CA1291809C - Ultrasonic transducer - Google Patents

Ultrasonic transducer

Info

Publication number
CA1291809C
CA1291809C CA000560432A CA560432A CA1291809C CA 1291809 C CA1291809 C CA 1291809C CA 000560432 A CA000560432 A CA 000560432A CA 560432 A CA560432 A CA 560432A CA 1291809 C CA1291809 C CA 1291809C
Authority
CA
Canada
Prior art keywords
piezoelectric element
wear
thickness
transducer
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA000560432A
Other languages
French (fr)
Inventor
Dov Hazony
Richard E. Berris, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reuter Stokes Inc
Original Assignee
JW Harley Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/025,943 external-priority patent/US4757713A/en
Application filed by JW Harley Inc filed Critical JW Harley Inc
Application granted granted Critical
Publication of CA1291809C publication Critical patent/CA1291809C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

ULTRASONIC TRANSDUCER
ABSTRACT OF THE DISCLOSURE
An ultrasonic piezoelectric transducer and a method for measuring and/or monitoring various physical properties of a member, in-situ, are dis-closed. The transducer includes a sleeve which is received in a blind bore provided in the member, a piezoelectric element positioned within the blind bore, and an aligning spacer means interposed be-tween the end of the sleeve and the piezoelectric element. By the application of appropriate voltage pulses to the piezoelectric element causing interroga-ting signals to be applied to the member, and the measurement of the time interval between the appli-cation of an interrogating signal and the receipt of a return signal from the member, various physical properties of the member can be determined.

Description

~,91~09 ULq'RASONIC TRANSDUCER
TECIINICAL FIELD
The present invention relates to a method for measuring and/or monitoring the amount of material which has been removed Erom a member through wear, machining, etc., and more particularly to an ultrasonic piezoelectric transducer for measuring and/or monitoring the amount of material which has been removed from a member and other physical properties oE the member in-situ.

BACKGROUND ART
Various approaches have been devised for detecting, monitoring and measuring the amount of wear which has occurred to a wear member. For example, in the area of rotating equipment, a number of electrical devices are available to detect and monitor bearing wear. These devices are hased upon a number oE detection techniques.
Thus, wear detection might depend upon the completion of an electrical circuit ~hrough the bearing when there is excessive bearing wear, or it might depend upon the gen-eration of a voltage if the shaft ro-tates eccentrically, or it might depend upon the detection of an abnormal tem-perature rise of the bearing. Each of these approaches has some inherent disadvantages with respect to accuracy and does no-t measure actual bearing wear, bearing wall thickness or the amount of material which has been removed from the bearing, i.e., each approach is responsive -to bearing wear but does not measure quantitatively the amount of wear that has occurred, the wall thickness ~ ~91~Og remaining or the amount of material which has been removed.
Other approaches have been devised to measure the thickness of a workpiece or wear member, and by measuring such thickness, the amount of wear which has occurred can be calculated. These approaches have numerous commercial and/or industrial applications, however, their use for measuring the thickness of or wear which has occurred to a work surface in-situ is cost prohibitive. In addition, these approaches typically utilize devices fabricated from materials which limit their applications to an operat-ing environment having a temperature of normally less than 75C, and cause the resulting readings to be dependent upon the temperature of the operating environment. It has also been found that the materials utilized for these devices cannot withstand severe operating environments which further limits the applications in which they can be used. Thus, these devices and measurement techniques are not usable for measuring and/or monitoring the t}-ickness of or wear which has occurred to work surfaces, such as a sleeve bear-ing, in an elevated temperature operating environment such as might exist in ro-tating equipment. This inability to measure and/or monitor wear in-situ can result in costly machine downtime to inspect the condition of -the bearings.
~lternatively, this inability can result in unnecessary damage to the rotating equipment due to bearing failure which was not promptly detected.
Because of the foregoing, lt has become desirable to develop a device which can be utilized to measure and/or monitor in-situ the thickness of, the amount of wear which has occurred to, and the amount of material which has been removed from a member such as sleeve or thrust bearings, brake discs or pads, clutch plates and sealing members. Ideally, the resulting device could also be used for measuring other physical properties of the member, in-situ.
SUMMARY OF THE INVENTION
The present invention provides an ultrasonic piezoelectric transducer that can be mounted within the wall of a wear member, such as a sleeve or thrust bearing, brake disc or pad, clutch plate or sealing device,~
so that measurements of wall thickness, the amount of material which has been removed through wear, and other physical properties can be made in-situ.
Specifically, the invention relates to an ultrasonic transducerdevice for measuring the thickness of a member comprising a piezoelectric element, means for biasing the piezoelectric element against a surface of the member whose thickness is to be measured, and a thickness reference member interposed between the biasing means and the piezoelectric element.
The thickness reference member operatively contacts the piezoelectric element and applies a substantially uniform force thereto. The pie~oelectric element has a pair of faces, one of the pair of faces being in direct contact with a surface of the member whose thickness is to be measured and the other of the pair of faces being compressed by the thickness reference member.
In one embodiment, the transducer, which is an integral part of the member in which it is mounted, includes an outer sleeve which is threadedly received in a blind bore within the wear member, a piezoelectric element which is positioned within the blind bore, and spacer means interposed between the end of the outer sleeve and the piezoelectric MU.S/lcm .~ , element. The spacer means and the end of the outer sleeve have complementary configurations permitting the spacer means to align itself within the end of the outer sleeve and apply a substantially uniform compressive force to the piezoelectric element. The application of such a substantially uniform compressive force causes a firm, electrical and acoustical contact to be formed between the piezoelectric element and the bottom of the blind bore which insures a highly accurate measurement of the wall thiclcness between the bottom of the blind bore and the inner surface of the wear member. For example', it has been found experimentally that this transducer can measure the wall thickness of and/or the amount of material which has been removed from the wall of a bronze bearing easily up to 300F
with a repeatability in the sub-micron range - 3a -MLS/lcm ns utilizing s-tate-of-the-art electronics. The transducers can also be located in a pre-determined arrangement around the periphery of the wear member so that wear and/or material removed can be measured and/or monitored around the periphery thereof. In addition, it has been found that other physicaL properties such as strain resulting from stress being applied to the wear member can be moni-tored with the transducer. lt has also been found that the transducer can be utilized to determine local tempera-tures within the wear member and, in the case of rotating machinery, the relative vibration and alignment between the shaft and the member can be measured and/or monitored with the transducer. It has been further found that if ball bearings are being utilized, each ball exhibits specific pressure characteristics which change due to wear or Eracture, and that these pressure characteristics can be measured and/or monitored with the transducer.
In an alternate embodiment oE the invention, a mount-ing ring is provided to position one or more transducers against the outer surface of the wear member. In this em-bodiment, the piezoelectric elements contact the outer surface of the wear member and the total thickness of the wear member is measured.
In still another alternate embodiment oE the inven-tion, the blind bores within the wear member are replaced with through bores -to xeduce production costs. ~ transducer assembly is received with:in each of the through bores so that its end is flush wi-th the inner surface of the wear member. In this embodiment, the end of the transducer assembly is actually an integral part of the wear surface and the thickness of the end of the transducer assembly is being measured.

~91~09 Regardless of the embodiment utilized, a separate transducer may be placed in the same environment as the other transducers for use as a relevant time reference.
Two embodiments of relevant time references are disclosed.
BRIEF DESCRIPTION OF THE DR~WINGS
Figure l is a partial cross-sectional view of an ultrasonic piezoelectric transducer embodying the inven-tion of this disclosure and installed in a wear member.
Figure 2 is a partial cross-sectional view of a plur-ality of ultrasonic piezoelectric transducers embodying the invention of this disclosure and installed in and around the periphery of a wear member, such as a sleeve bearing.
Figure 3 is a partial cross-sectional view of a mount-ing ring for retaining one or more ultrasonic piezoelectric transducers against the outer surface of a wear member, such as a sleeve bearing or a ball bearing.
Figure 4 is a partial cross-sectional view oE an alter-nate embodiment oE an ultrasonic piezoelectric transducerembodying the invention oE this disclosure and installed in a wear member.
Figure 5 is similar to Figure 4 in that it is a partial cross-sectiona:L view of an ultrasonic piezoelectr;c trans-ducer used as a relevant time reEerence.
Figure 6 is a partial cross-sectional view of another embodiment of an ultrasonic piezoelectric transducer installed in a wear member and used as a relevant time reference.
Figure 7 illustrates an interrogating pulse to and a return "echo" from an ultrasonic piezoelectric transducer embodying the invention of this disclosure.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to the drawings where the illus-trations are for the purpose of describing the preferred embodiment of the present invention and are not intended to limit the 9~o~

invention hereto, Figure 1 is a cross-sectional view of the transducer 10 installed in a wear member 12, such as a sleeve or thrust bearing, clutch plate, brake disc or pad, sealing member, valve or the like, in order to measure and/
or monitor the thickness of, -the amount of wear which has occurred to, and the amount of material which has been removed from the wear member. The transducer lO is com-prised of an outer sleeve 14, an aligning and electri-cally insulating spacer 16 received within the end ofthe outer sleeve, and a piezoelectric element 18.
The outer sleeve 14 is typically fabricated Erom round tubing, such as brass tubing or the like, which has threads 20 formed adjacent to one end thereof. Typically, the tubing material has the same or similar thermal expan-sion properties as that of the wear member 12 to maintain a firm contact therewith. This firm contac-t is provided by the threads 20 which engage complementary threads pro-vided in the wear memher 12, as hereinafter described. The threads 20 also permit the adjustment of the outer sleeve 14 within the wear member 12 to optimize the operation of the transducer 10 as later discussed. It should be noted that other approaches are possible for the adjus-table attachment oE the outer sleeve 14 to the wear melTIber 12, such as a bracket arrangement (not shown) that is adjust-able with respect to the wear member 12 and which retains the sleeve 14. The end 22 oE the outer sleeve 14 has an indentation provided therein forming a surface 24 connecting the end 22 oE the sleeve 14 with the inner circumferential wall 26 of the sleeve. This indentation may have a curved configuration, such as semispherical or parabolic, or it may have a conical configuration which is preferred to permit alignment oE the spacer 16 therein.

~9~09 The aligning and electrically insulating spacer 16 is fabricated from a ceramic or ceramic-like material that is capable of sustaining high temperatures and high pressures.
For example, pyrolytic boronitride or another ceramic-like material can be used for the spacer 16 ! The particular ceramic or ceramic like material utilized for the spacer 16 is selected to properly compensate for the thermal expan-sion properties of the other components comprising the trans-ducer 10 and the wear member 12 so that the spacer 16 will maintain a substantially uniform compressive force on the piezoe:Lectric element 18 over a broad operating temperature range. The spacer 16 typically has a conical configuration that is complementary to that of the indentation formed in the end 22 of the outer sleeve 14. The spacer 16 is re-ceived within the indentation so that the outer surface 28 defining its conicaL configuration contacts the surface 24 formed by the indentation. The use of conical surEaces 24, 28 formed on the outer sleeve 14 and the spacer 16, re-spectively permits the alignment of the spacer 16 within the outer sleeve 14 through elastic deformation of the spacer 16 and the indenta-tion Eormed in the end 22 of the outer sleeve 14. In contrast, selE-alignment of -the spacer 16 within the outer sleeve 14 can be achieved by using a semi-spherical or parabolic configuration Eor the surfaces 24, 28 formed on the end 22 of the outer sleeve 14 and the spacer 16, respectively. It should be noted that regardless oE the shape of the complementary configurations used for the spacer 16 and the indentation in the end 22 of the outer sleeve 14, a precise fit of the spacer 16 within the in-dentation is not necessary since any variations in size or shape will be compensated for by the elastic deformation of the spacer 16 and the indentation and/or by the self-alignment of the complementary curved surfaces. The alignment of the spacer 16 within the outer sleeve 14, ~;~9~309 whether by elastic deformation of the spacer 16 and the indentation in the end 22 of the outer sleeve 14 or by self-alignment through complementary curved surfaces, is necessary to ensure the application of a uniform compressive force on the piezoelectric element 18. Such a substantially uniform compressive force also minimizes the possibility of damaging the piezoelectric element 18 through the applica-tion of a nonuniEorm compressive force thereto. Even though both of the foregoing approaches apply a substantially uniform compressive force to the piezoelectric element 18, it has been found that the use of an appropriate conical configuration for -the spacer 16 and the indentation in the end 22 of the outer sleeve 14 is easier to implement and may result in a subs-tantially higher absorption and obliter-ation of spurious echoes from the primary ultrasonic signal than if complementary curved configurations are used for the spacer 16 and the indentati.on in the end 22 of the outer sLeeve 14. Thus, the use of a conical configuration for the spacer 16 and the end 22 of the outer sleeve 14 generally results in a higher signal to noise ratio than if comple-mentary curved configurations are used for same. In summary, the spacer 16 is necessary in -this structure in order to provide a substantia:lly uniform compressive force to the piezoelectric element 18 and to absorb and ob.literate spurious echoes. r~egard.less of the configuration utilized for the spacer 16, an aperture 30 is formed there-through. This aperture is sufficiently large to permit the passage of an electric conductor therethrough.
The wear member 12 is provided with a blind bore 36 therein. The blind bore 36 is located so as to be substan-tially perpendicular to -the cuter and inner surfaces 38, 40, ` ~9~09 respectively of the member 12. If the member 12 is a sleeve bearing, the blind bore 36 is directed radially inwardly so as to be normal to the inner surface 40 of the member 12. The blind bore 36 is of a predetermined depth and has a substantially flat surface 42 at the bottom there-of. The distance between the flat surface 42 and the inner surface 40 of the member 12 is the distance to be measured and/or monitored. The blind bore 36 may also have threads 44 formed therein which terminate adjacent to the bottom thereof.
The piezoelectric element 18 is a standard state-of~
the-art device and typically has a round disc-like shape.
The element 18 can be formed from commercially available piezoelectric transducer material, such as PZT-511 available from Vernitron, Inc. of sedford, Ohio. The size of the element 18 is a function of the overall size of the trans-ducer 10, however, an element having a diameter of 0.080 inch and a thickness of .003 inch has been tested experi-mentally with excelLent results. The diameter of the ele-ment 18 is slightly less than the diameter of -the blind bore 36 provided in the wear member 12. The element L8 is respon-sive to a short voltage pulse, such as a 200 volt DC pulse of 10 nanosecond duration, and converts khe voltage pulse into a pressure pulse which is applied to the surEace of tlle material whose thickness is to be measured and/or monitored.
Similarly, the piezoelectric element 18 converts the "echo"
return pressure pulse from the opposite surface of the material whose thickness is being monitored into a voltage pulse for measuremen-t purposes. The substantially uniform compressive force applied to the piezoelectric element 18 by the spacer 16 ensures that the element 18 is firmly ~91~09 "seated" within the blind bore 36 for the proper trans-mission of the voltage pulse into the element 18 and the reception of the reflected "echo" pulse by the element.
Tn order to assemble the transducer lD, the piezoelectric element 18 is received within the blind bore 36 and positioned so that one side 46 thereof contacts the flat surface 42 at the bottom of the blind bore 36. Inasmuch as the diameter of the element 18 is only slightly less than the diameter of the blind bore 36, the center of the element 18 and the center of the flat surface 42 at the bottom of the blind bore 36 will substantlally coincide, however, such coincidence is not necessary for the proper operation of the transducer 10. The other side 48 of the pi.ezoelectric element 18 may be electrically connected to an electrical conductor 50. The elec-trical conductor 50 is received through the aperture 30 provided in the spacer 16, and the spacer 16 is received in the blind bore 30 so that its base 32 contacts the side 48 of the piezoelectric element 18 which is mechanically and elec~
trically connected to the electrical conductor 50. The threads 20 on the outer sleeve 14 are coated with an adhesive, such as Loctite, and the s.Leeve 14 .is threadedly advancecl into the wear member 12 until the conical surface 24 provided on its end 22 engages the outer surface 28 of the spacer 16. Fur-ther advancement of the outer sleever 14 into the wear mem-ber 12 causes the elastic deformation of the spacer 16 and the indentati.on in the end 22 of the outer sleeve 14, and the application of a substantially uniform compressive force by the base 32 of the spacer 16 to the side 48 of the piezo-electric element 18. If complementary curved configurations,such as semispherical or parabolic, are used for the spacer 16 and the indentation in the end 22 of the outer sleeve 14, the spacer 16 will self-align itself within the ~L~9~309 indentation in the end 22 of the outer sleeve 14 so that its base 32 will apply a substantially uniform compres-sive force to the side 48 of the piezoelectric element 18.
Regardless of the shape of the spacer 16 and the indentation in the end 22 of the outer sleeve 14, the outer sleeve 14 is threadedly advanced~into the wear member 12 by manually rotating the outer sleeve 14 until a snug fit exists be-tween the indentation provided in its end 22 and the outer surface 28 of the spacer 16, and between the base 32 of the spacer 16 and the side 48 of the piezoelectric element 18. In order to ensure that such a snug fit exists, the foregoing advancement of the outer sleeve 14 into the wear member 12 is monitored by a pulser-receiver device and an oscilloscope (all not shown). With this apparatus a sequence of short voltage pulses is applied by the pulser to the transducer 10 while the ou-ter sleeve 14 is being threadedl.y advanced into the wear member 12 so that the sleeve 14 can be rotationally adjusted until the optimum return "echo"
pulse, shown on the oscilloscope, is received by the receiver. In this manner, a snug fit between the .Eore-go.ing components is assured and the transducer 10 and the wear member 12 are"mabah~d"to provide the optimum return "echo" pulse with respect to shape, amplitude and signal to noise ratio. This snug Eit is retained through the use oE
the aforementioned adhesive, such as Loctite, on the threads of the outer sleeve 14, thus preventing any :Eurther movement of the outer sleeve 14 with respect to the wear member 12.
In essence, the transducer 10 becomes permanently affixed to and an integral part of the wear member 12, and the snug fit between the indentation in -the end 22 of the outer sleeve 14 and the outer surface 28 of the spacer 16 is main-tained throughout the life of the device.

~9~09 Since the piezoelectric element 18 is somewhat deLorma-ble under a compressive force, the application of a sub-stantially uniform compressive force thereto results in a firm, optimum electrical and acoustical contact between the side 46 of the element 18 and the flat surface 42 at the bottom of the blind bore 36. By providing such a firm, optimum electrical and acoustical contact with the flat surface 42 of the blind bore 36, any signals emanating from the piezoelectric element 18 will be properly directed toward the inner surface 40 of the wear member 12 to be measured and/or monitored, and the wear member 12 will provide the proper electrical ground for the system. Thus, the surfaces 24, 28 compensate for deviations in manufac-turing tolerances in the components involved, and thepossibility that the blind bore 36 may not be positioned exactly normal to the inner surface 40 of the wear member 12. Botll of these conditions could result in the piezo-electric element 18 not firmly contacting the flat sur-face 42 of the blind bore 36 which, in turn, coul.d resultin inaccurate measurements and/or system malEunctions.
~fter the transducer 10 has been assembled and installed in the wear member 12, the area 52 enclosed by the inner circumferential wa.L.L 26 o.E the outer s.Leeve 1~ and con-taining the electrica.L conductor 50 may be filled wi.th adense insulating and dampening mate.rial such as epoxy, e.g., Duro epoxy, loaded with tungsten for application temperatures less than 400F. or a loaded ceramic adhesive for tempera-tures in excess of 400F. This electric insulation mater-ial and the spacer 16 preferably match the acoustical im-pedance of the piezoelectric element 18 and help suppress spurious echoes from interfering with the primary pulse.

~?,9~()9 The wear member 12 may have a configuration that is either flat, such as a brake disc, c1utch plate, face type seal or thrust type bearing, or circular, such as a sleeve bearing or ring type seal. In any case, a plurality of transducers can be utilized to measure and/or monitor wear at various locations on the wear member 12. If a sleeve bearing is utilized, the p:lurality of transducers 10 can be placed within the outer bearing wall and around the periphery of the bearing, as shown in Figure 2. In this manner, the thickness oE, the amount of wear which has occurred to, and the amount of material which has been re-moved from the bearing can be measured and/or monitored at various locations around -the periphery thereof. Thus, by lS placing the transducer 10 within one or more blind bores 36 within the bearing, wear can be measured and/or monitored in situ, eliminating costly periodic machine downtime to inspect the condition of the bearing. Machine downtime would only occur when a transducer indicates that sufficient wear has occurred to justify the replacement of the bearing.
AlternativeLy, rather than placing a plurality of transducers 10 within the blind bores provided in the outer bearing wall, a mounting attachment 54, such as a ring as shown in Figure 3, can be used to retain the transducers 10 in a radially spaced apart relationship. In such an arrangement, the mounting attachment 52 is slipped over the sleeve bearing 56 and the piezoelectric elements 18 firmly contact the outer surEace of the bearing wall.

9~9 Thus, no blind bores, which could damage the bearing or aEfect its performance, are required in the bearing wall.
The foregoing is particularly important in the case of ball bearings. In the arrangement shown in Figure 3, the radius of the curvature of the bearing 56 is substantially greater than the diameter of each piezoelec-tric element 18. Since a substantial compressive force is being applied to each element 18 by its associated spacer 16, it has been found 10 that sufficient surface contact exists between each ele-ment 18 and the outer surface of the bearing 56 to produce very accurate distortionless measurements of wall thick-ness. Thus, by using this apparatus, the thickness of, the amount of wear which has occurred to, the rate of wear of, 15 and the amount of material which has been removed from the bearing wall can be measured and/or monitored at various locations on the bearing. From the foregoing, it is apparent that the mounting attachment 54 can also be used to measure the wall thickness or the overall thickness of a 20 non-wear cylindrical member, such as a machine member, by sLipping the mounting attachment 54 over the non-wear member and positioning the piezoeLectric elements 18 so that they Eirmly contact the outer surface of the non-wear member at specific locations thereon. Thus, the transducer 10 can be 25 utilized for precision in-process gauging or in-process measuring of strain.
In addition -to being able to measure and/or monitor the thickness of, the amount of wear which has occurred to, and the amount of ma-teria:L which has been removed from a wear 30 member in-situ, the construction of the transducer 10 pro-vides another advantage in that no buffer element is re-quired between the piezoelectric element 18 and the wall whose thickness is being measured and/or monitored, i.e., ~9~309 the distance between the flat surface 42 of the blind bore 36 and the inner surface 40 of the wear member 12. Typi-cally, in prior art devices such a buffer element is re-quired for mechanical support, impedance matching and seal-ing of the transducer, however, its use greatly attenuates and degrades the primary pulses produced by the trans-ducer and the reflected "echo" pulses received by -the trans-ducer. Inasmuch as the transducer 10 requires no buffer element, such signal attenuation and degradation does not occur. In addition, because of the absence of a buffer element, a firm electrical and acoustical contact can be made by the piezoelectric element 18 directly to the wall whose thickness is being measured and/or monitored, and the resulting measurements have a much higher degree of accuracy than those resulting from prior art devices. For example, measurements with a repeatability in the sub-micron range utilizing state-of-the-art electronics have been achieved. And lastly, due to the inherent simplicity of the structure of the transducer, it is substantially less costly to produce than the prior art devices.
In an alternate embodiment oE the inventiorl, as shown in Figure 4, the blind bore 36 in the wear member 12 is replaced with a through bore 60 connecting the outer and inner surfaces 38, 40 of the member 12. Tlle through bore 60 may have threads 62 formed -therein. A transducer 64 comprising an outer sleeve 14, a spacer 16, and a piezo-electric element 18 is received within a blind bore 66 in a wear reference member 68 which may have threads 70 formed on the outer surface thereof. The wear reference member 68 is received within the through bore 60 so that its end 72 is substantially flush with the inner surface 40 of the wear member 12. The inner surface 40 of the wear member 12 is then machined to ensure that the end 72 of the wear reference ~9~09 member 68 is flush with the inner surface 40. It should be noted that the material utilized for the wear reference member 68 may be the same as or may be different from the material comprising the wear member 12 inasmuch as only the -thickness of the end oE the reference member 68 is being monitored and/or measured. The operation of this embodi-ment is similar to the previous embodiment utilizing a bLind bore, however, it is easier and less costly to produce.
With any of the foregoing embodiments, it might be desired to compensate for the temperature and pressure of the environment and the strains existing on the transducer.
Such compensation can be accomplished by usi.ng a time refer-ence transducer 80, as shown in Figure 5~ The structure of thi.s t.ransducer 80 is similar to transducer 10, in that it i.s comprised of an outer sleeve 14, a spacer 16, and a piezo-electric element 18, however, the foregoing components are received in a b.Lind bore 82 provided in a reference member 84, which is similar to wear reEerence member 68. The material utilized for the reference member 84 is the same as or similar to the material for the wear member L2 if a blind bore 36 is utilized in the member 12, or the same as or similar to the material for the wear reEerence member 68 i.f a through bore 60 is provided in the wear member 12.
The assembly of the transducer 80 and the reference member 84 i.s placed within the same temperature, pressure or material environment as the other transducers 10, though not necessarily contacting the wear member 12. By moni-toring the measurements of the reEerence distance, produced by the transducer 80, the measurements produced by the transducer 10 can be adjusted to compensate for possible measurement variations caused by opera-ting environment changes.

~9~09 Another embodiment of a reference transducer 90 is shown in Figure 6. The structure of this transducer is also similar to the transducer 80 in that it is comprised of an outer sleeve 14, a spacer 16, a piezoelectric element 18, and an electrical conductor 50, however, the foregoing components are received in a blind bore 36 provided in the wear member 12. The electrical conductor 50 is attached to a disc-shaped electrical connector 92 which is interposed ].0 between the base 32 of spacer 16 and the top surface 94 of a reference acoustical member 96 having a cylindrical configuration. The bottom surface 98 of the reference acoustical member 96 firmly contacts the other side 48 of the piezoelectric element 18. The diameters of the disc-shaped electrical connector 92 and the reference acoustical member 96 are similar and are slightly less than the dia-meter of the blind bore 36 permitting the easy insertion therein. The reference acoustical member 96 is formed from the same material as, or similar material to, the material comprising the wear member 12. ~ cylindrical recess 100 is provided in the top surface 94 of the reference acoustical member 96 and is concentric with the center of the refer-ence member 96 leaving the area between the diameter of the recess 100 and the outer diameter of the reference member 96 in contact with the bottom surEace of the electrical connector 92. ~ low impedance acoustical material 102 may be provided in the recess 100 or the recess 1.00 may be left empty in which case it would have approximately a zero im-pedance. The low i.mpedance of the recess 100 provides a relatively large reflection coefficient for any pressure wave intercepted thereby. Such a relatively large reflection coefficient is beneficial for the operation of this trans-ducer 90 hereinafter described.

~;~9~E~09 Operationally, a short voltage pulse is applied to the piezoelectric element 18 via the electrical conductor 50, the electrical connector 92 and the reference acoustical member 96. The piezoelectric element 18 converts the voltage pulse into two pressure pulses which are transmitted in opposite directions--one pressure pulse being transmitted into the wear member via the one side 46 of the element 18 and the other pressure pulse being transmitted into the reference acoustical member 96 via the other si~e 48 of the element 18. The pressure pulse transmi-tted into the wear member 12 is reflected by the inner surface 40 of the wear member 12 back toward the one side 46 of the piezoelectric element 18 and is intercepted by same. Similarly, the pressure pulse transmitted into the reference acoustical member 96 is reflected by the low impedance acoustical mater-ial 102 in the recess 100 back toward the other side 48 of the piezoelectric element 18 and is intercepted by same.
Inasmuch as the thickness of the reference acoustical member 96 varies independently of wear and is typically afEected only by variations in temperature, the elapsed time between the transmission of the initial pressure pulse and the re-ceipt of the "echo" return pressure pulse can be determined and utilized as a temperature reference parameter. Thus, in essence, one pressure pulse "monitors" the thickness of the wear member 12 and the other pressure pulse "monitors" the thickness of the reference acoustical member 96 between the top surface of the piezoelectric element 18 and the bottom of the recess 100 containing the low impedance material 102.
sy "measuring" the latter thickness through elapsed pulse travel time, compensation can be made for variations in the thickness of the wear member 12 resulting from temperature variations. In addition, through manipulation of the `" ~?,9~309 resulting pulse travel time data, compensation can be made for variations in the thickness of the wear member 12 re-sulting from variations in the pressure to which the member 12 is subjected.
The advan-tage of interposing the piezoelectric element 18 between the reference acoustical member 96 and the por-tion of the wear member 12 whose thickness is being monitored or measured, and using the piezoelectric element 1~ to sim-ultaneously transmit pressure pulses in opposite directionsis that signal degradation is minimized and a high signal-to~
noise ratio is maintained. For example, if the reference acoustical member is located on the same side of the piezo-electric element as the portion of the wear member whose thickness is being monitored or measured, i.e., the reference acoustical member is interposed between the piezoelectric element and the "monitored or measured" portion of the wear member, pressure pulses only in one direction are required.
Ilowever, each pressure pulse must pass through the reference acoustical member, the portion of the wear member whose thickness is being monitored or measured, and the i.nterface therebetween. The end result is significant degradation and attenuation oE the signal and substantial diEferences in the amplitude of the "echo" return pulses f.rom the foregoing i.nterface and the inner surface of the wear member. Such signal degradation and differences in pulse amplitude re-sults in inaccuracies in elapsed travel time measurements, low signal-to-noise ratios, and inaccuracies in the "temper-ature compensations" made for variations in the thickness of the wear member.
~ s previously indicated, physical properties other than the thickness of, the amount of wear which has occurred to, and the amount of material which has been removed from the wear member can be measured and/or monitored by the transducer .. ~?g9~()9 10. For example, it has been found that strain due to stress being applied to the wear member can be readily monitored by one or more transducers mounted w.ithin or attached to the wear member. By such monitoring, appro-priate means can be taken to minimize and/or control such stress within the wear member. It has also been found that local temperature within the wear member can be de-termlned with one or more transducers and, in the case of rotating equipment, the relative vibration and alignment between the shaft and the wear member can be measured and/or monitored by the transducers. It has been further found that if balL bearings are being utiliæed, the pres-sure characteristics of each ba:Ll can be measured and/or monitored by a transducer to determine ball wear or fracture.
Another approach for obtaining temperature compensa-tion when using the transducer 10 or for measuring tem-perature of the wear member 12 with the transducer 10 is shown in Figure 7 which illustrates an interrogating vol-tage pulse which is applied to the transducer 10 and the resulting return "echo" voltage pulse produced by the same transducer. The return voltage pulse i.s defined by a first zero crossing point corresponding to time t and a second zero crossing point corresponding to time tL~ It has been found experimentally, that the ratios tl, and thus tl-t, t t are relatively/independent of temperature and pressure variations to which the transducer and the wear member may be subject and these ratios remain substantially con-stant unless wear has occurred. Even though the foregoing ra-tios are relatively independent of temperature and pressure, the time t and the time interval tl-t are each a function ~9~o~

of temperature and can be utilized to determine the temper-ature of the transducer 10 or the wear member 12 at a par-ticular location thereon. Alternatively, the -temperature of the wear member 12 can be determined by using a reference transducer 80, as in Figure 5, and the resulting tempera--ture can be substituted in the functional relationship between temperature, pressure and the time interval tl-t to determine pressure. Thus, the time interval tl-t can be utilized to determine the temperature and/or the pres-sure to which the transducer and/or wear meillber are being subjected.
Certain modifications and improvements will occur to those skilled in the art upon reading the foregoing. It should be understood that all such modifications and improve-ments have been deleted herein for the sake of conciseness and readability, but are properly within the scope cf the following claims.

Claims (9)

1. An ultrasonic transducer device for measuring the thickness of a member comprising a piezoelectric element, means for biasing said piezoelectric element against a surface of the member whose thickness is to be measured, and a thickness reference member interposed between said biasing means and said piezoelectric element, said thickness reference member operatively contacting said piezoelectric element and applying a substantially uniform force thereto, said piezoelectric element having a pair of faces, one of said pair of faces being in direct contact with a surface of the member whose thickness is to be measured and the other of said pair of faces being compressed by said thickness reference member.
2. The transducer device as defined in claim l wherein said biasing means comprises a sleeve having a recess provided in one end thereof, and spacer means received within said recess in said sleeve, said spacer means operatively engaging said thickness reference member.
3. A device for measuring the thickness of a member comprising, in combination, a piezoelectric element, means for biasing said piezoelectric element against a surface of the member whose thickness is to be measured, and a thickness reference member interposed between said biasing means and said piezoelectric element, said thickness reference member operatively contacting said piezoelectric element and applying a substantially uniform force thereto, said piezoelectric element having a pair of faces, one of said pair of faces being in direct contact with a surface of said member whose thickness is to be measured and the other of said pair of faces being compressed by said thickness reference member.

MLS/lcm
4. The combination as defined in claim 3 wherein said biasing means comprises a sleeve having a recess provided in one end thereof, and spacer means received within said recess in said sleeve, said spacer means operatively engaging said thickness reference member.
5. The combination as defined in claim 3 wherein said member is a bearing.
6. The combination as defined in claim 3 wherein said member is a brake disc.
7. The combination as defined in claim 3 wherein said member is a brake pad.
8. The combination as defined in claim 3 wherein said member is a clutch plate.
9. The combination as defined in claim 3 wherein said member is a sealing device.

MLS/lcm
CA000560432A 1987-03-16 1988-03-03 Ultrasonic transducer Expired - Lifetime CA1291809C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US025,943 1987-03-16
US07/025,943 US4757713A (en) 1985-02-19 1987-03-16 Ultrasonic transducer

Publications (1)

Publication Number Publication Date
CA1291809C true CA1291809C (en) 1991-11-05

Family

ID=21828914

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000560432A Expired - Lifetime CA1291809C (en) 1987-03-16 1988-03-03 Ultrasonic transducer

Country Status (1)

Country Link
CA (1) CA1291809C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2529484A (en) * 2014-08-22 2016-02-24 Univ Sheffield Deriving contact stress or contact loadusing ultrasound data

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2529484A (en) * 2014-08-22 2016-02-24 Univ Sheffield Deriving contact stress or contact loadusing ultrasound data

Similar Documents

Publication Publication Date Title
US4757713A (en) Ultrasonic transducer
US6412344B1 (en) Fluid level sensor with dry couplant
US4062227A (en) CW ultrasonic bolt tensioning monitor
US5594819A (en) Field-mountable fiber optic sensors for long term strain monitoring in hostile environments
US5297430A (en) Thin disk force sensor and method of making
US5095741A (en) Pressure transducer for determining the pressure in the combustion chamber of an internal combustion engine
EP0104205A1 (en) Force, torque and displacement sensor for machine tools
US10605784B2 (en) High temperature ultrasonic probe and pulse-echo probe mounting fixture for testing and blind alignment on steam pipes
EP0205609A1 (en) Acceleration responsive transducers.
US5200610A (en) Fiber optic microphone having a pressure sensing reflective membrane and a voltage source for calibration purpose
CA1269166A (en) Method and apparatus for determining cement conditions
US7350419B2 (en) Control device for non-positive connections
US5016474A (en) Ultrasonic transducer
US20190331543A1 (en) Measurement Transducer for Measuring a Force
KR20200077557A (en) Torque sensor for rotating elements using mechanical friction coupling
KR100878545B1 (en) Sensor assembly and sensor system for combined bearing load sensing and bearing health monitoring
CA1291809C (en) Ultrasonic transducer
US7222541B2 (en) Measuring torsional distortion with an easily applied clip device (saw)
JPH0246349B2 (en)
EP0379280A2 (en) Temperature sensors
CN110927247A (en) Array element adjustable dry coupling type guided wave array sensor and method for pipeline detection
CA1321638C (en) Ultrasonic transducer
CA2068505C (en) Ultrasonic transducer
US9885622B2 (en) Saw sensor arrangements
CA2033153C (en) Ultrasonic transducer

Legal Events

Date Code Title Description
MKLA Lapsed
MKEC Expiry (correction)

Effective date: 20121205