CA1117188A - Thermally responsive power control for a radio transmitter - Google Patents

Thermally responsive power control for a radio transmitter

Info

Publication number
CA1117188A
CA1117188A CA000324911A CA324911A CA1117188A CA 1117188 A CA1117188 A CA 1117188A CA 000324911 A CA000324911 A CA 000324911A CA 324911 A CA324911 A CA 324911A CA 1117188 A CA1117188 A CA 1117188A
Authority
CA
Canada
Prior art keywords
transmitter
control
output
power
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000324911A
Other languages
French (fr)
Inventor
Edward F. Hume
Steven C. Hand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Application granted granted Critical
Publication of CA1117188A publication Critical patent/CA1117188A/en
Expired legal-status Critical Current

Links

Landscapes

  • Transmitters (AREA)
  • Amplifiers (AREA)

Abstract

A THERMALLY RESPONSIVE POWER CONTROL
FOR A RADIO TRANSMITTER
ABSTRACT OF THE DISCLOSURE
Sense voltages representative of transmitter power and the temperature of the transmitter output stage are summed and fed to the input (30a) of a high gain amplifier (30). The output of the amplifier provides bias (12b) to the transmitter driver stage and, thus, controls the total transmitter developed power. The resulting overall feedback system provides precise transmitter power control and output stage thermal protection.

Description

BackcJround of the Invention ~ . . .. . . . . ...
This invention pertains to the radio communication ar-t and, more particu:Larly, to a means for monitoring and con-trolling the power developed by a radio -transmitt~r.
The prior art has develvped numerous means for monitor-ing and controlliny the output of radio frequency transmitters to a prese~ level. The need for such means is a result bo~h of governmental con-trols regulating the maximum output o~
-transmitters as well as a manufacturer 19 requirement tha-t each transmitter he produces is capable of producing a given power level.
Two methods are normally used to sense the forward power developed by the transmitter. In one method, sensing current limiting to the final stage of the transmitter is employed. In the other, forward power out of the amplifier is sensed.
Also; techniques have been deveIoped for monitoring the temperature of the transmitter output stage, and reducing the output power leveI if the sensed temperature exceeds a predetermined limit.

. ~ , ' .' ~ , , -: ' .

, ~ 35~
1~1718~
~ )~ior arL ~:rall~;rllit~cr po~ler ~oll~rol ci~cuits ~hich employ power lilllitincl ~Ind thermal sensing have not proven to be precise in operation. In addition, they have become very complex and specialized working over a narrow power and/or frequency range. This, basically,/~ue to the fact that prior art circuit configurations for limiting power output, and sensing output stage operating temperature have also been sensitive to unrelated c:ircuit parameters such as circuit component values, bias voltages and output load variations. The lack of precision in prior art transmitter power control CiLCUits has resulted in transmitters which either cannot produce or maintain their rated power, or generate in excess of their allowed power level.

Summary of the Invention It is an object of this invention, therefore, to provide a thermally responsive transmitter power control circuit which is substantially immune to variations in unrelated parameters.
~¦~ Basically, according to the invention, a power control circuit is provided which monitors and controls the power level of a radio frequency transmitter. The power control circuit includes a control means which has first and second inputs and a control output. The control means responds only to signals received at its inputs to produce a predeter-mined control signal at its output. The control output of the control means is coupled to the transmitter for predeter-minedly controlling the power level thereof. A first feed-back means is provided which senses the power level of the transmitter and produces a predetermined first sense signal in response thereto. A second feedback circuit senses the .

~17~

temperature of a predetermined por-tion of the transmitter and produces a second predetermined sense signal in response there-to. A coupliny means couples the first and second sense signals ~o the control means first and second inputs, respectlvely, whereby the control signal produced by the control means is determined solel.y by the first and second feedback signals.
More particularly, there i.s provided:
A power control circuit for monitoring and control-ling the power level o;~ a radio frequency transmitter, said transmitter having a power source input, comprising:
reference means for providing a predetermined fixed reference potential, control means coupled to the reference means, having an input and a control output, said control means being responsive only to the difference between the predetermined fixed reference potential and the signal received at its ~: input to produce a predetermined control signal at its output;
means for coupling said control output to said trans-mitter for predetermindedly controlling the power level there-of;
: first feedback means, comprising a current sensing resistor connected in series with the power source input of said transmitter and producing a first sense signal representa-tive of the current drawn by said transmitter;
second feedback means for sensing the temperature of a predetermined portion of said transmitter and producing a second predetermined sense signal in response thereto; and means for predeterminedly combining the first and second ~.ense signals produced by said first and second feed-back means, and coupling the combined signal to the input ter-minal of said control means, ~171~

whereby the controL signal produced by said control means is determined solel~ by salcl ~irst and second feedback signals .
Brief Description of the Drawing __ __ _.
S The attached drawing is a schematic diagram illustra-t.ing a preferred embodiment o~ the power transmitter power control circuit.
Detailed Description o~ the Pr _erred Embodiment of the_Invention The attached figure illustrates, in schematic diagram :~orm, the ou-tput stages of a power amplifier, indicated generally a-t lO, comprised of a driver 12 havi.ng a modulation 12a and a bias input 12b, and an output stage 14 having an input 14a, a bias input l~b and an output 14c. The driver stage 12 and output s-tage 14 are o~ conventional design whereby a signal appearing at the driver input 12a is amplified to an appropriate power level and appears at the output 14c of the output stage 14 whereby it then may be utilized, as to radiate over a provided antenna 16.
It is a characteristic oE the txansmitter output stage 10 that the power level is determined by the peak-to-peak signal swing, which, in turn, is determined by the bias voltage applied at the driver bias i~put 12b. Also, the power developed by the amplifying stage 10 is directly related to the current IPA which ~lows into the bias input lgb o~ the output stage 14.
Thus, as will be understood more ~ully hereinbelow, the total transmitter output may be :

-3a-~lS

~ 7~52'~ 18~

monitored by sensirly the current l~'A and controlled hy controlling the voltage applied to the driver bias terminal 12~.
The preferred embodiment of the instant transmitter monitor and control circuit is indicated generally at 20.
The heart of the system is a high gain operational amplifier 30 which has inverting and noninverting inputs 30a, 30b, respectively, an input bias terminal 30c, connected to a source of DC bias B+, and a negative, or ground terminal 30d connected to reference, or ground potential 32. While any well known and commercially available high gain operational amplifier 30 may be employed, an MC 1741 operational amplifier, avaliable from Motorola, Inc. was used in this, the preferred embodiment of the invention.
Acting in the known manner, operational amplifier 30 amplifies the differential signal appearing at its inputs ~- 30a, 30b by a high open loop gain value, the resulting output voltage appearing at the amplifier's output terminal 30e. The output of the high gain operational amplifier 30 2G couples to the base 40a of an NPN transistor 40. The emitter 40b of transistor 40 is connected to the common node of a voltage divider comprised of resistors 42 and 44 which i connect between B+ and ground potential. This voltage divider assures that transistor 40 does not conduct collector current until a suitable, predetermined voltage appears at the-output 30e of operational amplifier 30. The collector 40~ of transistor 40 couples through a coupling resistor 46 to the base 48a of an output PNP transistor 48. Bias to , stage 48 is provided by bias resistor 50 which couples from j 30 the emitter 48b to the base 48a of stage 48. The emitter 48b of transistor 48 is directly connected to the supply, B~.

.

~ 7~~~.2'~
:a~171~S~
Tl-~e eolleetor ~c of t.r~nslstc)r ~8 couples throl~gh a lo~ld resistor 52 ~o gro-lncl potential. The vo].tage VCTL
appearing across resistor 52 at node 54 compr.ises the regulated output voltage VCTL of the control circui~ry 20, as will be more fully understood hereinbelow. A provided voltage divider is comprised of res:istor 56, p~tentiometer 58 and resistor 60. The cornmon node, 62 of resistor 56 and potentiometer 58 is fed, to the inverting input 30a of operational amplifier 30. The voltage at this input i5 defined as VIN.
A voltage divider comprised of resistors 70 and 72 series connects between the power supply, B+ and ground potential, with their cornmon node 74 feeding to the nonin-verting input 30b of operational amplifier 30. The voltage at this input is defined as VREF.

Thus, VREF R70 + R72 The voltage VIN applied to the inverting input is derived from the control voltage VCTL. Thus, R58 + R60 IN VCTL R58 + R60 + R56 The voltage VIN is held equal to VREF by the high open I loop gain of operational amplifier 30. Therefore, V = B+ R72 1 + R56 .
R70 + R72 R58 + R60 20This valve of VcTL defines the maximum voltage that will be applied to the driver bias terminal 12b.

Feedback signals representative of transmitter output power and the temperature of the transmitter output stage C~ 3 1~71E~
are received an(l processed by processiny clrcuitry in~i(,ate~
generally at 80. Ile~re, current to the output stac3e 14 of the transmitter section 10 .is coupled from a second source of DC bias, A+, through current sense resistor 82 to the output stage bi.as input 14b. The output stage current IpA
is proportional to the total output stage power. Thus, the voltage drop across resistor 82 is representative of developed transmitter power. This voltage is coupled through resistor 84 and diode 86 to the base 90a of a PNP transistor 90.
. Transistor 90 has its emitter 90b coupled to the second DC
power supply A+ through an emitter resistor 92.
Bias to the base 90a of transistor 90 is also provided through Zener diode 100 which is biased between A~ and ground through resistor 102. The resulting voltage.across Zener diode 100 is coupled to the base 90a of transistor 90 through a resistor 104.
. Also applied to the base 90a of transistor 90 is a voltage representative of the operating temperature of the transmitter's output stage 14. This circuit is comprised of the series connection of resistor 110, thermistor 112 and resistor 114 which couple between A+ and the common connection ! Of resistors 102 and 104. A diode 120 and resistor 122 connect between the common connection of resistor 84 and diode 86 and the common connection of resistor 110 and thermistor 112.
In the conventional manner, thermistor 112 is in thermal contact with that portion of the transmitter output 14 which it is intended to sense and, in this, the preferred embodiment of the invention, thermistor 112 is thermally mounted to the output stage 14 heat sink.

.. . , _ . - .
. ~ ~

C~ 7~52') 1~71~

~ w~ lnre f~.ll.].y ~ r~itc)od hereinbe.low, the res-lltinc3 bi~ls ~Ipplied to the basc 90a or transistor 90 from the sensed output current and output stage temperature, result in a collector current Io which flows through tran-sistor 90. A portion of this current is connected to ground through series coupled resistor 130 and poten~iom~ter ].32.
The remaining portion of the curren~t, ID, is coupled through a diode 134 and applied to the inve:rting input 30a of the ~ operational amplifier 30, reducing 'VcTL below the maximum 1.0 \ voltage previously established.
Circuit analysis establishes the following relationship between output stage 14 current IpA and the control voltage VcTL applied to the bias input .l2b of the driver stage 12.

' R82 R104 1 R84 Io = IpA R92 R84 ~ R104 Vz R92 R84 + R104 CR- 1 R104 VBE 1 , where Vz is the R92- R84 ~ R104 R92 voltage drop across Zener diode 100, VCR is the voltage drop across diode 86 and VBE is the ~ase emitter voltage of transistor 90.
From the above equation, . ~Io = ~IPA R92 R84 ~ R104 From circuit constraints, , ~ID -- QIo ~V ~I R56 Therefore:

~CTL ~IpA R92 R84 + R104 Thus, a change in th~ control voltage VcTL occurs corresponding to a proportionate change in output stage 14 , _ ., . .. , ~ . .

~L~17~B~

current Ip~. Since the curren-t IpA is proportional to ou-tpu-t stage power, and since -the control voltage VcTL
applled to the bias input 12b of driver stage 12 determines the transmitter 10 developed power, it is seen that by a proper choice of resistors 56, 82, 84, 92 and 104 the control voltage VcT~ can be set up to control the transmitter power stage 10 to any desired preset level.
The operation of the thermal feedback compensation may be understood as follows. When temperature increases, the resistance of thermistor 112 is reduced thereby turning on diode 120 causing an additional current through resistor 84.
This resùlts in a greater emitter voltage across resistor 92 and, therefore a higher collector current Io. A higher Io current implies a higher ID current, thereby increasing the voltage at node 62 and, since the operational amplifier tends to make the voltage at its two inputs 30a, 30b equal, resulting in a lower control voltage VcTL at node 54 causing lower drive to output stage 14 thereby reducing the current IpA. Thus, by proper selection of the thermistor 112, and its associated bias components, the output power at the output 14c of output stage 14 can be made to exhibit any desired thermal response.
A particular feature of the instant invention, as illustrated in the preferred embodiment of the invention, is the fact that its power sensing and thermal sensing signals are applied as overall feedback signals in a closed loop, high gain system. The advantage of this configuration over those known in the prior art is that the produced control signal VcTL which controls the maximum allowable transmitter output power is virtually totally controlled by desired circuit components and is substantially independent of variables unreLated to desired circuit performance such as 1:X 1'718~

component tolerances of bias voltayes. Thus, the transmitter power is solely a function of the two sensed voltages.
In summary, a high precision radio transmitter power monitor and control circuit has been described.
While a preferred embodimen-t of the invention has been described in detail, it should become apparent that many modifications and variations thereto are possible, all of which fall within the true spirit and scope of the invention.

Claims (2)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A power control circuit for monitoring and con-trolling the power level of a radio frequency transmitter, said transmitter having a power source input, comprising:
reference means for providing a predetermined fixed reference potential, control means coupled to the reference means, having an input and a control output, said control means being respon-sive only to the difference between the predetermined fixed reference potential and the signal received at its input to pro-duce a predetermined control signal at its output;
means for coupling said control output to said trans-mitter for predeterminedly controlling the power level thereof;
first feedback means, comprising a current sensing resistor connected in series with the power source input of said transmitter and producing a first sense signal representative of the current drawn by said transmitter;
second feedback means for sensing the temperature of a predetermined portion of said transmitter and producing a second predetermined sense signal in response thereto; and means for predeterminedly combining the first and second sense signals produced by said first and second feed-back means, and coupling the combined signal to the input ter-minal of said control means, whereby the control signal produced by said control means is determined solely by said first and second feedback signals.
2. The power control circuit of claim 1 wherein said control means comprises:
a high gain amplifier having an input terminal and an output terminal;
wherein said first feedback means comprises a current sensing resistor connected in series with a predetermined portion of said transmitter to produce a voltage representative of the current drawn by said transmitter;
wherein said second feedback means comprises a temper-ature sensitive means in thermally contacting engagement with a portion of said transmitter for producing a voltage represen-tative of the temperature thereof; and wherein said control means comprises means for pre-determinedly combining the voltages produced by said current sensing resistor and said temperature sensing means and coupling said combined signal to the input terminal of said high gain amplifier.
CA000324911A 1978-04-24 1979-04-04 Thermally responsive power control for a radio transmitter Expired CA1117188A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US89903578A 1978-04-24 1978-04-24
US899,035 1978-04-24

Publications (1)

Publication Number Publication Date
CA1117188A true CA1117188A (en) 1982-01-26

Family

ID=25410406

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000324911A Expired CA1117188A (en) 1978-04-24 1979-04-04 Thermally responsive power control for a radio transmitter

Country Status (5)

Country Link
AR (1) AR221723A1 (en)
AU (1) AU525307B2 (en)
BR (1) BR7902427A (en)
CA (1) CA1117188A (en)
MX (1) MX147133A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314431A (en) * 1988-06-15 1989-12-19 Mitsubishi Electric Corp Transmitting power control circuit

Also Published As

Publication number Publication date
MX147133A (en) 1982-10-13
AU525307B2 (en) 1982-10-28
BR7902427A (en) 1979-10-23
AR221723A1 (en) 1981-03-13
AU4613379A (en) 1979-11-01

Similar Documents

Publication Publication Date Title
US4330809A (en) Thermal protection circuit for the die of a transistor
US5404585A (en) Power detector that employs a feedback circuit to enable class B operation of a detector transistor
CA1117187A (en) Temperature control circuit
US5471654A (en) Transmitting/receiving unit having automatic gain control system with temperature compensation
US4243952A (en) Temperature compensated bias circuit for semiconductor lasers
US3851241A (en) Temperature dependent voltage reference circuit
CA1042531A (en) Temperature sensitive control circuit
US3866136A (en) Amplifier protection circuit
US4254372A (en) Series pass voltage regulator with overcurrent protection
US4313210A (en) Thermally responsive power control for a radio transmitter
US4851953A (en) Low voltage current limit loop
US4399398A (en) Voltage reference circuit with feedback circuit
US4516081A (en) Voltage controlled variable gain circuit
CA1117188A (en) Thermally responsive power control for a radio transmitter
US5200692A (en) Apparatus for limiting current through a plurality of parallel transistors
US4380089A (en) Battery-powered transmitter including current control circuit
US4146903A (en) System for limiting power dissipation in a power transistor to less than a destructive level
US4613768A (en) Temperature dependent, voltage reference comparator/diode
US4743833A (en) Voltage regulator
US4229706A (en) Audio amplifier
US4520282A (en) Electronic impedance circuit including a compensation arrangement for d.c. offset
US3441833A (en) Regulated power supply having current comparator referenced to common conductor
US4473793A (en) Bias generator
US4672302A (en) Circuit for controlling the load current level in a transistor
US4025843A (en) Constant current base-drive circuit

Legal Events

Date Code Title Description
MKEX Expiry