERS
SE7806922L (en) * 1978-06-15 1979-12-16 Svenska Traeforskningsinst PROCEDURE AND DEVICE FOR INDICATING THE SIZE DISTRIBUTION OF PARTICLES EXISTING IN A FLOWING MEDIUM
US4225385A (en) * 1979-01-15 1980-09-30 Westvaco Corporation Shive ratio analyzer
DE2943116C2 (en) * 1979-10-25 1986-06-19 Gesellschaft für Strahlen- und Umweltforschung mbH, 8000 München Device for flow cytometric reaction and / or diffusion measurement
FI812627L (en) * 1981-08-26 1983-02-27 Keskuslaboratorio LAENGDMAETARE FOER PAPPERSFIBER
US4477187A (en) * 1982-01-25 1984-10-16 University Patents, Inc. Apparatus and method for sizing particles
US4554051A (en) * 1982-03-24 1985-11-19 Bolton-Emerson, Inc. Fiber length indicating apparatus and method
EP0125857B1 (en) * 1983-05-12 1989-04-26 Kabushiki Kaisha Toshiba Grain counter
US4596036A (en) * 1983-08-31 1986-06-17 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for fringe-scanning chromosome analysis
US4660152A (en) * 1984-06-18 1987-04-21 Xerox Corporation System and method for monitoring and maintaining concentrate material in a fluid carrier
AU569965B2 (en) * 1984-10-25 1988-02-25 Gilbert Forrester Control of fibrous paper stock refining
US4758308A (en) * 1985-03-05 1988-07-19 Carr Wayne F System for monitoring contaminants with a detector in a paper pulp stream
US4933291A (en) * 1986-12-22 1990-06-12 Eastman Kodak Company Centrifugable pipette tip and pipette therefor
FI77535C (en) * 1987-03-09 1989-03-10 Kajaani Electronics Method for measuring the relative amounts of the pulp components in paper pulp.
US4837446A (en) * 1988-03-31 1989-06-06 International Paper Company Apparatus and process for testing uniformity of pulp
US4966462A (en) * 1989-02-15 1990-10-30 The United States Of America As Represented By The United States Department Of Energy Series cell light extinction monitor
US5270787A (en) * 1990-03-14 1993-12-14 Zellweger Uster Inc. Electro-optical methods and apparatus for high speed, multivariate measurement of individual entities in fiber or other samples

Also Published As

Publication number Publication date
FI925938A (en) 1993-07-01
BR9205210A (en) 1993-07-06
DE69223029D1 (en) 1997-12-11
EP0549895B1 (en) 1997-11-05
DE69223029T2 (en) 1998-03-26
US5293219A (en) 1994-03-08
ATE160013T1 (en) 1997-11-15
NO924335D0 (en) 1992-11-11
NO924335L (en) 1993-07-01
FI925938A0 (en) 1992-12-30
EP0549895A1 (en) 1993-07-07
CA2083073A1 (en) 1993-07-01

Similar Documents

Publication Publication Date Title
CA2083073C (en) Fiber length analyzer
US5245200A (en) Apparatus and method for preventing blockage of a measuring head for effecting measurements of suspended substances
EP0029662B1 (en) Automated method for cell volume determination
US4165484A (en) Particle counting apparatus utilizing various fluid resistors to maintain proper pressure differentials
EP0533079B1 (en) Apparatus for monitoring trash in a fiber sample
JP3211089B2 (en) Electro-optical device for measuring single entities of fibers or other samples
DE69020533T2 (en) PARTICLE PROBE WITH PARALLEL RUN THROUGH SEVERAL HOLES.
US5456102A (en) Method and apparatus for particle counting and counter calibration
JPH05503150A (en) flow monitor
CA1122795A (en) Sample measurement of fibre sizes in a fluidized stream
US4402604A (en) Method for the on-line measurement of inclusions in pulp
US5747667A (en) Particle counter verification method
AU590223B2 (en) Concentration meter
US4434398A (en) Porous passage means and method for particle analyzing systems
US3541336A (en) Photoelectric gas monitor having either reflective or absorbing plate at one end of sample tube
GB2182432A (en) Improvements in and relating to apparatus for detecting particles in suspension
EP0118897A2 (en) Particle counting system for a fractionating device
JPH0140049Y2 (en)
WO1987000626A1 (en) Process for continuous determination of the viscosity of liquids and a device for carrying out the process
CA1184976A (en) Porous passage means and method for particle analyzing systems
CS242978B1 (en) Polydispersion aerosols' low concentrations monitoring connecfrom light scatter into particular particles of aerosol

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed