CA1325036C - Getter for incandescent lamps - Google Patents

Getter for incandescent lamps

Info

Publication number
CA1325036C
CA1325036C CA 590369 CA590369A CA1325036C CA 1325036 C CA1325036 C CA 1325036C CA 590369 CA590369 CA 590369 CA 590369 A CA590369 A CA 590369A CA 1325036 C CA1325036 C CA 1325036C
Authority
CA
Canada
Prior art keywords
getter
lamp
lamps
gettering
envelope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA 590369
Other languages
French (fr)
Inventor
John W. Shaffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram Sylvania Inc
Original Assignee
GTE Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GTE Products Corp filed Critical GTE Products Corp
Application granted granted Critical
Publication of CA1325036C publication Critical patent/CA1325036C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/52Means for obtaining or maintaining the desired pressure within the vessel
    • H01K1/54Means for absorbing or absorbing gas, or for preventing or removing efflorescence, e.g. by gettering
    • H01K1/56Means for absorbing or absorbing gas, or for preventing or removing efflorescence, e.g. by gettering characterised by the material of the getter

Landscapes

  • Discharge Lamp (AREA)

Abstract

IMPROVED GETTER FOR INCANDESCENT LAMPS

ABSTRACT OF THE DISCLOSURE
This invention relates to incandescent lamps and more particularly to the gettering of such lamps. In accordance with the present invention there is provided an improved method of gettering an incandescent lamp. The method comprises introducing a fill gas and a getter compound comprising a silane compound, or a partially halogenated derivative thereof, into an unsealed lamp envelope; sealing the lamp envelope; and heating the sealed envelope, for a sufficient period of time, and at a temperature sufficient to activate the getter to perform its desired gettering function prior to the thermal decomposition thereof.

Description

132503~

- IMPROVED GETTER FOR INCANDESCENT LAMPS

BACRGROUND OF THE I~V~NTION

This invention relates to incandescent lamps and more particularly to the gettering of such lamps.
The operating life of an incandescent lamp is greatly shortened by the presence of oxygen, carbon dioxide, and/or water vapor in the lamp atmosphere.
Water vapor is particularly harmful because even trace amounts "catalyze~ the evaporation of the tungsten filament ~oil by means of the well known ~water cycle.
In the water cycle, the temperature at the tungsten coil is thermally æufficient to decompose water vapor into hydrogen and o~ygen. The resulting osygen reacts with the tungsten in the coil to form volatile oxides which migrate to cooler parts of the lamp and condense. These oside deposits are reduced by the gaseous hydrogen to yield black metallic tungsten and reformed water, which causes the cycle to repeat.
'''.'' 132~036 The problems introduced by e~cess osygen in incandescent lamps are likewise well known. For example, in the tungsten-halogen cycle, o~ygen is the primary agent of attack on the tungsten filament.
~his attack may result in etching, and dendritic growth, and usually causes early filament failure.
While an e~tremely small amount of osygen is commonly accepted as a necessary constituent in the lamp, the amount which ends up in a finished tungsten-halogen capsule is generally recognized as being e~tremely variable and is always considered to be excessive.
The presence of this ~necessary constituent~ has long been recognized as a major impediment to the fabrication of longer lived and more consistently performing tungsten-halogen lamps.
A commonly utilized solution to the osygen problem in tungsten-halogen lamps is the introduction of one or more compounds into the lamp which will remove the excess oxygen and prevent its participation in the tungsten-halogen cycle. Such compounds are commonly referred to as oxygen qetters.
Various oxygen getters and/or gettering systems have been used previously. For e~ample, metallic getters such as tantalum, zirconium, niobium, copper, hafnium, titanium, aluminum, or various combinations thereof, have been employed as o~ygen getters.
Metallic getters may be attached to a portion of the filament mount within the lamp, e.g., in the form of a crimpPd piece of metal. These metal getters may also be incorporated as an alloy in the molybdenum leads which support the filament within the lamp.

.... - .; . .. -, .. , - .. , ;, . .. ..

132 ~a 036 U.S. Patent No. 4,305,017 describes the use of the above-identified metals together with precious metals such as palladium, platinum and gold as o~ygen getters.
Metal flags, such as those described in the '017 patent, tend to be difficult and espensive to attach to the internal structure of a tungsten-halogen lamp.
Also, some metallic getters that are used in incandescent lamps are not applicable for use in tungsten halogen lamps because they will react with the halogen and terminate the desired halogen cycle.
Likewise, the fabrication of specialized getter alloys can also add considerably to the cost of manufacturing a tungsten-halogen lamp. In addition, in certain lamp types, it is desirable for the getter to be present across the entire range of locations within the lamp.
Such positioning is impossible with metallic flag getters, and/or metal alloy gettering systems, which are generally limited to specific discrete locations.
Another commonly used osygen gettér for incandescent lamps is phosphorus. Phosphorus oxides which are formed by the gettering of o~ygen are volatile, even at the cold spot temperatures found in hot operating incandescent lamps, including tungsten-halogen lamps.
Phosphorus can be deposited in a lamp, for e~ample, on either the filament mount and~or the coil itself, e.g., by dipping a suspension of red phosphorus or P3N5 in a suitable solvent.
Alternatively, phosphorus can be deposited on the filament by evaporative coating of red phosphorus.
-4- 132~036 PATENT

Phosphorus can also be introduced into incandescent lamps as phosphine ~as (PH3), which is thermally decomposed into phosphorus and hydrogen by the heat of the coil at light-up.
Another o~ygen getter which has been employed in incandescent lamps is the carbon getter. Carbon getters may be introduced to the lamp as part of a hydrogenated hydrocarbon gas or as carbon mono~ide.
However, in addition to deleteriously affecting filament life in certain lamp types, carbon has failed to perform as expected as an o~ygen getter.
Yet another o~ygen gettering system is described in U.S. Patent No. 1,941,825. This patent teaches and claims the use of various gaseous fluoride compounds having water-absorbing properties. The list~of fluoride compounds includes SiF4, BF3, AsF3, PF3, and salts thereof.
New gettering systems are constantly being developed. The present invention represents another such advance in this art.

SUMMARY OF THE INVENTION

A gettering system, such as the gettering system of the present invention, wherein gettered o~ygen is bound in a permanent, nonvolatile form, so that the getter is effective in even the hottest operating lamps, clearly represents an advance in this art.
In accordance with the present invention there is provided a method of gettering an incandescent lamp.
The method comprises introducinq a fill gas and a getter comprising a silane compound, or a partially -5- 132~03~ PATENT

halogenated derivative thereof, into an unsealed lamp envelope; sealing the lamp envelope; and heating the sealed envelope, for a sufficient period of time, and at a temperature sufficient to activate the getter.
As used herein, the tPrms ~a silane compound~
refer to compounds having the following formula, (I):

siaH(2a ~ 2) I

wherein ~a~ is an integer greater than zero. Specific e~amples include SiH4 (a = 1); Si2H6 (a = 2);
Si3H8 (a = 3); etc., and mi~tures thereof.
As used herein, the terms ~partially halogenated derivatives~ refers to those compounds of Formula I, wherein from 1, and up to (2a ~ 1), of the hydrogens have been replaced ~y a halogen, i.e., F, Cl, Br, and/or I. Preferably the replacement is accomplished by bromine. It must be noted that in the method of the present invention, one hydrogen atom must always be present in the ~partialIy halogenated derivatives~
of the compounds of Formula I.
During the getter activation step of the present method, the getter of Formula I is heated sufficiently to be ~activated.~ It has been discovered that, for the compounds of Formula I, and the partially halogenated derivatives thereof, that the temperature and time required to ~activate~ the getter must be below the temperature and time which would otherwise . .
-6- 13 2 ~ 0 3 ~ PATENT

cause decomposition of the getter prior to its performing the desired gettering function. In fact, when temperatures and~or heating times sufficient to cause premature decomposition of the getter compound are employed, the getter compositions recited above fail to function.
During the getter activation step, the Formula I
getter reacts with residual impurities such as oxygen, water, etc., present in the sealed envelope, forming by-products including nonvolatile silicon dioside and hydrogen. When a partially halogenated derivative of the getter of Formula I is employed as the getter, such by-products further include halogen compounds, e.g., Br2, I2, and the like.
Advantageously, in the method of the present invention, the getter removes any osygen impurity from the envelop by binding the o~ygen in a stable, nonvolatile form, e.g., as silicon dio~ide ~SiO2), which does not decompose (and liberate o~ygen) under the high operating temperatures of the lamp.
For a better understanding of the present invention, together with other and further advantages and capabilities thereof, reference is made to the figures accompanying this specification, the following detailed description and the claims appended hereto.

BRIEF DESCRIPTION OF THE FIGURES

Figures 1 and 2 compare lamp test data for lamps fabricated using a phosphine getter against lamps fabricated in accordance with the method of the present invention.
-7- ~32~036 PA~ENT

DETAILED DESCRIPTION

The present invention i8 directed to an improved method of gettering incandescent lamps.
Incandescent lamps are well known in the lighting art. Such lamps typically include an hermetically sealed light pervious envelope such as guartz or hard glass, containiny a fill gas. Typical fill gases include a halogen and an inert gas. Such fill gases may further include hydrogen. The principal function of the fill gas in incandescent lamps is to retard evaporation of the coil. In some lamps the fill gas may perform the additional secondary function of suppressing the arc. The envelope also includes a filament wire, such as tungsten wire, which is in connection with lead-in wires sealed into and estending internally and e~ternally of the lamp envelope. 5uch lead-in wires may e~tend from opposite ends of the envelope (double-ended Iamp) or from the same end of the envelope (single-ended lamp). Such lamps may further be enclosed within an outer envelope or a parabolic reflector and a lens.
The present method removes residual impurities from the lamp after introducing the fill gas into the lamp en~elope and sealing the lamp. Such sealing step, commonly referred to in the art as ~tipping off,~ is a routine step in the fabrication or manufacture of incandescent lamps.
The method of the present invention includes introducing a fill gas and a getter comprising a compound of Formula 1:
:
Si H
a ~2a ~ 2) 8 1~2S03 PATENT

wherein ~a~ is an integer greater than zero, or a partially halogenated derivative thereof, into an unsealed lamp envelope comprising a light pervious envelope having a filament wire therein, the filament wire being in electrical connection with lead-in wires which are sealed into and e~tend internally and externally from the lamp envelope.
Preferably, the gaseous getter is introduced into the lamp envelope as a minor component of the fill gas. Alternatively, the fill gas and gaseous getter are separately introduced into the lamp.
After the fill gas and getter have been introduced into the lamp envelope, the lamp is sealed by conventional lamp sealing techniques.
After the lamp has been sealed, the lamp is heated at a temperature, and for a period of time, sufficient to activate the getter, so a~ to convert residual impurities in the lamp into materials which are inert or nondetrimental to the chemical cycle of the lamp.
One preferred method for using a silane getter of Formula I is to introduce it as a minor component of the fill gas. After the lamp has been tipped off, i.e., sealed, it is subjected to a bake cycle of five (5) minutes at 350~C. During this bake cycle, the silane reacts, essentially quantitatively, with any oxygen in the lamp to form nonvolatile silicon dioxide and hydrogen. When the lamp is lighted after this bake cycle, any o~ygen liberated from the coil is consumed and the residual escess silane is thermally cracked to form elemental silicon and hydrogen. The 132503~
silicon forms a faint brown smo~y deposit in the bottom of the lamp or capsule ~assuming an inverted light-up position).
In tungsten-halogen incandescent lamps, silane can react with halogen in the fill gas to form volatile halosilanes, which are as effective for gettering oxygen as silane itself. For e~ample, in a lamp containing HBr as a fill component, monobromosilane is formed, assuming silane is introduced into the lamp in stoichiometric excess.
Other preferred silanes for use in the present method include disilane (Si2H6), trisilane (Si3H8) and tetrasilane (Si4Hlo), as well as their various respective partially halogenated derivatives.
Appropriate getter activation temperatures are preferably from about 100C to about 1000C, and most preferably in the area of from 300C to 500C. Lower temperatures promote more grad~al release of adsorbed water and significantly lower gettering reaction rates. With silane, a bake duration of five minutes at 350C has been successfully used, as shown below.
In order to facilitate autsmated lamp processing, a shorter time at higher temperatures is favored; e.g., one minute at 500C. The optimum activation time and -temperature will vary with the specific chemical getter used, from among those listed herein, and on the particular lamp construction being made. Some lamps contain internal structures that heat ~lowly by external heating and ~ould therefore require a longer tim~ at a given temperature for optimum gettering action to occur.

-lo- 1325036 PATENT

In like manner the optimum quantity of gettering additive will depend on the lamp internal volume, fill pressure, internal surface area, and the specific getter used. Depending upon lamp internal volume, fill pressure, and other variables, effective gettering action in accordance with the teachings of this invention can be attained over a concentration range of from about 0.001 percent to five per~ent getter additive by volume. At lower levels there may not be sufficient additive present to react with all the contaminants present. High escesses will promote undesired light loss due to the formation of elemental silicon within the lamp. As lamp surface area increases, as for esample in an inside frosted or smoked bulb, more getter will be needed because of the relatively higher quantity of adsorbed moisture -present. From the esamples given, those skilled in the art of lampmaking can quickly arrive at appropriate ~etter additive levels for specific lamps of interest.
An entirely separate family of alternative materials which, it is believed, will perform the function of this invention, are boron hydride compounds. Elemental boron and silicon are analogous and they both form volatile hydrides that are pyrophoric; that is, they ignite spontaneously upon contact with air. Materials such as diborane (B2H6) dihydrotetraborane (B4Hlo), pentaborane (B5Hg), hesaborane (B6Hlo), as well as halogen derivatives such as, for esample, monobromodiboropentahydide (B2H5Br) are espected -11- 1 3 2 ~ 0 3 ~ PATENT

to fully perform the inventive principle~ taught herein. In fact, these boron chemicals are e~pected to perform functionally superior to the silanes based upon their comparative thermochemistry.
The use of silane compounds and partially haloqenated derivatives thereof may be preferred, however, because they are less hazardous to work with, particularly in a non-laboratory, production oriented lamp manufacturing plant. The boranes have positive heats of formation ~in contrast to silane) and are accordingly unstable chemicals that can violently decompose, especially in concentrated or pure forms.
In addition to this instability, the boranes are siqnificantly more tosic than are the silanes. For example, the threshold limit valves (TLV's) published in 1984-5 by the American Conference of Governmental Industrial Hygienists, lists time-weights average (TWA) exposures of 0.1 for diborane and 5.0 for silane. These values represent parts per million in -air ~for a normal 8~hour workday and a 40 hour workweek, to which nearly all workers may be ~-~
repeatedly exposed, day after day, without adverse effect.~ The 50-fold difference in TWA's shows the significantly higher hazard level in working with boranes. Nevertheless, boranes and haloboranes will function as highly effective o~ygen getters for incandescent lamps. It should be emphasized, however, -that neither silanes nor boranes would remain in the finished lamps after the light-up step included in the ~-~
manufacturinq process, and that no tosic or other hazards would e~ist in use or handlinq of the finished lamps.

12- 1 325~)36 PATENT

The qetters taught herein can, of course, be used together with other known getters such aæ, for example, phosphorus, if so desired.

Example I.
By way of a specific e~ample, 52 watt, 84 volt tungsten halogen capsules were fabricated from 10 mm o.d. aluminosilicate tubing and had a nominal internal volume of 1.1 cubic centimeters. The fill gas was introduced to a pressure of five atmospheres and comprised 0.1 percent hydrogen bromide, 2.0 percent nitrogen, and the balance senon. The coils were of `
straight coiled coil design wound from no-sag tungsten wire having a wire weight of 9.28 mg~200 mm, and wound so as to produce an efficacy of 16.6 lumens per watt.
The finished capsules were mounted in outer bulbs with a diode in electrical series with the coil for life ~esting at 120 volts AC. These lamps were similar in construction to the Sylvania Capsylite A-Line lamp.
One group of capsules used no getter. A second group contained phosphorus, formed in the capsule before final evacuation by the thermal cracking (with electrical heating of the coil) of a one percent mixture of phosphine in nitrogen at a pressure of approximately 925 millimeters of mercury. The third group used no phosphine, but instead included a fill gas containing 0.083 volume percent silane in addition to the other yases. - -The lamps were operated equally in the base up, base down, and horizontal attitudes on the life rack.
The results are summarized in Table I belowr and in FIGURE 1.

13 1325036 PATE~T

TABLE I

~S~ No. Lamps Avg. Life Range None 18 2038 Hours581 3553 Hours Phosphine 19 2611 Hours1851-3484 Hours -Silane 15 3143 Hours1519-4041 Hours In FIGURE 1, curve a illustrates the data for the control lamps fabricated with a phosphine getter, while curve b illustrates the data for lamps fabricated in accordance with the present invention.
In this test, silane showed a life improvement of 54 percent over no getter, and 20 percent over the commonly used phosphorus getter.

E~ample II.
In a second test, 45 watt, 84 volt tungsten halogen capsules were fabricated from 12.5 mm o.d.
aluminosilicate tubing and had a nominal internal volume of 2.0 cubic centimeters. The fill gas was in~roduced to a pressure of five atmospheres and comprised 0.1 percent hydrogen bromide, 2.0 percent nitrogen, and the balance senon. The coils were of straight coiled coil design wound from no-sag tungsten wire having a wire weight of 7.47 mg~200 mm, and wound :
so as to produce an efficacy of 16.5 lumens per watt.
The finished capsules were mounted in PAR-38 lamps with a diode in electrical series with the coil. The lamps were life tested at 120 ~olts AC.

-14- 1 32 5 03~ PA~ENT

One group of capsules contained phosphorus, formed in the capsule before final evacuation by the thermal cracking of a one percent mi~ture of phosphine in nitrogen at 925 millimeters of mercury pressure by electrically heating the coil. A second group of capsules used 0.083 volume percent silane in the fill gas instead of phosphorus.
The lamps were mounted on the life rack and divided between 45 degrees base up, horizontal, and 45 degrees base down burning positions. The results are shown in Table II, below, and in FIGURE 2.

TABLE II

Getter No. Lamps Avg. Life Ranae Phosphine 21 1616 Hours 827-2333 Hours Silane 44 2358 Hours 632-4627 Hours In FIGURE 2, curve c illustrates the lamp test results for the control lamps including a phosphine getter. Curve d represents the test data for lamps fabricated in accordance with the present invention.
The use of silane as the o~ygen getter resulted in a substantial life improvement of 45 percent.
As is clearly illustrated by the foregoing test results, the method of the present invention represents a major advance in the state of the art of incandescent lamp technology by providing a significantly extended lamp life thereof.

-15- 1325~3~ PATENT

The use of silane compound getters in incandescent lamps without the method of the present invention results in decomposition of the silane compound by the filament coil upon light-up of the lamp before gettering the contaminants in the lamp. Also, by not heating the capsules prior to coil light-up, adsorbed -water on surfaces internal to the capsule is not released to be gettered by the additive prior to destruction of the additive by the coil. Furthermore, elevated temperatures are known to be needed to promote the rapid and complete reaction of even the highly active diborane in an escess of air. (~Fate of Pollutants in the Air and Water Environments,~ Part 2, pp. 167-192, 1977, by Edward I. Sowinski and Irwin H. Suffet.) The present invention has been described in detail, including the preferred embodiments thereof.
It will be appreciated that the skilled artisan, upon consideration of this aisclosure, will be able to make modifications and/or improvements thereon, without departing from the spirit of the following claims.

- - .. - -; . .. - ,- . -, -, . .. i .- - .. : ,.. . .

Claims (9)

1. A method of gettering an incandescent lamp comprising the steps of:
introducing a fill gas and a getter compound selected from the group consisting of silane compounds of the formula:

SiaH(2a + 2) wherein "a" is an integer greater than zero, a partially halogenated derivative thereof and mixtures thereof, into an unsealed lamp envelope; sealing the lamp envelope; and heating the sealed envelope, for a sufficient period of time, and at a sufficient temperature, to activate the getter before the decomposition of the getter.
2. The method of Claim 1, wherein "a" is 1.
3. The method of Claim 1, wherein "a" is 2.
4. The method of Claim 1, wherein "a" is 3.
5. The method of Claim 1, wherein "a" is 4.
6. The method of Claim 1, wherein the partially halogenated derivative of the silane compound has the formula:

SiaH[(2a + 2)-b]Xb wherein "b" is an integer which has a value less than or equal to (2a + 1) and X is bromine.
7. The method of Claim 1, wherein the partially halogenated derivative of the silane compound has the formula:

SiaH[(2a + 2)-b]Xb wherein "b" is an integer which has a value less than or equal to (2a + 1) and X is chlorine.
8. The method of Claim 1, wherein the partially halogenated derivative of the silane compound has the formula:

SiaH[(2a + 2)-b]Xb wherein "b" is an integer which has a value less than or equal to (2a + 1) and X is iodine.
9. The method of Claim 1, wherein the partially halogenated derivative of the silane compound has the formula:

SiaH[(2a + 2)-b]Xb wherein "b" is an integer which has a value less than or equal to (2a + 1) and X is fluorine.
CA 590369 1988-02-09 1989-02-07 Getter for incandescent lamps Expired - Fee Related CA1325036C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15386388A 1988-02-09 1988-02-09
US153,863 1988-02-09

Publications (1)

Publication Number Publication Date
CA1325036C true CA1325036C (en) 1993-12-07

Family

ID=22549056

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 590369 Expired - Fee Related CA1325036C (en) 1988-02-09 1989-02-07 Getter for incandescent lamps

Country Status (4)

Country Link
EP (1) EP0328065B1 (en)
JP (1) JPH027354A (en)
CA (1) CA1325036C (en)
DE (2) DE68917492T4 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374345B1 (en) * 1988-12-21 1995-05-03 Gte Products Corporation Incandescent lamps including a combined getter
US6956328B1 (en) * 2000-11-22 2005-10-18 General Electric Company Tungsten halogen lamp with halogen-containing compound and silicon-containing compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL27400C (en) * 1928-12-18
NL6808844A (en) * 1968-06-22 1969-12-24

Also Published As

Publication number Publication date
EP0328065A2 (en) 1989-08-16
DE68917492D1 (en) 1994-09-22
EP0328065B1 (en) 1994-08-17
EP0328065A3 (en) 1991-04-17
JPH027354A (en) 1990-01-11
DE68917492T4 (en) 1995-10-12
DE68917492T2 (en) 1995-04-06

Similar Documents

Publication Publication Date Title
US4463277A (en) Compact halogen-cycle incandescent lamp, and lamp unit utilizing such lamp as a light source
US5034656A (en) Tungsten halogen lamp including phosphorous and bromine
CA1325036C (en) Getter for incandescent lamps
US4898558A (en) Getter for incandescent lamps
US3475072A (en) Getter for incandescent lamps and similar devices
US4810221A (en) Method for gettering incandescent lamps
US4923424A (en) Incandescent lamps including a combined getter
EP0206351B1 (en) Halogen lamp fill mixture which reduces lower operating temperature of halogen cycle
US4927398A (en) Incandescent lamps including a combined getter
US4015157A (en) Iodine lamp with molybdenum parts
CA1042976A (en) Bromine lamp with molybdenum parts
US6956328B1 (en) Tungsten halogen lamp with halogen-containing compound and silicon-containing compound
EP0374345B1 (en) Incandescent lamps including a combined getter
US4629935A (en) Tungsten-halogen lamp with organic and inorganic getters
CA1310058C (en) Incandescent lamps including a combined getter
EP0370318B1 (en) Fill for high temperature tungsten-halogen lamps
SU817804A1 (en) Gas absorbing substance for gas-discharge devices
RU2052858C1 (en) Metal-halide lamp
US4129348A (en) Method of manufacturing tungsten halogen lamp
CA1047593A (en) Iodine lamp with molybdenum parts
JPH08129994A (en) Tungsten halogen lamp and its manufacture
CA1280149C (en) Mercury pressurized incandescent lamp
JPH0232340B2 (en) MORIBUDENZAI
JPS59143236A (en) Method for manufacturing halogen lamp
JPS59196534A (en) Manufacture of fluorescent lamp

Legal Events

Date Code Title Description
MKLA Lapsed