CA1270663A - Magnetically inducted flow meter - Google Patents

Magnetically inducted flow meter

Info

Publication number
CA1270663A
CA1270663A CA000499216A CA499216A CA1270663A CA 1270663 A CA1270663 A CA 1270663A CA 000499216 A CA000499216 A CA 000499216A CA 499216 A CA499216 A CA 499216A CA 1270663 A CA1270663 A CA 1270663A
Authority
CA
Canada
Prior art keywords
transducer
magnet
flow meter
output member
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000499216A
Other languages
French (fr)
Inventor
Lars O. Rosaen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Flow Monitors Inc
Original Assignee
Universal Flow Monitors Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/583,621 external-priority patent/US4569233A/en
Application filed by Universal Flow Monitors Inc filed Critical Universal Flow Monitors Inc
Application granted granted Critical
Publication of CA1270663A publication Critical patent/CA1270663A/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

Abstract of the Disclosure The present invention provides a device for generating an electrical output signal representative of the flow rate through a fluid flow meter of the type having a mechanical output member movable in an amount proportional to the fluid flow rate. The device comprises the U-shaped magnet having a north and south pole and a Hall effect transducer positioned between the poles of the magnet. The transducer produces an electrical signal representative of the distance between the transducer and one of the magnetic poles.
The magnet in turn is connected to the mechanical output member from the flow meter so that the magnet moves in unison with the output member from the flow meter thus varying the transducer electrical output.
The output from the transducer is electrically connected to a conventional electrical indicator to produce an indication of the fluid flow rate through the flow meter.

Description

1;~706~;~
6~572-280 FLOW METER I~DIC~TING D~VICE
Backqround of the Invention I. Field of the Invention The present invention relates to electrical indicating means for use with a fluid flow meter.
II. Descrietion of the Prior Art There are a number of previously known fluid flow meters having a rotatable output shaft which rotates in an amount proportional to the fluid flow rate through the flow meter. Typically, an indicator needle is secured ~o the shaft and cooperates with an indicia scale on the flow meter to provide a visual indication of the fluid flow rate.
One disadvantage of these previously known fluid flow meter indicators is that the fluid flow rate of the flow meter can not be monitored from a position remote from the flow meter. Instead, the meter must be visually inspected in order to determine the flow rate. This procedure, however, is particulary disadvantageous in situations where it is desirable to monitor a plura:Lity of flow meters from a central control area.
There have, however, been a number of previously known fluid flow meter indicator devices which produce an electrlcal signal representative of the flow rate from the flow meter. These electrical outputs can then be read at a position remote from the flow meter itself. One disadvantage of these previously known devices, however, is that they are expensive in construction and prone to failure.
Summarv of the Present Invention The present invention provides a fluid flow meter indicator which overcomes all of the above mentioned disadvantages of the previously known devices.

, .

7~ti63 68572-2~0 According to a broad aspect of the invention there is provided, for use in conjunction with a fluid flow meter having a mechanical output member movable in an amount proportional to the fluid flow rate through the flow metex, a device for generating an electrical output representative to the flow rate through the flow meter comprising:
a magnet having a north and south pole, a transducer positioned between said poles of said magnet, said transducer producing an electrical signal representative of the distance between the transducer and one of said poles, and means for moving said magnet to vary the distance between said one of said poles with respect to said transducer in a direction opposite to movement of the other of said poles with respect to said transducer in an amount proportional to the movement of the mechanical output member from the flowmeter.
In brief, the indicator device of the present invention comprises a U-shaped magnet havlng a north and south pole. In the preferred form of the lnvention, a rack ls secured to the la ~2 7 0 ~

l ' ,, magnet and cooperates with a piniOn attached to the output shaft from the flow meter. Consequently, rotation of the flow meter output shaft linearly displaces the magnet along a pre-determined path of travel.
A Hall effect transducer is positioned between the magnetic poles of the magnet. The Hall effect transducer produces a voltage output representative of the distance between the transducer and one of the magnetic poles A voltage to n current converter then translates the voltage output from the - transducer to a current signal proportional to the position ~of the magnet and thus of the fluid flow rate through the flow ,meter. The output from the converter is connected to a con-zventional electrical indicator which can be at a position remote Ofrom the flow meter.
~ ~rief Description of the Drawing r .. _ _ better understanding of the present invention will cbe had upon reference to the following detailed description, Owhen read in conjunction with the accompanying drawing wherein zlike reference characters refer to like parts throughout the several views, and in which:
FIG. 1 is a diagrammatical view illustrating a preferred 2embodiment of the invention; and FIG. 2 is a diagrammatic view taken suhstantially along 1ine 2-2 in FIG. 1.

~ Detailed Description of a 0 Preferred Embodiment of the Invention > With reference to the drawing, a preferred embodiment ~f the indicating device of the present invention is thereshGwn for use with a conventional fluid flow meter 10. The fluid flow heter 10, which is illustrated only diagrammatically, includes fluid inlet 12 a~d a fluid outlet 14. The flow meter 10 ~an, for e~ample, colopris ~ ~iston-tyye flow meter and incl~des 71)4~g~3 r~ . l ¦~ an o~tput shaft 16 which rotates an amount proportional to the Il fluid flow rate from the inlet 12 and to~the outlet 14.
The preferred embodiment of the i.ndicating device of the present invention comprises a U-shaped permanent magnet 18 having a north pole 20 and a south pole 22. A track assembly 1 24 (illustrated only diagrammatically) allows the magnet 18 to move linearly in a direction parallel with its base 26.
c A pinion 28 is secured to the flow meter output shaft ~ 16 and meshes with a gear rack 30 secured to the magnet base 26.
O Consequently, the rack 30 and pinion 28 translate the rotational I motion of the shaft 16 to linear motion of the magnet 18.
~ ith reference now particularly to FIG. 2, a Hall effect s 3 transducer 32 is positioned at a midpoint between the magnet pole m o 20 and 22. The transducer 32 generates a voltage at its output 34 having a maqnitude representative of the distance hetween one Z of the magnetic poles 20 or 22 and the transducer 32. Consequent ly, the voltage on the transducer outpu~ 34 will vary as the magnet 18 is moved from the position shown in phantom line and to the
2 position shown in solid line, and vice versa.
u The output 34 from the transducer 32 is, in turn, w, connected as an input signal to a voltage~to-current converter 36. The converter 36 generates a current signal at its output 7 38 which is proportional to its voltage input. In the preferred form of the invention, the converter generates an output current , of four milliamps when the magnet 18 is in one extreme position 2 and increases to a current output of 20 milliamps when the permanent magnet 18 is in its other extreme position.
Still referring to FIG. 2, the current output 38 from the converter 36 is connected as ~ input signal to an indicator 40 which can be of any conventional design. Furthermore, the indicator 40 can be physically located at a place remote from the flow meter 10.

11 ~127~6~3 f ~ I

From the foregoing, it can be seen that the present invention provides a simple, inexpensive and yet totally effective device for converting the mechanical output from a flow meter to an electrical signal which can be monitored at a poSition remote from the flow meter. Consequently, the present invention enables a plurality of spaced apart flow meters to be monitored at a central contr~l area.
c Although the preferred embodiment of the invention uses ~ a rack and pinion for translating the mechanical rotary output o from the flow meter to linear movement of the magnet, it will be understood that other means may alternatively be used.
Having described my invention, however, many modification s ~ thereto will become apparent to those skilled in the art to which it pertains without deviation from the spirit of the invention als defined by the scope of the appended claims.
I claim:
o ~, I
z Q
I

>

Claims (5)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. For use in conjunction with a fluid flow meter having a mechanical output member movable in an amount proportional to the fluid flow rate through the flow meter, a device for generating an electrical output representative to the flow rate through the flow meter comprising:
a magnet having a north and south pole, a transducer positioned between said poles of said magnet, said transducer producing an electrical signal representative of the distance between the transducer and one of said poles, and means for moving said magnet to vary the distance between said one of said poles with respect to said transducer in a direction opposite to movement of the other of said poles with respect to said transducer in an amount proportional to the movement of the mechanical output member from the flowmeter.
2. The invention as defined in claim 1, wherein said electrical signal comprises a variable voltage signal.
3. The invention as defined in claim 2 and comprising means for converting said voltage signal to a current proportional to said voltage.
4. The invention as defined in claim 1 wherein said moving means comprises means for mechanically connecting the output member to the magnet.
5. The invention as defined in claim 4 wherein the output member rotates an amount proportional to the flow rate and wherein said mechanical connecting means comprises a pinion secured to the output member, a gear rack secured to the magnet, and wherein said pinion meshes with gear rack.
CA000499216A 1984-01-27 1986-01-08 Magnetically inducted flow meter Expired CA1270663A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US583,621 1984-01-27
US06/583,621 US4569233A (en) 1984-02-27 1984-02-27 Flow meter indicating device

Publications (1)

Publication Number Publication Date
CA1270663A true CA1270663A (en) 1990-06-26

Family

ID=24333887

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000499216A Expired CA1270663A (en) 1984-01-27 1986-01-08 Magnetically inducted flow meter

Country Status (1)

Country Link
CA (1) CA1270663A (en)

Similar Documents

Publication Publication Date Title
CA2476464C (en) Methods and apparatus for sensing angular position of a rotatable shaft
US6326781B1 (en) 360 degree shaft angle sensing and remote indicating system using a two-axis magnetoresistive microcircuit
US4471304A (en) Fluid-powered actuator having a cylinder with magnetic field detectors thereon and a magnetized piston rod
US5412317A (en) Position detector utilizing absolute and incremental position sensors in combination
CA2696690C (en) Linear segment or revolution counter having a ferromagnetic element
US6604434B1 (en) Method and apparatus for determining the direction and rate of a rotating element
EP0427882B1 (en) Apparatus for measuring small displacements
US4569233A (en) Flow meter indicating device
US4275291A (en) Rotation sensor
US6265867B1 (en) Position encoder utilizing fluxgate sensors
CA2076222C (en) Pick-up for the inductive production of a measurement signal
US4712420A (en) Arrangement in a magnetic position indicator
CA1184050A (en) Real time eddy current responsive hall effect device tachometer
US20020171417A1 (en) Angle detector with magnetoresistive sensor elements
CA1270663A (en) Magnetically inducted flow meter
US6502468B1 (en) Metering pulse transducer
GB2190507A (en) Inductive sensor or transducer for use in hostile environments
AU1261300A (en) Measuring device for the contactless measurement of an angle of rotation
KR20230131295A (en) Non-contact position sensor with permanent magnet
US3105232A (en) Position indication systems
JPS61175504A (en) Positioning sensor
KR20000057320A (en) Instrument for measuring eddy currents
RU2071594C1 (en) Device for digital indication of linear translation
EP0247567A1 (en) Absolute-angle measuring device
SU848982A1 (en) Displacement transducer for logometric measurement circuit

Legal Events

Date Code Title Description
MKLA Lapsed