CA1212975A - Fastener assembly for clamped wheels - Google Patents

Fastener assembly for clamped wheels

Info

Publication number
CA1212975A
CA1212975A CA000437046A CA437046A CA1212975A CA 1212975 A CA1212975 A CA 1212975A CA 000437046 A CA000437046 A CA 000437046A CA 437046 A CA437046 A CA 437046A CA 1212975 A CA1212975 A CA 1212975A
Authority
CA
Canada
Prior art keywords
clamp
washer
fastener assembly
bearing surface
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000437046A
Other languages
French (fr)
Inventor
Emil J. Hlinsky
William L. Grube
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MacLean Fogg Co
Original Assignee
MacLean Fogg Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MacLean Fogg Co filed Critical MacLean Fogg Co
Application granted granted Critical
Publication of CA1212975A publication Critical patent/CA1212975A/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B43/00Washers or equivalent devices; Other devices for supporting bolt-heads or nuts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B31/00Screwed connections specially modified in view of tensile load; Break-bolts
    • F16B31/04Screwed connections specially modified in view of tensile load; Break-bolts for maintaining a tensile load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B39/00Locking of screws, bolts or nuts
    • F16B39/22Locking of screws, bolts or nuts in which the locking takes place during screwing down or tightening
    • F16B39/24Locking of screws, bolts or nuts in which the locking takes place during screwing down or tightening by means of washers, spring washers, or resilient plates that lock against the object
    • F16B39/26Locking of screws, bolts or nuts in which the locking takes place during screwing down or tightening by means of washers, spring washers, or resilient plates that lock against the object with spring washers fastened to the nut or bolt-head

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bolts, Nuts, And Washers (AREA)
  • Connection Of Plates (AREA)
  • Clamps And Clips (AREA)

Abstract

FASTENER ASSEMBLY FOR CLAMPED WHEELS
Abstract of the Disclosure A fastener assembly for clamped vehicle wheel instal-lation includes a nut engageable with a wheel hub supported stud and a resiliently deformable clamp washer. A washer clamp surface engageable with the wheel is conical and inclined to the radial direction at an initial clamp surface cone angle. Interfacing bearing surfaces are defined on the nut and clamp washer and define an initial bearing surface separation angle not smaller than the initial clamp surface cone angle. The nut bearing surface is inclined at an angle related to the coefficient of friction at the bearing surfaces to avoid subjecting the clamp washer to undesirable hoop stresses. Substantial spring forces are achieved with a com-pact assembly because the axial offset of the clamp washer is substantial in relation to the radial offset. Radial clamp washer offset provides a differential in friction radii to prevent rotation of the clamp washer relative to the wheel.

Description

7~i The present invention relates to fast~ner assemblies, and more particularly -to an improved fastener assembly for clamped vehicle wheel installations.
The present application concerns subject matter related to co-pending Canadian application Serial No. 365,714 filed on November 28, 1980.
Vehicle wheels are conventionally mounted to a hub or a hub and brake drum assembly by a threaded fastener system.
In one typical arrangement, threaded studs extend outwardly from the hub through stud holes in the wheels, and the wheels are held against the hubs by wheel nuts or cap nuts threaded onto the studs. In another arrangement, bolts can extend through the wheel mounting holes and are threaded into the hub or into nuts associated with the hub. The wheels may by centered in a variety of ways, as by mating of cooperating surfaces on the wheels and -the wheel nuts, or by various hub centering or piloting systems.
It is essential that wheel clamp load be maintained in the mounting system to avoid movement or misalignment of the wheels on the hub. If the clamping force holding the wheel against the hub is lost or diminished, a catastrophic situation can occur in which the wheel can move relative to the hub and studs, resulting in rapid failure of the studs and separation of the wheel from the hub.
In conventional wheel mounting systems, substantial clamp load can be lost as a result of a relatively slight degree of axial deflection in the fastened joint due to factors such as creep, fastener embedment or the like. The only signi-ficant resilience in the conventional system is due to stud 7~

elongation upon tightening, four or five thousandths of an inch of elongation being typical. Thus, axial deflection of only one thousandth of an inch can result in loss of 20-25%
of clamp load.
Because of the serious and possibly dangerous nature of such problems, frequent checks of tightening torque are necessary, particularly in the case of heavily loaded vehicles, dual wheel mounting systems, rough service and the like. It is not unusual that wheel nut tightening torque checks are specified as frequently as every 500 miles of use in some situations. This procedure, although necessary for safety and maintenance of the mounting system, can be inconvenient and time consuming.
It would be desireable to introduce more resilience into the wheel nut mounting system, but this is difficult due to the large clamping forces experienced and to the size res-traints imposed by the environment. ~or example, conventional washer spring or belleville washer technology would not solve the problem because the size of the washer spring would be excessive/ for example four inches or more in diameter for a clamp load of about thirty thousand pounds.
Among the important objects of the present invention are to provide an improved fastener assembly, particularly a fastener assembly useful for clamped vehicle wheel installa-tions to provide a fastener assembly capable of resisting loss of clamp load in use; to provide a fastener assembly overcoming the problems and dangers resulting from loss of clamp load due to fastener creep or embedment or the like in conventional systems; to provide a fastener assembly providing 3n increased resilience in the fastened system in a reliable and economic manner and without overlarge fastener components; to provide a fastener assembly capable of providing substantial resilience without damage to the components of the assembly upon tightening; and to provide an improved fastener assembly for clamped wheels overcoming disadvantages of fasteners and fastener assemblies used for this purpose in the past.
In brief, in accordance with the above and other objects of the present invention there is provided a fastener assembly for clamping one or more vehicle wheels between a hub and the fastener assembly at a predetermined clamp load.
The fastener assembly includes a threaded fastener having a body and a cylindrical, axially oriented thread structure, the body being provided with a configuration engageable by a tool for tightening of the fastener assemblyO The assembly also includes a resiliently deformable clamp washer rotatable relative to the body and having a central aperture surrounding the plane of the cylindrical thread structure. A body bearing surface is defined on the fastener body and interfaces with a cooperating washer bearing surface defined on one side of the clamp washer. A wheel engaging clamp surface is defined on the opposite side of the clamp washer.
The clamp surface formed on the clamp washer is generally conical and is inclined relative to the radial direction by an initial clamp surface cone angle. The body bearing surface is also generally conical and is inclined relative to the radial direction by an angle having a tangent not greater than the coefficient of friction between the clamp washer and fastener body, thereby preventing the imposition of hoop stress to the clamp washer upon tightening of the fastener assembly.

7~

Prior to tightening of the fastener assembly, the clamp washer is engageable with a wheel to be clamped along a first circular line of contact and with the fastener body along a second circular line of contact between the clamp washer and body bearing surfaces. The circular lines of con-tact are radially and axially offset, and the axial offset distance is substantial in relation to the radial offset dis-tance in order to achieve large spring forces in a compact arrangement.
The body bearing surface and washer bearing surface derine an initial bearing surface separation angle, and that angle is at least as large as the initial clamp surface cone angle. Upon tightening of the fastener assembly, the clamp washer resiliently deforms, and it is assured that a separa-tion angle is maintained between the washer and the body bearing surfaces. The clamp washer is designed so that upon tightening of the fastener assembly the clamp washer resil-iently deforms to decrease the clamp surface cone angle as well as the bearing surface separation angle, with the clamp surface cone angle being greater than zero at the predeter-mined clamp load so that upon full tightening substantial resilience is present in the system.
The present invention together with the above and other objects and advantages thereof will best appear from the following detailed description of a preferred embodiment of the invention illustrated in the accompanying drawings wherein:
FIG. 1 is a fragmentary sectional view through a vehicle wheel mounting installation including a fastener ~IL2~75 assembly constructed in accordance with the principles of the present invention;
FIG. 2 is a sectional view of the fastener assembly of FIG. 1 taken along the axis of the assembly, illustrating the assembly prior to installation in a wheel mounting system;
FIG. 3 is an enlarged and somewhat diagrammatic fragmentary, axial sec~ional view of a portion of the fastener assembly and a wheel surface illustrating the components in the finger tight or non-tightened position; and FIG. 4 is a graphical representation showing the relationship between clamp load and deflection in a wheel mounting system including the fastener assembly of the present invention and in a similar wheel mounting system using a con-ventional fastening system of the prior art.
Having reference now to the drawings and initially to FIG. 1, there is illustrated a portion of a vehicle wheel mounting installation designated as a whole by the reference numeral 10 and including a fastener assembly generally desig-nated as 12 constructed in accordance with the principles of the present invention. The illustrated wheel mounting instal-lation includes a hub assembly 14 to which a pair of wheels 16 and 18 are clamped by a fastener system including a stud 20 and the fastener assembly 12. Although ~he installation 10 is illustrated as including dual wheels, it should be under-stood that principles of the present invention are applicableto single wheel installations also.
The hub assembly 14 includes a hub member 22 and an outboard mounted brake drum 24. The term "hub" or "hub assembly"
or the like as used here should be understood to include not only outboard hub-drum systems such as illustrated wherein 7~i the wheels are clamped against the drum, but also other types of arrangements such as inboard drum mountings wherein ~he wheels may be clamped directly against a hub member or some other component of the hub assembly.
Depending on vehicle size, wheel size, load require-ments and like factors, a given number of studs 20 are located usually in a circular pattern around the periphery of the hub 14. Only one such stud is illustrated in FIG. 1, and it should be understood that a fastener assembly 12 may be associated with each stud of the wheel mounting system. In the illus-trated embodiment, the stud is semipermanently mounted by a press fit into the hub assembly 14, although other conventional types of stud mounting arrangements may be utilized. The stud; as is conventional, extends outwardly, in the axial direction relative to the axis of the fastener assembly 12, through stud holes 26 in the wheels 16 and 18. When initially mounted to the hub 14 at the time of tightening of the fastener assembly 12, the wheels 16 and 18 may be centered relative to the hub 14 in any desired manner as by a suitable piloting or alignment arrangement (not shown). It should be noted that clearance exists between the stud 20 and the wheels 16 and 18. After mounting of the wheels and tightening of the fastener 12, the clamp load applied to the wheels between the hub assembly 14 and the fastener assembly 12 serves to prevent movement of the wheels relative to the hub assembly.
The fastener assembly 12 of the present invention includes a fastener body 28 in assembly with and cooperating with a clamp washer 30. When the fastener assembly 12 is installed in the wheel mounting system as illustrated in FIG.
1, the clamp washer 30 is sandwiched between the fastener .2~

body 28 and a surface 32 of wheel 18, the surface 32 being disposed radially with respect to the axis of the fastener assembly 12. In the illustrated embodiment of the invention, the fastener body 28 is a hex nut suitable for use with the threaded stud 200 Principles of the present invention are applicable as well to fasteners other than nuts such as headed bolts used in other types of wheel mounting installations.
Consequently, the term fastener body should be understood to encompass not only the body of a nut but also the head portion of a shanked fastener.
For engagement with the male threaded stud 20, the fastener body 28 includes a female thread structure 34 lying generally in a cylindrical plane symmetrical about the central longitudinal axis of the body 28. To permit tightening of the fastener assembly 12 upon the stud 20, the body 28 includes a wrenching structure in the form of flats 36 of the hex shaped nut body. With fastener bodies of other forms, male rather than female thread structures may be provided, and various types of wrenching structures or driving structures may be utilized for tightening of the fastener assembly.
The body 28 and washer 30 are maintained in assembled relation by means of a flange or collar 38 extending axially from the fastener body 28 through a reduced diameter neck portion 40 of the central axial opening 42 of the clamp washer 30. The end of the flange or collar 38 is larger in diameter than the neck 40 so that the body 28 and clamp washer 30 are maintained in assembled relationship while permitting free rotation and some movement between the body 28 and washer 30.
That side of the clamp washer 30 engageable wi~h the wheel surface 32 is provided with a clamp surface 44.

7~;

The opposite side of the clamp washer 30 is provided with a washer bearing sur~ace 46. The washer bearing surface 46 interfaces with and cooperates with a body bearing surface 48. Each of the surfaces 44, 45 and 48 is a continuous and annular surEace of revolution, and has circular inner and outer peripheries. The fastener body 28 is provided with a small flange 50 to accommodate the body bearing surface 480 The fastener body 28 and the clamp washer 30 are preferrably of a steel amenable to heat treating to a high hardness. At the clamp loads for which the fastener assembly 12 is designed, the clamp washer 30 is resiliently deormable and functions to provide substan~ial spring forces in the tightened condition in a wheel mounting installation such as the typical installation illustrated in FIG. 1.
Clamp surface 44 of clamp washer 30 is conical in the initial condition of the clamp washer prior to tightening of the fastener assembly 12. The surface 44 is inclined at an angle B relative to the radial direction of the ~astener system and thus is inclined at angle B relative to the radially disposed workpiece or wheel surface 32. As best seen in FIG.
3, in the finger tight initial or non-tightened condition of the ~astener assembly 12, the clamp washer 30 engages the w'neel surface 32 at a circular line of contact 52 be~ween the clamp surface 44 and the surface 32.
Washer bearing surface 46 is also conical in the illustrated embodiment of the invention and is inclined at an angle A relative to the radial direction~ Body bearing surface 48 is also conical in conigurat.ion and is inclined at an angle C relative to the radial direction. Angle C is larger than angle A, and in the initial condition the body 28 contacts ~ ~r,~t--the clamp washer 30 along a circular line of contact 54 between the bearing surfaces 46 and 48. The surfaces 46 and 48 are initially separated by an angle D, angle D being equal to angle C minus angle A. While surfaces 44, 46 and 48 are illus-trated as true cones, any or all of these surfaces may besomewhat rounded or deviate slightly from a classical geometric cone, and the term cone o~ conical should be understood to include such variations.
As the fastener assembly 12 is tightened, fastener body 28 moves toward the workpiece or wheel surface 32 and clamp washer 30 deforms to permit this movement. As clamp washer 30 deforms, the initial clamp surface cone angle B
decreases and the initial bearing surface separation angle D
between surfaces 46 and 48 similarly decreases a like amount because angle A decreases while angle C remains unchanged.
During this deformation, it is desireable that the fastener body 28 rotate relative to the clamp washer 30 and that the clamp washer 30 not rotate relative to the sur~ace 32 of wheel 18. It is desired that relative rotation take place between the bearing surfaces 46 and 48 designed for this purpose and that undesireable damage to the wheel surface 32 due to rota-tion of clamp washer 30 be avoided. During tightening, fric-tional forces between the body 28 and clamp washer 30 tend to cause the clamp washer to rotate, while frictional forces between the clamp washer 30 and the wheel 18 tend to prevent movement of the clamp washer 30. Contact circles 52 and 54 are both symmetrical about the fastener axis, and frictional forces applied at these circles act through their radii~ Since the radius of circle 52 is substantially larger than the radius of circle 54, the forces tending to cause rotation of clamp _g_ I

~t75 washer 30 are effectively attenuated and the washer remains stationary.
Fastener assembly 12 is designed to provide a pre-determined clamp load in a wheel mounting system. The initial clamp surface cone angle B is chosen so that although the angle decreases during tightening, angle B remains greater than zero when the full designed clamp load is achieved. Since the clamp washer 30 provides a spring effect during tightening, this assures that some reserve spring effect remains at full clamp load and that there is a margin for error in case of overtighteningO It is preferred that angle B decrease nearly to zero but not all the way to zero upon tightening to full clamp load, a decrease in angle of about 75~ to 85~ being preferred.
Angle D should be no larger ~han angle B so that upon tightening of the fastener assembly 12 angle D does not decrease to zero at the full designed clamp load and does not decrease to zero before angle B decreases to æero. It is preferrable that angle D be slightly larger; for example by 1 or less, than angle B so that this relationship is assured despite manufacturing tolerance variations.
The magnitude of the body bearing surface cone angle C is chosen in order to prevent the application of undesireable hoop stresses to the cone washer 30 during tightening o the fastener assembly 12. The frictional forces encountered upon tightening between the bearing surfaces 46 and 48 are utilized by the selection of angle C to prevent the application of excessive radially outward forces to the clamp washer 30 which could have the ~ndesireable eect of causing the clamp washer I

~2~ 7~

30 to loose its elasticity and fail to perform as a spring in the wheel mounting installation.
More specifically, as the fastener assembly 12 is tightened, force is applied to the clamp washer 30 by the bearing surface 48 of the fastener body 28 and is applied in a direction normal to the surface 48. This force has a radially outwardly directed component determined by vector analysis to be equal to the normal force applied at surface 48 times the sine of angle C. This force tends to cause the clamp washer 30 to be deformed radially outwardly and tends to subject the clamp washer to a damaging dilation effect or hoop stress.
Conversely, frictional forces developed between the bearing surfaces 46 and 48 tend to prevent the clamp washer 30 from dilating or moving radially outwardly. Frictional lS forces developed at the interface between surfaces 46 and 48 are applied parallel to these surfaces, and in the tightened condition, essentially parallel to surface 48. The component of the frictional force directed radially inwardly and pre-venting dilation of the clamp washer 30 can be calculated by vector analysis to be equal to the normal force times the coefficient of friction experienced at the interface times the cosine of angle C.
Thus it can be seen that the radially outwardly directed force is in opposition to the radially inwardly directed frictional force. It is desired that the rictional force be at least as great as the radially outward force to minimize the application of hoop stresses to the clamp washer 30~ Consequently, the frictional force (coefficient of fric-tion times normal force times cosine of angle C) should be greater than or equal to the radially outwardly directed force I

~2~975 tnormal force times sine of angle C). Since the normal force is a factor in both the inward and outward radial forces, that force can be factored out of the calculation and the coefficient of friction times the cosine of angle C should be greater than or equal to the sine of angle C. In other words, the coefficient of friction should be greater than or equal to the tangent of angle C.
It has been determined that with the use of steel materials the smallest coefficient of friction experienced at the bearing surface interface is about 0.15. As a result, angle C is preferrably about 8 1/2 so that the tangent of that angle does not exceed the coefficient of friction.
It is important that the fastener assembly 12 not be excessively large in the radial direction so as to be accommodated in the available space in conventional wheel mounting systems. In order to achieve substantial spring forces without large radial size, the axial offset of the clamp washer 30 is substantial in comparison with the radial offset. The axial offset is defined as the distance in an axial direction between the contact circles 52 and 54, and the radial offset is defined as the distance in the radial direction between the contact circles 52 and 54O It is pre-ferred that the axial offset distance be at least one-half of the radial offset distance in order to achieve large clamp loads within the spring capabilities of the clamp washer 30.
In a fastener assembly constructed in accordance with the present invention the following dimensions and para-meters were found to achieve the objects of the invention.
These are set forth here by way of illustration of a preferred embodiment of the invention and not by way of limitation:

I

7~i Nominal stud and nut size... ~...... O.... ...3/4 incn Designed clamp load.... ~,............... O. 30,000 lb.
Axial deflection at designed clamp load.............. ,.... ..Ø025 inch Tightening torque at designed clamp load................... ...250 ft.lbs.
Axial offset............................ ...0,36 inch Radial offset........................... ...0 D 56 inch Angle A.. D~ 545' Angle B~ 235' Angle C................................. ...835' Angle D................................. ...250' In FIG. 4 the greatly improved clamping characteristic o~ the fastener assembly 12 of the present invention is graphic-ally illustrated in comparison with the typical prior art arrangement. Line 56 illustrates the relationship between applied clamp load and axial deflection typical of a prior art wheel mounting installation. It can be seen that at a clamp load of 30,000 pounds, about ~ive thousand~hs of an inch of axial defl~ction is experienced. Consequently for each one thousandth of an inch of decrease in axial deflec-tion due to creep or embedment of the nut resulting from factors such as vibration, temperature variations or the like, clamp load decreases by approximately 6,000 pounds possibly giving rise to damage to the wheel mounting assembly and a dangerous condition.
Line 58 illustrates the r~lationship between clamp load and axial deflection in a wheel nut mounting installation including the fastener assembly 12 of the present invention.
Here at a designed clamp load of 30,000 pounds, the axial ~L2~ 5 deflection is equal to twenty five thousandths of an inch.
If one thousandth of an inch of axial deflection is lost due to fastener creep or embedment t clamp load only decreases by slightly over one thousand pounds and ample clamp load is retained to assure integrity of the wheel mounting installation.
The improvement in the clamp load-deflection characteristic is due primarily to the spring effect of the clamp washer 30 and is due to a lesser extent to the fact that use of the clamp washer 30 increases the effective lengt'n of the stud 20.
While the invention has been described with reference to details of the illustrated embodiment, it should be under-stood that such details are not intended to limit the scope of the invention as defined in the following claimsO

Claims (6)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A fastener assembly for clamping one or more vehicle wheels between a hub and the fastener assembly at a predetermiend clamp load, said fastener assembly comprising:
a threaded fastener having a body and having a thread structure disposed generally in a cylindrical plane parallel to and surrounding the central longitudinal axis of said body;
said body including a structure engageable by a tool for tightening of the fastener assembly toward a radial surface of a wheel to be clamped;
a resiliently deformable clamp washer rotatable relative to said body and having a central axial aperture surrounding said cylindrical plane and interposed between said fastener body and a wheel to be clamped;
a body bearing surface defined on the fastener body and a cooperating washer bearing surface defined on one side of said clamp washer and interfacing with said body bearing surface; and a clamp surface defined on the opposite side of said clamp washer;
said clamp surface being conical and inclined rela-tive to the radial direction by an initial clamp surface cone angle;
said body bearing surface being conical and inclined relative to the radial direction by an angle having a tangent not greater than the coefficient of friction between the clamp washer and body;

said clamp washer prior to tightening of the fastener assembly being engageable with a wheel to be clamped along a first circular line of contact between said clamp surface and the wheel and being engageable with said fastener body along a second circular line of contact between the clamp washer bearing surface and the body bearing surface;
said second circular line of contact being smaller in radius than said first circular line of contact;
said body bearing surface and said washer bearing surface defining an initial bearing surface separation angle at least as large as said initial clamp surface cone angle;
and said clamp washer upon tightening of said fastener assembly resiliently deforming to decrease said clamp surface cone angle and said bearing surface separation angle, said clamp surface cone angle being greater than zero at the pre-determined clamp load.
2. A fastener assembly as claimed in claim 1, said first and second circular lines of contact being radially and axially offset, the axial offset distance being at least one half of the radial offset distance.
3. A fastener assembly as claimed in claim 1, said body bearing surface being inclined at an angle of less than nine degrees.
4. A fastener assembly as claimed in claim 3, said body bearing surface being inclined at an angle of more than eight degrees.
5. A fastener assembly as claimed in claim 1, said initial bearing surface separation angle being in the range of equal to or not more than about one degree larger than said initial clamp surface cone angle.
6. A fastener assembly as claimed in claim 1, said body comprising a flanged nut with said body bearing surface defined on said flange.
CA000437046A 1982-09-20 1983-09-19 Fastener assembly for clamped wheels Expired CA1212975A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41977182A 1982-09-20 1982-09-20
US419,771 1982-09-20

Publications (1)

Publication Number Publication Date
CA1212975A true CA1212975A (en) 1986-10-21

Family

ID=23663694

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000437046A Expired CA1212975A (en) 1982-09-20 1983-09-19 Fastener assembly for clamped wheels

Country Status (9)

Country Link
JP (1) JPS59131015A (en)
AU (1) AU563956B2 (en)
BR (1) BR8305122A (en)
CA (1) CA1212975A (en)
DE (1) DE3333785C2 (en)
FR (1) FR2533169B1 (en)
GB (1) GB2127122B (en)
IT (1) IT1197714B (en)
SE (1) SE454340B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717299A (en) * 1986-02-27 1988-01-05 Armstong Fastenings, Ltd. Wheel nut assemblies
JPS6316201U (en) * 1986-07-17 1988-02-03
DE4307091B4 (en) * 1992-04-18 2009-06-04 Neumayer Tekfor Holding Gmbh Mother, especially wheel nut
DE4307090B4 (en) * 1992-04-18 2004-04-15 Erich Neumayer Gmbh & Co Kg Nut, especially wheel nut
GB2281368B (en) * 1993-08-21 1996-06-12 Mark Anthony Dennis Concealed fixing device
JPH08303442A (en) * 1995-04-28 1996-11-19 Sakata Seisakusho:Kk Manufacture of nut with washer
US5827025A (en) * 1997-12-08 1998-10-27 Seventy-Five And Associates, Ltd. Lug nut disc spring assembly
JP3683101B2 (en) * 1998-09-11 2005-08-17 日産ディーゼル工業株式会社 Wheel mounting structure
DE19956287A1 (en) * 1999-11-23 2001-05-31 August Friedberg Gmbh Nut with compression ring, with contact surface forming second positive radial connection between nut body and compression ring
EP1104707A1 (en) 1999-12-02 2001-06-06 RTR - Rädertechnik Romkes GmbH Wheel for bicycle
JP4713249B2 (en) * 2005-07-01 2011-06-29 大和ハウス工業株式会社 Anchor bolt joint structure of members with nuts with stepped parts
DE102012021005A1 (en) * 2011-11-12 2013-05-23 Neumayer Tekfor Holding Gmbh fastener
US9322426B2 (en) 2013-04-30 2016-04-26 Rb&W Manufacturing Llc Nut and sleeve fastener
DK3728876T3 (en) * 2017-12-20 2023-06-12 Superbolt Inc MULTIPLE CHAMBERS HYDRAULIC MULTIJACK BOLT TIGHTENERS
US20200307304A1 (en) * 2019-03-25 2020-10-01 Goodrich Corporation Bolted joint for wheel assemblies

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB341333A (en) * 1930-03-11 1931-01-15 Nicolas Vacher Improvements in or relating to locking devices for nuts, bolts and the like
DE2053582A1 (en) * 1969-11-05 1971-05-13 Eaton Yale & Towne Spring washer for screw connections
GB1389976A (en) * 1972-03-22 1975-04-09 Neumayer Co Metallwarenfabrik Wheel nuts
GB2064818B (en) * 1979-11-30 1983-11-23 Monitoring the operation of an industrial installation
US4362449A (en) * 1979-11-30 1982-12-07 Maclean-Fogg Company Fastener assemblies

Also Published As

Publication number Publication date
GB8324993D0 (en) 1983-10-19
FR2533169A1 (en) 1984-03-23
DE3333785C2 (en) 1994-05-26
JPS59131015A (en) 1984-07-27
FR2533169B1 (en) 1990-05-11
AU1930483A (en) 1984-03-29
SE454340B (en) 1988-04-25
GB2127122B (en) 1986-04-23
BR8305122A (en) 1984-05-08
GB2127122A (en) 1984-04-04
DE3333785A1 (en) 1984-03-22
AU563956B2 (en) 1987-07-30
SE8304953L (en) 1984-03-21
SE8304953D0 (en) 1983-09-14
IT8348991A0 (en) 1983-09-19
IT1197714B (en) 1988-12-06

Similar Documents

Publication Publication Date Title
CA1212975A (en) Fastener assembly for clamped wheels
US4431353A (en) Fastener assembly
US4362449A (en) Fastener assemblies
US6227624B1 (en) Vehicle wheel hub and bearing retention system and method for producing same
EP2602123B1 (en) An integrated hub-bearing assembly for the wheel of a motor vehicle
US4582462A (en) Plastic protecting cap for a polygon nut
US20030077143A1 (en) Washer and threaded fastener assembly incorporating same
US6517301B2 (en) Fastener assembly including a screw element and a supporting element
JP2003074533A (en) Locking fastener assembling body
JP3902708B2 (en) Torque angle limit wheel nut
EP0028746A1 (en) Load indicating fastener
US5779416A (en) Bolt/stud and nut for enhanced high-cycle fatigue capability
US6070946A (en) Dual wheel mounting system
US20020039522A1 (en) Fastener including a screw member and a securing ring
US20100308643A1 (en) Wheel hub stress reduction system
JP2841333B2 (en) Rolling bearing
US4804233A (en) Double-row anti-friction bearing, particulary for wheels of automotive vehicles
JP2006220297A (en) Axial force controlling nut assembly
GB2107024A (en) Securing a wheel to a vehicle
US5318353A (en) Vehicle wheel centering apparatus
US7097402B2 (en) Lock nut
US11959506B2 (en) Spindle nut retainer system
JPH0320606B2 (en)
US5795119A (en) Adjustable lock nut
US20200307304A1 (en) Bolted joint for wheel assemblies

Legal Events

Date Code Title Description
MKEX Expiry