BR112013017313A2 - método e aparelho para monitorar vibração usando sensores de fibra ótica - Google Patents

método e aparelho para monitorar vibração usando sensores de fibra ótica

Info

Publication number
BR112013017313A2
BR112013017313A2 BR112013017313A BR112013017313A BR112013017313A2 BR 112013017313 A2 BR112013017313 A2 BR 112013017313A2 BR 112013017313 A BR112013017313 A BR 112013017313A BR 112013017313 A BR112013017313 A BR 112013017313A BR 112013017313 A2 BR112013017313 A2 BR 112013017313A2
Authority
BR
Brazil
Prior art keywords
fiber optic
optic sensor
select
signal
detection
Prior art date
Application number
BR112013017313A
Other languages
English (en)
Other versions
BR112013017313B1 (pt
Inventor
Ajit Balagopal
Brooks A Childers
Robert M Harman
Roger G Duncan
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Publication of BR112013017313A2 publication Critical patent/BR112013017313A2/pt
Publication of BR112013017313B1 publication Critical patent/BR112013017313B1/pt

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/008Monitoring of down-hole pump systems, e.g. for the detection of "pumped-off" conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • E21B47/135Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency using light waves, e.g. infrared or ultraviolet waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35303Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using a reference fibre, e.g. interferometric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35312Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35329Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in transmission, e.g. Mach-Zender interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver
    • G01V8/16Detecting, e.g. by using light barriers using one transmitter and one receiver using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Optical Transform (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

método e aparelho para monitorar vibração usando sensores de fibra ótica a presente invenção refere-se a um aparelho para monitorar um componente de fundo de poço. o aparelho inclui: um sensor de fibra ótica incluindo uma pluralidade de locais de detecção distribuídos ao longo de um comprimento do sensor de fibra ótica; uma montagem de interrogação configurada para transmitir um sinal eletromagnético de interrogação para o sensor de fibra ótica e receber sinais refletidos de cada da pluralidade de locais de detecção; e uma unidade de processamento configurada para receber os sinais refletidos, selecionar um local de medição ao longo do sensor de fibra ótica, selecionar um primeiro sinal refletido associado com um primeiro local de detecção no sensor de fibra ótica, o primeiro local de detecção correspondendo com o local de medição, selecionar um segundo sinal refletido associado com um segundo local de detecção no sensor de fibra ótica, estimar uma diferença de fase entre o primeiro sinal e o segundo sinal, e estimar um parâmetro de componente de fundo de poço no local de medição com base na diferença de fase.
BR112013017313-0A 2011-01-06 2011-12-06 método e aparelho para monitorar vibração usando sensores de fibra ótica BR112013017313B1 (pt)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/985,773 US9200508B2 (en) 2011-01-06 2011-01-06 Method and apparatus for monitoring vibration using fiber optic sensors
US12/985,773 2011-01-06
PCT/US2011/063516 WO2012094086A2 (en) 2011-01-06 2011-12-06 Method and apparatus for monitoring vibration using fiber optic sensors

Publications (2)

Publication Number Publication Date
BR112013017313A2 true BR112013017313A2 (pt) 2016-10-04
BR112013017313B1 BR112013017313B1 (pt) 2020-10-27

Family

ID=46455907

Family Applications (1)

Application Number Title Priority Date Filing Date
BR112013017313-0A BR112013017313B1 (pt) 2011-01-06 2011-12-06 método e aparelho para monitorar vibração usando sensores de fibra ótica

Country Status (10)

Country Link
US (1) US9200508B2 (pt)
CN (1) CN103299032B (pt)
AU (1) AU2011353668B2 (pt)
BR (1) BR112013017313B1 (pt)
CA (1) CA2823307C (pt)
DK (1) DK179413B1 (pt)
GB (1) GB2500139B (pt)
MY (1) MY170556A (pt)
NO (1) NO345326B1 (pt)
WO (1) WO2012094086A2 (pt)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013003958A1 (en) * 2011-07-06 2013-01-10 Source Rock Energy Partners Inc. Jet pump data tool system
US8537364B2 (en) * 2011-12-07 2013-09-17 Baker Hughes Incorporated Fiber optic measurement of parameters for downhole pump diffuser section
US8780336B2 (en) * 2011-12-07 2014-07-15 Baker Hughes Incorporated Fiber optic sensors within subsurface motor winding chambers
US8830471B2 (en) * 2011-12-07 2014-09-09 Baker Hughes Incorporated Measuring operational parameters in an ESP seal with fiber optic sensors
US8982354B2 (en) * 2011-12-07 2015-03-17 Baker Hughes Incorporated Subsurface motors with fiber optic sensors
US8891076B2 (en) * 2011-12-07 2014-11-18 Baker Hughes Incorporated Fiber optic measurement of parameters for downhole pump diffuser section
US8817266B2 (en) 2011-12-07 2014-08-26 Baker Hughes Incorporated Gas separators with fiber optic sensors
WO2014035424A1 (en) 2012-08-31 2014-03-06 Halliburton Energy Services, Inc. System and method for measuring temperature using an opto-analytical device
CA2883243C (en) 2012-08-31 2019-08-27 Halliburton Energy Services, Inc. System and method for detecting drilling events using an opto-analytical device
CA2883529C (en) * 2012-08-31 2019-08-13 Halliburton Energy Services, Inc. System and method for detecting vibrations using an opto-analytical device
EP2890864A4 (en) 2012-08-31 2016-08-10 Halliburton Energy Services Inc SYSTEM AND METHOD FOR ANALYSIS OF CUTS USING AN OPTO ANALYTICAL DEVICE
WO2014035425A1 (en) 2012-08-31 2014-03-06 Halliburton Energy Services, Inc. System and method for determining torsion using an opto-analytical device
CA2883253C (en) 2012-08-31 2019-09-03 Halliburton Energy Services, Inc. System and method for measuring gaps using an opto-analytical device
WO2014035421A1 (en) 2012-08-31 2014-03-06 Halliburton Energy Services, Inc. System and method for analyzing downhole drilling parameters using an opto-analytical device
US9512717B2 (en) * 2012-10-19 2016-12-06 Halliburton Energy Services, Inc. Downhole time domain reflectometry with optical components
US9188694B2 (en) 2012-11-16 2015-11-17 Halliburton Energy Services, Inc. Optical interferometric sensors for measuring electromagnetic fields
US9488786B2 (en) * 2012-11-16 2016-11-08 General Electric Company Fiber optic sensing apparatus including fiber gratings and method for sensing parameters involving different parameter modalities
US20140139225A1 (en) * 2012-11-16 2014-05-22 Halliburton Energy Services, Inc. Well monitoring with optical electromagnetic sensors
US9784862B2 (en) 2012-11-30 2017-10-10 Baker Hughes Incorporated Distributed downhole acousting sensing
US20140327915A1 (en) * 2013-05-03 2014-11-06 Baker Hughes Incorporated Well monitoring using coherent detection of rayleigh scatter
BR112015032219A2 (pt) * 2013-08-07 2017-07-25 Halliburton Energy Services Inc método, e, sistema
BR112016003124B1 (pt) * 2013-08-20 2021-10-13 Baker Hughes Incorporated Seção de vedação para uso em equalização de pressão em bomba submergível elétrica e método para detectar parâmetro operacional de seção de vedação de equalização de pressão
GB2534302B (en) * 2013-08-20 2018-02-07 Baker Hughes Inc Fiber optic sensors disposed within subsurface motor winding chambers
US9739142B2 (en) * 2013-09-16 2017-08-22 Baker Hughes Incorporated Fiber optic vibration monitoring
GB2519376B (en) 2013-10-21 2018-11-14 Schlumberger Holdings Observation of vibration of rotary apparatus
CN103615210B (zh) * 2013-12-06 2016-03-30 西安石油大学 一种光纤传感器随钻下井装置
WO2015117051A1 (en) * 2014-01-31 2015-08-06 Schlumberger Canada Limited Monitoring of equipment associated with a borehole/conduit
US9494416B2 (en) * 2014-02-06 2016-11-15 Baker Hughes Incorporated Fiber optic shape sensing system using anchoring points
US9909598B1 (en) * 2014-02-24 2018-03-06 Landtec North America, Inc. Well monitoring and pressure controlled landfill pump
WO2015199839A1 (en) 2014-06-26 2015-12-30 Baker Hughes Incorporated Ofdr system for localized vibration detection
US9562844B2 (en) * 2014-06-30 2017-02-07 Baker Hughes Incorporated Systems and devices for sensing corrosion and deposition for oil and gas applications
CN104142224B (zh) * 2014-07-22 2015-05-20 河海大学 分布式传感光纤多目标多自由度静动态测试装置及方法
US10704377B2 (en) * 2014-10-17 2020-07-07 Halliburton Energy Services, Inc. Well monitoring with optical electromagnetic sensing system
WO2016112147A1 (en) * 2015-01-07 2016-07-14 Schlumberger Canada Limited Gauge length optimization in distributed vibration sensing
WO2016144463A1 (en) * 2015-03-09 2016-09-15 Baker Hughes Incorporated Distributed strain monitoring for downhole tools
WO2016171670A1 (en) * 2015-04-21 2016-10-27 Halliburton Energy Services, Inc. Partially reflective materials and coatings for optical communication in a wellbore
GB2538282B (en) 2015-05-14 2018-04-11 Schlumberger Holdings Fibre-optic sensing
BR112018011424B1 (pt) * 2015-12-14 2022-11-01 Baker Hughes, A Ge Company, Llc Sistema e método para detecção acústica e comunicação
US10316641B2 (en) * 2016-03-31 2019-06-11 Schlumberger Technology Corporation Monitoring wireline coupling and distribution
US11180983B2 (en) 2016-04-28 2021-11-23 Halliburton Energy Services, Inc. Distributed sensor systems and methods
WO2018031039A1 (en) * 2016-08-12 2018-02-15 Halliburton Energy Services, Inc. Auditory monitoring of downhole conditions through a fiber optic cable
US10444063B2 (en) * 2016-09-23 2019-10-15 Baker Hughes, A Ge Company, Llc Downhole fiber optic hydrophone
BR112019004107B1 (pt) * 2016-10-06 2022-07-19 Halliburton Energy Services, Inc Sistema de variação eletromagnética, e, método para variação eletromagnética de um poço alvo
CN106644159B (zh) * 2016-12-21 2024-02-13 中国电子科技集团公司电子科学研究院 光纤传感器、光纤传感器制造方法及光纤传感器测量***
WO2018209219A1 (en) * 2017-05-12 2018-11-15 Baker Hughes, A Ge Company, Llc Multi-frequency acoustic interrogation for azimuthal orientation of downhole tools
MX2019014133A (es) * 2017-05-31 2020-02-07 Corning Res & Dev Corp Cable optico de deteccion de tension con capas compatibles de impedancia acustica.
US10557343B2 (en) * 2017-08-25 2020-02-11 Schlumberger Technology Corporation Sensor construction for distributed pressure sensing
US10914646B2 (en) * 2017-09-11 2021-02-09 Optilab, Llc System and method for monitoring the health of structures and machines using fiber Bragg Grating (FBG)
US20190129062A1 (en) * 2017-10-27 2019-05-02 Baker Hughes, A Ge Company, Llc Environmental impact monitoring for downhole systems
CN107764390A (zh) * 2017-12-05 2018-03-06 广西师范大学 一种基于弱反射光栅的振动测量装置及测量方法
WO2019227014A1 (en) * 2018-05-24 2019-11-28 Baker Hughes, A Ge Company, Llc Transducers including laser etched substrates
CN111119852B (zh) * 2018-10-31 2022-11-04 航天科工惯性技术有限公司 无线随钻***探管开关泵状态识别方法
US12031426B2 (en) 2018-12-24 2024-07-09 Schlumberger Technology Corporation ESP monitoring system and methodology
US11231315B2 (en) * 2019-09-05 2022-01-25 Baker Hughes Oilfield Operations Llc Acoustic detection of position of a component of a fluid control device
CN110806258B (zh) * 2019-11-12 2022-06-28 山东省科学院激光研究所 一种三分量光纤光栅振动传感器
CN111256809B (zh) * 2020-03-09 2021-12-24 宁夏大学 复合多功能光纤振动测试装置及测试方法
US11681042B2 (en) * 2020-04-07 2023-06-20 Nec Corporation Sparse excitation method for 3-dimensional underground cable localization by fiber optic sensing
CN113405647A (zh) * 2021-07-05 2021-09-17 华北科技学院(中国煤矿安全技术培训中心) 一种用于油液振动监测的光纤传感器

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902888A (en) 1987-12-15 1990-02-20 Brother Kogyo Kabushiki Kaisha Optical fiber sensor
JPH0663726B2 (ja) 1988-06-14 1994-08-22 登 中谷 外乱除去型ヘテロダイン干渉法光ファイバセンサ
GB2222247A (en) * 1988-08-23 1990-02-28 Plessey Co Plc Distributed fibre optic sensor system
US5881310A (en) * 1990-07-16 1999-03-09 Atlantic Richfield Company Method for executing an instruction where the memory locations for data, operation to be performed and storing of the result are indicated by pointers
JPH04355323A (ja) 1991-06-03 1992-12-09 Toshiba Corp 光ファイバセンサ
US5832157A (en) 1996-07-12 1998-11-03 Mcdermott Technology, Inc. Fiber optic acoustic emission sensor
US6787758B2 (en) 2001-02-06 2004-09-07 Baker Hughes Incorporated Wellbores utilizing fiber optic-based sensors and operating devices
CN1079488C (zh) * 1998-12-28 2002-02-20 中国科学院西安光学精密机械研究所 注汽井测井仪
JP2002116103A (ja) 2000-10-04 2002-04-19 Oki Electric Ind Co Ltd 光ファイバセンサ
US7028543B2 (en) 2003-01-21 2006-04-18 Weatherford/Lamb, Inc. System and method for monitoring performance of downhole equipment using fiber optic based sensors
GB0302434D0 (en) * 2003-02-03 2003-03-05 Sensor Highway Ltd Interferometric method and apparatus for measuring physical parameters
US7254999B2 (en) * 2003-03-14 2007-08-14 Weatherford/Lamb, Inc. Permanently installed in-well fiber optic accelerometer-based seismic sensing apparatus and associated method
CN1243222C (zh) * 2004-01-29 2006-02-22 复旦大学 全光纤应变、振动定位测试方法及装置
CN1993533B (zh) * 2004-05-28 2014-09-24 施蓝姆伯格技术公司 利用挠性管中光纤的***和方法
US7113659B2 (en) 2004-06-04 2006-09-26 Weatherford/Lamb, Inc. Efficient distributed sensor fiber
US7772541B2 (en) * 2004-07-16 2010-08-10 Luna Innnovations Incorporated Fiber optic position and/or shape sensing based on rayleigh scatter
CN1635339A (zh) * 2005-01-01 2005-07-06 复旦大学 全光纤定位监测方法及其***
WO2007087301A2 (en) * 2006-01-23 2007-08-02 Zygo Corporation Interferometer system for monitoring an object
US7740064B2 (en) 2006-05-24 2010-06-22 Baker Hughes Incorporated System, method, and apparatus for downhole submersible pump having fiber optic communications
GB2442745B (en) * 2006-10-13 2011-04-06 At & T Corp Method and apparatus for acoustic sensing using multiple optical pulses
US7946341B2 (en) 2007-11-02 2011-05-24 Schlumberger Technology Corporation Systems and methods for distributed interferometric acoustic monitoring
US7668411B2 (en) 2008-06-06 2010-02-23 Schlumberger Technology Corporation Distributed vibration sensing system using multimode fiber
US7859654B2 (en) 2008-07-17 2010-12-28 Schlumberger Technology Corporation Frequency-scanned optical time domain reflectometry
US8020616B2 (en) 2008-08-15 2011-09-20 Schlumberger Technology Corporation Determining a status in a wellbore based on acoustic events detected by an optical fiber mechanism
US20100207019A1 (en) * 2009-02-17 2010-08-19 Schlumberger Technology Corporation Optical monitoring of fluid flow
CA2753420C (en) * 2009-02-27 2014-09-30 Baker Hughes Incorporated System and method for wellbore monitoring
US20110090496A1 (en) * 2009-10-21 2011-04-21 Halliburton Energy Services, Inc. Downhole monitoring with distributed optical density, temperature and/or strain sensing
DE102009051233B4 (de) * 2009-10-29 2017-11-16 Texas Instruments Deutschland Gmbh Elektronische Vorrichtung und Verfahren zur Impedanzmessung
GB0919899D0 (en) * 2009-11-13 2009-12-30 Qinetiq Ltd Fibre optic distributed sensing

Also Published As

Publication number Publication date
AU2011353668B2 (en) 2016-09-29
WO2012094086A3 (en) 2012-09-27
US9200508B2 (en) 2015-12-01
GB2500139A (en) 2013-09-11
BR112013017313B1 (pt) 2020-10-27
MY170556A (en) 2019-08-19
AU2011353668A1 (en) 2013-06-20
NO20130810A1 (no) 2013-07-02
CN103299032A (zh) 2013-09-11
DK201300373A (en) 2013-06-18
GB2500139B (en) 2017-03-01
GB201310289D0 (en) 2013-07-24
NO345326B1 (no) 2020-12-07
CN103299032B (zh) 2018-12-14
CA2823307C (en) 2016-11-29
CA2823307A1 (en) 2012-07-12
WO2012094086A2 (en) 2012-07-12
US20120179378A1 (en) 2012-07-12
DK179413B1 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
BR112013017313A2 (pt) método e aparelho para monitorar vibração usando sensores de fibra ótica
FR2988835B1 (fr) Procede de determination d'un etat de credibilite de mesures de capteurs d'un aeronef et systeme correspondant
GB2509625A (en) Multiple spectrum channel, multiple sensor fiber optic monitoring system
MX2017009602A (es) Metodos y sistema para detectar ataques de inyeccion de datos falsos.
BR112015015950A2 (pt) sistemas e métodos do sensor de deformação a laser em fibra com realimentação distribuída para monitoramento de campo em de subsuperfície
WO2015067931A3 (en) Fibre optic monitoring of steam injection
BR112013025802A2 (pt) sistema e método de monitoramento microssísmico
GB2507904A (en) System and method of distributed fiber optic sensing including integrated reference path
FR2988851B1 (fr) Procede de determination d'un etat de credibilite de mesures d'un capteur d'incidence d'un aeronef et systeme correspondant
RU2014138423A (ru) Мониторинг инфраструктуры транспортной сети
TR201904386T4 (tr) Nükleotidleri içeren nükleozomların saptanmasına yönelik yöntem.
CL2013002683A1 (es) Sistema de monitoreo de una cinta transportadora sinfin que comprende un sensor para detectar una vibracion de un rodillo libre y para generar una señal correspondiente a la vibracion detectada; aparato para ser instalado en una cinta transportadora; una cinta transportadora sinfin.
GB201103479D0 (en) Conduit monitoring
MY175900A (en) Optical push-pull interferometric sensors for electromagnetic sensing
BRPI1011150A2 (pt) conjunto de sensor, combinação de aparelho de extensão e um conjunto de sensor, e, método para sensoriar uma propriedade associada com uma estrutura de interesse usando um conjunto de sensor.
BR112015030246A2 (pt) dispositivo, sistema, e método para medir a distância entre um primeiro dispositivo e um segundo dispositivo
BRPI1012283A2 (pt) método de determinar uma posição de um receptor de dados de prospecção utilizado para medir a resposta de uma estrutura subterrânea quanto a um sinal de prospecção, sistema, e artigo.
WO2012074665A3 (en) An integrated solution for interpretation and visualization of rtcm and dts fiber sensing data
FR3007841B1 (fr) Procede de detection d'une panne d'au moins un capteur present sur un aeronef, mettant en oeuvre une boucle baro-inertielle et systeme associe
FR2980266B1 (fr) Systeme de surveillance d'une chaine de mesure d'un turboreacteur
MX2013013986A (es) Deteccion rapida de actividad metabolica.
BR112013017484A2 (pt) configuração de arranjo de sensor para sistemas de sensoreamento com base em varredura interferométrica de comprimento de onda
FR2988480B1 (fr) Systeme de detection de blocage de sonde d'incidence pour un aeronef.
BR112013009206A2 (pt) aparelho, método, e, meio de memória legível por máquina.
ITRM20130164A1 (it) Apparato e metodi utilizzanti sensori ottici operanti in modalita' di riflessione

Legal Events

Date Code Title Description
B06F Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette]
B06U Preliminary requirement: requests with searches performed by other patent offices: procedure suspended [chapter 6.21 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 06/12/2011, OBSERVADAS AS CONDICOES LEGAIS.