CA1201182A - Electrical capacitor having a polyglycol dielectric fluid - Google Patents

Electrical capacitor having a polyglycol dielectric fluid

Info

Publication number
CA1201182A
CA1201182A CA000477311A CA477311A CA1201182A CA 1201182 A CA1201182 A CA 1201182A CA 000477311 A CA000477311 A CA 000477311A CA 477311 A CA477311 A CA 477311A CA 1201182 A CA1201182 A CA 1201182A
Authority
CA
Canada
Prior art keywords
capacitor
fluid
dielectric
electrodes
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000477311A
Other languages
French (fr)
Inventor
Stanley W. Cichanowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to CA000477311A priority Critical patent/CA1201182A/en
Application granted granted Critical
Publication of CA1201182A publication Critical patent/CA1201182A/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/145Organic dielectrics vapour deposited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/20Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
    • H01G4/22Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06 impregnated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

AN ELECTRICAL CAPACITOR HAVING A POLYGYLCOL
DIELECTRIC FLUID

ABSTRACT OF THE DISCLOSURE

An electrical capacitor has a casing and a capacitor roll section which includes a pair of spaced electrodes with a solid dielectric material between, and connections from the electrodes to terminals on the casing, and a polyglycol dielectric fluid in the casing having a molecular weight above about 1000.

Description

A~ EL,ECTRICAL CAPACITOR HAVI~G A POLYGYLCOL
DIELECTRIC FLUID
Background of the Invention This application is a division of Canadian Serial No. ~02,495 filed May 7, 1982.
This invention relates to polyglycol dielectric fluids Eor use in electrical devices, and more particularly to polypropylene glycol ~luids for use as a dielectric fluid in metallized electrical capacitors.
Description of the Prior Art Liquid impregnants for electrical capacitors should have a high dielectric constant, maintain a low dissipation factor, and be compatible with the other materials in the capacitor structure~ At the same time, the impregnants must withstand elevated and fluctuating temperature, pressure, and voltage stress conditions with excellent electrical characteristics for a long operative life of the capacitor. Each of processing, impregnating and other such physical characteristics are also much desired.
There are a yreat number of different kinds of dielectric liquid impregnated capacitors which have been developed over the years to meet specific application requirements. Broadly speaking, among th~
larger capacitors are found high voltage (above 660 volts AC), and low voltage power capaeitors, which also may be denoted as energy storage capacitors, induction heating capaeitors, and power faetor eorreetion capacitors. Small eapaeitors are usually found in application catagories as motor start and run capacitors and lighting capacitors.
In some instances different capacitors use different fluids although there are common desirable fluid characteristics as well as common capacitor operatiny environmental charaeteristics such as vacuum dried fluid filled and sealed units. With the advent of small capaeitors where the solid dieleetrie is under very high eleetrical stresses, and partieularly where the solid dielectric is a plastie film eoated with an evaporated metal layer, i.e., a metallized eapaeitor, the prior fluids used have been found not to be optimum. For example, in some eapaeitors it is either not necessary or desirable for the fluid to swell the plastie, or the penetration of the fluid into the plastic dielectric is undesirable. In yet other metallized eapacitors there is a deleterious relationship between the fluid and the metallized layer whieh eontributes to defieieneies such as eleetrode degradation and eorrosion, and a resultant eapaeitanee loss in the eapaeitor. These problems in metallized eapaeitors have led to a seareh for new and improved dieleetrie fluids and speeialty dieleetrie fluids for metallized eapaeitors.
Summary of the Invention It has been discovered that a certain elass of fluids known as the polyglyeols have eertain \

desirable characteristics which, when properly treated and used, will mitigate the foregoing electrode problems. Electrical capacitors utilizing metallied polypropylene films, when impregnated with polypropylene glycol demonstrate superior performance in resistance to elec-trode corrosion and electrode clearing ef-fectsO
The Drawings This invention will be better understood when taken in connection with the following description and drawings in which -FIG. 1 is an illustration of a metallized polypropylene capactor roll most adaptable for utilizing the gylcol fluid of this invention.
FIG. 2 is an illustration of the capacitor roll section of FIG. 1 assembled in a casing.
FIG. 3 is an illustration of a different metallized capacitor which is adaptable for the use of the fluid of the invention~
FIG. 4 is an illustration off an all-film dielectric power capacitor adapted to utilize the fluids of this invention.
FIG. 5 is an illustration of an assembled capacitor which uses the rolls of FIG. 4 and utilizes the fluids of this invention.
Description of Preferred embodiments The polyglycol components of this invention are essentially linear polymers having the following generalized formula wher R, R' and R" can be hydrogen and/or an alkyl group.

R0- CH2-CH-0 -R"
R' (See Synthetic Lubricants, Edited by Gunderson & Hart, Reinhold Publishing Corporation, New York, New York, 1962, Chapter 3, Polyglycols, Pages 61-102, and Encyclopedia of Polymer Science and Technology, Vol~ 6, 1967, John Wiley & Sons, Library of Congress Card ~6422188.) These materia.ls have, at various times, also been called glycols, polyethers, polyalkylene glycols, or pc~lyoxyalkylene glycols. This- extensive nomenclature has given rise to the generally accepted term polyglycol whether the actual produc-t is a diol, triol, etc., a monoether, a diether, or an ester. While various polyglycol fluids are applicable to the practice of this invention it has been discovered that the polyglycols having a significant polypropylen component and preferably tr.iol tvpe polvproPYlene glycols derived from a glycerine base, have provided excellent results in the practice of this invention~
A descriptive formula for a triol type polypropylene glycol fluid is this invention is shown as follows:

_.
H, H H C,113 H2 C~O C~C~O C,--C--O ~H
H H =X ' =H H _~, Hl C~O C ~C~O C~C--O -- H
.1 H H =X H H =y H 11 . H C,H3 H2 C~O C--C~O C--C--O ~ H

~ Y

where X = 0 or _Y_ is 3-5. The first bracket represents ethylene oxide and the second bracket propylene oxide components.
Amony the presently commercially available Eluids which have been utilized in this invention are the following:
1. Union Carbide NIAX 16-46 - ethylene oxide/
polypropylene oxide triol type with a glycerine starter and available from Union Carbide Company.
2. Union Carbide NIAX LG-56 - polypropylene oxide triol type with a glycerine starter and available from Union Carbide Company.
3. Dow P2000 - polypropylene oxide diol type and avaiable from Dow Chemical Company.
~. Dow 112-2 ethylene oxide/propylene oxide block copolymer and triol type with a glycerine starter and available from Dow Chemical Company.
The mol~cular weight of the polyglycol fluids of this invention, are above about 1000 and prefera~ly in the range of 3000-4000 and above~ Other desirable characteristics are dielectric constants in the range of about 4. 5 to 5.5 measured at 100C, ease of refining to reduce water content below about 75 parts per million (PPM) and a power factor of less than about 10% measured at 100 and 100 Hz.
It has been unexpectedly discovered that polypropylene glycol has unique electrically related properties as a dielectric fluid when used in electrical capacitors where the electrodes are metallized layers on polypropylene film. Also polypropylene glycol has been found to be advantageous as a capacitor fluid in metallized capacitors because its chemical and physical properties are quite adaptable and compatible with polypropylene films. For example, it is a relatively non-spreading, non-penetrating, viscous fluid with low swelling characteristics in polypropylene film. These properties are particularly advantageous in very tightly wound, hard roll, metallized capacitors of the kind disclosed and described in U.S. Patent 3,987,348 - Flanagan et al -assigned to the same assignee as the present inventionand illustrated in ~IGS. 1 and 2 of this invention.
Referring now to FIG. 1 there is disclosed one preferred embodiment of this invention as a capacitor roll section 10. Roll section 10 comprises a pair of dielectric material strips 11 and 12 of polypropylene which have been metallized as illustrated by aluminum metallizing surfaces or coatings 13 and 14.
As is the usual practice, the strips 11 and 12 are metallized in a manner which leaves metal free margins 15 and along opposite edges of roll 10. In the winding process the roll 10 is wound on a core member 17, and the strips 11 and 12 are laterally offset with respect to each other in order that each roll edge or end will display ~n offset with its metalliæed coatings exposed ~t the edge of the strip. Thereafter, suitable electrical leads 18 and 19 may be attached to the exposed metal coating through utilization of the well-known schooping process to provide a metal layer 20, and the roll 10 is then placed in a can or casing as illustrated in FIG. 2. In FIG. 2, the capacitor 21 includes a casing or can 22 which contains a single roll 10, and the leads 18 and 19 from the roll connect to the terminals 23 and 24.
Casing 22 is filled with a dielectric fluid 25 such as a polygylcol fluid of this invention and then sealed.
When the capacitor of FIG~ 1 is impregnated with prior fluids, and operated at high voltage, corona discharge occurs at the roll end or edges and also in the first few turns of the roll. It is in these areas where most corona occurs and from which most capacitors fall. But for the fact that a metallized capacitor has inherent clearing effects the corona discharge would cause an early failure of the capacitor. The clearing effect is also known as self-healing and occurs when there ls some electrical discharge between metallized electrode layers. The heat of the electrical arc or discharge vaporizes an increasingly larger area of the metallized layer, thus increasing the arc length until it extinguishes.
Alternatively described, should a dielectric fault and puncture occur, the very thin film of metallizing will burn back and away from the failure site, isolating the fault. The self-healing feature will then permit the capacitor to continue to function following the clearing, and the dielectric systen can be used at voltage stress levels higher than conventional unmetallized capacitors. Clearing is therefore an instrumental factor in preventing early failure of a metallized capacitor. ~Iowever, repeiitive clearings, which have been described, remove some of the electrode area and accordingly reduce the rated capacitance of the capacitor. This is a major disadvantage in metallized capacitors and a limitation on their applications.
It has been discovered that polypropylene glycol fluids act to suppress clearing in the favorable sense of localizing the clearing and not contributing excessive gases and arcing products which would preserve or extend the clearing action and cause excessive evaporation of the electrode metal. This ma~or clearing advantage of polypropylene glycol fluids is evidenced by its reaction to the many minor electrical clearing effects which take place in metallized capacitors.
Polypropylene glycol has a hlgh oxygen co~tent which ~s aifavorable factor in the ability of an aluminum metallized layer to clear without the build up of conductive elemental carbon. This build up, which is typical of metallized dielectric systems contributes ~2~

to maintaining the arc during clearing, with the adverse result of excessive electrode evaporation, loss of capacitance and the development of a high resistance short circuit.
In a liquid filled tigh-tly would capacitor as described, it is not desirable to have any liquid penetration to the roll edges where significant corona may occur. The presence of a high dielectric constant fluid such as polyglycol is additionally favorable at the roll edge. In fact, the rolls are very tightly would and given a prebaking treatment at elevated temperatures to heat shrink the roll. In these capacitors, if the liauid penetrates and swells the resin it will eause the metalliæed layer to lose its bond to the resin. The layer then rapdily deteriorates in those areas. Further, the presence of the li~uid deeper into the ~Ilinteracts in the electrical field to further cause corrosion of the metal layer. E]ectrode corrosion is also a significant factor in the loss of capacitance in a metallized capacitor. The physical charaeteristics of polyglyeol fluids in these capacitors, i.e. their high viscosity and low swelling with respect to polypropylene film, made them highly desirable dielectrie fluids for metallized capacitors.
The loss of capacitance due to the two factors of clearing and corrosion is at present the most serious disadvantage in metalli~ed capacitors and a limiting factor on their useful life. The following examples show the benefits, in this respeet, from the use of polyglygoel fluids of this invention in metallized capacitors.
EXAMPLE I
In this example six identical aluminum metallized capacitors generally following the Flanagan patent diselosure were assembled and impregnated with different eapacitor fluids as shown. Severe tests were 9~, _ carried out at 410 V~C and 470 VAC (volts alternating current) at the temperature noted. Ordinarily these capacitors would be rated at 330 VAC and 90C and 370 VAC, 70C respectively. Measurements were made as the units were ther~al cycled at 100C and 80C respectively.
%f~C is the percent net change in capacitance. F is a capacitor failure. Geconol is a fluid used in the commercial production of other capacitors, and comprises di-ethyl hexyl phthalate ester, an epoxide and Ionol. A
further description of this fluid is found in U.S. patent 3,754,173, issued August 21, 1973 to Eustance, assigned to the same assignee as the present invention. Ionol reEers to a commercially available anti-oxidant comprising 2.6 di tert-butyl-p-cresol and its capacitor use is described in U.S. Patent 4,117,579 issued October 3, 1978 to Shaw et al. Polypropylene glycol (PPG) was commerciallY
available as Union Carbide NIAX 16-46. In this example, the polypropylene glycol was first column refined with fuller's earth until the water content was reduced to below about 100 P~M and the power factor, measured at room tem~eraturewas below about 10.0~. Test results wele given ir the following tables:
410 Volt~ AC 470 Volts AC
%~ C A~ter I~ime T.~O~ C A er Time T.
Fluid In ~ours In lours 300 500 ~00 1600 300 50010001500 PPG NIAX 16-4G 0.5 2.6 7.4 2.13.95.7 Cotton Seed Oil -~0.05% Ionol 1.3 All-F 2.77.011.7 Corn Oil 1.3 All F 2.7 6.0 8.6 ~0.05~ 2-F
Geconol 7.4 24.6 All-F 3.310.016.8 Fpoxidized Soybean Oil 0.30 1.3 - 5.2 0.7 2.24.1 Soybean Oil 0.6 2.8 - F 0.6 2.45.9 Acetylated ~ F 0.6 2.0 5.1 Castor Oil l-F 5-F

As can be seen from the above table the %~ C
change in capacitance for the polypropylene glycol impregnated capacitors is consistently and markedly less than the % ~ C change associated with the other fluids.
Note the average percent ~C for the 410 volt unit was compared to 1.3 and 7.4 for -the other fluids.
Translated into more practical terms this reduction may means as much as 2 to 3 times the predicted operating life of this capacitor, compared to a Geconol impregnated capacitor.
EXAMPLE II
~n this example a number of similar capacitors were made up and subjected to an applied voltage of 400 VAC
which is correlated to the capacitor design to produce immediate and positive clearings and clearing times were compared. Clearing time is the number of micro seconds ~ s, over which the electrical discharge from a clearing extends, PXE is phenyl xylyl ethane and MO is mineral oil, mJ i~ milli joules.
Applied Voltage 400 VAC
Fluid ~y PPG GEC PXE MO
Clearing time ~ sec. 9 8 10 14 12 Energy mJ 440 380 360 380 360 This table shows that PPG has a shorter clearing time than the other ~luids. Microscopic examination of clearing sites showed a clearner clearing for PPG is a contributing factor to the shorter clearing times.
EXAMPLE III
Tests were undertaken to compare the physical properties of polypropylene glycol (PPG) and Di ethylhexyl phthalate capacitor fluid DEHP, a widely utilized fluid, with the results showning polypropylene glycol to be superior. For example, a physical analysis of DEHP
impregnated capacitor rolls and polypropylene glycol impregnated capacitor rolls showing that fluid penetration ~2~

with polypropylene glycol was significantly less than than of DEHP. Note the following comparison characteristics which support the results of these examinations.
Contact Angle of ~luid on Untreated lO0~ Swelling PolypropyleneViscosity Of PP Vol. % (Degrees) 25C
PPG ~ 1% 43 + 2 525 cs DEHP 7.2% 9 + 2 57 cp The described advantages of the polyglycol fluids are primarily useable to their best advantage in metallized synthetic resin capacitors. They may also be used in metallized capacitors requiring full impregnation, i.e. double metallized paper electrode polypropylene film dielectric capacitors, composite dielectrics of paper and polypropylene film with aluminum foil electrodes, and all polypropylene fil~ dielectrics with aluminum foil electrodes. The capacitors are described as follows:
Referring now to FIG. 3 the exemplary capacitor roll section 26 comprises a core member 27 on which is a tightly wound s~ries of synthetic resin strips 28 and metallized paper electrodes 29. The roll section 26 is wound with the electrodes in offset relationship to each other so that the metallized edges 30 of one electrode are exposed at one end 31 of the roll section and the exposed edges 32 of the other metallized electrode are exposed at the other end 33 of the roll section. A suitable metal such as aluminum or zinc is sprayed at each end of the roll section to form a coating 34 and electrode leads 35 and 36 are joined to coating 3~.
The metallized paper electrodes 29 comprise a thin, high density paper strip on which is a layer or coating of aluminum. A number of materials may be employed for the paper including woven and non-woven polymeric material or other porous and wicking materials which will permit the ingress of dielectric fluids thereln and therealong. However, in the practice of this invention, capacitor tissue is preferred which is about 1.0 density. Such tissue is commercially available as Kraft capacitor tissue. The paper strips are coated with a metal layer on both sides thereof, a combination referred to as doubly metallized paper.
Preferably the metal is aluminum which is vacuum deposited on the paper hy well-known vacuum deposition to provide a uniform high purity metal layerO Such layers are measured in terms of their ohms resistance per square of electrode foil and a range for the present invention is from about 4.0 to about 7.0 ohms/square.
The synthetic resin strips 28 may be single or multiple strips of one or more of the more common dielectric resins such as the polyolefins, polycarbonates and polyamines, etc., and homopolymers and copolymers thereof. However, a resin comprising electrical capacitor grade polypropylene is a preferred resin strip for this invention. Capacitor grade polypropylene film is a higher purity, smoother, polypropylene film of enhanced dielectric characteristics.
~ he polypropylene strips 28 and metallized paper electrode strips 29 are wound together in roll form as illustrated in FIG. 1, inserted in a round can similar to can 19 of FIG. 2, subjected to an elevated temperature and a vacuum drying process to remove moisture, and vacuum impregnated with ~ suitable polypropylene glycol fluid 25 of this invention. In the practice of this invention the capacitor rolls may be wound or flattened in a somewhat oval section, both configurations being adaptable to polypropylene glycol fluids. Because of the use of paper in this capacitor the polypropylene glycol fluid impregnates the entire roll structure. The advantageous use of polypropylene glycol fluid in the FIG. 3 capacitor is illustrated by the following example.

~L2~

~;- 13 ~
EXAMPLE IV
In this example a number of identical capacitors were made up following the FIG. 3 structure and impregnated with a 50/50 by volume blend of polypropylene glycol and phenyl xylyl ethane known as PXE dielectric fluid.
The capacitors were then subjected to very high AC and DC voltages to test the breakdown strength of polypropylene glycols against the known excellent performance of the 50/50 volume PXE/Geconol blend. The following results were noted:
DC (Kilovolts) AC (Kilovolts) FluidAverage of 12 Units Average of 13 Units PPG/PXE 3.0 2.4 Geconol/PXE 2.5 2.0 Geconol 3.6 2.4 PPG 4-4 3.0 The results of the ahove tests indicate that pol~propylene glycols provides all of the good characteristics of know commercially used dielectric ~luids w~ile contributing its own compatibility and clearing advantages.
The polypropylene glycol fluid of this invention may also be employed in other impregnated capacitors such as mixed polypropylene/paper dielectric capacitors as dislcosed and cliamed in U.S. patent 3,363,156- Cox, as well as the all-~ilm dielectric capacitor of the same patent. In an all-film capacitor as illustrated in FIG. 4, a longer roll 37 comprises ilm strip 38, 39, 40 and 41 which are wound together with separate aluminum foil strips 42 and 43 in a roll form similar to roll 10 of FIG. 1 or, a composite dielectric of alternate polypropylene strips and paper strips are wound together with aluminum foil strips in a roll ~orm. ~n assembled capacitor utilizng the flattened and elongated rolls 37 and electrode leads 44 and 45 is shown in FIG. 5.

In FIG. 5 capacitor 44 comprises a casing 45 containing a plurality of rolls 37 suitably electrically connected to terminals 46 and 47. Rolls 37 are submerged in polygylcol fluid of this invention.
Such a capacitor is denoted as a power capacitor and typically may have a rating of 100-300 Kvar and range upwardly to about 13,000 volts.
Polypropylene glycol may be used alone or with certain additives whihc have been found beneficial in a capacitor environment. Polypropylene glycol may be subject to oxidation both in the handling and impregnation system or in the capacitor environment.
For this reason it is advisable to use an anti-oxidant additive, Ionol being one example. Usually an anti-oxidant is added in amounts ranging from about 0.01% by volume to about 10.0% by volume.
Epoxides have been found to be beneficial in a capacitor environment having either chlorinated fluids or ester fluids present. (See U.S. Patent 3,353,156 - Cox and 3,754,173 - Eustance) for a further description of epoxide use. A typical epoxide which may be used effectively in this invention is commercially available, Unox 221 a dicyclo diepoxy carboxylate.
Epoxides are usually added in the ranye of about 0.1% to 10% by weight of the fluid.
The polypropylene glycols are not considered as aromatic fluids and accordingly are not good gas absorbers. In some capacitor applications gas absorption generally, and often times rapid gas absorption, is necessary to reduce deleterious corona discharge. In this instance certain gas absorbing additives may be used with the polypropylene glycol. One class o~
additives includes the alkenes such as an aliphatic olefin, tetradecene being a good example. U.S. Patent
4,190,682 - Shaw described the use of aliphatics as gas absorbers in combination with ester fluids. A diferent class of materials, the anthraquinones may also be employed in this invention. Alternatively a polyglycol may be chemically modified to improve its gas absorbency by using starting materials which will provide carbon to carbon double bonds.
Where a preferred fluid would comprise essentially polypropylene glycol (with additives) this fluid may be blended with other fluids to provide special fluids for special needs. The blending of fluids is described for example in ~an. App. Serial No. 379,085 filed June 5, 1981 - Grahame. In the Grahame application certain fluids such as Phenyl Xylyl Ethane (PXE) and Mono Iso Propyl Biphenyl (MIPB) are blended with certain esters. For the present invention the polypropylene glycol of this invention may be substituted in place of the ester.
It is preferred that the polypropylene glycol be the major constituent in any blend, e.g., that it comprises about one-half or more of volume of the mixtureO
Al~ernatively however, the advantages of the polyglycol may be ~nh~nced or buttressed by chemically modifying or combining other materials therewith. Suitable examples are ether and ester linkages. Included also are copolymers, random or block and polypropylene glycols containing ethylene oxide subunits.
The fluids of this invention are those that remain in the capaci-tor through its effective life as a fluid as opposed to cured and solid compounds which may contain some combination of polyglycol.
Other fluids tested included Soybean Oil, Acetylated Castor Oil, Soybean Oil, and Polybutene.
While in some limited tests, good results were obtained, they were usually obtained at shorter hours of life.
Life tests at hours beyond about 1000 clearly show the predominance of the polyglycol fluids of this invention.

While this invention has been disclosed with respect to particular embodiments thereof, numerous modifications may be made by those skilled in the art without departing from its true spirit and scope.
Therefore, it is intended that the appended claims cover all such modifications and variations which come within the true spirit and scope of the present invention.

Claims (23)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. An electrical capacitor comprising in combination a casing, a capacitor roll section in said casing, said rool section comprising in combination, a pair of spaced apart electrodes, a solid dielectric material between said electrodes, means on said casing to connect said electrodes to a source of power, and dielectric fluid in said casing and adjacent said electrodes and solid dielectric, said dielectric fluid comprising a polyglycol fluid having a molecular weight above about 1,000.
2. The capacitor of claim 1 wherein the polyglycol fluid has the general formula wherein R' is CH3 and/or H, R is alkyl having from 1 to 7 carbon atoms or H and R" is H.
3. The capacitor of claim 2 wherein at least one of said electrodes is a metallized layer on a solid dielectric.
4. The capacitor of claim 3 wherein the fluid comprises polypropylene glycol.
5. The capacitor of claim 3 wherein said polypropylene glycol is a blend with another dielectric fluid.
6. The capacitor of claim 5 wherein said another fluid is a hydrocarbon.
7. The capacitor of claim 3 wherein said metallized layer is on a synthetic resin dielectric.
8. The capacitor of claim 3 wherein said metallized layer is on a paper dielectric.
9. The capacitor of claim 7 wherein said synthetic resin includes polypropylene.
10. The capacitor as recited in claim 7 wherein said synthetic resin comprises all of the solid dielectric between electrodes and said fluid consists essentially of a triol polypropylene glycol.
11. An electrical capacitor comprising in combination:
(a) a casing;
(b) a capacitor roll section in said casing;
(c) said roll section consisting of synthetic resin dielectric strips having a metallized layer on at least one surface thereof;
(d) a dielectric fluid in said casing and in contact with said roll section;
said fluid comprising a polyglycol fluid having a molecular weight above about 1,000.
12. The capacitor as recited in claim 11 wherein said polyglycol fluid comprises polypropylene glycol.
13. The capacitor as recited in claim 12 wherein said polyglycol consists essentially of a triol polypropylene glycol.
14. In an electrical capacitor comprising a pair of spaced strip electrodes and a synthetic resin strip dielectric therebetween to form a laminate which is wound in a round roll form and placed in a casing and impregnated with a dielectric fluid and electrical connection means are connected to said electrodes, the combination comprising:
(a) the said strip electrodes comprising capacitor tissue paper having both sides metallized with a thin coating of aluminum or zinc; and (b) a dielectric fluid impregnating said roll and paper strips, said fluid comprising a polyglycol fluid having a molecular weight above about 1,000.
15. The capacitor of claim 14 wherein said polyglycol comprises polypropylene glycol.
16. The capacitor of claim 15 wherein said fluid consists essentially of a triol polypropylene glycol.
17. The capacitor of claim 15 wherein polypropylene glycol is a blend with another fluid.
18. The capacitor of claim 17 wherein said another fluid is an ester.
19. The capacitor of claim 17 wherein said aother fluid is a hydrocarbon.
20. An electrical capacitor comprising a combination:
(a) a casing;
(b) electrical terminals on said casing;
(c) a capacitor roll section in said casing;
(d) said capacitor roll section comprising a synthetic resin dielectric strip and a pair of electrodes therefor, at least one of said electrodes being a separate metal foil which is wound with said dielectric strip in roll/form electrical connection means to connect to said electrodes to said terminals;
(e) and polyglycol dielectric fluid having a molecular weight above about 1,000.
21. The capacitor of claim 20 wherein said fluid comprises polypropylene glycol.
22. The capacitor of claim 20 wherein said fluid consists essentially of a triol polyprolylene glycol.
23. The capacitor of claim 20 wherein both electrodes are separate electrodes and said resin is poly-propylene, and said fluid consists essentially of a triol polypropylene glycol.
CA000477311A 1982-05-07 1985-03-22 Electrical capacitor having a polyglycol dielectric fluid Expired CA1201182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000477311A CA1201182A (en) 1982-05-07 1985-03-22 Electrical capacitor having a polyglycol dielectric fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA000402495A CA1191564A (en) 1982-05-07 1982-05-07 Polyglycol dielectric capacitor fluid
CA000477311A CA1201182A (en) 1982-05-07 1985-03-22 Electrical capacitor having a polyglycol dielectric fluid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA000402495A Division CA1191564A (en) 1982-05-07 1982-05-07 Polyglycol dielectric capacitor fluid

Publications (1)

Publication Number Publication Date
CA1201182A true CA1201182A (en) 1986-02-25

Family

ID=4122731

Family Applications (2)

Application Number Title Priority Date Filing Date
CA000402495A Expired CA1191564A (en) 1982-05-07 1982-05-07 Polyglycol dielectric capacitor fluid
CA000477311A Expired CA1201182A (en) 1982-05-07 1985-03-22 Electrical capacitor having a polyglycol dielectric fluid

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA000402495A Expired CA1191564A (en) 1982-05-07 1982-05-07 Polyglycol dielectric capacitor fluid

Country Status (1)

Country Link
CA (2) CA1191564A (en)

Also Published As

Publication number Publication date
CA1191564A (en) 1985-08-06

Similar Documents

Publication Publication Date Title
US4388669A (en) Polyglycol dielectric capacitor fluid
CA1236122A (en) Electrical insulating oil and oil-filled electrical appliances
JPS60193204A (en) Electrically insulating oil
US4323948A (en) Capacitor structures with improved electrical stress capability
EP0039546B1 (en) Impregnants for metallized paper electrode capacitors
US4975329A (en) Coextruded, biaxially oriented multilayer film
US4422962A (en) Polyglycol dielectric capacitor fluid
CA1201182A (en) Electrical capacitor having a polyglycol dielectric fluid
US3754173A (en) Stabilized ester impregnated capacitor
US4521826A (en) Dielectric fluid for a compacitor
CA1201778A (en) Aromatic dielectric fluid for a capacitor
US4097913A (en) Electrical capacitor having an impregnated dielectric system
CA1088292A (en) Liquid ester impregnant for electrical devices
US4591948A (en) Oil-filled capacitor
JPS5860522A (en) Metallized plastic film condenser
US3788998A (en) Chlorinated dielectric liquids
GB2256437A (en) Impregnating oil for capacitors.
KR800000068Y1 (en) Condenser
CA1111915A (en) Capacitor structures with improved electrical stress capability
KR790002103Y1 (en) Condenser
JPS6142118A (en) Oil-immersed capacitor
JPH0142630B2 (en)
CA1161507A (en) Impregnants for metalized paper electrode capacitors
JP2900751B2 (en) Film capacitor and manufacturing method thereof
JPH05159967A (en) Metallized plastic film capacitor

Legal Events

Date Code Title Description
MKEX Expiry