CA2046518C - Filter - Google Patents

Filter

Info

Publication number
CA2046518C
CA2046518C CA002046518A CA2046518A CA2046518C CA 2046518 C CA2046518 C CA 2046518C CA 002046518 A CA002046518 A CA 002046518A CA 2046518 A CA2046518 A CA 2046518A CA 2046518 C CA2046518 C CA 2046518C
Authority
CA
Canada
Prior art keywords
filter
plates
ducts
outlet ducts
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002046518A
Other languages
French (fr)
Other versions
CA2046518A1 (en
Inventor
Hans Albrecht Haerle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwaebische Huettenwerke Automotive GmbH
Original Assignee
Schwaebische Huettenwerke Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schwaebische Huettenwerke Automotive GmbH filed Critical Schwaebische Huettenwerke Automotive GmbH
Publication of CA2046518A1 publication Critical patent/CA2046518A1/en
Application granted granted Critical
Publication of CA2046518C publication Critical patent/CA2046518C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/10Fibrous material, e.g. mineral or metallic wool
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/14Sintered material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/24Sintered porous material, e.g. bronze, aluminium or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Centrifugal Separators (AREA)
  • Networks Using Active Elements (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Catalysts (AREA)

Abstract

A filter for the separation of impurities from exhaust gases, in particular from exhaust gases of an internal combustion engine, is provided with a filter body comprising a plurality of compression-moulded and sintered filter plates (1) with high temperature stability made from powdered metal, metal filings, metal fibres or a mixture thereof, which are disposed over one another or behind one another respectively and are spaced by spacers, form a plurality of flow ducts between them. The flow ducts are open on one side and closed on the other, with the walls of the filter plate (1) lying between the inlet and outlet ducts (4, 5) representing filter surfaces. One insert or several inserts (7) consisting of catalytic materials or coated with catalytic materials is or are inserted into the outlet ducts (5).

Description

A filter ~4~5 t 8 The invention relates to a filter for the separation of impurities from exhaust gases, in particular from exhaust gases of an internal combustion engine, having a filter body consisting of a plurality of compression-moulded and sintered filter plates with high temperature stability made from powdered metal, metal filings, metal fibres or a mixture thereof, which are disposed on top of one another or behind one another respectively, are separated by spacers and form a plurality of flow ducts between them, with the flow ducts being open on one side and closed on the other side so as to form inlet and outlet ducts respectively, and with the walls of the filter plate lying between the inlet and outlet ducts representing filter surfaces.

In the exhaust gases from a diesel engine in particular, there is a plurality of soot particles which can cause problems if, apart from an elimination of the soot from the exhaust gases, one would also wish simultaneously to remove further impurities or harmful exhaust gas constituents by catalytic action.

Thus, for example, a good catalytic function of the conversion of carbon monoxide and hydrocarbons by catalytic materials is not possible when a filter is charged with soot.

Therefore it is known firstly to clean the soot particles from the exhaust gases by a filter, and then to direct the exhaust gases cleaned in this way over a catalyst connected behind said filter. However a disadvantage of this arrangement is that it is very expensive and therefore very uneconomical.
In the prior applications P 39 01 609.9 and P 39 37 809.8 from the same applicant, filters have already been proposed, especially for the removal of soot particles, which consist of a plurality of co~pression-moulded and sintered filter plates with high temperature stability of the type mentioned at the beginning.

The object of the present invention is to create a filter of this type and to improve it so that both a removal of soot particles and also a catalytic function for the elimination or conversion of further impurities and harmful constituents in the exhaust gases is possible in a single filter unit and as far as possible without reciprocal disadvantageous influence.

This object is achieved-according to the invention in that one or several inserts, which are made from catalytic materials or which are coated with catalytic materials, are introduced into the outlet ducts.

By the construction of the filter plate specified by the invention and their arrangement with respect to one another, it has surprisingly become possible to integrate catalytically effective inserts directly into the outlet ducts and thus to dispense with a separate filter unit. As before, impurities can become deposited on the filter surface. Thus a soot conversion can occur in the conventional way on and in the-filter surfaces -and walls respectively between the inlet and outlet ducts. After passing through the filter walls separating the inlet ducts from the outlet ducts and therefore after a soat conversion, the catalytic action of the inserts may be used to remove the remaining constituents which can be removed or converted by catalytic action, such as for example carbon monoxide and hydrocarbon.

By the design specified by the invention, previously cleaned exhaust gases flow over the inserts, as a result of which expensive coating processes or systems connected one behind the other can be dispensed with.

The inserts in the outlet ducts are simply constructed as catalyst plates extending parallel to the direction of flow, which preferably extend over the entire length of the outlet ducts.

In this way the exhaust gases flow along all the surfaces of the catalyst plates on their way to the outlet, and a correspondingly long time is available for the chemical reaction.

By using spacers between the individual filter plates, by which the ducts are formed, the inserts and catalyst plates respectively can be simply integrated into the outlet ducts.
Thus for this purpose the inserts and catalyst plates respectively may be disposed between the ribs, beads or the-like of ribs, beads or the like abutting against one another of adjacent filter plates.

If it is simply specified that the filter plates are constructed as waves, the inserts and catalyst plates respectively may be inserted between wave crests and wave troughs of adjacent filter plates with abutting wave crests -- - and wave troughs.

In a very advantageous and not obvious design of the inserts and catalyst plates respectively, it may be specified that they are structured on their surfaces.

By this design there is firstly a greater surface and thus a longer reaction time for the chemical reactions and secondly by an appropriate adaptation of the structuring a turbulence effect and thus also a better reaction can be achieved.

Many different embodiments are possible for the structuring.
For example, appropriate stamping operations can simply be performed and protrusions and/or depressions, knobs, ribs, wave crests and wave troughs and the like may be formed.

In an advantageous development of the invention it may be specified that the filter plates be coated on the side of the inlet ducts with catalytically effective materials to lower the soot conversion temperature. In this way the efficiency of the filter is increased.

A very advantageous method of producing the filter specified by the invention may consist in that the inserts and catalyst plates respectively are provided with protrusions and/or depressions on their surfaces.

In this way a combined filter for the removal of soot and the removal of other exhaust gas constituents by a oatalytic action may be created in practice in a single operating cycle and thus very cheaply.

The connection of the individual plates together with the inserts and catalyst plates respectively to form one unit may be performed in different ways.
Thus-, ~or- example, compression-moulded filter--plates and inserts, which are coated with catalytically effective powders, or catalyst plates can be sintered together to form one unit in a common sintering process, with the powder fusing together on the inserts.

However it is also possible to bond compression moulded and already sintered filter plates, between which the catalytically coated inserts and the catalytic plates respectively are inserted, to form one unit.

Likewise the individual compression-moulded and sintered filter plates having the inserts or catalyst plates respectively are connected on the peripheral side by mechanical connection members in such a way that the inlet and outlet ducts are produced as desired.

Therefore, in accordance with the present invention, there is provided a filter, suitable for the separation of impurities from the exhaust gases of an internal combustion engine, including a filter body comprising a plurality of compression-moulded and sintered filter plates made from powdered metal, metal filings, metal fibers or a mixture thereof, which are disposed against one another and separated by spacers to form a plurality of flow ducts therebetween, with the flow ducts being alternately open on one end and closed on the other end so as to form alternating adjacent inlet and outlet ducts with the walls of the filter plates lying between the inlet and outlet ducts providing filter surfaces and the outlet ducts containing catalytic inserts which are made of catalytic materials or which are coated with catalytic materials, said inserts comprising plates extending parallel to said flow ducts and generally extending over the entire length and width of said outlet ducts.

Also in accordance with the present invention, there is provided a filter apparatus, suitable for the separation of impurities from the exhaust gases of an internal combustion engine, said apparatus including a filter body having a plurality of inlet and outlet ducts, with the inlet ducts being separated from the outlet ducts by porous filter walls, wherein the filter body comprises a plurality 5a 204651 8 of filter plates having a first end portion which is an extension of a porous filter wall of the filter plate and a second end portion which comprises a straight end section parallel to the first end portion and off-set therefrom by a bent section, with said plurality of filter plates being arranged against each other in an alternating head-to-toe arrangement to provide that said first end portion of a given filter plate is adjacent the second end portion of an adjacent plate and the second end portion of said given filter plate is adjacent the first end portion of another adjacent plate, to thereby form said inlet and outlet ducts therebetween, said first end portion of said given filter plate and the adjacent second end portion of an adjacent filter plate being tightly gripped in a fluid sealing engagement by a clamping element with all inlet ducts thereby open on a first end face of said filter body and closed on a second end face of said filter body, and with all outlet ducts thereby open on said second end face of said filter body and closed on said first end face of said filter body, and said filter body further comprises catalytic inserts within said outlet ducts.
Further in accordance with the present invention, there is provided a filter, suitable for the separation of impurities from the exhaust gases of an internal combustion engine including a filter body comprising a plurality of compression-moulded and sintered filter plates made from powdered metal, metal filings, metal fibers or a mixture thereof, said filter plates being coated on the side of the inlet ducts with catalytically effective materials to lower the soot conversion temperature, said filter plates being disposed against one another and V

5b 20465 1 8 separated by spacers to form a plurality of flow ducts therebetween, with the flow ducts being alternately open on one end and closed on the other end so as to form alternating adjacent inlet and outlet ducts with the walls of the filter plates lying between the inlet and outlet ducts providing filter surfaces and the outlet ducts containing catalytic inserts which are made of catalytic materials or which are coated with catalytic materials, said inserts comprising plates extending parallel to said flow ducts generally extending over the entire length and width of said outlet ducts.

An exemplified embodiment of the invention is described in principle below by reference to the drawings.

Fig. 1 shows a simplified longitudinal section through the filter as specified by the invention (in detail);

Fig. 2 shows a detailed enlarged representation of a cross section.

The filter is constructed from a plurality of compression-moulded filter plates 1 with high temperature stability, which are disposed one on top of the other. The filter plates 1 may be sintered and have a waved surface which is such that in the direction of flow (see arrow A in Fig. 1) flow ducts are formed. In this case the crest of the waves 9 simultaneously form the spacers for the filter plate 1 adjacent thereto so as to form the desired flow ducts between individual filter plates (see Fig. 2).

5c 2046518 The filter plates 1 have an identical construction and at one end have a face representing a direct and straight extension of the filter surface, whereas on the other side it has a bend 2 ending in a straight end piece 3, parallel to the surface of the filter plate.

However it is of course possible for bends to be located at both ends.
To produce a filter the desired number of filter plates 1 are laid on top of one another in such a way that one front face with a straight part and one front face with the bend 2 and the end piece lie on top of one another. In this way between adjacent filter plates 1 not only flow channels are farmed, but edges are alternately produced on one side of the ducts by the bends 2 or the end pieces 3 respectively.

As is evident, in this way inlet ducts 4 are created which are open on the inlet side - on the left in the drawings -and are closed on the right, while outlet ducts 5 lying between them are closed on the left side, i.e. on the inlet side, and open on the right side, i.e. on the outlet side.

However at the same time as the filter plates 1 are laid one on top of the other, catalyst plates 7 are inserted as inserts between them respectively behind two filter plates 1 laid on top of one another. This is done in such a way that they lie in the outlet ducts 5.

The catalyst plates 7 extend in the direction of flow over the entire length and width of the outlet ducts 5, with them lying on the wave crests and wave troughs of filter plates adjacent to one another.

To form a unit and to seal the individual filter plates 1 at their inlet and outlet sides, the filter plates 1 may now be connected to one another in a common sintering process - - - together-with the catalyst-plates 7. Likewise they may be---bonded at their ends to one another or as specified in the prior application P 39 37 809.8 and be connected to one another by mechanical means shown here in Fig. 1, for example. The mechanical means may be spring clamps 6, for example, which force together the ends of the filter plates 1. Another method of connection may also be produced by lock seams at the ends of the filter plates, which are accordingly crimped over.
In operation soot constituents on the filter surfaces and in the porous walls of the filter plates 1 respectively between the inlet ducts 4 and the outlet ducts 5 are separated, with soot conversion or soot carburation occurring. After passing through the filter walls between the inlet ducts 4 and the outlet ducts 5, the exhaust gases precleaned in this way may flow on both sides along the catalyst plates 7 in the outlet ducts 5 to the outlet, with the conversion of further harmful exhaust gas constituents occurring on the basis of the catalytic action of the catalyst plates 7.

Known catalytic materials, such as platinum, vanadium, cobalt, rhodium and the like, may be used as materials for the catalyst plate or for its coating.

As is evident from the-enlarged representation in Fig. 2, the catalyst plates 7 are structured on both their surfaces.
Corresponding protrusions or knobs are shown in principle by the reference number "10".

In order to improve the soot conversion, in particular to reduce the soot conversion temperature, the filter plates may in addition be provided with catalytically effective materials, such as manganese, molybdenum or the like, on their sides closest to the inlet sides.

The lateral sealing of the filter plates may be effected, for example, by an appropriate design with sealing lips 8, which can be constructed as step-shaped shoulders. In this case sealing may also be effected by bonding, sintering or by a mechanical compression operation.
A part of the filter housing, in which the filter plates 1 are installed, is represented by the reference number "11".

Powdered metal, metal wires, metal fibres or metal filings can be used as the basic material for the filter plates 1.
Care just has to be taken so that the walls have adequate porosity, which is achieved either by coarse powdered metal or even better by plaiting or tangle of metal wires or metal filings or metal fibres respectively.

A woven cloth or a knitted fabric of metal fibres or metal wires which are sintered together can also be used as a basic material for this purpose. Such a process is described, for example, in the prior application P 39 08 581.3.

Such a woven cloth or knitted fabric may also be in strip form, which is then wound in a spiral shape in several turns, with the individual turns being separated by spacers in the strip and flow ducts being formed in this way. The flow ducts then only need to be alternately sealed on the front sides, so that inlet and outlet channels are created, so that the exhaust gases can flow in the axial direction through the cylindrical filter body formed in this way. Such a filter body is described in the prior application P 39 10 609.9, for example. Also with such a filter body inserts and catalyst plates respectively can be disposed in the outlet ducts without any problems. For this purpose it is just necessary during the helicoidal winding of the strip when it is produced simultaneously to lap and push in inserts so that they are respectively located in the outlet ducts.

Claims (13)

1. A filter, suitable for the separation of impurities from the exhaust gases of an internal combustion engine, including a filter body comprising a plurality of compression-moulded and sintered filter plates made from powdered metal, metal filings, metal fibers or a mixture thereof, which are disposed against one another and separated by spacers to form a plurality of flow ducts therebetween, with the flow ducts being alternately open on one end and closed on the other end so as to form alternating adjacent inlet and outlet ducts with the walls of the filter plates lying between the inlet and outlet ducts providing filter surfaces and the outlet ducts containing catalytic inserts which are made of catalytic materials or which are coated with catalytic materials, said inserts comprising plates extending parallel to said flow ducts and generally extending over the entire length and width of said outlet ducts.
2. A filter according to Claim 1 wherein the spacers are formed by ribs, beads or wave crests formed in the filter plates, and the catalytic inserts comprise catalyst plates disposed between said ribs, beads or wave crests which are abutting one another at adjacent filter plates.
3. A filter according to Claim 2 wherein the filter plates have a corrugated planar configuration comprising a plurality of wave crests with a plurality of wave troughs therebetween, and the catalyst plates lie between wave crests and wave troughs which are formed by filter plates abutting against one another.
4. A filter according to Claim 3 wherein said catalyst plates are provided with protrusions on their surfaces.
5. A filter according to Claim 1 wherein the filter plates are coated on the side of the inlet ducts with catalytically effective materials to lower the soot conversion temperature.
6. Filter apparatus, suitable for the separation of impurities from the exhaust gases of an internal combustion engine, said apparatus including a filter body having a plurality of inlet and outlet ducts, with the inlet ducts being separated from the outlet ducts by porous filter walls, wherein the filter body comprises a plurality of filter plates having a first end portion which is an extension of a porous filter wall of the filter plate and a second end portion which comprises a straight end section parallel to the first end portion and off-set therefrom by a bent section, with said plurality of filter plates being arranged against each other in an alternating head-to-toe arrangement to provide that said first end portion of a given filter plate is adjacent the second end portion of an adjacent plate and the second end portion of said given filter plate is adjacent the first end portion of another adjacent plate, to thereby form said inlet and outlet ducts therebetween, said first end portion of said given filter plate and the adjacent second end portion of an adjacent filter plate being tightly gripped in a fluid sealing engagement by a clamping element with all inlet ducts thereby open on a first end face of said filter body and closed on a second end face of said filter body, and with all outlet ducts thereby open on said second end face of said filter body and closed on said first end face of said filter body, and said filter body further comprises catalytic inserts within said outlet ducts.
7. Filter apparatus according to Claim 6 wherein said catalytic inserts comprise plate elements extending across the full width and along the full length of said outlet ducts.
8. Filter apparatus according to Claim 7 wherein said catalytic insert plate elements are coated with or made of catalytically active components.
9. Filter apparatus according to Claim 6 wherein the filter plates are provided with sealing lips at the side edges.
10. Filter apparatus according to Claim 9 wherein the sealing lips are formed with step-shaped shoulders at the side edges of the filter plates.
11. Filter apparatus according to Claim 6 wherein said filter plates have a corrugated planar configuration comprising a plurality of wave crests with wave troughs therebetween for providing said inlet and outlet ducts between adjacent filter plates.
12. Filter apparatus according to Claim 6 wherein said filter plates comprise catalytically effective materials.
13. A filter, suitable for the separation of impurities from the exhaust gases of an internal combustion engine including a filter body comprising a plurality of compression-moulded and sintered filter plates made from powdered metal, metal filings, metal fibers or a mixture thereof, said filter plates being coated on the side of the inlet ducts with catalytically effective materials to lower the soot conversion temperature, said filter plates being disposed against one another and separated by spacers to form a plurality of flow ducts therebetween, with the flow ducts being alternately open on one end and closed on the other end so as to form alternating adjacent inlet and outlet ducts with the walls of the filter plates lying between the inlet and outlet ducts providing filter surfaces and the outlet ducts containing catalytic inserts which are made of catalytic materials or which are coated with catalytic materials, said inserts comprising plates extending parallel to said flow ducts generally extending over the entire length and width of said outlet ducts.
CA002046518A 1990-07-13 1991-07-09 Filter Expired - Fee Related CA2046518C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4022321A DE4022321A1 (en) 1990-07-13 1990-07-13 FILTER
DEP4022321.3 1990-07-13

Publications (2)

Publication Number Publication Date
CA2046518A1 CA2046518A1 (en) 1992-01-14
CA2046518C true CA2046518C (en) 1995-04-18

Family

ID=6410214

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002046518A Expired - Fee Related CA2046518C (en) 1990-07-13 1991-07-09 Filter

Country Status (6)

Country Link
EP (1) EP0470365B1 (en)
JP (1) JPH0666127A (en)
KR (1) KR920002198A (en)
AT (1) ATE112360T1 (en)
CA (1) CA2046518C (en)
DE (2) DE4022321A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4209793A1 (en) * 1992-03-26 1993-09-30 Schwaebische Huettenwerke Gmbh Method and device for separating soot particles from an exhaust gas stream
EP0590814B1 (en) * 1992-09-28 1996-12-18 Ford Motor Company Limited A particulate and exhaust gas emission control system
DE4234930A1 (en) * 1992-10-16 1994-04-21 Schwaebische Huettenwerke Gmbh Filters for separating contaminants from exhaust gases
DE19810738C1 (en) * 1998-03-12 1999-04-22 Hjs Fahrzeugtechnik Gmbh & Co Cleaning of filter elements in the exhaust of diesel engines
DE10035544B4 (en) * 2000-07-21 2012-01-05 Daimler Ag Filter arrangement for an emission control system
DE10301034A1 (en) * 2003-01-13 2004-07-22 Hjs Fahrzeugtechnik Gmbh & Co. Filter member consists of number of filter pockets which extend longitudinally along the filter body, gap between pocket walls, and a mask
DE10346286B3 (en) * 2003-10-06 2005-04-14 J. Eberspächer GmbH & Co. KG The exhaust purification device
DE102004054158A1 (en) 2004-11-10 2006-05-11 Purem Abgassysteme Gmbh & Co. Kg Filter plate for a particle filter
KR100985489B1 (en) * 2007-11-22 2010-10-06 존슨매티카탈리스트코리아 주식회사 Metal Fiber Filter for Purifying Diesel Engine Exhaust Gas Having Slot Type By-Passing Part and Exhaust Gas Purifying System
DE102008050039A1 (en) 2008-08-11 2010-02-18 Elringklinger Ag Particle separation device for an aerosol flow
CN105927321A (en) * 2016-04-21 2016-09-07 北京高鑫伟业滤清器有限责任公司 Filter
CN105888781B (en) * 2016-04-21 2020-07-17 北京高鑫伟业滤清器有限责任公司 Filter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3228325A1 (en) * 1982-07-29 1984-02-02 Fa. J. Eberspächer, 7300 Esslingen FILTER AND AFTER COMBUSTION DEVICE
DE3801634A1 (en) * 1988-01-21 1989-08-03 Leistritz Ag FILTER AND REBURNING DEVICE FOR EXHAUST GASES, ESPECIALLY OF COMBUSTION ENGINES
DE3937809A1 (en) * 1989-11-14 1991-05-16 Schwaebische Huettenwerke Gmbh FILTER FOR SEPARATING IMPURITIES

Also Published As

Publication number Publication date
EP0470365A1 (en) 1992-02-12
EP0470365B1 (en) 1994-09-28
DE59103096D1 (en) 1994-11-03
CA2046518A1 (en) 1992-01-14
DE4022321A1 (en) 1992-01-16
KR920002198A (en) 1992-02-28
JPH0666127A (en) 1994-03-08
ATE112360T1 (en) 1994-10-15

Similar Documents

Publication Publication Date Title
US5204067A (en) Filter
CA2046518C (en) Filter
US5229078A (en) Filter for the separation of impurities or contaminants
US11260331B2 (en) Air cleaner assemblies
US7044992B2 (en) Particle filter for exhaust gases of internal combustion engine engines
RU2187003C2 (en) Heat-resistant and regenerable filtering element with preset flow paths
US5179061A (en) Filter or catalyst body
US6776814B2 (en) Dual section exhaust aftertreatment filter and method
US5215724A (en) Sintered composite filter
EP1990510B1 (en) Carrier for exhaust-gas purification
US7527666B2 (en) Honeycomb body with fissured end sides
EP1379322B2 (en) Exhaust gas system
US7468166B2 (en) Exhaust gas cleaning apparatus
RU2403956C2 (en) Coated solid particles collector where nitrogen dioxide is formed
CA2021723A1 (en) Process for the manufacture of a filter and the filter then manufactured
US5059326A (en) Fluid filter and method of manufacture
RU93042477A (en) FILTER FOR CLEANING EXHAUST GASES DIESEL ENGINES
US20040038819A1 (en) Pliable metal catalyst carriers, conformable catalyst members made therefrom and methods of installing the same
US6029440A (en) Turbulent flow precipitator for combustion in diesel or gasoline engine exhausts
FI88361C (en) CONTACT ORDER FOR THE PURPOSE OF PARTICULARS
WO2009090447A1 (en) Device designed to reduce atmospheric pollution from exhaust gases
JPH04342819A (en) Catalyst carrier for internal combustion engine
RU2094623C1 (en) Filter element with waste gases flowing over loop
JPH1037739A (en) Particulate trap device
JPS60110312A (en) Filter

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed