CA2004131C - A high performance epoxy based coverlay and bond ply adhesive with heat activated cure mechanism - Google Patents

A high performance epoxy based coverlay and bond ply adhesive with heat activated cure mechanism Download PDF

Info

Publication number
CA2004131C
CA2004131C CA 2004131 CA2004131A CA2004131C CA 2004131 C CA2004131 C CA 2004131C CA 2004131 CA2004131 CA 2004131 CA 2004131 A CA2004131 A CA 2004131A CA 2004131 C CA2004131 C CA 2004131C
Authority
CA
Canada
Prior art keywords
epoxy
aziridine
polyester
adhesive material
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA 2004131
Other languages
French (fr)
Other versions
CA2004131A1 (en
Inventor
Thomas F. Gardeski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CPFilms Inc
Original Assignee
CPFilms Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CPFilms Inc filed Critical CPFilms Inc
Priority to CA 2004131 priority Critical patent/CA2004131C/en
Priority to JP31513189A priority patent/JP2828290B2/en
Publication of CA2004131A1 publication Critical patent/CA2004131A1/en
Application granted granted Critical
Publication of CA2004131C publication Critical patent/CA2004131C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Epoxy Resins (AREA)
  • Laminated Bodies (AREA)

Abstract

A high performance laminating coverlay, and bond ply adhesive material includes one or more epoxy components which inter-react with a high molecular weight polyester component through a two-stage reaction sequence. The first stage of the reaction sequence includes a reaction between an aziridine cure component and a polyester component. The second stage of the sequence involves a reaction between the aziridine/polyester component and the epoxy component(s). The resulting adhesive material provides a flexible, fully cross linked adhesive material with good Z-axis stability and without the evolution of volatile by-products. This resulting adhesive material can be used in bonding polyimide films to etched circuit patterns to provide a high temperature resistant, solvent resistant, moisture resistant, insulating material with good flow properties under normal elecronic circuit processing and environmental conditions. The adhesive material can be used as a bond ply adhesive material for flexible base, hardboard, and multilayer electronic circuit material applications, as well as surface to surface bonding of other materials. In addition, the adhesive material, prior to the second reaction, is stable and has a long shelf life.

Description

20~4131.
PATENT
A HIGH PERFORMANCE EPOXY BASED COVERLAY AND BOND
PLY ADHESIVE WITH HEAT ACTIVATED CURE MECHANISM
by Thomas F. Gardeski BACKGROUND
During the past quarter century, the growth of the electronic circuits industry at an unrivaled pace has resul-ted in the development of higher performance materials of construction. However, the development of higher perfor-mance materials of construction has not resulted in the development of corresponding high performance adhesive materials and systems to bond the materials of construction together, especially in severe environmental conditions found in under-the-hood automotive and military applica-tions. Adhesive materials and systems that are currently available meet some of the requirements for such properties as peel strength, chemical resistance, moisture resistance, high temperature stability, dimensional stability especially in the Z-axis direction adequate flow, room temperature storage stability prior to processing and ease of proces-sing, but typically fail to meet one or more of the require-ments for one or more of the properties.

PATENT
A need has therefore been felt for an adhesive material that meets all the requisite property requirements for severe environmental conditions while retaining the ease of application.
SUMMARY
It is an object of the present invention to pro-vide an improved adhesive material.
It is a feature of the present invention to pro-vide an improved material for use in bonding electronic circuit construction materials.
It is another feature of the present invention to provide an adhesive material using a two stage reaction sequence.
It is yet another feature of the present invention to provide an adhesive material using a two stage reaction sequence wherein the intermediate adhesive material result-ing from the first reaction stage can be stored for long periods of time without deterioration of the properties of the adhesive material.
It is a still further feature of the present in-vention to provide an improved adhesive material by provid-ing a first reaction between an aziridine component and a polyester component and by providing a second reaction 2004131.
PATENT
between the aziridine/polyester component and at least one epoxy component, the at least one epoxy component being an electronic grade resin.
The foregoing and other features are accomplished, according to the present invention, by reacting a hydroxyl terminated polyester component with an aziridine cure component, the reaction proceeding at room temperature. The resulting polyester/aziridine component reacts with at least one and preferably two epoxy components, one of the epoxy components being an electronic grade resin such as tris methane novolac epoxy. The second reaction requires a temperature of 250°F to 400°F. The high reaction temperature permits the unreacted intermediate mixture of the polyester/azirdine component and the epoxy components) to have a long shelf life during which the implementation of the second reaction phase will result in high performance bonding. The intermediate mixture can be stored on a substrate protected by a release substrate or can be stored between two release substrates until needed.
These and other features of the present invention will be understood from the following description.
DESCRIPTION
The composition of materials of the present invention comprises at least one and preferably two epoxy components, one epoxy component of which must be selected . 2004131 from a family of electronic grade resins such as tris methane epoxy novolac sold by Dow under the designation Quatrex 5010. The optional components are epoxies such as the flexible "bis-epi" and hard "novolac" types such as Celanese Epi-Rez*5132 and Dow D.E.N* 438, respectively. The composition of materials includes a high molecular weight hydroxyl terminated polyester component with minimal carboxylic acid functionality, such as DuPont's 49002 and an aziridine curative component such as Xama 2 or 7 supplied by Cordova Chemical Co.
The two stage cure (reaction) sequence consists of first reacting the aziridine with the carboxcylic acid groups on the polyester as follows:

II ~-X-2RCOH + H2C CHZ
R.T.
O O
2 5 II II
RCO-CHZCHZ-N-X-N-CHZCHZ-OCR
H H
where R designates the high molecular weight polyester components and X designates the repeating unit of the aziridine component. This reaction takes place at room temperature.
* Trademarks PATENT
The second reaction, which is unique to the present invention, is comprised of reacting the -~- groups 5 -~~ groups of the epoxy components as follows:
O O

- - CHz-OCR+ CHz-CH- X -CH-CHz RCO-CH2CHz-N-X

H H

Q (300-400F) CH

2 N X N CHZCHz-OCR
z H -C-H H- C-H

H -C--- OH H-C--OH

X

I I

H -C-OH H- C-OH

H i H H i H

O

RCO-CH
CH

2 N X N CH2CHz-OCR
z where Y designates the tris methane epoxy either alone or in conjunction with a bis-epi and/or novolac epoxy having structures shown below:
~Hs OH H3 O
z z~
4 5 CH -CH-CH L O-~- j -~-.-OCHz-CH-CHz ~O-s~--~-~-...OCH2--CH-CHZ
CH3 ~ CH3 PATENT
"BIS-EPI" EPOXY
CH2 CHCHz -O /O
OCHZCH - CH2 O--CH2 C~HZ
Sb .--..~ CH2 ~ CH2 "NOVOLAC" EPOXY
E_xamole of the Process A mixture is prepared with the following components: a polyester resin component having a solids content of 17-20%, composed of DuPont 49002 base resin in a solvent mixture of 90% methylene chloride and 10% cyclohexa-none by weight; an epoxy novolac is dissolved in methylethyl ketone, with an 85% solids content by weight, known commer-cially as Dow DEN 438 an electronic grade epoxy resin at 75%
solids in methylethyl ketone known commercially as Dow Quatrex 5010; and a polyfunctional aziridine known commer-cially as Xama 7. The components mixture is prepared by combining 80% by solids content (by weight) of the polyester component to 10% by solids content (by weight) of the epoxy novolac to 10% by solids content (by weight) of the elec-tronic grade epoxy and 0.25 parts (by weight) of the aziri-dine to 100 parts by weight of the above mixture including solvents. The component mixture can be prepared in two ways:

7 ~ ~ PATENT
Procedure 1) The polyester and aziridine are combined, thoroughly mixed, then allowed to stand at room temperature for a minimum of 30 minutes prior to the epoxy additions to allow onset of the aziridine/ carboxylic acid reaction; or Procedure 2) The polyester, epoxies, and aziridine are added separately without any mixing until all the components are in the vessel then thoroughly blended and allowed to stand for a minimum of 30 minutes prior to use to allow for onset of the aziridine/ carboxylic acid reaction.
The homogeneous solution is then applied by reverse roll coating technique to a 2 mil polyimide (e. g., Kapton) film to yield a 1 mil dry coating on the polyimide film. The polyimide film is dried in a 75 foot oven at 25 fpm (feet per minute) and 212°F, combined to a 1 mil release substrate at the coater/laminator combining station, rolled up and stored at room temperature for future use. (Accord-ing to another application, the homogeneous solution is stored between two release substrates, the adhesive material thereby being available for use with any surfaces to be bonded:) Sections are cut from the roll, the release substrate is removed, then the coated film was placed over a sheet of 1 oz. copper. The composite structure is then placed between two caul plates with a high temperature release material on both sides and pressed in a hydraulic press for 1 hour at 375°F and 250 psi pressure. The resulting composite laminate structure exhibits the properties exhibited in Table I when tested in accordance with the ANSIIPC-FC-232B and 241B procedures.
* Trademark C

PATENT
Initial Peel 20 PLI

Peel After Solder 21 PLI

Chemical Resistance Solder Float Pass Aging (96 hrs @ 275F No Bond Strength in air circulating oven) Change where;

PLI - Pounds per lineal inch MEK - Methylethyl ketone TOL - Toluene IPA - Isopropylalcohol T111 = Trichloroethylene MC - Methylene Chloride TABLE I
____________________________________________________ OTHER EXAMPLES
1. The adhesive mixture is coated on polyimide (and laminate) film to foil in line at 300°F and 90-100 psi pressure. The resulting structure is post cured for 2 hours at 150°F, 2 hours @ 275°F and 2 jpirs at 35-°F.
2. Coat release substrate and combine to another release substrate to yield an unsupported film.

2004131.
PATENT
The adhesive composition of the present invention provides a coverlay and bond ply adhesive coating material consisting of 50-90% by weight polyester and 90-50~ by weight epoxy with unique latent heat reactive cure mechanism comprised of one and preferably two epoxy components, one of which must be selected from a family of electronic grade resins such as tris methane epoxy novolac and the other epoxy or epoxies from the novolac or bis-epi epoxy families and a high molecular weight hydroxyl terminated polyester with a carboxcylic acid functionality as determined by an acid number ranging from 0.2 to 4Ø The adhesive material is cured in a two stage reaction sequence to provide a fully crosslinked network without the evolution of volatile by-products to provide an advanced laminating, coverlay, and bond ply adhesive for film to film, foil to film, foil to foil and hardboard to hardboard applications. The adhesive material has with excellent flexibility, superior bond strength, solder resistance, moisture and chemical resis-tance and superior Z-axis stability along with continuous and/or deferred processing capability. The high temperature of the second stage curing process provides that the coating material can be stored for long periods of time prior to the implementation of the curing process. The epoxy based adhesive materials can be coated on an insulating film or release substrate by a continuous process and stored at room temperature indefinitely prior to further processing, or laminated in-line to various foils or films, and which can be cured without the evolution of volatile by-products to provide a flexible bond-ply with superior overall properties to any currently available system with the added advantage of excellent Z-axis stability.

200413..
PATENT
The foregoing description is included to illus-trate the operation of the preferred embodiment and is not meant to limit the scope of the invention. The scope of the invention is to be limited only by the following claims.
5 From the foregoing description, many variations will be apparent to those skilled in the art that would yet be encompassed by the spirit and scope of the invention.

Claims (22)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A composite structure comprising:
a first construction material;
a second construction material; and an adhesive material between a first surface of said first construction material and a first surface of said second construction material, said adhesive material including:
(a) the reaction product of an aziridine with at least one polyester compound having a melting point of at least about 150°C and being the reaction product of at least one aromatic diacid, at least one aliphatic diacid, at least one diol and at least one triol or higher polyhydric alcohol; and (b) an epoxy component selected from the family of electronic grade resin epoxy components.
2. The composite structure of claim 1 wherein said first and said second construction materials are chosen from the group comprising polyimide films, metal foils and hardboards.
3. The composite structure of claim 1 wherein said electronic grade resin component is a tris methane novolac epoxy component.
4. The composite structure of claim 1 wherein said epoxy component includes at least one additional epoxy component selected from the groups of bis-epi epoxy components and novolac epoxy components.
5. The composite structure of claim 1 wherein said aziridine component and said polyester component are combined by a first reaction, said aziridine/polyester component is combined with said epoxy component in a second reaction wherein the group in said aziridine/polyester component reacts with groups in said epoxy component.
6. The composite structure of claim 1 wherein said first and said second construction material are release substrates; wherein a combination of said aziridine component, said polyester component and said epoxy component have not been heated.
7. A process for preparing a composite structure or a storage media comprising:
reaction of an aziridine with at least one polyester compound having a melting point of at least about 150°C and being the reaction product of at least one aromatic diacid, at least one aliphatic diacid, at least one diol and at least one triol or higher polyhydric alcohol to form an aziridine/polyester product;

mixing said aziridine/polyester product with at least a tris (hydroxyphenyl) methane novolac epoxy; and applying a resulting mixture to a location requiring said adhesive material prior to reaction between said aziridine/polyester product and said epoxy.
8. The process of claim 7 wherein the aziridine/polyester product is reacted with a tris (hydroxyphenyl) methane novolac epoxy in combination with a bisphenolepichlorohydrin epoxy or a novolac epoxy or both.
9. The process of claim 7 further comprising using 50%-90%
by weight of said polyester and 90%-50% by weight of said epoxy.
10. The process of claim 7 wherein reacting of said epoxy with said aziridine/polyester product includes a step of heating a mixture of said epoxy and said aziridine/polyester product to a temperature between 250°F and 400°F.
11. The process of claim 7 wherein said aziridine, said polyester and said epoxy are mixed together prior to reacting.
12. An article having two surfaces bonded together by applying to said surfaces the said resulting mixture of claim 7 and causing a reaction between said aziridine/
polyester product and said epoxy.
13. A composite article with film to film bonding, foil to foil bonding, or foil to film bonding having surfaces bonded together by applying to said surfaces the said resulting mixture of claim 7 and causing a reaction between said aziridine/polyester product and said epoxy.
14. A mixture for application to surfaces to be bonded together prepared in accordance with claim 7.
15. The process of claim 7 wherein said location requiring said adhesive material is a substrate selected from the group including film substrates, foil substrates and hardboard substrates.
16. An adhesive coating storage media for application to a surface to be bonded to a second surface, said media including at least one release substrate with an adhesive coating applied thereto, said coated substrate being prepared as described in claim 15.
17. A process for providing an adhesive material which comprises:
reacting an aziridine with at least one polyester compound having a melting point of at least about 150°C and being the reaction product of at least one aromatic diacid, at least one aliphatic diacid, at least one diol and at least one triol or higher polyhydric alcohol to form an aziridine/polyester product; and reacting said aziridine/polyester product with at least a tris (hydroxyphenyl) methane novolac epoxy.
18. The process for providing an adhesive material of claim 17, wherein the aziridine/polyester product is reacted with a tris (hydroxyphenyl) methane novolac epoxy in combination with a bisphenolepichlorohydrin epoxy or a novolac epoxy or both.
19. The process for providing an adhesive material of claim 17 further comprising using 50%-90% by weight of said polyester and 90%-50% by weight of said epoxy.
20. The process for providing an adhesive material of claim 17 wherein said polyester is selected from the group of polyesters consisting of high molecular weight hydroxyl terminated polyesters with a carboxylic acid functionality as determined by an acid number ranging from 0.2 to 4Ø
21. The process for providing an adhesive material of claim 17 wherein reacting of said epoxy with said aziridine/
polyester product includes a step of heating a mixture of said epoxy and said aziridine/polyester product to a temperature between 250°F and 400°F.
22. The process for providing an adhesive material of claim 17 wherein said aziridine, said polyester and said epoxy are mixed together prior to reacting.
CA 2004131 1989-11-29 1989-11-29 A high performance epoxy based coverlay and bond ply adhesive with heat activated cure mechanism Expired - Fee Related CA2004131C (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA 2004131 CA2004131C (en) 1989-11-29 1989-11-29 A high performance epoxy based coverlay and bond ply adhesive with heat activated cure mechanism
JP31513189A JP2828290B2 (en) 1989-11-29 1989-12-04 High performance coverlay and bond ply adhesives based on epoxy with thermally activated cure mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA 2004131 CA2004131C (en) 1989-11-29 1989-11-29 A high performance epoxy based coverlay and bond ply adhesive with heat activated cure mechanism

Publications (2)

Publication Number Publication Date
CA2004131A1 CA2004131A1 (en) 1991-05-29
CA2004131C true CA2004131C (en) 2001-04-17

Family

ID=4143658

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2004131 Expired - Fee Related CA2004131C (en) 1989-11-29 1989-11-29 A high performance epoxy based coverlay and bond ply adhesive with heat activated cure mechanism

Country Status (2)

Country Link
JP (1) JP2828290B2 (en)
CA (1) CA2004131C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3632964B1 (en) 2018-10-03 2022-09-28 3M Innovative Properties Company Curable precursor of a structural adhesive composition
EP3719090A1 (en) * 2019-04-02 2020-10-07 3M Innovative Properties Company Elastic one-part structural adhesive tape

Also Published As

Publication number Publication date
JPH03182583A (en) 1991-08-08
CA2004131A1 (en) 1991-05-29
JP2828290B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
US6054509A (en) Adhesive of epoxy resin, nitrile rubbers and curing agent
KR20020003818A (en) Flexible Printed Circuit Board
EP0676435A1 (en) Epoxy adhesives and copper foils and copper clad laminates using same
US5194307A (en) High performance epoxy based coverlay and bond fly adhesive with heat activated cure mechanism
US20010018122A1 (en) Adhesive composition
US5095077A (en) High performance epoxy based coverlay and bond ply adhesive with heat activated cure mechanism using polyester-aziridine reaction products
CA2004131C (en) A high performance epoxy based coverlay and bond ply adhesive with heat activated cure mechanism
JPH11343476A (en) Adhesive composition and copper-clad laminate
EP0436745B1 (en) A high performance epoxy based coverlay and bond ply adhesive with heat activated cure mechanism
JPS6262880A (en) Adhesive composition for flexible printed wiring board
WO1997031078A1 (en) Polyamide based laminating, coverlay, and bond ply adhesive with heat activated cure component
JP2722402B2 (en) Adhesive composition for flexible printed circuit boards
JPS61183374A (en) Adhesive composition for flexible printed circuit board
JPS63297483A (en) Adhesive composition for flexible printed circuit board
JPS61138680A (en) Adhesive and substrate for flexible printed circuit
JPS6259683A (en) Adhesive composition for flexible printed circuit board
JPS61195115A (en) Adhesive composition for flexible printed circuit board
JPS588773A (en) Adhesive composition
EP0436746B1 (en) Process of manufacture for high performance epoxy based laminating adhesives
JPS6146026B2 (en)
JPH01173687A (en) Flexible printed-circuit board
JPS6381139A (en) Prepreg for bonding
CA2004130A1 (en) High performance epoxy based laminating adhesive
JPS5866385A (en) Method of producing printed circuit board
JPS60197781A (en) Adhesive and flexible printed circuit board

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed