CA1076700A - Complementary input structure for charge coupled device - Google Patents

Complementary input structure for charge coupled device

Info

Publication number
CA1076700A
CA1076700A CA258,768A CA258768A CA1076700A CA 1076700 A CA1076700 A CA 1076700A CA 258768 A CA258768 A CA 258768A CA 1076700 A CA1076700 A CA 1076700A
Authority
CA
Canada
Prior art keywords
charge
channel
electrodes
electrode
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA258,768A
Other languages
French (fr)
Inventor
Carl N. Berglund
Abd-El-Fattah A. Ibrahim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nortel Networks Ltd
Original Assignee
Northern Telecom Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northern Telecom Ltd filed Critical Northern Telecom Ltd
Priority to CA258,768A priority Critical patent/CA1076700A/en
Priority to NL7706624A priority patent/NL7706624A/en
Priority to JP8364377A priority patent/JPS5320871A/en
Priority to DE19772734366 priority patent/DE2734366A1/en
Priority to SE7709026A priority patent/SE7709026L/en
Priority to FR7724610A priority patent/FR2361748A1/en
Application granted granted Critical
Publication of CA1076700A publication Critical patent/CA1076700A/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • H01L29/76808Input structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

COMPLEMENTARY INPUT STRUCTURE FOR CHARGE COUPLED DEVICE
Abstract of the Disclosure An input structure for a charge coupled device (CCD) which develops a charge proportional to a signal in one channel, and the complement of that charge in a second channel. The dual channel CCD can be used in transversal filter applications without the need for a differential amplifier at its output.

i -

Description

107f~700 This invention relates to an input structure which provides complementary signals in two channels of a charge coupled device and more particularly to one which may be used to implement transversal flltering ; in such a device without the need for an associated operational amplifier.
Background of the Invention In an article entltled: "Charge-Coupled Devices - A New Approach to MIS Device Structure", IEEE Spectrum, July 1971, pp 18-27, W.S. 80yle and G.. Smith describe a new information-handling structure, the charge-coupled device, (CCD). The device stores a minority-carrier charge in potential wells created at the surface of a semiconductor and transports the charge along the surface by the application of bias potentials to control electrodes so as to move the potential wells.
;~ Numerous applications have been proposed for the CCD. It can be utilized as a transversal filter, such as described in an article by A.Ibrahim et al entitled: "Multiple Filter Characteristics Using a ~ Single CCD Structure", International Conference on the Application of !~ Charge-Coupled Devices, October, pp 245-249; or as a recursive filter, such as described in an article by D.A. Sealer and M.F. Tompsett entitled:
"A Dual Differential Analog CCD For Time-Shared Recursive Filters", ISSCC
February 1975, pp 152-153. One disadvantage of prior structures of this type is that in order to provide both positive and negative coefficients of the sampled signals, it is necessary to subtract two charge signals at each delay stage. This is generally achieved utilizing a differential ~ amplifier. However, the success of this approach requires the integration ; of a MOST (metal-oxide-silicon-transistor) operational amplifier on the same chip as the CCD, to reduce the final cost.
Statement of the Invention The present invention provides a unique input structure for providing complementary charges in two CCD channels which permits weighting and direct summing of the detected signals thereby negating the requirement for a differential amplifier.

~ 7 6~7 0 0 Thus, in accordance with the present invention there is provided a complementary input structure for a multi-channel charge coupled device comprising: a charge storage body, a dielectric layer disposed over the body and a pair of channels each having a plurality of electrodes disposed over the dielectric layer for controlling the sequential transfer of mobile charges along the body in response to clock voltages applied thereto. The input structure comprises a common input electrode disposed over the dielectric layer adjacent the head of each channel for controlling a charge of fixed magnitude in the body from an adjacent source. In addition, the input structure includes a control electrode at the head of each channel in juxtaposition with the common input electrode and individually responsive to separate control signals for transferring a selected portion of the fixed magnitude charge to one channel and the balance to the other channel, whereby the charge in the other channel is the complement of that in said one channel.
In a particular embodiment, selected ones of the electrodes in each of the two channels are divided along the length of the channel to divide the charges being transferred therebeneath in preselected ratios.
One portion of each of the divided electrodes from both channels are connected in common, whereby the total charge beneath the common portions of the divided electrodes is a function of the individual magnitude of the charges being transferred along the two channels and the relative division of each of the electrodes in the two channels.
Brief Description of the Drawings An example embodiment of the invention will now be described with reference to the accompanying drawings in which:
I Figure 1 is a pictorial plan view of a dual channel charge coupled device including an input structure in accordance with the present invention;
Figure 2 is a pictorial diagram of a side elevational view of the structure illustrated in Figure l; and
- 2 -Figure 3 illustrates typical waveforms of the various clock voltages which are applied to the device illustrated in Figures 1 and 2.
Description of the Preferred Embddiment The fabrication of the charge coupled device described herein utilizes technologies well established and known in the semiconductor field. It is therefore considered unnecessary to describe in detail the individual steps for forming the device. However, Canadian Patent No. 941,072 issued January 29, 1974 to James J. White describes one method of constructing a two-level poly-silicon charge coupled device which is the basic structure of the device disclosed herein. Also, it is evident that the figures shown in the drawings are exemplary of the construction of the invention and not necessarily drawn to scale.
In the following detailed description and accompanying ; drawings basic reference numerals are assigned to individual elements of the device. Where it is necessary to distinguish between repetitive elements in a row additional reference characters are added to the base ;~ number. In general, reference is made only to the base number.
Referring to Figures 1 and 2, the two-phase charge coupled device comprises a charge storage body 10 of p-type silicon having a variable thickness silicon dioxide (SiO2) insulating layer 11 deposited ~ thereon. A row of alternately upper 12 and lower 13 elongated ; poly-silicon electrodes laterally disposed so as to overlap adjacent ones thereto, have been deposited on the insulating layer 11. As will be manifest hereinafter, the lower electrodes 13 function as storage control electrodes while the upper electrodes 12 function as transfer gates in a well known manner.
As illustrated in Figure 1, the silicon dioxide insulating layer 11 includes gate oxide regions 15 beneath which the packets of charge are transferred in n-channels along the row under control of clock voltages applied to the field plates 12 and 13. These gate oxide regions 15 consist of alternating thicknesses of insulating layer 11 which is .... . . .
.. ~ ~ . . . . . . .

107~00 approximately 1100 ~ thick under the storage electrodes 13 and 3000 Q thick under the transfer electrodes 12. The surrounding thicker portions are designated as field oxide regions 16. These latter regions 16 are sufficiently thick (approximately 1.2~m) that the portions of the semiconductor substrate 10 immediately beneath them do not invert in response to the application of clock voltages to the electrodes 12 and 13.
Consequently, the minority-carrier charges are only carried along the substrate 10 immediately adjacent the gate oxide regions 15.
At the head of the channels 15 is a diffused n+ source of mobile charges or carriers 20. This is followed by a transfer gate 12R
and an initial storage electrode 13R which is common to both channels 15.
Immediately adjacent the common storage electrode 13R in each channel 15A
and 15B is a control electrode 12A and 12V respectively. Unlike the balance of the electrodes in the channels 15, these electrodes 12R, 13R, 12A and 12V are controlled by separate clocks as will be described hereinafter.
In addition, it can be seen that every second storage electrode 13 is divided along the length of the channel 15 with the inward facing portions of the divided electrodes 13J, 13K, 13L and 13M being connected in common. These divided electrodes provide the weighting ` factor during the nondestructive sensing of the magnitude of the analog charges being transferred along the channels 15.
In Figures 1 and 2, the clock drives are identified by reference characters 01' P2- 0s' 0sl and 0s2 having voltage waveforms identified by corresponding reference characters in Figure 3. Referring I now to all three figures, at time tl, the clock drives Pl and 0s 9 high ¦ and a mobile charge of electrons is transferred from the source 20 to beneath the storage electrode 13R which has a fixed reference voltage VRR
applied thereto. This reference voltage VRR is selected to provide a ~; 3Q charge QRR under electrode 13R of a preselected magnitude which acts as a virtual source of charge for the two channels 15A and 15B. At time t2, 05 goes low and 0sl goes high. This signal 0sl is the composite of a d-c bias voltage V8 and an a-c signal VS such as from a transmission line (not shown). Since electrode 13A has already been driven high by clock 01 at time tl, the signal under control of clock 0sl transfers a preselected portion of the charge QRS to beneath the storage electrode 13A.
At time t3, PSl goes low and PS2 goes high. This applies sufficient voltage to transfer gate 12V to transfer the balance of the , charge beneath the electrode 13R to beneath the storage electrode 13V
` which has also been driven high. Thus, the charge stored beneath the electrode 13V, QRR-QRS is the complement of the charge stored beneath the electrode 13A. At time t4, clock 02 goes high, followed by clock Pl going low which transfers or dumps the charge beneath the electrodes 13A
and 13V to beneath the divided or split electrodes 13B, 13J, 13L and 13W
in a well known manner.
; Since the magnitude of the voltage applied to each half of the divided electrodes is the same, the charge will split between the two in accordance with the relative length of each electrode.
The relative magnitude of the total charge beneath the electrodes 13J, 13L, 13K and 13M can be monitored by a floating gate sensing network 16 using a nondestructive sensing technique such as described in the above-mentioned paper by A.Ibrahim et al.
In a typical application of a CCD transversal filter an a-c signal v5 superimposed on a d-c bias voltage VB is applied via clock 0S1 to gate electrode 12A, to transfer a preselected portion QRS
of the charge QRR previously stored beneath storage electrode 13R to beneath electrode 13A. The complement or balance of this charge QRR-QRs is then transferred beneath storage electrode 13V under control of clock 0s2 The charges are then concurrently transferred along the channels 15A and 15B under control of clocks Pl and P2. At each of the 3Q: split electrodes 13 the weighting factors are determined by the relative lengths. By repeatedly nondestructively sampling the weighted charge ,,. ~.-. ~ . - , .

107~700 under the various split storage electrodes 13 and summing their outputs in the network 16, an output signal from the electrode 17 can be obtained which is proportional to the magnitude of the charges being transferred along both channels 15A and 15B and the relative weighting determined by the divisîon of the split electrodes. Because the complement of the charge being transferred along channel 15A is transferred along channel 15B, the sensed signals can be summed directly without the necessity of providing a differential ampllfier. This technique results in a d-c offset on the sensed signal on electrode 17 which can be readily removed in the output network 16.
While the floating gate sensing network utilizes semiconductor amplifiers, these can be readily constructed utilizing MOS (metal-oxide-silicon) technology, the same as that used to construct the CCD. Also it will be understood that the entire structure could be implemented utilizing p-channel technology on a n-type silicon substrate.

f ~ :
'' , ' "': ~ ' ,

Claims (3)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A charge coupled device comprising:
a charge storage body;
a dielectric layer disposed over the body;
a pair of channels each having a plurality of electrodes disposed over the dielectric layer for controlling the sequential transfer of mobile charges along the length of each channel in said body in response to clock voltages applied thereto;
a common input electrode adjacent the head of each channel for controlling a charge of fixed magnitude in said body from an adjacent source;
each channel having a control electrode in juxtaposition with the common input electrode, and individually responsive to separate control signals for transferring a selected portion of said fixed magnitude charge to one channel and the balance of the charge to the other channel;
at least one electrode in each channel being preselectively divided into two disconnected portions by a gap along the length of the channel, to divide the charges being transferred therebeneath in preselected ratios, one portion of each of the divided electrodes in each of the pair of channels being connected in common;
whereby the total charge beneath the common portions of the divided electrodes is a function of the individual magnitude of the charges being transferred along the two channels and the relative division of each of the electrodes in the two channels.
2. A charge coupled device as defined in claim 1 additionally including an input control circuit comprising:
means for initially applying a reference voltage of fixed magnitude to said common input electrode to obtain a charge of fixed magnitude therebeneath from said adjacent source;
thence, means for applying a signal of varying magnitude to the control electrode in one channel to transfer a selected portion of said fixed magnitude charge therebeneath;
thence, means for applying a voltage of fixed magnitude to the control electrode in the other channel to transfer the balance of the fixed magnitude charge therebeneath.
3. A charge coupled device as defined in claim 1 which additionally includes a control circuit comprising:
means for generating a floating charge on the common portions of the divided electrodes; and means for monitoring the voltage change in the charge on the common portions of the divided electrodes when said mobile charges are transferred therebeneath.
CA258,768A 1976-08-10 1976-08-10 Complementary input structure for charge coupled device Expired CA1076700A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA258,768A CA1076700A (en) 1976-08-10 1976-08-10 Complementary input structure for charge coupled device
NL7706624A NL7706624A (en) 1976-08-10 1977-06-16 COMPLEMENTARY INPUT CONSTRUCTION FOR LOAD-COUPLED DEVICE.
JP8364377A JPS5320871A (en) 1976-08-10 1977-07-14 Complementary input structure for charge coupled element
DE19772734366 DE2734366A1 (en) 1976-08-10 1977-07-29 COMPLEMENTARY INPUT STRUCTURE FOR A CHARGE-COUPLED 2-CHANNEL ARRANGEMENT
SE7709026A SE7709026L (en) 1976-08-10 1977-08-09 TWO-CHANNEL CHARGING COUPLING DEVICE
FR7724610A FR2361748A1 (en) 1976-08-10 1977-08-10 Charge coupled two-channel device - has fixed charge applied to common input electrode, and split between channels in two complementary parts (NL 14.2.78)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA258,768A CA1076700A (en) 1976-08-10 1976-08-10 Complementary input structure for charge coupled device

Publications (1)

Publication Number Publication Date
CA1076700A true CA1076700A (en) 1980-04-29

Family

ID=4106620

Family Applications (1)

Application Number Title Priority Date Filing Date
CA258,768A Expired CA1076700A (en) 1976-08-10 1976-08-10 Complementary input structure for charge coupled device

Country Status (6)

Country Link
JP (1) JPS5320871A (en)
CA (1) CA1076700A (en)
DE (1) DE2734366A1 (en)
FR (1) FR2361748A1 (en)
NL (1) NL7706624A (en)
SE (1) SE7709026L (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2936731A1 (en) * 1979-09-11 1981-04-02 Siemens AG, 1000 Berlin und 8000 München INTEGRATED CIRCUIT WITH TWO CTD ARRANGEMENTS
NL8501702A (en) * 1985-06-13 1987-01-02 Philips Nv LOAD-COUPLED DEVICE.
JPH01240437A (en) * 1988-03-08 1989-09-26 Toyo Kogei Kogyo:Kk Vessel for retort foodstuffs and its producing method

Also Published As

Publication number Publication date
JPS5320871A (en) 1978-02-25
DE2734366A1 (en) 1978-02-16
SE7709026L (en) 1978-02-11
JPS6238868B2 (en) 1987-08-20
FR2361748A1 (en) 1978-03-10
NL7706624A (en) 1978-02-14

Similar Documents

Publication Publication Date Title
US4099197A (en) Complementary input structure for charge coupled device
US4139783A (en) Single phase signal processing system utilizing charge transfer devices
US4336557A (en) Monolithically integrated circuit for relatively slow readout from a two-dimensional image sensor
US4686648A (en) Charge coupled device differencer
US4398099A (en) Switched-capacitance amplifier, a switched-capacitance filter and a charge-transfer filter comprising an amplifier of this type
US4080581A (en) Charge transfer transversal filter
US4145676A (en) Input stage for a CTD low-pass filter
US4071775A (en) Charge coupled differential amplifier for transversal filter
US4032867A (en) Balanced transversal filter
GB1377521A (en) Charge coupled circuits
CA1076700A (en) Complementary input structure for charge coupled device
US4016550A (en) Charge transfer readout of charge injection device arrays
US4048525A (en) Output circuit for charge transfer transversal filter
US3697786A (en) Capacitively driven charge transfer devices
US4099175A (en) Charge-coupled device digital-to-analog converter
US4004157A (en) Output circuit for charge transfer transversal filter
US5892251A (en) Apparatus for transferring electric charges
US4234807A (en) Ladder device with weighting factor adjusting means
US4232279A (en) Low noise charge coupled device transversal filter
US4249145A (en) Input-weighted charge transfer transversal filter
US3961352A (en) Multi-ripple charge coupled device
US4117347A (en) Charged splitting method using charge transfer device
GB1589320A (en) Charge transfer apparatus
US5227650A (en) Charge coupled device delay line employing a floating gate or floating diffusion gate at its intermediate output portion
US3890500A (en) Apparatus for sensing radiation and providing electrical readout

Legal Events

Date Code Title Description
MKEX Expiry