CA1068293A - Sulfosuccinate ester-amides - Google Patents

Sulfosuccinate ester-amides

Info

Publication number
CA1068293A
CA1068293A CA231,536A CA231536A CA1068293A CA 1068293 A CA1068293 A CA 1068293A CA 231536 A CA231536 A CA 231536A CA 1068293 A CA1068293 A CA 1068293A
Authority
CA
Canada
Prior art keywords
carbon atoms
amine
ester
sulfosuccinate
amide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA231,536A
Other languages
French (fr)
Inventor
Kermit D. Longley
Anastasios J. Karalis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Witco Corp
Original Assignee
Witco Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Witco Chemical Corp filed Critical Witco Chemical Corp
Application granted granted Critical
Publication of CA1068293A publication Critical patent/CA1068293A/en
Expired legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

SULFOSUCCINATE ESTER-AMIDES

Abstract of the Disclosure Sulfosuccinate ester-amides in which one carboxyl group of the sulfosuccinate is amidified with an aliphatic non-tertiary amine, for instance, a C8-C12 aliphatic amine such as octyl or dodecyl amine, and in which the other carboxyl group of the sulfosuccinate is esterified by reaction with an .alpha. -mono-epoxide such as propylene oxide, or higher .alpha. -monoepoxides, and method of preparation of such sulfosuccinate ester-amides.
The said sulfosuccinate ester-amides have utility as surfactants, such as detergents and emulsifiers.

Description

O~r invention relates to the preparation of certain types of novel sulfosuccinate ester-amides at least most of which can be represented by the following formula:

R-~X-C-CH CH -C-O-~RlO~H (I) ~ 1 2 "

where R-~X is the radical of a C -C20, preferably a C3-C18, aliphatic non-tertiary monoamine in which X is hydrogen or lower (C -C ) alkyl; and R10- is the radical of an o~-monoepoxide (hereafter called ~ -epoxide) containing from 3 to 20 carbon atoms; with the proviso that the sum of the number of carbon atoms in R-NX- and Rl is from 7 to 35 and that there is a difference in the number of carbon atoms in R-~X- and Rl which , .
.. ~

it~
j;

.

:i?~

difference is at least 2 and, better still, at least 4: and M
is a cation selected from the group of alkali metals (including ammonium), alkaline earth metals, and organic substituted ammonium -or amines. Most desirably, the difference in the number of carbon atoms between R-~X- and Rl is from 4 to 14. Again, generally speaking, the preferred novel compounds of our present invention are those wherein, in the aforesaid formula, R is alkyl containing from 8 to 15 carbon atoms, X is hydrogen, and R
contains 3 carbon atoms; and those wherein, in the aforesaid formula, R is alkyl containing from 3 to 5 carbon atoms, X is hydrogen and Rl contains from 8 to 12 carbon atoms.
~' It is particularly desirable that the novel sulfosucci-nate ester-amide compounds of our present invention be marketed and used in the form of the aforementioned types of salts, that is, where M in formula (I) is an alkali metal (which term is here used to mean sodium, potassium, lithium and ammonium), or alkaline earth metals, namely, calcium, magnesium, strontium and barium;
or, as noted above, organic substituted ammonium or amines.
These latter, which most advantageously are water-soluble lower molecular weight amines, may be seIected from a wide group, typical examples of which are dimethylamine; diethylamine; trieth-ylamine; propylamine; monoisopropylamine, diisopropylamine, .fi ~ ' .
triisopropylamine, and commercial mixtures of said isopropyl-amines; butyl amine, amyl amine; monoisopropanolamine, diisopro-panolamine, triisopropanolamine and commercial mixtures of said -'1 `
isopropanolamines; ethanolamines such as monoethanolamine, diethanolamine, triethanolamine, and commercial mixtures thereof;
. ~ .

il - 2 -. .

~068293 polyamines such as aminoethyl ethanolamine, ethylenediamine, diethylenetriamine, hydroxyethyl ethylènediamine, and hexamethyl-enediamine; hexylamine; cyclohexylamine; dimethylbenzylamine, benzylamine; morpholine; etc. Such salts can be prepared from sodium or potassium salts of the novel sulfosuccinate ester-amide compounds of our present invention by known metathesis techniques.

The aforesaid sulfosuccinate ester-amides are character-~ -ized by the fact that there is present in the molecules thereof, connected through an ester linkage to one of the carboxyl groups ~, of maleic anhydride, a free hydroxyl group in the ~-position 3~ resulting from the utilization of an ~ -epoxide containing at least 3 carbon atoms in the production of the compounds of our invention, and an amide linkage connected through the other one of the carboxyl groups of the maleic anhydride, all as is here-after described in detail and illustrated by the various disclosed,~, embodiments of our invention. The special combination of radicals in the compounds of our invention results in particular properties which effectively adapt various of the compounds to highly effective utilities in various environments.

In certain cases, the radical R-NX- in formula (I) will be derived from a long chain, for instance a C8-C20, aliphatic : ~ ~
~ ~ prLm,ary monoam,ine, and the radical R10- in said formula (I) will , ~

~ 3 ~

r! ~ ~
-, .

be derived from an cC -epoxide such as propylene oxide or butylene oxide, particular propylene oxide. However, compounds according to and within the scope of our invention are also obtained where the R-NX- radical of said formula (I) is derived from a C -C5 aliphatic non-tertiary amine such as ethyl amine, n-propyl amine, isopropyl amine, n-butyl amine, isobutyl amine, n-pentyl amine and isopentyl amine, and the Rl-0- radical is derived from a C3-C20, particularly a C8-C20,a~-epoxide such as octylene oxide or dodecylene oxide or styrene oxide.

~ The aforesaid compounds are useful in various fields - where surfactant or wetting-out properties are a desideratum such as, for instance, detergents, emulsifiers, penetrating agents, stabilizing agents, dispersants, emollients, and the like.

Cert~in sulfosuccinate esters and certain sulfosuccinate amides are known to the art, being disclosed, for instance, in U.S. Patents Nos. 2,028,091; 2,252,401; 2,316,234; 2,507,030;
2,887,504; 2,976,208; 2,976,20g; 2,976,211; 3,002,994; 3,080,280;
3,123,640; 3,123,641; 3,141,905; 3,155,591; 3,404,164; 3,481,973;
French Patent of Addition No. 69,516: and C. R. Caryl, Ind. Eng.
Chem., 33,731-7 (1941). However, so far as we are aware, there has been no prior suggestion or disclosure of any of the compounds of our-invention.

. ~
: -i ~ ::

' - 4 -, ! ' .
. ~ .
.~ ',' ' ` .

~068293 In the preparation of various of the novel compounds of our invention, maleic anhydride is initially reacted with an aliphatic (which term includes cycloaliphatic) primary monoamine in proportions such as to produce predominately the maleic acid monoamide, generally speaking, a mole ratio of 1 to about 1.2 moles of maleic anhydride to 1 mole of the long chain aliphatic ; primary amine, namely, a reaction product which contains upwards of 90 or 95% of the monoamide. It is generally unnecessary to purify the reaction product to separate the monoamide but this can be done, if desired, by conventional purification techniques.

In one procedure for the production of the monoamide, ~ ~ particularly where the aliphatic non-tertiary amine reactant with ;', ;"~r' the maleic anhydride is an aliphatic non-tertiary amine, such as, , for instance, long chain aliphatic primary amines, said primary ~X;
amines are initially admixed with the maleic anhydride and reacted, ~ for instance, at about 70 to about 100C, until the acid number ."~
reaches or approximates that of the desired monoamide. To said monoamide is then added the selected ~-epoxide in amounts to drive the desired esterification reaction to completion which, in the usual cases, involves the employment of about 0.2 to 0.3 moles ex-cess to effect completion of the reaction in a reasonable length of ~Y.:~ ~
time. To the resulting ester-amide there is then added slightly ~-~, more than 1 mole of the bisulfite per mole of maleic anhydride used ;~ and the resulting mixture is heated until the reaction is complete.

i .

It should be noted that, in the preparation of the novel compound~
of our present invention, whether by the preferred procedure described in this paragraph or otherwise in accordance with our invention, it is essential that maleic anhydride be utilized.

The preparation of the intermediate amides, to wit, the ~-alkylmaleamic acid, by reaction of the aliphatic non-tertiary monoamines with maleic anhydride is, per se, well known to the art and no novelty is claimed therein. Various methods are f known to the art and it is convenient, if desired, to utilize procedures such as are disclosed by Mehta et al, J. Org. Chem. -f25f,1012 (1960), utilizing an organic solvent reaction medium, such as anhydrous diethylether.
,', .
, In the preparation of those of the compounds of our i~'f,~ invention which are in the form of amine salts, it is sometimes fif desirable to produce such in substantially anhydrous form, soluble in organic solvents, particularly polar organic solvents such as ethyl alcohol, propyl alcohol, isopropyl alcohol, methyl and `-ethyl formamides, etc. To this end, for instance, the afore-ff~ described intermediate ester-amides can be reacted with a solution aontaining an organic amine, sufficient water to provide a reactiop medium and containing dissolved sulfur dioxide to form a sulfite of said organic amine, and a water-miscible alcohol, for instance, methyl alcohol, ethyl alcohol, n-propanol or isopropyl alcohol, whereby to produce a substantially anhydrous organic amine salt . . f ~
ff ..
~ . .
~ - 6 -. '~'1 .

., .

~068293 _7 of the said sulfosuccinic acid ester-amides. For best results, in carrying out such reaction, for each mol of said intermediate ester-amide, the solution reacted therewith should contain about 1 mole or slightly more of organic amine or amines, and about 1 mol of water containing about 1 mol of sulfur dioxide.

In the preparation of the novel compounds of our invention by the foregoing method, it is important, in order to obtain said compounds, that the sequence of steps noted above be followed, that is, that the maleic acid monoamide of the Cl-C20 aliphatic non-tertiary amine first be provided or prepared after which the reaction with the ~ -epoxide is carried out, followed by the reaction with the aqueous bisulfite to introduce the sulfonic group into the molecule. Thus, for instance, if the ~ -epoxide is first reacted with the maleic anhydride and then with (a) the C2-C20 aliphatic non-tertiary amine, followed by the reaction with the aqueous bisulfite, or (b) the aqueous bisulfite followed by the reaction with the C2-C20 aliphatic non-tertiary amine, the products of or contemplated by the present invention axe not obtained.

In the reaction of the monoamides with the o~-epoxides containing at least 3 carbon atoms to produce the intermediate ester-amides w~ich are then converted into the sulfosuccinate ester-amides of our invention, said reaction is especially : `j:

~ - 7 -;

~ ~068Z93 desirably carried out in the presence of a catalyst, particularly a basic organic material such as, by way of example; tertiary amines such as triethylamine and triisopropylamine; tris dimethylamino methyl phenol; and quaternary ammonium salts such as tetramethyl ammonium hydroxide, tetraethyl ammonium hydroxide, benzyl trimethyl ammonium hydroxide and benzyl triethyl ammonium hydroxide. Inorganic basic catalysts such as sodium hydroxide or potassium hydroxide can be used but are not preferred. The catalysts can be used in variable proportions, generally in the range of 0.1 to 2 or 3%, based on the weight of the monoamide, depending generally on the basicity of the catalyst.

The radicals represented by R-NH- in formula (I) or in the formula R-NX can be straight chain or branch chain and include, by way of illustration, radicals derived from such non-tertiary amines as ethyl amine, n-propyl amine, isopropyl amine, n-butyl amine, isobutyl amine, cyclopropyl amine, cyclo-butyl amine, cyclopentyl amine, cyclohexyl amine, n-amyl amine, isoamyl amine, n-hexyl amine, isohexyl amine, 2-ethyl hexyl amine, r~ ~
~ 2-ethyl octyl amine, n-nonyl amine, isononyl amine, n-decyl amine, ~J~

~ - 8 -. . .
. ,'.~

~.

` ~o68293 isodecyl amine, undecyl amine, n-dodecyl amine, isododecyl amine, tridecyl amine, tetradecyl amine, pentadecyl amine, hexadecyl amine, heptadecyl amine and octadecyl amine, and mixtures thereof as in commercial mixtures of fatty and other non-tertiary amines.
The non-tertiary amines include the secondary amines corresponding ~
to the primary amines mentioned above, as, for example, di-n- ~:
propyl amine, di-n-butyl amine, etc.

The oC-epoxides which are utilized in the preparation of the novel compounds of the present invention and from which the radical Rl-O- of formula (I) is derived include, by way of illustrative examples, propylene oxide; butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, dodecylene, tetradecylene, pentadecylene, hexadecylene and octadecylene oxides, as well as styrene oxide and similar oC-epoxides derived from analogous alkenyl benzenes.

Illustrative examples of chemical compounds falling ~ ~ .
within the scope of our invention are the following:

(1) C H -~H-C-CH - CH -C-O-CH -CH-CH
12 25 2. 2 3 O S03~a o OH

;"s~

. J,I

",; _ 9 _ '~
:,' ., . .

~(~68293 -lo (2) C12H25NH-C-CH CH2-C-O-CH2-cH-cH3 (3) C14H29-NH-C-CH CH2-C--CH2-CH-CH3 .
( ) 8 17 ~ I CH -C-O-CH -CH-CH
O SO K O OH

15 31 .. , CH -C-O-CH -CH-CH -CH
O S03Na O OH

, (6) CH3-(CH2)10-CH-NH-C-CH~ CH2-C-O-CH2-cH-cH3 3 0 SO Na o OH
., :i ~A~ ~ ( ) 3 2 10 . " ' 2 " 2 , 3 (8) Cl8H37-NH-c-cH CH -C-O-CH -CH -CH2-CH
O SO Na O OH

; (g) H2 H2 C C
H2C ~NH-C-CH - CH2-c-o-cH2-cH-cH3 :~ H H - S03H N(C2H4H)3 o OH

`"' -:

~o6~293 -11 -.

16 33 " ,CH -C-o-cH2-cH-cH3 ., 12 25 - CH -C-O-CH2-CH-(CH2) -CH3 O 503Na OH

(12) C H -NH-C H -O-C-CH CH -C-O-CH -CH-CH
12 25 2 4 ll ' 2 ll 2 ' 3 :`

( 14 29 " , CH-C-CH -CH-CH3 O SO H. H N-HC=(CH ~ O OH
: 3 2 3 2 ":
' (14) C3 ~-NH-C-CH CH -C-O-CH -CH-(CH2) -CH3 ~: O SO3Na O OH
~ :
,, (15) C2H -NH-C-CH CH -C-O-CH -CH-(CH ) -CH3 ~:-` O SO K O OH ~ "

..,; , (16) CU3 .CH-~H-C-CH CH -C-O-CH -CH-(CH j -CH
CH ~ " l 2 ll 2 ~ 2 10 3 12 25 " , CH -C-O-CH2-CH
O SO Na O OH

~ '`? ' '' : _ ..... , . ~ , , .

.

The following examples are illustrative of the prepara-tion of typical compounds of the present invention. All temp-eratures recited are in degrees Centigrade.

EXAMPLE I:

To 98 g (1 mole) of molten maleic anhydride at 70 there is added 106 g (1.05 moles) of di-n-propyl amine over a period of 1 hour, then stirring an additional 15 minutes at this temperature. To the di n-propyl maleamide so formed there is added 239 g of a Cll-C ~ -olefin epoxide (1.1 mole "Neodox 1114"-Viking Chemical) over a period of 1 1/2 hours at 100-110, then maintaining at this temperature for an additional 6 hours. At the end of this period, the acid value is 0.027 meq/g. There is ., .
then added 327 g (1.1 mole) of 41% sodium bisulfite solution at 90. The reaction is very rapid and is complete within about ~,~
15 minutes. The product, a clear, dark amber viscous solution, clearly soluble in water in all proportions with excellent foaming and line soap dispersant properties, corresponds to the formula '~l ~r : ~
3 2 2 N-C-CH CH2-C-0-(R O)H

CH3-CH2-CH2 0 S0 Na 0 (where R10- is the radical of said ~ -olefin epoxide) * z~ra~ ~ k .j .':' : '-'`
r~

. 1068293 EXAMPLE II:

To 139 g (0.5 mole) of ~-cocomaleamide, having an acid valve of 3.6 meq/g, are added 0.3 g of tris dimethy~amino methyl phenol, and then 50 g (0.86 mole) of propylene oxide are added gradually over a period of about 3 hours while the reaction mixture is heated at 100C, and the reaction mixture is maintained at said temperature for an additional approximately 5 hours or until an acid value is reached of about 0.13 meq/g. The resulting ` reaction product is stripped in vacuo, and to it are gradually added, with stirring, 118 g of a 44% aqueous solution of sodium bisulfite (0.5 mole) at 100C over a period of about 1 hour, and stirring is continued for an additional 1/2 hour at a temp-erature of about 100C. The final product is a clear, amber liquid completely soluble in water, and corresponds to the formula R-HN-C-CH CH2-c-o-cH2-cH-cH3 O SO3Na O OH
(where R-NH- is the radical of coco fatty primary amines) ll~ The product has moderate foaming properties; and it possesses ~ foam stabilizing properties for various surfactants such as J ~ alkylaryl sulfonates such as dodecylbenzene sodium sulfonates and dodecylbenzene triethanolamine sulfonates, and long chain aliphat~c alcohol sulfates such as lauryl sodium sulfates and lauryl ~`'5.~ . triethanolamine sulfates.

.~.
<, ~ :
~~ :
~ - 13 ": :
- .
:. .

~068293 -14 EXAMP].E III:

The procedure described in Example I is carried out except that, in place of the di-n-propyl amine, 91 g (about 1.05 moles) of n-amyl amine is used. The sulfosuccinate ester-amide product obtained corresponds to the formula C Hll--~H-C-CH CH2--C-O-(Rl())H `;' (where R 0- is the radical of the said ~ -olefin epoxidel) EXAMP~E IV:

The procedure described in Example II is carried out except that, in place of the propylene oxide, 62 g (0.86 moles) of butylene oxide is used. The sulfosuccinate ester-amide product obtained corresponds to the formula R-~H-C-CH- 2 ,C, O CH2-cH-cH2-cH
O S03Na O OH

EXAMPLE V:

The procedure described in Example II is carried out except that, in place of the ~-cocomaleamide, there is used 114 g (0.5 molel a monoamide of 2-ethylhexyl amine prepared by reacting 2-ethylhexyl amine with maleic anhydride. The sulfosuccinate ester-amide product obtained corresponds to the formula . i -~ - 14 -; , .

:1068293 R-NH-C-CH- CH -C-O-CH -CH-CH
,l 2 " 2 3 O SO3Na O OH

(where R-NH is the radical of 2-e~hylhexy~ amine) EXAMPLE VI:

To 400 ml of water are added 34 g of the sulfosuccinate ester-amide surfactant prepared in Example II, 1.25 g of potassium persulfate, 7 g of hydroxyethyl cellulose ("Cellosize WP-O9", Union Carbide Corporation), and 1.3 g of sodium bicarbonate.
,, This solution is heated to 70 and to it is added at 70-75, in ' separate streams, over a period of 4 hours, 550 g of vinyl acetate ,, 'i and a solution of 1.25 g of sodium persulfate in 50 ml of water.
When the addition is complete, the temperature is raised to 90 ~;, for 1~2 hour. The resulting vinyl acetate latex contains 55%
~ solids,and shows no separation after prolonged standing.
..,;j h' ~ h~ark , b~ J
:7-., !, ',5~

.`'.:
"`

. .: ., ~

. ~
., ,. ..

Claims (10)

We claim:
1. A sulfosuccinate surfactant according to the formula where R-NX- is the radical of a C2-C20 aliphatic non-tertiary monoamine in which X is hydrogen or lower alkyl; and R1O- is the radical of an .alpha.-epoxide containing from 3 to 20 carbon atoms;
with the proviso that the sum of the number of carbon atoms in R-NX- and R1 is from 7 to 35 and that there is a difference in the number of carbon atoms in R-NX- and R1 which difference is at least 2; and M is a cation selected from the group of alkali metals, alkaline earth metals and organic substituted ammonium.
2. A surfactant according to claim 1, in which the difference in the number of carbon atoms between R-NX- and R1 is from 4 to 14.
3. A surfactant according to claim 1, in which R is alkyl containing from 8 to 15 carbon atoms, X is hydrogen, and R1 contains 3 carbon atoms.
4. A surfactant according to claim 3, in which R is a straight chain.
5. A surfactant according to claim 1, in which R
contains from 3 to 18 carbon atoms and is a branch chain.
6. A method of preparing certain sulfosuccinate ester-amide surfactants which comprises (a) reacting maleic anhydride with (b) an aliphatic non-tertiary monoamine having the formula R-NHX and in which R-NH- is the radical of a C2-C20 aliphatic non-tertiary monoamine and X is hydrogen or lower alkyl, in proportion to produce predominately the monoamide of said monoamine, (c) reacting said monoamide with an .alpha. -epoxide having an R1O- radical containing from 3 to 20 carbon atoms to produce the ester-amide, and (d) then reacting said ester-amide with an aqueous solution of a bisulfite to convert said ester-amide to a sulfosuccinate ester-amide surfactant.
7. The method of claim 6 in which the difference in the number of carbon atoms between R-NHX- and R1 is from 4 to 14.
8. The method of claim 6 in which R is alkyl containing from 8 to 15 carbon atoms, X is hydrogen and R1 contains 3 carbon atoms.
9. The method of claim 8 in which R is a straight chain.
10. The method of claim 8 in which R is a branch chain.
CA231,536A 1974-12-23 1975-07-15 Sulfosuccinate ester-amides Expired CA1068293A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US53576374A 1974-12-23 1974-12-23

Publications (1)

Publication Number Publication Date
CA1068293A true CA1068293A (en) 1979-12-18

Family

ID=24135659

Family Applications (1)

Application Number Title Priority Date Filing Date
CA231,536A Expired CA1068293A (en) 1974-12-23 1975-07-15 Sulfosuccinate ester-amides

Country Status (1)

Country Link
CA (1) CA1068293A (en)

Similar Documents

Publication Publication Date Title
US3759981A (en) Esters of perfluoroalkyl terminated alkylene thioalkanoic acids
US3198822A (en) Quaternary ammonium sulfates and sulfonic acid salts
CA1068293A (en) Sulfosuccinate ester-amides
US2103879A (en) Production of organic sulphur compounds
US3738996A (en) Process for the preparation of quaternary imidazoline derivatives
AU642949B2 (en) Process for the preparation of beta-substituted sulphonic acids and/or sulphonates
US4154955A (en) Sulfosuccinate ester-amides
US4310683A (en) Sulfosuccinate diesters
Parris et al. Soap based detergent formulation: XXIV. Sulfobetaine derivatives of fatty amides
US2120512A (en) Sulphuric acid derivatives of organic acid amides
JPH0321015B2 (en)
US4117237A (en) Unsymmetrical sulfosuccinate diesters
CA1068720A (en) Tertiary amide amphoteric active agents and process for their manufacture
US4110358A (en) Ampholytic quaternary ammonium compounds and methods for their preparation
JPS59122454A (en) Preparation of alpha-sulfofatty acid alkyl ester salt
US2017004A (en) Sulphuric acid derivative of organic sulphur compounds
US4645627A (en) Salts of acid ether sulphates and a process for the preparation of these salts
CA1068295A (en) Sulfosuccinate diesters
JPH04124165A (en) Compound having two or three chains and two hydrophilic groups
US3255239A (en) Novel process for the preparation of inner salts of n-alkane sulfonic acids
US3954676A (en) Sulfonate detergents
KR960703395A (en) Preparation method of ammonium hydroxyalkyl / alkanoylalkyl sulfonate (PREPARATION OF AMMONIUM HYDROXYALKYL / ALKANOYLALKYL SULFONATES)
JP3377607B2 (en) Method for producing unsaturated alcohol sulfate
US1931962A (en) Sulphuric acid esters of alcohols and derivatives thereof
CA1067092A (en) Unsymmetrical sulfosuccinate diesters