CA2069230C - Vehicle locating and communicating method and apparatus - Google Patents

Vehicle locating and communicating method and apparatus Download PDF

Info

Publication number
CA2069230C
CA2069230C CA 2069230 CA2069230A CA2069230C CA 2069230 C CA2069230 C CA 2069230C CA 2069230 CA2069230 CA 2069230 CA 2069230 A CA2069230 A CA 2069230A CA 2069230 C CA2069230 C CA 2069230C
Authority
CA
Canada
Prior art keywords
vehicle
cellular
locating
location
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA 2069230
Other languages
French (fr)
Other versions
CA2069230A1 (en
Inventor
Larry Clifford Wortham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle IP LLC
Original Assignee
Minorplanet Systems USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minorplanet Systems USA Inc filed Critical Minorplanet Systems USA Inc
Priority to CA 2069230 priority Critical patent/CA2069230C/en
Publication of CA2069230A1 publication Critical patent/CA2069230A1/en
Application granted granted Critical
Publication of CA2069230C publication Critical patent/CA2069230C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02B90/246
    • Y04S20/42

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

A method and apparatus for locating and communicating with vehicles is provided, including at least one mobile cellular unit connected to at least one microprocessor and installed within a vehicle. The microprocessor interrogates the mobile cellular unit to obtain location information from an overhead message stream transmitted from cellular telephone transmitter sites. The location is displayed on a display located in the vehicle or the microprocessor periodically instructs the mobile cellular unit to initiate a call to a host controller and, upon receipt of transmitting instructions from the host controller, transmits the location information for display on a screen connected to the host controller.

Description

2~D6923U

_ 1 _ VEHICLE LOCATING AND COMMUNICATING METHOD AND APPARATUS
TECHNICAL FIELD
This invention relates to methods and apparatus for locating and communicating from a central location with vehicles traveling in various geographical areas, and more particularly, to a method and apparatus for locating and communicating with vehicles through use of a voice activated mobile cellular telephone installed in the vehicle, and visually displaying at the central location the geographical location of each vehicle and vehicle information automatically communicated to the central location.

2~6~23a BACKGROUND OF THE INVENTION
Historically, in industries utilizing multiple vehicles traveling in various geographical regions, such as in the long haul trucking industry, drivers of the vehicles must periodically communicate with a base or home office to report information such as present location of the vehicle, the number of hours driven and any problems experienced with the vehicle. In such industries where there is a need to determine the geographical location of a vehicle, tracking systems utilizing Loran-C receivers and microwave transmitters have been employed for vehicle location. Use of such equipment tends to be limited solely to locating and tracking the vehicles. Tn many instances, the only means of locating a vehicle in service consists of the driver of the vehicle stopping, getting out of the vehicle, and calling a report into the home base on a public pay phone. To date, the cellular industry has failed to penetrate the trucking market and other industries where vehicle locating is desired for such reasons as high start-up costs for obtaining terminal equipment and high operating costs.
SUMhIARY OF THE INVENTION
The locating and communicating method and apparatus of the present invention overcome the foregoing and other problems associated with the prior art utilizing existing cellular telephone system services and information. A
microprocessor interrogates a cellular telephone located in the vehicle to obtain location information received by the cellular phone in an overhead message stream transmitted from the particular cellular system providing service at the time of the interrogation. A call is initiated from the cellular telephone to a host controller for display of the location of the vehicle on a map and textual display of any other vehicle information transmitted from the vehicle. A voice activation/recognition device is connected to the microprocessor and a hands-free microphone and a speaker are connected to the voice activation/recognition device to allow for hands free operation of the system by the driver of the vehicle.
In a second embodiment of the invention, the entire system in located crithin the vehicle. The microprocessor interrogates the cellular phone to obtain location information from the message stream, processes the information, then causes the information to be displayed on a connected display.

- 3a -In accordance with one aspect of the present invention, there is provided a system for locating and communicating with a vehicle by means of a network of cellular telephone systems comprising: storage/display means including storage means and a display connected to said storage means for displaying a map location of said vehicle and other information transmitted to said storage/display means; mobile cellular means for placement in the 'vehicle; means for interrogating said mobile cellular means to receive location information from a particular cellular system providing service to said mobile cellular means at the time of interrogation;
and means for initiating communication with said storage/display means to transmit said location information to said storage/display means from said means for interrogating.
In accordance with another aspect of the present invention, there is provided a system for graphically displaying in a vehicle a geographical location of the vehicle by means of a network of cellular communication systems comprising: mobile cellular means;
at least one microprocessor connected to said mobile cellular means, the microprocessor comprising a memory for a storage of programs for controlling operation of said system and for interrogating said mobile cellular - 3b means to receive a system identification number of a particular cellular system providing service to the mobile cellular means at the time of interrogation; and a graphic display connected to said microprocessor for displaying a map and location information.
In accordance with yet another aspect of the present invention, there is provided a system for locating and communicating with vehicles by means of a network of cellular communication systems comprising: a host controller; a cellular telephone in at least one vehicle; at least one microprocessor connected to said cellular telephone for interrogating said cellular telephone to receive a system identification number of a particular cellular system providing service to said vehicle at the time of interrogation for determining location of said vehicle and for initiating communication at predetermined intervals with said host controller for transmitting information from said microprocessor to said host controller; a display connected to said host controller for displaying graphically a map location of said vehicle and for displaying textually information transmitted from said microprocessor; voice recognition means for voice actuation of said cellular telephone by a vehicle operator; and a hands-free microphone to enable 3c -an operator to input verbal information to said cellular telephone.
In accordance with still yet another aspect of the present invention, there is provided a method for locating vehicles equipped with mobile cellular means comprising the steps of: voice activating said mobile cellular means to store information received verbally from a vehicle operator; interrogating the mobile cellular means to obtain cellular system information to determine the location of said vehicle; establishing a communications link between the mobile cellular means and a storage/display means; transmitting to said storage/display means the identity of the reporting vehicle and information to determine location of said vehicle; interrogating a database of the storage/display means in response to information received from said reporting vehicle to determine the geographic location of said vehicle; graphically displaying on a display as a part of said storage/display means the geographic location of said vehicle.
In accordance with still yet another aspect of the present invention, there is provided A method for displaying in a vehicle the geographical location of the vehicle equipped with a cellular communication means comprising the steps of: interrogating said cellular - 3d -means to determine an identification number associated with a cellular system providing communication service at the time of interrogation; graphically displaying on a display connected to said cellular means a map including the area wherein said vehicle is located; highlighting on said map the location of said vehicle; selecting by means of a keyboard points of interest from storage means connected to said cellular means; displaying the distance from said selected points of interest to the location of said vehicle; displaying the estimated travel time from the location of said vehicle to the selected points of interest.

~000~30 BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following Detailed Description taken in conjunction with the accompanying Drawings in which:
FIGURE 1 i5 a diagram illustrating communication between the vehicle and the host controller of the present invention over a mobile cellular system;
FIGURE 2 is a block diagram of the in-vehicle l0 portion of the locating and communicating system of the present invention;
FIGURE 3 is a block diagram of the host controller portion of the locating system of the present invention;
FIGURE 4 is a flow chart of the operation of the in-vehicle portion of the locating and communicating system of the present invention;
FIGURE 5 is a flow chart of the operation of the host portion of the locating and communicating system of the present invention; and FIGURE 6 is a block diagram of the hardware of an in-vehicle locating system incorporating a second embodiment of the present invention.
DETAILED DESCRIPTION
Referring now to the Drawings, and more particularly to FIGURE 1 wherein there is shown an illustration of the locating and communicating system of the present invention incorporating a central data gathering device or host controller l0 having a display 12 and a keyboard 14 connected thereto. The host controller 10 communicates as shown by directional arrow 16 with a mobile telephone switching office 18 in turn communicating as indicated by directional arrow 20 with a particular cell transmitter 22 for transmitting and receiving signals from a vehicle 24 equipped with a mobile cellular transceiver (not shown) connected to at least one microprocessor (not shown).
As shown in FTGURE 1, an overhead message stream containing cellular system identification information, including the SID number and, where transmitted, the cell identification number and transmitter site coordinates, is transmitted from the cell transmitter 22 and received by the in-vehicle portion of the locating and communicating system (not shown) . The signal is then read by the in-vehicle portion of the locating and communicating system a to determine the existence of sufficient signal strength for transmission from the vehicle 24. Upon reading a sufficient signal strength and/or lapse of a predetermined time period, a report is automatically transmitted from the vehicle 24 to the cell transmitter 22, from where the signal is carried, as indicated by directional arrow 20, to the mobile telephone switching office 18, and from there to the host controller 10 as indicated by directional arrow 16.
The information received is read by the host controller 10 and looked up in a database associated therewith and containing STD numbers, roamer numbers, cell identification numbers, and transmitter site coordinates, to determine the location of the reporting vehicle 24.
The location 26 of the vehicle 24 is then highlighted on a map 28 displayed on the screen 12 connected to the host controller 10. At that point, the operator of the host controller 10 obtains the telephone number necessary to initiate a telephone call to the vehicle 24 utilizing the keyboard 14 to call up the telephone number from the database associated with the host controller 10.
Long haul truckers must periodically report to the base terminal or home office information such as the total number of driver hours, any problems with the vehicle;
scheduling changes, status of the cargo, as well as any other information needed by the home office. To maintain current information, the locating and communicating system of the present invention provides for automatic periodic reporting of such information to the home office. The report is initiated in the in-vehicle portion of the system.
As illustrated in the block diagram of FIGURE 2, the in-vehicle portion of the system is comprised of a microprocessor 40 having an associated read only memory ("ROM") 42, an associated random access memory ("RAM") 44, and an expansion port 46 for options (shown in broken lines) including, automatic reporting of engine status, a truck alarm system, and Loran-C positioning input to allow for location of the vehicle using Loran-C in addition to cellular communication.
The ROM 42 contains the necessary control programs for operation of the in-vehicle portion of the system. The RAM 44 is available for storing operating instructions remotely programmable from the host controller 10.
In an attempt to monitor vehicle conditions, the optional engine status reporting feature 43 provides for reading by the microprocessor of engine conditions such as temperature, engine speed, and oil pressure. In the event of theft of the vehicle, the optional trunk alarm system 45 alerts the microprocessor to instruct the mobile cellular transceiver 58 to initiate a call to report the theft of the vehicle. To allow locating utilizing existing tracking system information, the optional Loran-C

_8_ positioning input 47 provides for the receipt of Loran-C
positioning transmissions.
A power supply 48 is connected to the vehicle battery to provide electrical energy for operating the microprocessor 40. A start switch 50 actuates an audio multiplexes 52 for receiving driver input through a hands free microphone 54. The input from the hands free microphone 54 is then passed through the audio multiplexes 52 to voice recognition and synthesis 56 for conversion to digital form readable by the microprocessor 40.
Information is also received by the microprocessor 40 from the host controller through the mobile cellular transceiver 58 located in the vehicle. Cellular radio signals are received by the mobile cellular transceiver 58 connected to a vehicle antenna 60. The signals are then transmitted over the cellular phone bus 62 through the audio multiplexes 52 and a smart modem 72 to the microprocessor 40. The microprocessor 40 is connected to the audio multiplexes 52 through the smart modem 72 to allow extraction of the digital informatian from the analog signal and for modulation of the information transmitted from the microprocessor 40. An interface 74 provides the necessary protocol for communication between the microprocessor 40 and the mobile cellular unit.

2000~~0 _ g _ In the event of audio communication between the operator of the host controller and the driver, the signals are transmitted from the transceiver 58 over the cellular phone bus 62 to the handset 64 of the mobile cellular unit.
If the driver of the vehicle elects to use the hands free microphone 54, instead of the handset 64, for audio communication with the operator of the host controller, the audio communication travels from the cellular phone bus 62 through the audio multiplexer 52 to an amplifier 66 for broadcast to the vehicle driver through a speaker 68. The volume of the broadcast is regulated by a volume control 70 controlling the amplifier 66.
Operating energy is provided to the amplifier 66 and cellular telephone transceiver 58 from the vehicle ignition. When the driver is verbally communicating over the cellular telephone, he may speak through either the hands-free microphone 54 or may lift and speak through the handset 64. For storage of information through voice recognition, the hands-free microphone may be used.
As shown in~the block diagram of FIGURE 2, the microprocessor 40 connected to the mobile cellular unit has connected thereto a calendar and clock 49 for documenting the date and time of storing and/or transmitting information. A report interval timer 51 provides for determining when to initiate a call to the host controller 206~2~0 based upon the expiration of a predetermined time period remotely programmed by the host controller and stored in the RAM 44.
To inhibit calls made from the mobile unit to numbers unauthorized by the home office, the microprocessor 40 has a restricted phone usage function 53 that searches a list of authorized phone numbers remotely programmed by the host controller and stored in the RAM 44. The numerical keys of the handset of the cellular phone are disabled. Thus, the authorized numbers may only be accessed through voice command. If the number entered through voice command is not contained in the list of authorized numbers, the call is automatically inhibited.
Similarly, the authorized systems look-up table 55 prevents initiation of a call cahen the SID number contained in the message stream at the time of interrogation is not contained within said look-up table.
The voice recognition operation 57 of the microprocessor 40 provides for receiving and storing of information in a memory connected to the mobile cellular transceiver upon receipt of verbal input from the driver of the vehicle. In addition to reading and transmitting information, the microprocessor 40 has tracking log capabilities 59 for recording and storing vehicle 2~~9~30 information for extended reporting periods for subsequent report compilation.
As shown in the block diagram of FIGURE 3, the central data gathering device or host controller portion of the locating system of the present invention comprises a host controller 90 connected to a smart modem 92 to allow communication between the controller 90 and any number of telephone lines dedicated for vehicle reporting only.
Associated with the host controller 90 is an optional auto dial feature 94 (shown in broken lines) for initiating calls over a watts line 96. Calls are initiated to, as well as calls received from, the vehicle over the watts line 96.
Connected to the host controller is at least one terminal 98. In the case of larger companies, an optional system expansion configuration 104 (shown in broken lines) utilizing an existing customer processing system 106 and existing dispatch terminals 108, may be utilized to reduce system installation costs. Each terminal 98 has a screen 100 for displaying a map, location information regarding each reporting vehicle, and textual information reported t by each vehicle. A keyboard 102 is connected to each terminal 98 for remote programming of authorized telephone numbers for storage in the RAM 44 associated with the microprocessor 40, to allow the host operator to access databases containing telephone numbers for the various locations of the reporting vehicles, to allow menu selection, and to allow remote programming of the report time interval in the microprocessors located in each of the vehicles.
Through an error correcting protocol, the host controller 90 instructs the microprocessor 40 through the mobile cellular transceiver 58 to transmit information to the host controller. The host controller 90 receives said input through the smart modem 92 from the reporting vehicle. The information is read by the host controller 90 and location information looked up in a database associated therewith. The location information of the vehicle is then displayed on the screen 100 of the terminal 98. An in-service area alert is actuated to advise the operator of the host controller 90 of the entry of a reporting vehicle into a strong signal reporting area to allow the operator of the host controller to initiate contact with the reporting vehicle.
In the event the operator of the host controller needs to initiate contact with a vehicle, requiring location of the vehicle, between reporting periods, the operator of the host controller 90 pulls up information regarding the last reporting time and location of the vehicle. Through use of the connected keyboard 102, the operator then inputs the final destination of 'the vehicle.
The host controller 90 then determines the approximate route of the vehicle, calculates the average speed of the vehicle using previously reported driver hours and distance traveled to determine the approximate distance traveled since the last reporting period, thereby determining the approximate location of the vehicle. Cellular numbers for a predetermined area surrounding the approximate location of the vehicle are looked up in the database and are automatically dialed by the host controller 90 at predetermined intervals until contact is made with the vehicle.
The method of transmission from the in-vehicle portion of the locating system of the present invention is shown the flow chart of FIGURE 4, with reference to the block diagram of FIGURE 2. Initially, the microprocessor 40 determines if a predetex-mined period of time has elapsed (at 120), with the time interval having been remotely programmed by the host controller 10. If the interval has not lapsed, the microprocessor 40 continues to cycle until such time as a determination is made that the predetermined time period has elapsed. At that point, the microprocessor 40, through the interface 74, interrogates (at 122) the mobile cellular transceiver 58 located in the vehicle to read the signal strength being received by the mobile cellular transceiver 58 to determine whether the vehicle is in a cellular system service area (at 124). If the vehicle is in a cellular system service area, the microprocessor will read the SID number (at 126) from the information received by the mobile cellular transceiver 58 from the overhead message stream, and will look up the SID
number (at 126) from the database installed therein to determine the appropriate dialing method to initiate a call from the mobile cellular transceiver to the host controller.
The microprocessor 40 then makes a determination as to whether the microprocessor has been remotely programmed by the host controller 10 to authorize the vehicle to dial out in the particular cellular system service area (at 128) providing service to the mobile cellular unit. If the call is authorized, the microprocessor 40 then determines (at 130) whether the signal strength being received by the mobile cellular transceiver 58 is sufficient to authorise initiation of a call from the vehicle to the host controller Z0. If the vehicle is not authorized to dial out of the service area, or if the signal strength is not sufficient, the microprocessor 40 will return to the step of determining whether the vehicle is in a service area (at 124) and will continue through each of the steps (at 126, 128, and 130) until a determination is reached that the vehicle is authorized to dial out of the service area and that the mobile cellular transceiver 58 is receiving an acceptable signal strength for initiating a call. At that point, the microprocessor will instruct the mobile cellular unit to dial out (at 132).
After the number has been dialed, the microprocessor 40 determines whether the call has been completed to the smart modem 92 (at 134) connected to the host controller 90 at the terminal or home office. If a determination is made that the call has not resulted in a connectiOTl with the smart modem 92, the microprocessor 40 instructs the mobile cellular unit to hang up (at 136). If, however, the call has gone through, the microprocessor 40 receives instructions from the host controller 90 to transfer predetermined information to the host controller. In accordance with said instructions, the microprocessor 40 transmits (at 138) the particular vehicle identification number, the location information obtained from the overhead message stream through interrogation of the mobile cellular unit, and telemetric data regarding such 'information as vehicle system status, driver hours, and any other information stored in the memory associated with the mobile cellular transceiver 58.
Once the transfer of information is complete, the microprocessor 40 receives a command from the host controller 90 to disconnect (at 140). Upon receipt of the command to disconnect, the microprocessor instructs the mobile cellular transceiver 58 to disconnect (at 124) the call to the host controller 90.
After disconnect or hanging up of the call to the host controller 90, the microprocessor 40 reloads the interval timer (at 144) to determine the lapse of the predetermined time period in which to initiate the next automatic report from the vehicle to the host controller 90. Each time the predetermined time period elapses, each of the steps set forth in the flow chart of FIGURE 4 are automatically performed to initiate transmission of a report from the microprocessor through the mobile cellular unit over the cellular telephone system to the host controller where the information is read, looked up, displayed, and stored by the host controller for subsequent compilation into a detailed report covering varying time periods and any number of reporting vehicles.
Referring now to FIGURE 5, there is shown a flow chart of the operation of the central data gathering device or host controller portion of the locating system. As illustrated in FIGURE 5, with reference to the block diagram of FIGURE 3, when a call is initiated by a reporting vehicle to the host controller 90, the phone connected to the host controller rings (at 200) and is answered (at 202). Upon connection with the host controller 90 (at 204) through the smart modem 92 the host controller 90 interrogates (at 206) the microprocessor of the reporting vehicle to determine the vehicle identification number. The host controller 90 then looks up the identification number to determine (at 208) whether the identification number is valid. If the vehicle identification number is invalid, the host controller 90 will instruct the mobile cellular phone in the vehicle to disconnect (at 210), resulting in the mobile cellular unit hanging up on the call (at 212).
Upon determining that a valid vehicle identification number has been reported, the host controller 90 instructs the in-vehicle microprocessor (at 214) to transmit information regarding the location of the reporting vehicle. Upon receipt of the location information (at 216), the host controller 90 instructs (at 218) the microprocessor to transmit telemetric data regarding various vehicle systems. If the host controller fails (at 220) to receive data from the vehicle, it will instruct (at 222) the mobile cellular unit of the vehicle to f disconnect and initiate a new call. If the information is received by the host controller 90, the screen 100 of the terminal 98 is updated (at 224) to display the current location information for the reporting vehicle.

2U6923~
- is -The information is also stored (at 226) for subsequent compilation into report form. Thereafter, the host controller 90 instructs the remote cellular unit to disconnect the call (at 210). The call is disconnected and the cycle restarted upon the receipt of a call from the mobile cellular unit.
Thus, operation of the locating and communicating method and apparatus as described combines locating and communicating capabilities in a system utilizing existing cellular telephone system services and information. The cellular system currently in use today consists of many transmitter sites in and around cities, each constituting a cell. Some of the transmitter sites are as close to one another as one mile or less in dense traffic areas. In the outermost regions of a service area, the cell transmitter sites work at higher power levels and are spaced further apart. A network grid across a city is formed by the adjoining cells to provide uninterrupted communication for a mobile telephone unit using cell site handoff techniques as the vehicle travels between cells.
When in a coverage area, the mobile cellular unit receives an overhead message stream continuously transmitted from each cell transmitter site. The mobile cellular unit automatically tunes to the strongest signal, that being the signal transmitted from the nearest cell _ 19 _ transmitter site. In this manner, the mobile cellular unit is able to receive instructions from the cellular network as to when and where the mobile unit should re--tune to another voice channel in the next nearest transmitter site S before the vehicle has moved out of range of the last transmitter site.
The location apparatus of the present invention includes a microprocessor connected to a modem in turn connected to an 800 MHz mobile cellular radio transceiver in each vehicle. At the trucking base terminal or home office, a host controller is connected through a modem to the cellular transmitter fox communicating with the mobile cellular unit and microprocessor installed in the vehicle.
As the vehicle travels from cellular system to cellular system and from cell to cell within each cellular system, the mobile cellular unit receives overhead message streams transmitted from cellular transmitter sites located in the individual cells. Information such as the particular SID
number, and the number of a particular cell from where the overhead message stream is being transmitted is contained in the message stream. The microprocessor connected to the mobile cellular unit periodically interrogates the unit to obtain the SID number and other location information carried in the overhead message stream at the time of the interrogation. In the event longitude and latitude 20~9~3~

coordinates of the physical location of the particular transmitter site transmitting the overhead message stream are added to the information -transmitted, the microprocessor is capable of interrogating the mobile cellular unit to determine the longitude and latitude location of the vehicle.
Strength of the radio signal carrying the message stream is also determined by the microprocessor at the time of interrogation. If the microprocessor reads a certain minimum radio signal strength and/or a predetermined period of time has elapsed, the microprocessor automatically instructs the cellular radio transceiver to initiate a telephone call to the host controller on the particular cellular system providing service at that time.
At the base terminal or home office, the host controller receives the telephone call and instructs the microprocessor, via a proprietary error correcting protocol, to transmit information over the cellular system to the host controller. The host controller requires the transmission of such information as the SID number, and the cell number and transmitter coordinates, received by the cellular transceiver from the overhead message stream, and in some cases requires transmission by the driver of the vehicle of information stored in a memory connected to the mobile cellular unit.

~os~~~a Information stored by the vehicle driver includes such information as the identity of the vehicle, the number of hours the driver has been at the wheel, or other information based upon the needs of the locating and communicating system user. A voice actuation feature and a hands free microphone connected to the mobile cellular transceiver allow the driver to automatically enter information regarding driver hours, vehicle identity and other requested information without having to lift the ZO handset.
Upon receipt of the information, the host controller looks up the SID number in a database associated therewith.
to determine the geographical location of the SID number, thereby determining the location of the vehicle. The vehicle location is then highlighted on a map displayed on a screen connected to the host controller. Additional information regarding driver hours, location of the vehicle, or any other requested information, is displayed in text on the screen whereon the map indicating geographical location is displayed. Thus, the operator of the host controller can immediately see the location of the reporting vehicle and read pertinent information reported by the vehicle.
Information enabling the host controller operator 25~ to initiate a telephone call to establish voice communication with the vehicle driver is also contained in the database associated with the host controller.
Information reported from the vehicle is stored in a memory associated with the host controller for subsequent review, analysis, or compilation into reports covering varying time periods and numbers of vehicles.
The database installed in the host controller also contains information regarding cell identification numbers and longitude and latitude coordinates for a specific transmitter site within the cells in the event that a particular cellular system includes such information in the overhead message stream. By adding an identification number of the transmitting cell and the longitude and latitude coordinates for the cell transmitter site to the message stream, the location of the vehicle is more accurately determined. Assuming that the mobile cellular unit would always tune to the nearest transmitter, the accuracy of the vehicle location would be approximately a radius equal to one-half the distance between the transmitter site to which the mobile unit is tuned and the next nearest site. Thus, a more accurate geographical location of the vehicle is determined.
By utilizing a voice activated mobile cellular unit, the base terminal or home office accurately monitors the location of each vehicle by means of conventional triangulation location techniques using cellular transmitters located in adjacent cells in a cellular system, as well as obtains voice contact with the driver of the vehicle at any time, utilizing existing cellular systems and system information. Thus the locating and communicating system alleviates the need for systems and equipment limited only to vehicle tracking, increases the ease of driver/base accessibility, and avoids driver distraction while communicating with and reporting to the base terminal or home office.
In a locating system incorporating a second embodiment of the present invention, as shown in the block diagram of FIGURE 5, the entire apparatus of the locating system is contained within a vehicle to allow the driver to ascertain the current location of the vehicle utilizing the information transmitted in the cellular system overhead message stream. The in-vehicle locating system comprises a microprocessor 250 having an associated read only memory 252 containing a control program, an associated random access memory 254 for storing data input by the driver, and an associated external memory port 256 for receiving plug-in modules containing maps, directories, and other information regarding a particular geographical area.
A graphic display 258 for showing the geographical location of the vehicle and display of textual information ~0~9230 is connected to the microprocessor 250 in the vehicle. An interface 260 provides for communication between the microprocessor 250 and the graphic display 258. A smart modem 251 connects the microprocessor 250 through the audio multiplexes 259 to the mobile cellular unit to allow communication between the microprocessor and the mobile cellular unit.
As with the first embodiment of the present invention, the microprocessor 250, through use of an interface 264 automatically interrogates or the driver may select a menu function through use of a keyboard 262 connected to the microprocessor to initiate interrogation of the mobile cellular transceiver 266 over the cellular phone bus 268 to obtain location information from the overhead message stream received by the mobile cellular unit through an antenna 270. Upon receipt of the location information from the overhead message stream, the microprocessor 250 looks up the information in a database associated with the microprocessor 250 to determine the geographical location of the vehicle. The geographical location is then highlighted on a map displayed on the a geographic display 258 connected to the microprocessor 250.
The particular map displayed depends upon the plug in modem presently installed in the external memory port 256 connected to the microprocessor 250. Through use of the keyboard 262, 'the driver may select particular points of interest from the various directories contained in the plug-in modules. Various menu selections allow the driver to initiate calls to the particular points of interests, highlight the location of the points of interest on the map displayed, and receive textual information regarding the estimated travel time to reach the selected points of interest from the present vehicle location. Further, through use of the keyboard 262, the driver may zoom or pan the map displayed on the graphic display 258 to obtain more detailed information.
As with the first embodiment of the present invention, the mobile cellular unit is equipped with a handset 272, and has attached a voice recognition/activation device 274 and a hands-free microphone 276 to allow operation of the locating system with less driver distraction and safer vehicle operation.
As with the locating system incorporating the first embodiment of the present invention, the in-vehicle locating system incorporating the second embodiment of the present invention utilizes the system identification number of the particular cellular system providing service, the cell identification number where the mobile cellular unit is receiving the overhead message, and the longitude and latitude coordinates of a particular cell transmitter site, all of which may be transmitted in the overhead message stream from a particular cell transmitter site.
Although preferred embodiments of the invention have been illustrated in the accompanying drawings and described in the foregoing Detailed Description, it will be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements and modifications of parts and elements without departing from the spirit of the invention.

Claims (45)

1. A system for locating and communicating with a vehicle by means of a network of cellular telephone systems comprising:
storage/display means including storage means and a display connected to said storage means for displaying a map location of said vehicle and other information transmitted to said storage/display means;
mobile cellular means for placement in the vehicle;
means for interrogating said mobile cellular means to receive location information from a particular cellular system providing service to said mobile cellular means at the time of interrogation; and means for initiating communication with said storage/display means to transmit said location information to said storage/display means from said means for interrogating.
2. The locating and communicating system of Claim 1, further comprising means for voice actuation of said mobile cellular means by a vehicle operator.
3. The locating and communicating system of Claim 1, wherein said mobile cellular means includes a hands-free microphone to enable an operator to input verbal information to said mobile cellular means.
4. The locating and communicating system of Claim 1, further comprising means for remotely programming authorized telephone numbers in said mobile cellular means through said storage/display means.
5. The locating and communicating system of Claim 4, further comprising means for inhibiting dialing of unauthorized telephone numbers from said mobile cellular means.
6. The locating and communicating system of Claim 1, further comprising means for responding to signal strength received by said mobile cellular means for notifying an operator of said storage/display means when said vehicle enters a strong signal area within the cellular system.
7. The locating and communicating system of Claim 1, wherein said means for interrogating includes means for monitoring vehicle information for transmission to said storage/display means.
8. The locating and communicating system of Claim 7, wherein said storage/display means includes means for storing and compiling into a report said vehicle information.
9. The locating and communicating system of Claim 7, further comprising means for instructing the mobile cellular means to establish a communication link with said storage/display means to report unauthorized entry and operation of the vehicle.
10. The locating and communicating system of Claim 1, further comprising clock means connected to said means for interrogating to determine predetermined time intervals for initiating communication from said mobile cellular means to said storage/display means.
11. The locating and communicating system of Claim 1, wherein one or more of the cellular telephone systems comprise a plurality of cells.
12. The locating and communicating system of Claim 11, wherein the means for interrogating said mobile cellular means comprises a means for receiving an identification number of the particular cellular telephone system or cell providing service to said mobile cellular means at the time of interrogation.
13. The locating and communicating system of Claim 12, further comprising a host controller coupled to the network of cellular telephone systems for receiving, by means of the mobile cellular means, the identification number received by the means for interrogating said mobile cellular means and determining the map location on the basis of the identification number.
14. The locating and communicating system according to any preceding Claim, wherein said means for interrogating comprises at least one microprocessor connected to said mobile cellular means for controlling operation of said system.
15. The locating and communicating system of Claim 14, further comprising auxiliary memory means connected to said microprocessor for receiving interchangeable storage means containing maps, directories and information on geographic areas as the vehicle travels from one geographic area to another.
16. A system for graphically displaying in a vehicle a geographical location of the vehicle by means of a network of cellular communication systems comprising:
mobile cellular means;
at least one microprocessor connected to said mobile cellular means, the microprocessor comprising a memory for a storage of programs for controlling operation of said system and for interrogating said mobile cellular means to receive a system identification number of a particular cellular system providing service to the mobile cellular means at the time of interrogation; and a graphic display connected to said microprocessor for displaying a map and location information.
17. The system of Claim 16, further comprising a keyboard connected to said microprocessor for selecting menu options, for inputting data, and for panning and zooming said map displayed on said graphic display.
18. The system of Claim 16, further comprising auxiliary memory means connected to said microprocessor for receiving interchangeable storage means containing maps, directories, and information on geographic areas as the vehicle travels from one geographic area to another.
19. The system of Claim 18, further comprising means for selecting and dialing telephone numbers contained in the directories of said interchangeable storage means.
20. The system of Claim 18, further comprising means for selecting a location from the directories of said interchangeable storage means, highlighting said selected location on the displayed map, and displaying textually the distance to the selected location and the estimated travel time to reach said location.
21. The system of Claim 16, further comprising voice activation means for operation of said mobile cellular means alone and for operation of said mobile cellular means in conjunction with said microprocessor.
22. The system of Claim 16, wherein said microprocessor includes means for interrogating said mobile cellular means for receiving a cell number of a particular cell and the longitude and latitude of a particular transmitter site in said cell of the cellular system providing service to the mobile cellular means at the time of interrogation to more accurately determine the location of said vehicle.
23. The system of Claim 16, wherein said mobile cellular means includes a hands-free microphone to enable an operator to input verbal information to said mobile cellular means.
24. A system for locating and communicating with vehicles by means of a network of cellular communication systems comprising:
a host controller;
a cellular telephone in at least one vehicle;
at least one microprocessor connected to said cellular telephone for interrogating said cellular telephone to receive a system identification number of a particular cellular system providing service to said vehicle at the time of interrogation for determining location of said vehicle and for initiating communication at predetermined intervals with said host controller for transmitting information from said microprocessor to said host controller;

a display connected to said host controller for displaying graphically a map location of said vehicle and for displaying textually information transmitted from said microprocessor;
voice recognition means for voice actuation of said cellular telephone by a vehicle operator; and a hands-free microphone to enable an operator to input verbal information to said cellular telephone.
25. The locating and communicating system of Claim 24, further comprising means for remotely programming authorized telephone numbers in said cellular telephone from said host controller and for inhibiting dialing of unauthorized telephone numbers from the cellular telephone.
26. The locating and communicating system of Claim 24, wherein said microprocessor includes means for interrogating said cellular telephone for receiving a cell number from a particular cell in the cellular system and the longitude and latitude of a particular transmitter site in a particular cell of the cellular system providing service to the cellular telephone at the time of interrogation to determine the geographical location of said vehicle.
27. The locating and communicating system of Claim 24, further comprising means for responding to signal strength received by said cellular telephone to alert an operator of said host controller when said vehicle enters a strong signal area.
28. The locating and communicating system of Claim 24, wherein said microprocessor further comprises means for monitoring vehicle information for transmission to said host controller.
29. The locating and communicating system of Claim 28, wherein said host controller further comprises means for storing said vehicle information and compiling said information into a report covering at least one vehicle,
30. The locating and communicating system of Claim 24, further comprising clock means connected to said microprocessor to determine predetermined time intervals for initiating communication from said cellular telephone to said host controller.
31. A method for locating vehicles equipped with mobile cellular means comprising the steps of:
voice activating said mobile cellular means to store information received verbally from a vehicle operator;
interrogating the mobile cellular means to obtain cellular system information to determine the location of said vehicle;

establishing a communications link between the mobile cellular means and a storage/display means;
transmitting to said storage/display means the identity of the reporting vehicle and information to determine location of said vehicle;
interrogating a database of the storage/display means in response to information received from said reporting vehicle to determine the geographic location of said vehicle;
graphically displaying on a display as a part of said storage/display means the geographic location of said vehicle.
32. The locating method of Claim 31, wherein the step of interrogating the mobile cellular means obtains preselected information for transmitting to said storage/display means.
33. The locating method of Claim 31, wherein the step of interrogating said mobile cellular means includes evaluating the received signal to determine sufficient signal strength to initiate communication with said storage/display means.
34. The locating method of Claim 31, further comprising the step of sounding an alarm connected to said storage/display means when said vehicle has moved into a strong signal area.
35. The locating method of Claim 31, further comprising the step of storing the information transmitted to said storage/display means, and compiling the stored information into a report identifying the location of a vehicle for a predetermined period of time.
36. The locating method of Claim 31, further comprising the step of measuring the time following transmission of information from said mobile cellular means to said storage/display means and initiating transmission of information from said mobile cellular means to said storage/display means upon lapse of a predetermined time period.
37. The locating method of Claim 31, further comprising the step of remotely programming authorized telephone numbers in said mobile cellular means from said storage/display means for inhibiting dialing of telephone numbers from said cellular unit other than said authorized telephone numbers.
38. The locating method of Claim 31, wherein the step of interrogating said database includes the step of identifying the cellular system providing service at the time of said interrogation to determine a geographical location of said vehicle.
39. The locating method of Claim 31, therein the step of interrogating said database includes the step of identifying a cell identification number obtained for a particular cell in the cellular system providing service at the time of said interrogation.
40. The locating method of Claim 31, wherein the step of interrogating said mobile cellular means includes the step of obtaining the longitude and latitude of a transmitter site located in a particular cell of the cellular system providing service at the time of said interrogation to determine a geographical location of said vehicle.
41. The locating method of Claim 31, wherein the mobile cellular means comprises a plurality of cells and is associated with an identification number for the cellular means or one or more of the cells and further comprising interrogating to receive the identification number and transmitting the identification number to said storage/display means and determining the location of said vehicle on the basis of said identification number.
42. The locating method of Claim 31, further comprising the step of locating a vehicle between transmissions comprising the steps of:
determining the location of a vehicle during the last transmission;
recording the final destination and approximate route of said vehicle;

calculating travel time after the last transmission from the vehicle;
calculating the distance traveled in the time elapsed to determine approximate location of the vehicle;
interrogating a database to obtain one or more system identification numbers and roamer numbers of cellular systems serving an area including said approximate location; and initiating calls from said storage/display means to said vehicle in the cellular systems in said area at predetermined intervals until contact is made with said vehicle.
43. A method for displaying in a vehicle the geographical location of the vehicle equipped with a cellular communication means comprising the steps of:
interrogating said cellular means to determine an identification number associated with a cellular system providing communication service at the time of interrogation;
graphically displaying on a display connected to said cellular means a map including the area wherein said vehicle is located;
highlighting on said map the location of said vehicle;

selecting by means of a keyboard points of interest from storage means connected to said cellular means;
displaying the distance from said selected points of interest to the location of said vehicle;
displaying the estimated travel time from the location of said vehicle to the selected points of interest.
44. The method of Claim 43, wherein the step of interrogating said cellular means includes the step of identifying a cell identification number of a particular cell providing service to the cellular means at the time of interrogation to determine a geographical location of said vehicle.
45. The method of Claim 43, wherein the step of interrogating said cellular means includes the step of identifying the longitude and latitude coordinates of a particular transmitter site in the cellular system providing service at the time of interrogation to determine the geographical.
CA 2069230 1992-05-22 1992-05-22 Vehicle locating and communicating method and apparatus Expired - Lifetime CA2069230C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA 2069230 CA2069230C (en) 1992-05-22 1992-05-22 Vehicle locating and communicating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA 2069230 CA2069230C (en) 1992-05-22 1992-05-22 Vehicle locating and communicating method and apparatus

Publications (2)

Publication Number Publication Date
CA2069230A1 CA2069230A1 (en) 1993-11-23
CA2069230C true CA2069230C (en) 2002-07-23

Family

ID=4149886

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2069230 Expired - Lifetime CA2069230C (en) 1992-05-22 1992-05-22 Vehicle locating and communicating method and apparatus

Country Status (1)

Country Link
CA (1) CA2069230C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519760A (en) 1994-06-22 1996-05-21 Gte Laboratories Incorporated Cellular network-based location system
US7366492B1 (en) 2002-05-03 2008-04-29 Verizon Corporate Services Group Inc. Method and system for mobile location detection using handoff information

Also Published As

Publication number Publication date
CA2069230A1 (en) 1993-11-23

Similar Documents

Publication Publication Date Title
US5299132A (en) Vehicle locating and communicating method and apparatus using cellular telephone network
JP2887815B2 (en) Mobile station position monitoring system
US6212393B1 (en) Method and apparatus for communication within a vehicle dispatch system
US5895436A (en) Vehicle tracking system using cellular network
US6055426A (en) Notification of a mobile unit out of coverage
US6847825B1 (en) Method and system for portable cellular phone voice communication and positional location data communication
US6061558A (en) Method and apparatus for a nation-wide cellular telephone network
US6564127B1 (en) Data collection via a wireless communication system
US6832092B1 (en) Method and apparatus for communication within a vehicle dispatch system
US20030054837A1 (en) Telephone call routing system and method
JPH09233562A (en) Emergency vehicle message system for invalidizing call limitation
WO2007090199A1 (en) Method and apparatus for responding to the determination that the location tracking function of a wireless communication device has been disabled by the user
CA2137002A1 (en) Vehicle tracking system
JPH1094028A (en) Mobile terminal equipment and mobile communication system
CA2069230C (en) Vehicle locating and communicating method and apparatus
KR19990050214A (en) Traffic information service method using existing wireless communication network
JP3463439B2 (en) Vehicle communication device
EP0815695A1 (en) Method and apparatus for call delivery to a mobile unit
GB2379835A (en) Routing of call to nearby mobile resource
EP0963088A1 (en) Method and system for transmitting information through a telephone network
JPH06140986A (en) Vehicle-position designation and communica- system, location display system, vehicle- position designation method and location display method
KR940010563A (en) Vehicle positioning and communication method and device
KR19990003457A (en) Traffic information display system and its operation method
AU2002321641A1 (en) Telephone call routing system and method
JPH0492522A (en) Monitoring system for position of mobile station

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry