CA1122169A - Labelling system - Google Patents

Labelling system

Info

Publication number
CA1122169A
CA1122169A CA000362362A CA362362A CA1122169A CA 1122169 A CA1122169 A CA 1122169A CA 000362362 A CA000362362 A CA 000362362A CA 362362 A CA362362 A CA 362362A CA 1122169 A CA1122169 A CA 1122169A
Authority
CA
Canada
Prior art keywords
label
labels
strip
bellows
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000362362A
Other languages
French (fr)
Inventor
Herbert La Mers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MERS HERBERT
Original Assignee
MERS HERBERT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CA262,410A external-priority patent/CA1097269A/en
Application filed by MERS HERBERT filed Critical MERS HERBERT
Priority to CA000362362A priority Critical patent/CA1122169A/en
Application granted granted Critical
Publication of CA1122169A publication Critical patent/CA1122169A/en
Expired legal-status Critical Current

Links

Landscapes

  • Labeling Devices (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE

There is disclosed a new system of pressure sensitive labels mounted along a carrier strip, and means for removing these labels from the carrier strip and applying them to a product. The label carrier strip is divided down its middle forming separable halves. The strip carries spaced index marks and labels which are mounted over both halves and positioned uniformly with respect to the index marks. In some embodiments of the strip and label arrangement, each label has a face carrying a releasable adhesive secured to the carrier and a matrix of the same composition as the labels lies on the carrier strip, surrounding the labels. With this arrangement, the label-carrying web need not have had its waste (matrix) removed from between and around the labels during manufacture. An apparatus for transferring such a label from the carri-er strip to an article comprises a bellows support and a bellows with an inner portion mounted on the support. The bellows is extendable and contractable to move an end face of the bellows away from and towards the support. Means are provided for supplying a label at the end face of the bellows when the bellows is contracted. Pressure and vacuum may alternatively be applied to the bellows to contract and expand it, enabling the end face to be thrust toward the article to be labelled. A check valve may be used to couple the end face of the bellows to its interior, to permit inwards air flow only.

Description

~2~

~ACKGROUND OF T~IE INVENTION
This application is a division of Canadian Patent Application No.
262,410 filed September 30, 1976.
This invention relates to improvements in label strips and label ap-plying machinery.
All previous and presently known machinery for applying pressure sensitive labels to an article use the same kind of carrier web for the labels, and the same kind of label removing msthod.
The conventional carrier web consists of a series of labels with a viscous (pressure sensitive) adhesive applied to a carrier strip of paper which has been coated on the label supporting side with a release agent. The labels are spaced along the strip, and the unneeded waste (or matrix) from which the labels have been die cut is always removed during manufacture.
The labels are removed sequentially by pulling the carrier strip around a relatively sharp edge ~mder tension. The label, because of its stiff-ness, releases from the carrier web and continues in a straight line over the edge rather than bend sharply and follow the carrier web.
This established method has a nwnber of drawbacks:
1) The need to remove all the waste or matrix from between and around labels during manufacture, because its presence tends to hold labels in place during peeling.
This waste removal requirement makes the labels cost much more, because it limits the printing and die cutting speed severely and because a great deal of costly extra material has to be added around each label to make the ladderlike waste strip strong enough to remove by pulling it free after die cutting on a printing press.
2) The label peeling process used in all previous labelling machines 4.
.,,~ ~ '.

D
,~

requires pulling the web under high tension over a relatively sharp edge.
Tiny cuts or nicks caused by the die cutting and slitting weaken ~che web and it frequently breaks~ especially at high speed.
3) Small invisible interruptions in the release coating are common.
Through them the label adhesive is able to adhere strongly to the unprotected carrier web. IVhen this occasionally occurs at the leading edge of a label, it will not peel but will follow the carrier strip around even a sharp edge.
The same can happen when the adhesive is cold, or too old.
4) The need for great stiffness in the label material prevents the use of many desired materials such as plastics, or very thin labels, or very soft and pliant labels.
5) During the peeling process, labels are being projected beyond the peeling edge and are essentially unsupported, except occasionally on one side (opposite the adhesive). They are easily disturbed and deflected by small irregularities, tramp particles of adhesive, air currents, or static electri-city.
6) The means of actually applying the labels varies, including a blast of air (inaccurate at any distance and does not apply labels firmly), a roller (inaccurate), and a plunger (too rigid and destructive on moving pro-ducts).
7) Automatic labelling machinery is very costly, partly because ofsophisticated electronic label sensing and web control systems within the labeller.
It should be appreciated therefore that a label carrying arrangement and apparatus for applying labels therefrom to goods, which permits the use of very thin and soft labels as well as stiffer labels, which permits the use of lower cost label strips, and which permits label application at higher speeds and with greater reliability than presently known systems would be most de-sirable.
SU~1~RY OF T~IE INVENTION
According to the present invention~ there is provided a label carrying arrangement adapted for use in an appara.tus for automatically sequentially applying labels to objects, said arrangement comprising:
an elongated label strip including first and second parallel carrier strip portions;
a plurality of index marks carried by said elongated label strip and spaced therealong;
- a multiplicity of labels carried by said elongated label strip and spaced therealong, each o-f said labels bridging said first and second carrier strip portions and being adhered thereto by a releasable adhesive, each of said labels being uniformly positioned with respect to one of said index marks.
The label strip may be separated along a separation line into at least a pair of carrier web portions and a rnatrix of the same composition as said labels may lie on said label strip and substantially surround the labels.
In such an embodiment, the matrix of label material from which the label was cut is left on the label strip and is separated -from the labels at the same ~ime as the labels are separated from the label strip.
BRIEF DESCRIPTION OF THE DRAWINGS
In the accompanying drawings, which illustrate exemplary embodiments of the present invention and embodiments of the invention -forming the subject matter of the Parent Application:
Fi.gure l is a partial perspective view of a labelling system;
Figure 2 is a view taken on the line 2-2 of Figure l, showing details of a label carrying arrangement thereof;

! - 3 -:

.

, ~,J~ D~

Figure 3 is a view taken on the line 3-3 of Figure 2;
Figure 3A is a view taken on the line 3A-3A o Figure l;
Figure 4 is a more complete perspective view of the labelling system of Figure l;
Figure 5 is a partially sectional plan view of the system of Figure 4;
Figure 6 is a partial perspective view of the apparatus of Figure 4~ showing some of the de~ails of the plunger carrying apparatus thereof and is found on the same sheet as Figure 4;
: 10 Figure 7 is a partially sectional side view of the system of Figure 4 and shows other details thereof;
Figure 8 is a view taken on the line S-8 of Figure 7;
Figure 9 is a front elevation view of the system of Figure 4;
Figure 10 is a view taken on the line 10-10 of Figure 5 and is found L~'~

on the same sheet as Figure 5;
Figure 11 is a view taken on the line 11-11 of Figure 5, and is found on the same sheet as Figure 5;
Figure 12 is a sectional front view showing the bellows of the ap-paratus of Figure 9, and is found on the same sheet as Figure 9;
Figure 13 is a bottom view of the bellows of Figure 12, and is found on the same sheet as Figures 5 and 12;
Figure 14 is a perspective view of the label roll of the system of Figure 4, and is found on the same sheet as Figures 1, 2, 3, and 3A;
Figure 15 is a front elevation view of a fan-folded label arrangement and is found on the same sheet as Figures 1, 2, 3, 3~ and 14;
Figure 16 is a partial perspective view of another label strip, which includes a matrix surrounding the labels;
Figure 17 is a perspective view of a step stripper apparatus, : Figure 17A is a perspective view of another step stripper apparatus;
Figure 18 is a partial perspective top view of another label strip;
Figure 19 is a partial perspective bottom view of a label strip of :~ Figure 18;
Figure 20 is a view taken on the line 20-20 of Figure 18;
Figure 21 is a partial plan view of a further label strip;
Figure 22 is a partial plan view of a further label strip and strip-per system;
Figure 23 is a view taken on the line 23-23 of Figure 22;
Figure 24 is a partial plan view of another labelling system;
Fi.gure 25 is a view taken on the line 25-25 of Figure 24; and Figures 26 and 27 are respectively cross-sectional views of a pre-ferred bellows shape illustrating it at three stages of operat:ion, and are ~,a~

found on the same sheet as Figures 16 throllgh 20.
DESCRIPTION OF T}]E PREFERRED EMBODIMENTS
Figures 1 - 3 illustrate details of a label carrying arrangement 10, according to Parent Application 262,410~ which includes an elongated backing web or carrier strip 12 and a multiplicity of labels 14 spaced along the length of the carrier strip~ Each of the labels 14 has a front face 14a with a dec-orative design or other marking printed thereon, and a rear face 14b with contact adhesive thereon. The carrier strip has a front face 12a with release coating, such as silicone, which facilitates stripping of the label adhesive from the carrier strip. The carrier strip 12 includes a separation line 16 extending along its length at a middle portion thereof, to divide the carrier strip into two carrier strip portions 18, 20 that support different portions of the label 14.
Apparatus shown in Figure 1 for stripping the labels 14 from the carrier strip 12 includes a label stripper or separator in the form of a plate 22 having a substantially V-shaped edge region or notch 24 which forms a pair of separator e~ges 26, 28. The carrier strip with the labels thereon initial-ly moves along an upper face 30 of the label separator towards the V-shaped edge portion or region 24, with the separation line 16 aligned with the bottom of the V. Each of the carrier strip portions 18, 20 extends around a different one of the separator edges 26, 28, so that the carrier strip is pulled apart thereat. The strip portion 18 which extends around the separator edge 26, moves along ~he lmderside or lower face 32 of the plate, extends around an auxiliary guide edge 34, and then extends along the upper facc 30 of the sepa-rator plate. The other carrier strip portion 20 extends in a corresponding manner, around the separator edge 28, around another auxiliary guide edge 36, and then along the upper face of the separator plate. It can be seen tha~ as _ ,;~_ ; ~

each label 14 moves into the V-shaped notch 24, the -two carrier strip portions 18, 20 are directed downwardly and apart from each other, so that the label tends to continue to move in the direction of arrow 38. The label cannot follow the two halves of the carrier strip through the notch. As shown in Figure 3A, the radius of curvature R of each edge, such as 28, need not be sharp. Instead, the radius R is greater than the thickness T of the carrier strip, which minimizes the possibility of tearing the carrier strip. If de-sired, the separator edges need not be stationary but may be rollers of suitable diameter.
In order to advance the label carrying arrangement 10, it is neces-sary only to pull the two carrier strip portions 18, 20 along the paths of the arrows 40, 42. The labels 14 on the carrier strip 12 will then move beyond the V-shaped edge region 24 and become separated from the carrier strip. Of course, in order to apply the labels to articles indicated at A, it is neces-~ ary to provide a means for reliably moving the freed labels against the arti-; cles. A labelling machine, to be described below, provides a plunger which engages the labels and reliably applies them to the goods.
Figures 4 - 9 illustrate details of a labelling machine 50 which moves the label strip 10 to apply the labels 14 thereon against articles A.
The labelling machine 50 includes a frame 52 with an upstanding center wall 54, a label guiding and moving apparatus 56 on the first side of the upstand-ing wall 54, and drive and control apparatus 58 on the other side of the up-standing wall. The label guiding and moving apparatus 56 includes a supply reel 60 rotatably mounted on the frame and carrying a roll of the label s~rip 10. The label is guided from the reel 60 around a guide roll 62 and past a spring strip 63, around a feed roll 64, and along the upper side of the sepa-rator plate 22 towards the V-shaped edge region 24 thereof. The two carrier -- ,8- --, ~ ~

strip portions 18, 20 which have been separated at the V-shaped edge region 24, are pulled along their respective paths by a pair of tensioning rollers 66, 68. After passing through the tensioning rollers 66, 68, the two carrier strip portions 18, 20 may be directed into a bin for later disposal.
A plunger apparatus 70 comprising one embodiment of the present invention is disposed near the V-shaped groove 24 of the separator plate and serves to engage each label before, during, and after its separation from the carrier strip, and to carry that label against an article A, so that the ad-hesive-bearing face of the label is pressed against the article. The articles are carried on a conveyor apparatus C past the labelling machine, and movement of the plunger 70 is timed so that a label is applied to each article passing thereby. As illustrated in Figure 7, the plunger apparatus 70 includes a plunger or bellows supporting plate 72 and a bellows 74 with an inner portion 76 fixed to the plunger supporting plate and an outer end face 78. A flexible hose 80 extends from a pressure control 82 to a tubular coupling 84 which opens to the inside of the bellows 74. The pressure control 82 can supply a low pressure which is less than atmospheric, or vacuum~ through the tube 80 to the bellows 74 to contract the bellows from the relaxed position shown at 7~ to a contracted position wherein its end face is at 78a. Alternatively~ pressure control82 can supply pressured air through the hose 80 to the bellows 74 to expand the bellows to the configuration indicated at 74b wherein the end face has been thrust out to the position 78b. When a label lies against the end face 78 and air pressure is applied to the bellows, its end face 78 pushes the label against an article.
The bellows support plate 72 can move substantially longitudinally as indicated by arrows 86. Thus, the plate 72 can move the bellows 74, in its contracted position~ rearwardly to the position indicated at 74c wherein the , ~

face of the bellows at 78c lies over the next label to be separated from the backing strip. Thereafter, the bellows support plate moves down so the bellows engages a label, and the support plate advances the bellows 7~ in synchronism with advancement of the label strip 10 so that the bellows face 78 moves with the label while the label is being completely separated from its carrier strip.
The bellows is then extended towards the position 78b to press the label against an article that is to be labelled.
In order to securely hold a label against the bellows face 78 prior to applying the label to an article, and to then reject the label from the bellows face as the bellows withdraws from the article, the bellows face 78 is provided with slits that form a hole 90, as shown in Figure 8. The hole permits a low rate of air movement through the face into the bellows, when a ; vacuum has been applied through the tube 80 to the bellows. A vacuum is ap-plied to the bellows to hold it in a contracted state while it is first pres-sed against a label at the position 7~c in Figure 7. The vacuum continues to be applied while the bellows moves with the label as the label separates from carrier strip and passes off the V-shaped edge of the separator plate 22. The vacuum not only keeps the bellows contracted, but also serves to hold the label firmly against the face of the bellows. When the bellows lies opposite the article to be labelled, pressured gas such as air is suddenly applied to the bellows. The pressured air causes ~he bellows to ex?and towards the con-figuration 74b to press against the article.
For the application of thin flexible labels, and where precise loca-tion of the label on the article is not important, the hole 90 is formed so that some air leaks out. The pressur~d air tends to reject the label from the face 78 of the bellows, but it does not matter if the label flies off the bel-lows even as it is moving towards the article if the distance to the article _ ~ _ c~ , ` ~ ~

is not great. The pressured air rejection of the label helps in preventing the label from sticking to the bellows as the bellows contracts and draws away from the article. The bellows normally begins to withdraw from the article as the pressure therein is reduced but is still at a substantial level, inasmuch as the completely unpressured bellows tends to assume a configuration wherein its face is at 78 when pressure in the bellows reaches the atmospheric value.
Figure 12 illustrates the shape of the bellows 74 in its relaxed state. The bellows is molded of elastomeric material, with a recess 81 in the bellows face, and with three slits cut into the recessed portion to form the hole 90. The recess forms three flaps 83 which can readily bend inwardly but not outwardly. Accordingly, when a vacuum is applied to the bellows, air can pass into the bellows through the hole 90. However, when pressured air is applied inside the bellows, the flaps 83 tend to press against one another to close the hole and minimize the escape of air from the bellows. The flaps 83 ~; therefore form a check valve which couples the face of the bellows to the in-side thereof, to allow air flow substantially only in a direction into the bellows.
When the bellows contracts, the inside of the bellows end contacts a substa~tially rigid internal member 85 that limits the contraction of the bellows. The internal member 85 has a guide surface 85g which engages a correspondingly shaped surface 78g o~ the bellows end to not only limit the longitudinal contraction of the bellows end, but also to laterally position it.
As a result, the bellows begins each expansion from the same lateral position and orientation. This results in the bellows tending to extend along the same path each time, to provide greater accuracy in the positioning of the labels on the articles. When the bellows is contracted, its end face lies at the plane 87, while when fully extended without an article in the way the bellows : /o can expand to the plane 89. Normally, an article is positioned about three quarters of the distance from the plane 87 to the plane 89. In examining causes for erratic directionsof bellows expansion, it has been found that one cause is that the folds of the bellows may tend to stick to one another when compressed during the application of vacuum in the bellows. Nhen the bellows begins expanding, locations which tended to stick together, tend to resist extension and the bellows tends to curve as it expands. It has been found - that the application of release powder such as is used in plastic injection molding, eliminates the sticking problem, the powder being applied to both the inside and outside of the bellows fold. It has been found that the release powder remains in place during long continuous use of the bellows.
As illustrated in Figures 5 and 9, the apparatus for advancing the label carrying arrangement includes a motor 91 which is coupled through a belt 92 to a pulley 94. The pulley shaft 96 is coupled through a single cycle clutch 98 to a drive shaft 100. The single cycle clutch 98 merely permits operation of the machine one cycle at a time, ~he drive shaft 100 rotating on-ly one revolution each time a pin 102 is pulled out and released, but the shaft 100 rotating continuously if the pin 102 is retained in a pulled-out condition.
The drive shaft 100 rotates a crank 103 that drives a rack or slide 104 back and forth. The slide 104 has gear teeth engaged with a gear 106 that is ` coupled through an overrunning clutch 107 to a sprocket wheel 108, so that the sprocket wheel 108 turns in only one direction. This sprocket wheel 108 is coupled by a timing belt 110 to another sprocket wheel 112 which drives another single cycle clutch 113. The single cycle clutch drives a toothed wheel 121 and a feed shaft llfi. The feed roll 64, which pulls the label strip 10 off the supply reel, is fixed to and driven by the feed shaft 114. The single cycle clutch is enabled to turn the feed shaft when a pin 117 on the slide 104 hits a pawl 11~ to pivot the pawl out o:E engagement with the toothed wheel 121 on the feed shaft, which releases the single cycle clutch for turning the feed shaft 114. Thus, the feed roll 64 cannot turn until a predetermined time in each cycle. The feed roll can then rotate just enough to advance the label strip 10 by a distance S equal to the center-to-center distance of the labels along the strip. The slide 1049 at that time, will have moved pin 117 out of engagement with the pawl 119, which stops further rotation of the wheel 121 and feed shaft 114.
The two tensioning rollers 66, 68 which pull the carrier strip por-tions, are fixed to the same feed shaft 114 to which the feed roll 64 is fixed.
Therefore, as the feed roll 64 feeds the label strip 10 towards the V-shaped notch 24 where the labels are separated from the carrier strip, the tensioning rolls 66, 68 turn in unison to pull the carrier strip portions 18, 20 to there-by pull the label strip over the edges of the no~ch 24. In order to assure tension in the carrier strip portions 18, 20, the two tensioning rollers 66, 68 are constructed with a diameter E slightly larger than the diameter of the feed roll 64, resulting in the surfaces of the tensioning rolls 66, 68 turning slightly faster than the surface of the feed rolls 64. ~he tension rolls 66, 68 are in the form of rubber tires that permit slippage of the carrier s~rip portions 18, 20 thereon, so that the strip portions are pulled to maintain tension but are not pulled so hard as to tear them. As shown in Figure 119 backing rolls 120 are provided to press the carrier strip portions such as 18 against a corresponding tensioning roller 66. Also, a stripper blade 121 is provided that extends into a groove of the tensioning roller to insure sepa-ration of the carrier strip portions from roller 66. An alternative arrange-ment would be to put sprockets on the tensioning rollers engaging slits 226 and omit them Oll feed roller 64.

_ ~_ , ~:

At a first time in each cycle of operation, the bellows 74 descends against a label and begins moving forwardly with the label. In order for the labelling machine to operate properly, it is necessary that at that time the label strip be positioned so that there is a label at the position 14p shown in Pigure 5, which is the position at which the face of the bellows descends against the label. In order to accurately control the positions of the labels, the feed roll 64 is provided with sprockets 122 for engaging the label strip.
As shown in Figures 5 and 10, the sprockets 122 are spaced about the feed roll by the distance S between the labels, and are designed to fit into the separation line 16 between the carrier strip portions and into the space or gap 15 between the labels. Thus~ a label carrying arrangement or label strip forms its own sprockat holes at gaps 15 and the feed roll 64 is formed with sprockets that engage the sprocket holes of the label strip to control the pOSitions of the labels in the machine. It may be noted that these sprocket holes at the gaps 15 between adjacent labels, arise automatically in the pro-duction of the label carrying arrangement, and it is not necessary to form ` special sprocket holes along edges of the backing strip to enable control of label position in the machine. Additional sprocket holes can be provided, however, to avoid contact of labels with sprockets.
As shown in Figures 6 and 7, the plunger apparatus 70 is moved back and forth by a tow bar 1~0 which has an inner end fixed to the slide 104 and an outer end fixed to the bellows-supporting plate 72. Although the primary motion of the bellows-supporting plate 72 is back and forth in the direction of arrows 86, it is also necessary to raise the forward end of the plate 72 which holds the bellows 74 during rearward motion of the bellows. This is to prevent the bellows from rubbing on the label strip during such rearward motion.The support plate 72 is guided by a pair of rearward tabs 132 which can move - d~4 -/~

back and forth in guide slots 134 formed in guide ways 144 on the machine frame, while the front of the plate has a pair of tabs 136 which can move along either of two guide slots 138, 140 that are separated by a divider 147.
When the support plate 72 moves slightly forward, in the direction o~ arrow F, from the position shown in Figure 6, each of its forward tabs 136 which has been moving along the lower slot 138, becomes free to move up towards the level of upper slot 140. A forward spring 142 disposed along each of the guide ways 144, urges each tab 136 to move up, so that when the slide 72 moves rearwardly its tabs 136 slide at a higher level. As a result, the contracted bellows of the plunger apparatus 70 can move rearwardly to a position over a next label ~14p in Figure 5) to be applied, without rubbing against the label strip. As the forward tabs 136 approach their rearward position, they pass rearward of the divider 147 that separates the upper and lower slots, and also pass under a rearward spring 14~ that urges the tabs 136 downwardly. The tow bar 130 which moves the support plates 72 back and forth, has a series of slots cut into it, to provide increased flexibility, to permit the front por-tion of the support plate to move up and down a small distance as it moves back and forth.
The use of apparatus to move the label a distance beyond the sepa-rator edges before thrusting the label towards an article, avoids "hinging" ofthe label. Hinging is the phenomenon of the rear end of the label tending to stick to the separation edge or carrier strip, and therefore to tend to resit movement against an article to be labelled.
As described above, the application of vacuum and pressured air to the bellows through the hose 80 is controlled by the pressure control 82. As illustrated in Figure 9, the pressure control 82 includes an air pressure in-let 150 through which pressured air is constantly applied, a vacuum inlet 152 - ,k~ -to which a vacuum is constantly applied, and an outlet 154 which is coupled to the hose 80. A valve member 156 can move up and down to alternately couple the outlet 154 to either the air inlet 150 or the vacuum inlet 152. A rod 158 fixed to the valve member 156, is moved up and down by a cam 160 that is fixed to the drive shaft 100. The canl 160 is configured so that a vacuum is applied ~o the pressure control outlet 154 during the time when the bellows engages a label and moves with the label to a position opposite the article to be labelled. The cam is configured to then operate the valve member 156 so that pressured air is applied to the bellows to extend it briefly, near the end of its forward travel after which the vacuum is again applied to the pres-sure control outlet.
The angle A (Figure 5) of the V-shaped slot 24 is shown as being on the order of 90 for the labelling machine of Figures 1 - 9. If the labels 14 are spaced close to one another along the length of the carrier strip, then at the beginning of each cycle, the next label to be applied 14p, will be positioned with a considerable area 14r of its leading edge portion unsupported by the plate 22 or by any part of the carrier strip. Such exposure at the area 14r arises because the label strip 10 must have been advanced at the end of the previous cycle so that the previous label 14t was advanced clear of the carrier strip. The existence of an unsupported label region 14r is disadvan-tageous where very thin and flexible labels, such as one mil thick polyethylene labels, are utilized, because such labels are subject to fluttering or other disturbances due to the vacuum and air pressures applied in their vicinity, prior to the bellows face 78 making contact with the label. The existence of an unsupported label region 14r, ~shown in Figure 5~ can be avoided by in-creasing the angle A of the V-shaped slot to a greater angle, such as from 90 to an angle B of 135, as shown for the stripper 264 of Figures 24 and 25.

:. 1s This can allow a previous label 14e to have been moved clear of the guide plate 166 while the next label 14f has little or no region which is unsupported.
By making the stripper 264 of a single piece of material and by maintaining its edges in the same plane, the strip portions do not slip sideways along the auxiliary edges. It may be noted that in a typical label strip, as with cir-cular labels, the gap between adjacent labels is approximately 1/8 of an inch, and a large angle of at least 110 is required to avoid any unsupported label region at the next label to be applied while permitting the previous label to advance clear of the support plate.
The above described separation technique permits the utilization of a low cost label carrying arrangement or label strip according to another aspect of the present invention, an embodiment of which is shown at 190 in Figure 16. The label strip 190 is identical with label strip 10 of Figure 1, except that it includes a scrim or matrix 192 surrounding the labels 14b and of the same material as the labels 14b. rhe matrix 192 is die cut to form separation lines 194 around each label and separation slits 196 which lie between the labels and over the separa~ion lines 16b of the carrier strip 12b.
In a typical prior art process for the production of the labels 14b, the labels are die cut from a strip of label material, with the cutting lines separating the strip of label material in~o label areas forming the labels 14b and a matrix area forming the matrix 192. Heretofore, the matrix area 192 had to be removed from around the labels 14b prior to pac~aging and selling the la-bels, because of the way labels were separated from the carrier web, i.e., bending the web around a sharp curve; arolmd which the label would not follow.
If the matrix material is left in place, because of the presence of fine bridg-ing filaments of paper or adhesive between label and matrix material, which are still present despite die cutting, the label will not consistently separate or ~, .

peel away from the carrying web. By utilizing the label strip 190 with the matrix 192 left on the carrier strip, the cost of the labels can be reduced since the cost of matrix removal is eliminated and matrices can be made thin-ner and of thinner paper stock, as can labels.
The matrix 192, which is divided into two portions by -the separation slits 196, is pulled apart by the separation apparatus of the present invention, with each half of the matrix such as 192a, 192b moving with the carrier strip portion under it around the edges of the separation plate.
The labelling strip can be provided in different forms. As illus-trated in Figure 1~, the label strip 12 can be provided as a roll 200 of many turns with a cardboard tube 202 at the center that fits onto a shaft of the labelling machine. Figure 15 illustrates a fan-folded arrangement 204 of the labelling strip 12J which is used for producing computer printed labels. The apparatus for moving ~she carrier strip portions in different directions to separate them from one another and from the labels also can have a variety of forms. In the apparatus of Figure 1, the separation edges which form a V-shaped notch, are nonaligned because the axes of the edges extend at an angle of less than 180 from one another, but with the axes of the edges substantial-ly intersecting one another at the bottom o the V. In Figure 17, a separation device 210 is illustrated which includes a pair of separation edges 212, 21 with their axes 212a~ 21~a also nonaligned, but with the axes of the edges extending parallel to one another but spaced from one another along the path of the labels l~h. This apparatus performs better than prior art separators which utilize just one edge around which a carrier strip is pulled, because in the present device only hal of the carrier strip must be separated from the label at each separation edge. It may be noted that more than two separate carrier strip portions and a corresponding number of edge mea~s can be provided, _ ,~ _ ~ /7 as in the separator 216 of Figure 17A.
The moving of the labels in a positive manner towards the separation edges as by the feed roll 64 ~Figure 4), and in synchronism with pulling of the carrier strip portions by the tensioning rolls 66, 68, is important in minimizing the tension which must be applied to the carrier strip portions.
By reducing the tension in the carrier strip portions required to pull them around the edges, the machine minimizes the possibility of tearing the carrier strip portions. The reduction in required tension is due to the "capstan effect", which is the phenomenon that a rope wrapped about a capstan cannot be easily pulled if there is even a slight tension in the other end of the rope, but can be easily pulled if the other end of the rope is fed towards the caps-tan. The feed roll 64 serves to positively feed the label strip towards the separation edges in synchronism with the tensioning means pulling the carrier strip portions, so that the carrier strip is maintained under tension, but the machine operates properly with only a relatively small tension.
In the apparatus of Figure 4, the positive feeding of the label strip is accomplished by the roll 64 which has the thin sprockets 122 that project through the separation line of the carrier strip and into the gap between ad-jacent labels. The thin sprockets could damage the labels if more than a small force is applied to the label strip. To avoid this, other sprocket holes can be formed in the label strip. Figures 18 - 20 illustrate a label strip 220 which includes a carrier strip 222, labels 14j J and a matrix 224 of label mate-rial, wherein both the carrier strip 22 and matrix 224 have cuts in them for receiving sprockets. Cuts 228 in the matrix and cuts 226 in the carrier which lie under the cut regions of the matrix, form weakened regions which can be easily penetrated by sprockets such as that indicated at 230. The cuts 226, 228 can be formed without producing confetti-like waste whic}l would have to _ ~ _ /~

be removed from ~he cutting machine. Figure 21 illustrates still another label strip 240, which includes a matrix 242 over a carrier strip, and with tabs 244 cut in the carrier strip and overlying tabs 246 cut in the matrix, for receiving sprockets. It is also possible to form cuts or holes only in the carrier strip, but near the edge of the carrier strip, so that sprockets can pass through the carrier strip and merely pressing the edges of the matrix away from the carrier strip. All these cuts can also be in the label area if necessary.
Figures 22 and 23 illustrate a portion of a label applying apparatus which can utilize a label strip 250 which is initially supplied with a carrier strip 252 that does not have a separation line therein, but which still utilizes -the feature of separating the carrier strip from the label by pulling different portions of the carrier strip along different paths. In the apparatus of Figures 22 and 23, this is accomplished by utili~ing a slitter 254 which slits the carrier strip to permit two portions 256~ 258 of the carrier strip to be pulled in different directions. The slitter 254 is a thin disc rotatably mounted on a shaft 260 and located at the bottom of the notch 262 of the sepa-rator plate 264. The top of the slitter disc 254 can be located approximately even with the upper surface of the plate 264, although it could be located slightly above or below it. The slitter also can be located a distance up-path from the bottom of the V-notch 262, to slit the carrier strip a distance prior to its reaching the V-notch.
Figure 26 and Figure 27 are cross sectional vie~ of a preferred bel-lows shape. Figure 26 actually is a split view with the left half showing the bellows 270 when its interior is at atmospheric pressure. It will be seen that the bellows may have the form of the frustum of a cone or a pyramid. The right side of Figure 26 shows the bellows 270 when fully retractedl as happens when ~ ,~0' ~
~q a vacuum is established in its interior. Figure 27 shows the bellows 27() when fully extended and applying a label to an object 272.
The reason the form shown is preferred is because, upon retraction of the bellows as in Figure 26, there is no sticking together of the folds. This occurs with the usual cylindrical or square shaped bellows. Upon expansion thereafter the bellows may not extend fully or extend with the base at an angle, thus defeating label application. Furthermore, because of the frustum of a cone shape, the bellows, when extended against an object, as shown in Figure 26, wraps itself partially around the object, insuring proper label placement.
Thus, there has been disclosed a new label carrying arrangement or label strip, and a separation apparatus for separating the labels from the carrier strip, to permit the highly reliable separation of labels from the strip while permitting the use of a wide variety of labels including very thin and flexible labels.
By utilizing the disclosed system, the label carrying web can be made far less expensive to manufacture (as much as 30%). Labels can now be made of material of extreme thinness and flexibility (.001" soft polyethylene, for example). The peeling process is 100% positive. The label must separate when the carrier web passes through the V-sh~aped notch. Furthermore, the process of peeling does not require any appreciable tension of the web.
The label is held by the application plunger before, during and after the peeling process, so that, in one sense, the label does not have to be transferred to any place after peeling, because it is already in that place.
The preferred apparatus for label application is a pneumatically-actuated bellows which holds the label firmly by vacuum until extended by a blast of low pressure air. It can apply labels over a wide range of product height variation, is extremely fast (about 2.6 milliseconds), is con:Eormable _~ _ p~ ~
~ a~, to product shapes, and can easily label products going by at high speed (2~"
per second) without damage.
Another advantageous characteristic of the new labelling system is the elimination of any electronic label sensing or electromechanical web drives, which must be sophisticated for high speeds and therefore expensive and in-clined to failure. The elimination of such label sensing and web drive systems is possible due to the use of various slits in the label carrying wcb, which are employed somewhat like sprocket holes, by the machine, to con~rol the ad-vance and location of the labels within the machine. They are available at no cost because of their special design which is only suited Eor the kind of die cutting used to make pressure sensitive labels.
Although particular embodiments of the invention have been described and illustrated herein, it is recogni~ed that modifications and variations may readily occur to ~hose skilled in the art and consequently it is intended that the claims be interpreted ~o cover such modifications and equivalents.

_; _ , ~1

Claims (13)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A label carrying arrangement adapted for use in an apparatus for automatically sequentially applying labels to objects, said arrangement com-prising:
an elongated label strip including first and second parallel carrier strip portions;
a plurality of index marks carried by said elongated label strip and spaced therealong;
a multiplicity of labels carried by said elongated label strip and spaced therealong, each of said labels bridging said first and second carrier strip portions and being adhered thereto by a releasable adhesive, each of said labels being uniformly positioned with respect to one of said index marks.
2. The label carrying arrangement of claim 1 including a matrix of the same material as said labels substantially surrounding said labels and adhered to said carrier strip portions.
3. The label carrying arrangement of claim 1 wherein said index marks are uniformly spaced along said label strip.
4. The label carrying arrangement of claim 3 wherein said index marks comprise sprocket holes.
5. The label carrying arrangement of claim 1 wherein said label strip is substantially separated along a separation line into said first and second carrier strip portions.
6. The label carrying arrangement of claim 5 wherein a matrix of the same composition as said labels lies on said label strip and substantially surrounds the labels.
7. A label carrying arrangement as recited in claim 6 wherein:
said index marks are spaced slits in said label strip for enabling accurate movement of said carrier web and labels.
8. A label carrying arrangement as recited in claim 7 wherein said slits form horseshoe shaped tabs.
9. A label carrying arrangement as recited in claim 6 wherein:
said index marks comprise spaced slits in said label strip, and slits in said matrix substantially aligned with said spaced slits for affording accurate movement of said label strip and labels.
10. The arrangement described in claim 6 wherein:
said index marks comprise a plurality of sprocket cuts spaced along said label strip and positioned adjacent to an edge of the label strip, said matrix being devoid of holes over said sprocket cuts, whereby sprockets extend-ing into said cuts can displace said matrix to extend securely through said sprocket cuts.
11. The arrangement described in claim 6 wherein:
said index marks comprise a plurality of sprocket-receiving cuts in said label strip, and a plurality of weakening cuts in said matrix lying over said cuts in said label strip.
12. The arrangement described in claim 6 wherein:
said label strip with said labels thereon is rolled into a roll with a plurality of turns, whereby to permit installation on a roll holder of a labelling machine.
13. The arrangement described in claim 6 wherein:
said label strip with said labels wherein is in the form of a fan-folded arrangement.
CA000362362A 1975-10-01 1980-10-14 Labelling system Expired CA1122169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000362362A CA1122169A (en) 1975-10-01 1980-10-14 Labelling system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US61869075A 1975-10-01 1975-10-01
US618,690 1975-10-01
CA262,410A CA1097269A (en) 1975-10-01 1976-09-30 Labelling system
CA000362362A CA1122169A (en) 1975-10-01 1980-10-14 Labelling system

Publications (1)

Publication Number Publication Date
CA1122169A true CA1122169A (en) 1982-04-20

Family

ID=27164678

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000362362A Expired CA1122169A (en) 1975-10-01 1980-10-14 Labelling system

Country Status (1)

Country Link
CA (1) CA1122169A (en)

Similar Documents

Publication Publication Date Title
US4454180A (en) Labelling system
US4217164A (en) Labelling system
US4648930A (en) Method of separating labels from a carrier strip
GB1563892A (en) Labelling apparatus
US4547252A (en) Label applying apparatus for automatic labeling system
US4303461A (en) Labelling system
US6431241B1 (en) Roll-fed labelling apparatus
AU692966B2 (en) Non-quadrate linerless label construction, methods of use and application, and apparatus
US5482593A (en) High speed applicator for adhesive tape
US4354894A (en) Apparatus for depositing a coupon on a package
EP0179575B1 (en) Apparatus for producing labels
US5531853A (en) Linerless label applicator
US5061334A (en) Machine and method for high speed, precisely registered label application with sprockets for positioning the label on a transfer wheel
US4549454A (en) Method for cutting and supplying labels of various shapes
RU2566907C2 (en) Drum for cutting and transfer of substrate-free labels from continuous band to spinning vessel and plant and equipped with said drum
EP0273286A2 (en) Apparatus for splicing a replacement web to a web having a programmed movement without interrupting such movement
GB2289664A (en) Manufacture of labels
AU621683B2 (en) Improvements relating to the application of labels to articles
GB2170178A (en) Roll fed labelling machine
US4816105A (en) Method of making punched labels or the like
US5236535A (en) Method for the manufacture and placement of pressure-sensitive composite components and associated apparatus
CA1122169A (en) Labelling system
US5607539A (en) Labelling apparatus
US5522588A (en) Linerless label stacking
US5183247A (en) Method of, and apparatus for, detecting the position of a marking or separating element in a stack of substantially flat products

Legal Events

Date Code Title Description
MKEX Expiry