CA2049200A1 - Oxygen-separating porous membranes - Google Patents

Oxygen-separating porous membranes

Info

Publication number
CA2049200A1
CA2049200A1 CA002049200A CA2049200A CA2049200A1 CA 2049200 A1 CA2049200 A1 CA 2049200A1 CA 002049200 A CA002049200 A CA 002049200A CA 2049200 A CA2049200 A CA 2049200A CA 2049200 A1 CA2049200 A1 CA 2049200A1
Authority
CA
Canada
Prior art keywords
membrane
porous
oxygen
aromatic amine
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002049200A
Other languages
French (fr)
Inventor
Eishun Tsuchida
Hiroyuki Nishide
Hiroyoshi Kawakami
Yukiko Sasame
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Eishun Tsuchida
Hiroyuki Nishide
Hiroyoshi Kawakami
Yukiko Sasame
Union Carbide Industrial Gases Technology Corporation
Praxair Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eishun Tsuchida, Hiroyuki Nishide, Hiroyoshi Kawakami, Yukiko Sasame, Union Carbide Industrial Gases Technology Corporation, Praxair Technology, Inc. filed Critical Eishun Tsuchida
Publication of CA2049200A1 publication Critical patent/CA2049200A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE

Oxygen-separating porous membranes, intended for use in oxygen-enriching processes, typically for combustion gas production, medical treatment, etc., characterized by a complex comprising (a) a transition metal (II) ion, and (b) a ligand taken from the group consisting of (1) porphyrins, (2) Schiff bases, (3) cyclidenes, and (4) amine-like macrocycles, and (c) an aromatic amine, said complex retained in the pores of a porous substrate, the mean free pore diameter of said porous membrane being in the range of 3.5 to 100 .ANG..

Description

!' - !,, ',,~, , "' 204~3~0~

OXYGEN-S~PARATING POROUS MEMBRANES

BACKGROUND OF THE INVENTION
~ his invention relates to oxygen-separating porous mem-branes to be used in oxygen-enriching processes, typically for combustion gas production, for medical treatment. More partic-ularly, the invention concerns porous membranes which contain, as dispersed in the pores, a metal complex capable of adsorbing and desorbing oxygen rapidly and reversibly.
Oxygen is one of the chemicals most widely used on indus-trial scales, specifically in the manufacture of iron, steel, and other metals and glass, in chemical oxidation and combus-tion, and in wastewater disposal. In the field of medical care too, it has very wide applications including the therapy for lung disease patients by means of oxygen inhalation. ~or these reasons the development of processes for concentrating oxygen out of air is an important problem with far-reaching effects on various sectors of industry. While dominant industrial pro-cesses for atmospheric oxygen concentration today are low-temperature and adsorption techniques, membrane separation is considered promising from the energy-saving viewpoint.
Success of membrane separation depends primarily on the discovery of a membrane material that would permit selective and efficient oxygen permeation relative to nitrogen from air.
Currently available membranes capable of permeating and 2049~00 concentrating atmospheric oxygen (known as oxygen-enriching membranes) are those of silicone, silicone polycarbonate, and the like. Some of them are in practical service. They do not have high oxygen-permeation selectivity (oxygen-permeability coefficient/nitrogen-permeability coefficient, or ratio ~), the value being approximately 2, and y~t exhibit high permeability coefficient (10-8 [cm3 (STP) cm/cm2 sec cmHg]). With this feature the membranes are incorporated in modules, multistage processes, and other systems to obtain oxygen-enri~hed air, with oxygen concentrations of approximately 30~.
Gas separation by the use of microporous membranes ranging in pore size fr~m several ten to several hundred angstroms is also extensively performed. Gas permeation through a porous mass is dictated by the ratio of the distance over which the particular gas particles impinge upon one another, or the mean free path, A to the pore diameter r, (r/A). When the pore diameter is small, being r/A<l, the mutual impingement of the gas particles is ignored. The permeation conforms to the Knudsen flow in which it is inversely proportional to the square root of the molecular weight of the gas. Gas permeation based on this permeation mechanism attains a strikingly high permeability coefficient. Nevertheless, the process is unsuit-able for the oxygen separation by permeation from air, because, when separating gases of dissimilar molecular diameter, such as oxygen and nitrogen, the selectivity becomes less than 1.

2049~0V

It has been reported that generally gas molecules once adsorbed by the pore surface of a porous membrane will diffuse over the adsorption layer for permeation, resulting in a substantial increase in permeability. However, the phenomenon is limited to operations handling lower hydrocarbons, carbonic gas, and other gases of relatively high boiling points. The ~henomenon also is observed only when membranes with pore diameters from about 30 to about 300 ~ are used. Oxygen permeation from air has not in the least been known in the art.
In order to obtain highly oxygen-rich air useful for industrial and medical applications by a single permeable-membrane pass, it is essential that the separating membrane have a high oxygen-permeability coefficient, of the order of 10-8, and an ~ of at least 5.
Polymeric membranes of silicone and the like exhibit oxygen-permeability coefficients as high as about lo~8/ but their oxygen selectivities are low. The porous membranes that rely upon the Knudsen flow for gas permeation are incapable of separating oxygen and nitrogen, although they show greater permeability than polymeric membranes.
We have hitherto continued the synthesis of metal complex-es capable of rapid, reversible adsorption and desorption of oxygen molecules. As a result, we clarified essential require-ments of the metal complexes that can adsorb and desorb oxygen molecules selectively, rapidly, and reversibly, even in a Z049~20~

solid-phase polymer. We successfully synthesized the novel complexes and taught their use for oxygen-separating membranes (Patent Application Public Disclosure No. 171730/1987).
However, polymeric membranes incorporating such complexes, when used in air permeation, did not always achieve the object satisfactorily. Although the ~ value exceeded the target value of 5, the permeability coefficient was only 10-9. For the treatment of a sufficiently large volume of air for oxygen enrichment, an additional step, for example, of providing an extra thin film, was required.

SU2~RY OF THE INVENTION
In view of the above, we have made further intensive research and have now successfully produced membranes having oxygen-permeation selectivity while maintaining high gas permeability, by allowing a porous support to hold a porphyrin metal complex uniformly in the pores under certain conditions.
Thus, the invention relates to oxygen-separating porous membranes as follows:
1. An oxygen-separating porous membrane characterized by a complex comprising (a) a transition metal (II) ion, and (b) a ligand taken from the group consisting of (1) porphyrins, (2) Schiff bases, (3) cyclidenes, and (4) amine-like macrocycles, and (c) an aromatic amine, said complex retained in the pores of a porous substrate, the mean free pore diameter of said porous membrane being in the range of 3.5 to 100 A.

204~
2. The membrane of 1 above in which said ligand is a porphyrin.
3. The membrane of 2 above in which said porphyrin is meso-tetrakis(~ -o-pivalamidophenyl)porphyrinato.
4. The membrane of 1 above in which said transition metal (II) comprises cobalt (II).
5. The membrane of 1 above in which said aromatic amine comprises (1) copolymers of a vinyl aromatic amine and either (a) an alkyl acrylate or (b) an alkyl methacrylate, or (2) a low-molecular-weight aromatic amine.
6. The membrane of 5 above in which said aromatic amine is a copolymer of a vinyl aromatic amine and either (i) an alkyl acrylate or (ii) an alkyl methacrylate, containing 1 to 15 carbon atoms in the alkyl group thereof.
7. The membrane of 1 above in which said transition metal (II) comprises from about 0.02 to 1.7 millimoles per gram of said complex.
8. The membrane of 7 above in which said transition metal (II) comprises from about 0.20 to 1.7 millimoles per gram of said complex.
9. The membrane of 1 above in which said porous substrate comprises an inorganic porous membrane.
10. The membrane of 1 above in which said porous substrate comprises an organic porous membrane.
11. The membrane of 10 above in which said porous 2049~00 substrate comprises polysulfone.
12. The membrane of 10 above in which said porous substrate comprises polyimides.
13. The membrane of 1 above in which said porous membrane comprises a flat film or a hollow fiber membrane.
14. The membrane of 1 above in which said transition metal (II) comprises cobalt (II), said porphyrin is meso-tetrakis-~ -o-pivalamidophenyl)porphyrinato, and said porous membrane comprises hollow fibers.
15. The membrane of 1 above in which said mean free pore diameter is in the range of 3.8 to 60 A.
16. The membrane of 14 above in which said mean free pore diameter is in the range of 3.8 to 60 ~.
17. The membrane of 14 above in which said aromatic amine comprises (1) copolymers of a vinyl aromatic amine and either (a) an alkyl acrylate or (b) an alkyl methacrylate, or (2) a low-molecular-weight aromatic amine.
DETAILED DESCRIPTION OF THE INVENTION
Metal complexes capable of reversible oxygen adsorption and desorption usually are complexes consisting of a metal ion of a low oxidation number and a ligand of conjugated system combined with an aromatic amine. The present invention prefer-ably utilizes a complex consisting of a meso-tetrakis(~
o-pivalamidophenyl)porphyrinato metal (II) as the first compo-nent and either a copolymer of a vinyl aromatic amine and an Z~4~

alkyl acrylate or alkyl methacrylate or a low-molecular-weight aromatic amine as the second component. The metal in the metal complex is a bivalent metal element, preferably cobalt.
As the ligand that constitutes the metal complex, any of those mentioned above may be used.
Among other examples of porphyrins is "PRIXDME", protopor-phyrin IX dimethy] ester.
Examples of Schiff bases include "salen", bis(salicyl-ideneiminato)ethylenediamine, and "3-methoxysaltmen", N,N'-bis-(3-methoxysalicylideneiminato)tetramethylethylenediamine.
Cyclidenes are, for example, "lacunar methyl, methyl-C6-cyclidene", 2,3,10, 11, 13, 19-hexamethyl-3, 10, 14, 18, 21, 25-hexaazabicyclo[10.7.7]hexacosa-1,11,13,18,25-hexene~4N, and "lacunar phenyl,benzyl-metaxylyl-cyclidene", 3,11-dibenzyl-2,12-diphenyl-3,11,15,19,22,26-hexaazatricyclo[11.7.7.15 9]-octacosa-1,5,7,9(28),12,14,19,21,26-nonaene~4N.
Examples of amine-like macrycycles are "lacunar Me2~p-xylylene)Me2malMeDPT", 7,19-Diacetyl-6,20-diketo-8,13,18-tri-methyl-26,33-dioxa-9,13,17-triazatricyclo[23.8.228~3l.1l 5.-121~25]heptatriaconta-1,3,5(36),7,18,21,23,25(37),28,30,34-undecaenato-~3N-~20, and "salMeDPT", bis-(salicylideneiminato)-N-methyl-dipropylenetriamine.
The transition metal (II) ion, especially cobalt (II), fcrms a complex which has reversible interactions with 2~
The aromatic amine functions as the axial base in the 204~3~00 complex, "activating" the complex for reversible interactions with 2 The amine residues, such as derivatives of pyridine or imidazole, may be present in either high-molecular-weight polymers as pendant groups, or in low-molecular-weight individual molecules.
Such a complex is dissolved in a dichloromethane solution, and a porous support is immersed in the solution. After full retention of the complex in the pores has been confirmed, the impregnated support is dried in vacuum to obtain a porous membrane. The porous support for this purpose may be any of materials in which each pore is open on one side and extends backward to open also on the opposite side. An inorganic support of porous glass, porous alumina, porous carbon or the like is a good choice. The porous membrane has a mean pore diameter of 100 A or less, desirably 50 A or less, provided the complex can be retained in the pores without clogging the latter. The mean pore diameter is limited to 100 A or less because if it exceeds 100 A the Knudsen flow becomes dominant, reducing the ~ value of oxygen-permeation selectivity. The specific composition and conditions for preparation as will be described later permit the pores of the porous membrane to be kept unclogged. Consequently, the membrane maintains high gas permeability (the Knudsen flow) and attains high oxygen selectivity since the complex dispersedly held on the pore surface causes selective, rapid adsorption and desorption of 20~3;20~) oxygen, which in turn produces a surface diffused flow that adds to the selectivity.
The introduction of a complex capable of rapid, reversible oxygen adsorption and desorption has now rendered it possible for the first time to observe a surface diffused flow on a porous membrane. It is apparently for this reason that an oxygen-separating membrane is obtained which exhibits excep-tionally efficient performance (an oxygen-permeability coeffi-cient of approximately 10-6 and selectivity of 5 or more).
For use in the present invention it is desirable that the complex comprises, as a metal complex of a porphyrin compound, a meso-tetra(~ o-pivalamidophenyl)porphyrinato metal (II) and, as an aromatic amine ligand, a copolymer of a vinyl aromatic amine and an alkyl acrylate or alkyl methacrylate, typified by poly(N-vinylimidazole-co-octyl methacrylate) or the like, or N-methylimidazole or pyridine.
The metal ion and the ligand residue that constitute a complex are in a molar ratio appropriately in the range from 1:1 to 1:50.
A porphyrin and a ligand are separately dissolved uniformly in an organic solvent such as dichloromethane, thoroughly deoxidized, and mixed up. Into this mixed solution is immersed a porous support in an oxygen-free atmosphere.
After the complex has been adequately supported in the pores, the porous membrane is finished by vacuum drying. In this case o~

the porphyrin content is desirably chosen from the range of about 1 to about 30% by weight. There is no specific limitation to the form of the porous membrane, but a flat or tubular shape is desirable. For the manufacture of the membrane thorough oxygen removal from the complex solution in advance is advisable.
The use of the membrane according to the invention permits oxygen enrichment with a high selectivity, at the ~ value of 5 or upwards. Also, because of the extremely high permeability coefficient, single-step concentration by a membrane with an effective area of one square meter can yield as much as air with an oxygen concentration of at least 60% per hour. In a system for removing residual oxygen from nitrogen in which the oxygen concentration has been reduced down to 1%, the membrane makes it possible to afford 99.99%-pure nitrogen. For the purposes of the invention the measurements of gas permeability with oxygen-enriching membranes are evaluated by gas chromatography.
E X A M P L E S
The invention will be more fully described below in connection with examples thereof which, of course, are in no way limitative.
Example ~
For the manufacture of a tubular porous membrane, a tube of porous glass 7 mm in outside diameter and 1.1 mm in wall 2~D4~0~

thickness was employed. The glass (marketed by Corning Glass Works under the trade designation "Vicor #7930") had a porosity of 28% and an average pore diameter of 40 A, the size ranging from 40 to 70 A. The porous glass was conditioned and prepared in the following way. Test pieces of the glass, cut to lengths of 11 cm each, were immersed in 5N hydrochloric acid for 2 to 3 days and then washed with pure water for one full day. They were heated in a nitrogen atmosphere at 80C until the porous glass became clear, further heated up to 180C while the pressure was reduced to 10-3 mmHg, and dried.
Twelve milliliters of a dichloromethane solution contain-ing 100 mg meso-tetra(~ -o-pivalamidophenyl)porphyrinato metal ~II) (hereinafter called "CoP" for brevity) and 20 ml of a dichloromethane solution containing 600 mg poly(N-vinyl-imidazole-co-octyl methacrylate) were mixed. After one hour of nitrogen gas injection into the mixed solution, the activated tubular porous supports were immersed in the solution for 2 to 3 days. Following the confirmation that the complex had been retained in the pores, the porous memhranes were taken out into a dry box under a nitrogen atmosphere and then dried in vacuum.
Red, clear porous membranes were obtained which contained 3% by weight of the complex and had pores 40 ~ or less in diameter, with adequate mechanical strength.
Thorough introduction of the CoP complex into the porous glass was confirmed by electron spectroscopy for chemical ~ ~ ~e~

analysis (ESCA). Nitrogen adsorption indicated that the surface area decreased with the introduction of the complex.
Reversible oxygen adsorption and desorption of the porphy-rin complex in the membranes could be confirmed from changes in the visible spectrum (oxygen-combined type: 545 nm; deoxygen-ation type: 528 nm).
The porous membranes thus prepared were tested for their mixed oxygen-nitrogen gas permeability by gas chromatography.
When a mixed gas with an oxygen concentration of 2.6% was supplied, the permeability coefficient was 4.1x10-6 cm3 (STP) -cm/cm2 sec cmHg and ~ = 7, achieving efficient permeation of oxygen. The comparative values of a complex-free porous mem-brane determined under identical conditions were: permeability coefficient 7.8x10-6 cm3 (STP) cm/cm2 sec cmHg and ~ = 0.98.
Obviously, the membranes according to the invention were superior in performance. The oxygen permeability of the membranes remained stable with little change one month later.
Example 2 In Example 1, a combination of CoP and poly~N-vinyl-imidazole-co-lauryl methacrylate) was used instead, otherwise the same procedure was followed. Porous membranes, red and clear, which contained 3% by weight of the resulting complex and had a pore size of 40 ~ or less and adequate mechanical strength were obtained. Permeability tests of the membranes, conducted in the same way as in Example 1, indicated their 26~14~
ability of efficient oxygen production, with a permeability coefficient of 4.2x10-6 cm3 (STP~ cm/cm2 sec cmHg and ~ = 6.
Example 3 The procedure of Example 1 was repeated with the exception that the ligand was replaced by poly(N-vinylimidazole-co-butyl methacrylate). Porous membranes containing 3% by weight of the complex, red and clear, and which possessed a pore size of 40 A
or less and adequate mechanical strength resulted. Permeabili-ty measurements made in the same way as in Example l gave a permeability coefficient of 4.5x10-6 cm3 (STP) cm/cm2 sec cmHg and ~ = 7, indicating efficient oxygen production.
Example 4 Excepting the use of N-methylimidazole as the ligand, the procedure of Example l was followed to obtain red, clear porous membranes containing 3% by weight of the complex and having a pore size of 40 ~ or less and satisfactory mechanical strength.
Permeability measurements performed similarly to Example 1 indicated efficient oxygen production, with a permeability coefficient of 8.5x10-6 cm3 (STP) cmlcm2 sec cmHg and ~ = 5.
The oxygen-separating porous membranes according to the present invention comprise a porous membrane and a certain porphyrin complex dispersed on the pore surface of the mem-brane. Their oxygen-permeability coefficients are as high as approximately 103 times those of conventional polymeric mem-branes containing or not containing metal complexes. They can, ~4~
therefore, treat by far the larger volume of gases, with the selectivity value ~ as oxygen-separating membranes in excess of 5. The membranes are capable of collecting oxygen-rich gases from lean feed gases or even recovering high-purity nitrogen gas by single-stage permeation. Further outstanding advantages are that they do not deteriorate with time but maintain good durability and heat resistance.

Claims (17)

1. An oxygen-separating porous membrane characterized by a complex comprising (a) a transition metal (II) ion, and (b) a ligand taken from the group consisting of (1) porphyrins, (2) Schiff bases, (3) cyclidenes, and (4) amine-like macrocycles, and (c) an aromatic amine, said complex retained in the pores of a porous substrate, the mean free pore diameter of said porous membrane being in the range of 3.5 to 100 .ANG..
2. The membrane of claim 1 in which said ligand is a porphyrin.
3. The membrane of claim 2 in which said porphyrin is meso-tetrakis(.alpha.,.alpha.,.alpha.,.alpha.-o-pivalamidophenyl)porphyrinato.
4. The membrane of claim 1 in which said transition metal (II) comprises cobalt (II).
5. The membrane of claim 1 in which said aromatic amine comprises (1) copolymers of a vinyl aromatic amine and either (a) an alkyl acrylate or (b) an alkyl methacrylate, or (2) a low-molecular-weight aromatic amine.
6. The membrane of claim 5 in which said aromatic amine is a copolymer of a vinyl aromatic amine and either (i) an alkyl acrylate or (ii) an alkyl methacrylate, containing 1 to 15 carbon atoms in the alkyl group thereof.
7. The membrane of claim 1 in which said transition metal (II) comprises from about 0.02 to 1.7 millimoles per gram of said complex.
8. The membrane of claim 7 in which said transition metal (II) comprises from about 0.20 to 1.7 millimoles per gram of said complex.
9. The membrane of claim 1 in which said porous substrate comprises an inorganic porous membrane.
10. The membrane of claim 1 in which said porous substrate comprises an organic porous membrane.
11. The membrane of claim 10 in which said porous substrate comprises polysulfone.
12. The membrane of claim 10 in which said porous substrate comprises polyimides.
13. The membrane of claim 1 in which said porous membrane comprises a flat film or a hollow fiber membrane.
14. The membrane of claim 1 in which said transition metal (II) comprises cobalt (II), said porphyrin is meso-tetrakis-(.alpha.,.alpha.,.alpha.,.alpha.-o-pivalamidophenyl)porphyrinato, and said porous membrane comprises hollow fibers.
15. The membrane of claim 1 in which said mean free pore diameter is in the range of 3.8 to 60 .ANG..
16. The membrane of claim 14 in which said mean free pore diameter is in the range of 3.8 to 60 .ANG..
17. The membrane of claim 14 in which said aromatic amine comprises (1) copolymers of a vinyl aromatic amine and either (a) an alkyl acrylate or (b) an alkyl methacrylate, or (2) a low-molecular-weight aromatic amine.
CA002049200A 1990-08-15 1991-08-14 Oxygen-separating porous membranes Abandoned CA2049200A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-216426 1990-08-15
JP21642690 1990-08-15
JP3-170384 1991-06-17

Publications (1)

Publication Number Publication Date
CA2049200A1 true CA2049200A1 (en) 1992-02-16

Family

ID=16688381

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002049200A Abandoned CA2049200A1 (en) 1990-08-15 1991-08-14 Oxygen-separating porous membranes

Country Status (5)

Country Link
CN (1) CN1031623C (en)
BR (1) BR9103447A (en)
CA (1) CA2049200A1 (en)
MX (1) MX9100665A (en)
PT (1) PT98664A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8465630B2 (en) * 2008-11-10 2013-06-18 Praxair Technology, Inc. Oxygen separation assembly and method
CN112850668A (en) * 2019-11-27 2021-05-28 中天科技精密材料有限公司 Chlorine-containing tail gas helium purification system

Also Published As

Publication number Publication date
CN1031623C (en) 1996-04-24
BR9103447A (en) 1992-05-12
CN1059672A (en) 1992-03-25
PT98664A (en) 1992-06-30
MX9100665A (en) 1992-04-01

Similar Documents

Publication Publication Date Title
US5229465A (en) Oxygen-permeable polymeric membranes
US7658784B2 (en) Composite material, in particular composite membrane, and process for the production of the same
GB2214103A (en) Process for selectively separating water vapour from a gaseous mixture
US5411580A (en) Oxygen-separating porous membranes
EP1292380A1 (en) Mixed matrix nanoporous carbon membranes
EP0475053B1 (en) Oxygen-separating porous membranes
CA2363477A1 (en) Process for making microporous membranes having selected gas-selective sites and the membranes so made
US5147424A (en) Oxygen-permeable polymeric membranes
Yoshikawa et al. Selective permeation of carbon dioxide through synthetic polymer membranes having pyridine moiety as a fixed carrier
EP0304818B1 (en) Gas separation membrane
US5045357A (en) Process for preparing a membranous gas separator
CA2049200A1 (en) Oxygen-separating porous membranes
JP2003053125A (en) Oxygen permeable polymer membrane
EP0464718B1 (en) Oxygen-permeable polymeric membranes
Bellobono et al. Transport of oxygen facilitated by peroxo-bis [N, N′-ethylene bis-(salicylideneiminato)-dimethylformamide-cobalt (III)] embedded in liquid membranes immobilized by photografting onto cellulose
JPH0477607B2 (en)
CA1329898C (en) Reactive posttreatment for gas separation membranes
JPH0352631A (en) Polymer membrane for oxygen enrichment
JPH0698278B2 (en) Polymer film for oxygen enrichment
JPS6380826A (en) Selective gas-permeable composite membrane
KOMIYAMA et al. CHROMATOGRAPHIC CHIRAL RESOLUTION
JPH06142466A (en) Carbon dioxide separation film and carbon dioxide carrier
JPH02237627A (en) Permselective membrane for gas
Serivalsatit Mechanism of the mixed matrix membrane (polyethylene glycol/silicone rubber) separation for polar gases
JPH0246251B2 (en)

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead