BR102017011334B1 - PROCESS FOR SYNTHESIS OF CARBON NANOMATERIALS ON BLAST FURNACE SLAG, PRODUCTS AND USE - Google Patents

PROCESS FOR SYNTHESIS OF CARBON NANOMATERIALS ON BLAST FURNACE SLAG, PRODUCTS AND USE Download PDF

Info

Publication number
BR102017011334B1
BR102017011334B1 BR102017011334-5A BR102017011334A BR102017011334B1 BR 102017011334 B1 BR102017011334 B1 BR 102017011334B1 BR 102017011334 A BR102017011334 A BR 102017011334A BR 102017011334 B1 BR102017011334 B1 BR 102017011334B1
Authority
BR
Brazil
Prior art keywords
synthesis
blast furnace
metals
carbon
furnace slag
Prior art date
Application number
BR102017011334-5A
Other languages
Portuguese (pt)
Other versions
BR102017011334A2 (en
Inventor
Luiz Orlando Ladeira
Ana Elisa Da Silva Dias
Sergio DE OLIVEIRA
José Márcio Fonseca Calixto
Tarcizo Da Cruz Costa De Souza
Original Assignee
Universidade Federal De Minas Gerais
Intercement Brasil S.A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Federal De Minas Gerais, Intercement Brasil S.A filed Critical Universidade Federal De Minas Gerais
Priority to BR102017011334-5A priority Critical patent/BR102017011334B1/en
Priority to ARP180101216A priority patent/AR111920A1/en
Priority to PCT/BR2018/050175 priority patent/WO2018218325A1/en
Publication of BR102017011334A2 publication Critical patent/BR102017011334A2/en
Publication of BR102017011334B1 publication Critical patent/BR102017011334B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

a presente invenção trata de um processo de deposição química da fase vapor para a síntese de nanotubos de carbono (ntc) e/ou nanofibra de carbono (nfc) diretamente sobre a escória de alto-forno. tal método produz nanomateriais que podem ser utilizados na formulação de cimento nanoestruturado para a construção civil.The present invention deals with a chemical vapor deposition process for the synthesis of carbon nanotubes (CNT) and/or carbon nanofiber (CNT) directly on blast furnace slag. This method produces nanomaterials that can be used in the formulation of nanostructured cement for civil construction.

Description

[01] A presente invenção trata de um processo de deposição química da fase vapor para a síntese de nanotubos de carbono (NTC) e/ou nanofibra de carbono (NFC) diretamente sobre a escória de alto-forno. Tal método produz nanomateriais que podem ser utilizados na formulação de cimento nanoestruturado para a construção civil.[01] The present invention deals with a chemical vapor deposition process for the synthesis of carbon nanotubes (CNT) and/or carbon nanofiber (NFC) directly on blast furnace slag. This method produces nanomaterials that can be used in the formulation of nanostructured cement for civil construction.

[02] Os nanotubos e nanofibras de carbono atualmente são reconhecidos como um dos materiais mais importantes em nanociência e nanotecnologia e seu emprego é amplo em vários segmentos da engenharia de materiais, biomateriais, na química e petroquímica, na indústria farmacêutica e em medicina. Em particular, a incorporação de NTC a materiais é hoje uma fonte de geração de novos compósitos com propriedades mecânicas muito superiores aos materiais convencionais (Ladeira, L. O et al.Process for the continuous, large-scale synthesis of carbon nanotubes on cement clinker, and nanostructured products. WO2009132407, 05 de novembro de 2009. PCT/BR2009/000119).[02] Carbon nanotubes and nanofibers are currently recognized as one of the most important materials in nanoscience and nanotechnology and their use is widespread in various segments of materials engineering, biomaterials, chemistry and petrochemistry, the pharmaceutical industry and medicine. In particular, the incorporation of CNTs into materials is today a source of generation of new composites with mechanical properties far superior to conventional materials (Ladeira, L. O et al. Process for the continuous, large-scale synthesis of carbon nanotubes on cement clinker , and nanostructured products. WO2009132407, November 5, 2009. PCT/BR2009/000119).

[03] Nanotubos de carbono são nanoestruturas fibrilares de carbono em forma de tubos com diâmetro variando de 0,7 a 50 nm e comprimento variando de 0,5 a 1000 nm. Os átomos de carbono nos NTC são ligados entre si por uma ligação covalente forte formando uma rede hexagonal plana típica da fase grafeno do carbono. Os nanotubos de carbono possuem formato destas folhas de carbono, enroladas, podendo ser de uma simples folha enrolada ou de múltiplas folhas concêntricas enroladas, denominadas nanotubos de carbono de parede simples - NTCPS ou de paredes múltiplas - NTCPM, respectivamente. Esta forte ligação entre os átomos de carbono confere a esse nanomaterial propriedades físicas e químicas excepcionais tais como: grande resistência mecânica, inércia química e grande área superficial específica (Ladeira, L. O. et al. Process for the continuous, large-scale synthesis of carbon nanotubes on cement clinker, and nanostructured products. WO2009132407, 05 de novembro de 2009. PCT/BR2009/000119).[03] Carbon nanotubes are fibrillar carbon nanostructures in the form of tubes with diameters ranging from 0.7 to 50 nm and lengths ranging from 0.5 to 1000 nm. The carbon atoms in CNTs are linked together by a strong covalent bond forming a flat hexagonal network typical of the graphene phase of carbon. Carbon nanotubes have the shape of these coiled sheets of carbon, which can be a simple rolled sheet or multiple concentric sheets rolled up, called single-walled carbon nanotubes - NTCPS or multi-walled carbon nanotubes - NTCPM, respectively. This strong bond between carbon atoms gives this nanomaterial exceptional physical and chemical properties such as: great mechanical resistance, chemical inertness and large specific surface area (Ladeira, L. O. et al. Process for the continuous, large-scale synthesis of carbon nanotubes on cement clinker, and nanostructured products. WO2009132407, November 5, 2009. PCT/BR2009/000119).

[04] O módulo de elasticidade dos nanotubos de carbono está na faixa de 1 a 1,8 TPa, o que é muito mais elevado que 800 GPa, típico das fibras de carbono comerciais. Sua tensão de ruptura chega a ser 50 vezes maior que a do aço. Tais propriedades mecânicas dos NTC conferem aos materiais que os contém em sua composição uma melhoria de suas características mecânicas e estruturais (Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 381, 678-680 ,1996).[04] The elastic modulus of carbon nanotubes is in the range of 1 to 1.8 TPa, which is much higher than 800 GPa, typical of commercial carbon fibers. Its breaking strength can be 50 times greater than that of steel. Such mechanical properties of CNTs provide the materials that contain them in their composition with an improvement in their mechanical and structural characteristics (Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 381, 678- 680, 1996).

[05] Dentre os vários processos de síntese de NTC tem-se o método por deposição química da fase vapor (Chemical Vapour Deposition - CVD), o qual possui maior capacidade para escalonamento. Esse processo funciona basicamente através de decomposição ou pirólise de hidrocarbonetos leves (metano, etileno, acetileno, etc.) como agentes precursores de carbono. Essa decomposição é feita sob atmosfera controlada utilizando principalmente gases inertes como agente de controle do ambiente de síntese e como arraste dos subprodutos de reação. Este sistema de síntese é constituído basicamente de um reator tubular com controladores de temperatura e de vazão dos gases envolvidos no processo (Ladeira, L. O; et al.Process for the continuous, large-scale synthesis of carbon nanotubes on cement clinker, and nanostructured products. WO2009132407, 05 novembro de 2009. PCT/BR2009/000119).[05] Among the various CNT synthesis processes, there is the method by chemical vapor deposition (CVD), which has greater capacity for scaling. This process basically works through the decomposition or pyrolysis of light hydrocarbons (methane, ethylene, acetylene, etc.) as carbon precursor agents. This decomposition is carried out under a controlled atmosphere using mainly inert gases as an agent to control the synthesis environment and to transport reaction by-products. This synthesis system basically consists of a tubular reactor with temperature and gas flow controllers involved in the process (Ladeira, L. O; et al. Process for the continuous, large-scale synthesis of carbon nanotubes on cement clinker, and nanostructured products. WO2009132407, 05 November 2009. PCT/BR2009/000119).

[06] Em geral, os processos de síntese de NTC por deposição química da fase vapor ocorrem à pressão atmosférica e a reação de síntese é catalisada com a utilização de metais de transição em forma de nanopartículas ancoradas em um suporte metal-óxido termicamente estável. A função do catalisador é promover uma seletividade na reação de pirólise de modo que ela ocorra preferencialmente na superfície dessas partículas (Ladeira, L. O.et al. Process for the continuous, large-scale synthesis of carbon nanotubes on cement clinker, and nanostructured products. WO2009132407, 05 de novembro de 2009. PCT/BR2009/000119).[06] In general, CNT synthesis processes by chemical vapor deposition occur at atmospheric pressure and the synthesis reaction is catalyzed using transition metals in the form of nanoparticles anchored in a thermally stable metal-oxide support. The function of the catalyst is to promote selectivity in the pyrolysis reaction so that it occurs preferentially on the surface of these particles (Ladeira, L. O.et al. Process for the continuous, large-scale synthesis of carbon nanotubes on cement clinker, and nanostructured products. WO2009132407 , November 5, 2009. PCT/BR2009/000119).

[07] Os suportes clássicos de ancoramento de nanopartículas de metais de transição usados para a síntese de grande eficiência de nanotubos de carbono via deposição química da fase vapor (CVD) são estruturas mesoporosas envolvendo óxidos de grande estabilidade térmica em altas temperaturas, a saber: AI2O3, SiO2, MgO e MO3 ou mistura destes, (Ladeira, L. O, et al.Process for the continuous, large-scale synthesis of carbon nanotubes on cement clinker, and nanostructured products. WO2009132407, 05 de novembro de 2009. PCT/BR2009/000119).[07] The classic transition metal nanoparticle anchoring supports used for the high-efficiency synthesis of carbon nanotubes via chemical vapor deposition (CVD) are mesoporous structures involving oxides of great thermal stability at high temperatures, namely: AI2O3, SiO2, MgO and MO3 or mixture thereof, (Ladeira, L. O, et al. Process for the continuous, large-scale synthesis of carbon nanotubes on cement clinker, and nanostructured products. WO2009132407, November 5, 2009. PCT /BR2009/000119).

[08] O cimento do tipo Portland é um aglomerante higroscópico resultante da mistura de silicatos, aluminatos e ferro-aluminatos de cálcio em particulado fino denominado clínquer de cimento ao qual é adicionado gipsita (CaSO4). Durante a fabricação do cimento, parte desse clínquer pode ser substituído por adições minerais. A escória de alto-forno é comumente empregada para substituir parte deste clínquer, trazendo vantagens significativas para o produto (Silva, M.G. Cimentos Portland com adições minerais. In: ISAIA, Geraldo Cechella (Org.) Materiais de construção civil e princípios de ciência e engenharia de materiais. 1v. São Paulo: IBRACON. Cap. 23, p. 761-793,2007).[08] Portland-type cement is a hygroscopic binder resulting from the mixture of calcium silicates, aluminates and ferro-aluminates in fine particles called cement clinker to which gypsum (CaSO4) is added. During the manufacture of cement, part of this clinker can be replaced by mineral additions. Blast furnace slag is commonly used to replace part of this clinker, bringing significant advantages to the product (Silva, M.G. Portland cements with mineral additions. In: ISAIA, Geraldo Cechella (Org.) Civil construction materials and principles of science and materials engineering. 1v. São Paulo: IBRACON. Cap. 23, p. 761-793,2007).

[09] A substituição de escória de alto-forno à moagem do clínquer com gesso apenas é possível porque a escória contém em sua composição os mesmos óxidos do clínquer, mas em quantidades diferentes (Neville, A M. Propriedades do concreto. 2. ed. São Paulo: Pini,828: 1997).[09] The replacement of blast furnace slag for grinding clinker with gypsum is only possible because the slag contains in its composition the same oxides as clinker, but in different quantities (Neville, A M. Properties of concrete. 2. ed . São Paulo: Pini,828: 1997).

[010] A escória de alto-forno é um subproduto da fabricação do ferro gusa. Para a produção do ferro-gusa, os materiais são carregados no alto-forno pela extremidade superior. Os gases resultantes da combustão do coque pré-aquecem os materiais até realizarem as reações de redução do minério. Esses gases seguem em fluxo ascendente e entram em contato com os materiais que têm fluxo descendente, reduzindo e fundindo o minério. Assim, origina-se o ferro-gusa e a escória de alto-forno na parte inferior do forno. A escória de alto-forno é mais leve e fica sobre o ferro- gusa. Com isso, esses materiais são facilmente separados devido à diferença de densidade (Mourão, M.B Associação brasileira de metalurgia e materiais. Introdução à siderurgia. São Paulo: Associação Brasileira de Metalurgia e Materiais, 2007. 428 p.; Rizzo, E.M.S. Introdução aos processos siderúrgicos. São Paulo: Associação Brasileira de Metalurgia e Materiais (ABM), 2005. 150p.).[010] Blast furnace slag is a byproduct of pig iron manufacturing. For the production of pig iron, the materials are loaded into the blast furnace from the upper end. The gases resulting from the combustion of coke preheat the materials until the ore reduction reactions are carried out. These gases flow upwards and come into contact with materials that flow downwards, reducing and melting the ore. Thus, pig iron and blast furnace slag originate in the lower part of the furnace. Blast furnace slag is lighter and sits on top of the pig iron. As a result, these materials are easily separated due to the difference in density (Mourão, M.B Brazilian association of metallurgy and materials. Introduction to steelmaking. São Paulo: Associação Brasileira de Metalurgia e Materials, 2007. 428 p.; Rizzo, E.M.S. Introduction to processes steelworkers. São Paulo: Brazilian Association of Metallurgy and Materials (ABM), 2005. 150p.).

[011] A escória de alto-forno sai do alto-forno na forma de líquido viscoso com temperatura entre 1350 °C e 1500 °C, (John, V.M. et al.Tecnologias e Materiais Alternativos de Construção. São Paulo: Editora da UNICAMP. Cap. 6, p.145-190p,2003).[011] Blast furnace slag leaves the blast furnace in the form of a viscous liquid with a temperature between 1350 °C and 1500 °C, (John, V.M. et al. Technologies and Alternative Construction Materials. São Paulo: Editora da UNICAMP Chapter 6, p.145-190p, 2003).

[012] A escória produzida em alto-forno possui composição típica de aproximadamente 45 % de óxido de cálcio (CaO), 35 % de dióxido de silício (SiO2), 12 % de óxido de alumínio (Al2O3), 5 % de óxido de Magnésio (MgO) e 3 % de outros compostos. A escória de alto-forno de caráter básico possui indicador de hidraulicidade de 1,2, determinado pela relação CaO / SiO2 > 1, (Jacomino, V.M. et al.Controle ambiental das indústrias de produção de ferro-gusa em altos-fornos a carvão vegetal. Belo Horizonte: SEGRAC, 2002. 301p.), que é um valor ideal para ser acrescentado ao cimento sem necessidade de nenhum tipo de ativador.[012] Blast furnace slag has a typical composition of approximately 45% calcium oxide (CaO), 35% silicon dioxide (SiO2), 12% aluminum oxide (Al2O3), 5% aluminum oxide Magnesium (MgO) and 3% other compounds. Basic blast furnace slag has a hydraulicity indicator of 1.2, determined by the CaO / SiO2 ratio > 1, (Jacomino, V.M. et al.Environmental control of pig iron production industries in coal blast furnaces vegetal. Belo Horizonte: SEGRAC, 2002. 301p.), which is an ideal value to be added to cement without the need for any type of activator.

[013] Na literatura relacionada à pesquisa e desenvolvimento tecnológico do cimento existem várias inovações com intuito de melhorar as qualidades do cimento. Em geral, as pesquisas e desenvolvimentos tecnológicos nesta área estão centrados principalmente na incorporação de aditivos nanoestruturados ou surfactantes de modo a aumentar a resistência mecânica, alterar a fluidez ou modificar a velocidade de cura do cimento. Foram encontrados no estado da técnica alguns documentos que descrevem tecnologias e trabalhos científicos correlacionados a cimentos nanoestruturados (Ladeira, L. O.;et al. Process for the continuous, large- scale synthesis of carbon nanotubes on cement clinker, and nanostructured products. WO2009132407, 05 de novembro de 2009. PCT/BR2009/000119).[013] In the literature related to cement research and technological development, there are several innovations aimed at improving the qualities of cement. In general, research and technological developments in this area are mainly focused on the incorporation of nanostructured additives or surfactants in order to increase the mechanical resistance, change the fluidity or modify the curing speed of the cement. Some documents were found in the state of the art that describe technologies and scientific works related to nanostructured cements (Ladeira, L. O.; et al. Process for the continuous, large-scale synthesis of carbon nanotubes on cement clinker, and nanostructured products. WO2009132407, 05 de November 2009. PCT/BR2009/000119).

[014] Balaguru e colaboradores mostram que o cimento com adição de objetos em escala nanométrica abre um enorme campo de oportunidades na área de compósitos de ultra-alta resistência. Assim, o cimento Portland nanoestruturado torna-se um material de alta tecnologia quando comparado com seu atual status de um material convencional de construção (Balaguru.P. N, et al. Nano-concrete: possibilities and challenges”, The State University of New Jersey, USA. RILEM Proceedings (2005), 2nd International Symposium on Nanotechnology in Construction (NICOM2), 233-243, 2005).[014] Balaguru and collaborators show that cement with the addition of nanometer-scale objects opens up a huge field of opportunities in the area of ultra-high-strength composites. Thus, nanostructured Portland cement becomes a high-tech material when compared to its current status as a conventional construction material (Balaguru.P. N, et al. Nano-concrete: possibilities and challenges”, The State University of New Jersey, USA. RILEM Proceedings (2005), 2nd International Symposium on Nanotechnology in Construction (NICOM2), 233-243, 2005).

[015] Jiang e colaboradores descrevem o uso de nanotubos de carbono para reforço de cimento mostrando que melhores resultados em aumento de propriedades mecânicas são alcançados com a otimização da dispersão e conexão dos nanotubos à matriz de concreto (Jiang, Xin et al.Carbon nanotubes as a new reinforcement material for modern cement-based binders". Institute of Materials Engineering, University of Siegen, Germany. RILEM Proceedings (2005), 2nd International Symposium on Nanotechnology in Construction (NICOM2) 209-213, 2005).[015] Jiang and collaborators describe the use of carbon nanotubes for cement reinforcement showing that better results in increasing mechanical properties are achieved by optimizing the dispersion and connection of nanotubes to the concrete matrix (Jiang, Xin et al.Carbon nanotubes as a new reinforcement material for modern cement-based binders". Institute of Materials Engineering, University of Siegen, Germany. RILEM Proceedings (2005), 2nd International Symposium on Nanotechnology in Construction (NICOM2) 209-213, 2005).

[016] A adição de nanoestruturas de carbono ao cimento produz melhorias nas matrizes cimentícias, promovendo mudanças na microestrutura de forma a melhorar o desempenho do compósito. Em particular, a adição de 0,05 a 1 % de nanotubos de carbono ao cimento induze um aumento de até 79 % em seu módulo de compressão. A adição de nanotubos de carbono em concentrações na faixa de 0,05 a 1 % ao cimento é um fator impeditivo devido ao custo e limitações em quantidade de fornecimento desse nanomaterial. Resultados referentes à melhoria de propriedades mecânicas são apresentados por Han et al., 2015 (Han, B et al. Review of nanocarbon- engineered multifunctional cementitious composities. Composities: Part A, n.70, p. 69-81, 2015).[016] The addition of carbon nanostructures to cement produces improvements in the cement matrices, promoting changes in the microstructure in order to improve the performance of the composite. In particular, the addition of 0.05 to 1% of carbon nanotubes to cement induces an increase of up to 79% in its compression modulus. The addition of carbon nanotubes in concentrations ranging from 0.05 to 1% to cement is an impediment due to the cost and limitations in the quantity of supply of this nanomaterial. Results regarding the improvement of mechanical properties are presented by Han et al., 2015 (Han, B et al. Review of nanocarbon- engineered multifunctional cementitious composites. Composities: Part A, n.70, p. 69-81, 2015).

[017] No estado da técnica não foi encontrada tecnologia similar utilizando- se do processo de produção de nanotubos de carbono sobre escória de alto-forno propostos no presente pedido.[017] In the state of the art, no similar technology was found using the process of producing carbon nanotubes on blast furnace slag proposed in the present application.

[018] A presente invenção trata do processo de produção em larga escala de nanoestruturas de carbono sobre a escória. A escória de alto-forno na presente invenção é usada como matriz cerâmica para suporte de nanopartículas de metais de transição, cuja função é promover o crescimento em situ dessas nanoestruturas diretamente sobre ela, permitindo assim a produção de um tipo de cimento Portland com nanoestruturas de carbono. O processo aqui descrito pode ser incorporado no processo produtivo convencional de cimento na indústria. O invento propõe, também, como parte do processo de síntese de NTC e NFC sobre a escória de alto-forno, o enriquecimento da escória de alto-forno com metais de transição para a produção deste compósito nanoestruturado de forma integrada ou não à indústria convencional de cimento.[018] The present invention deals with the process of large-scale production of carbon nanostructures on slag. The blast furnace slag in the present invention is used as a ceramic matrix to support transition metal nanoparticles, whose function is to promote the in situ growth of these nanostructures directly on it, thus allowing the production of a type of Portland cement with nanostructures of carbon. The process described here can be incorporated into the conventional cement production process in the industry. The invention also proposes, as part of the NTC and NFC synthesis process on blast furnace slag, the enrichment of blast furnace slag with transition metals for the production of this nanostructured composite whether or not integrated into conventional industry. of cement.

[019] O material nanoestruturado resultante deste processo proposto na presente invenção promove o reforço mecânico da matriz cimentícia tornando-a mais resistente tanto do ponto de vista mecânico quanto ambiental. Este processo descrito na presente invenção gera nanoestruturas de carbono, tais como nanotubos e nanofibras de carbono, com baixo custo de produção. A adição de escória em cimento pode então ser aumentada quando comparada ao cimento com escória devido ao aumento da propriedade mecânica induzida pela presença de nanoestruturas de carbono, o que reduz a quantidade de clínquer, consequentemente reduzindo a emissão de CO2 na produção de cimento. Este fato torna o processo proposto muito vantajoso, por minimizar danos ambientais.[019] The nanostructured material resulting from this process proposed in the present invention promotes mechanical reinforcement of the cementitious matrix, making it more resistant from both a mechanical and environmental point of view. This process described in the present invention generates carbon nanostructures, such as carbon nanotubes and nanofibers, with low production costs. The addition of slag in cement can then be increased when compared to cement with slag due to the increase in mechanical property induced by the presence of carbon nanostructures, which reduces the amount of clinker, consequently reducing CO2 emissions in cement production. This fact makes the proposed process very advantageous, as it minimizes environmental damage.

BREVE DESCRIÇÃO DAS FIGURASBRIEF DESCRIPTION OF FIGURES

[020] A Figura 1 representa a micrografia da escória com NTC/NFC. Nesta, observa-se regiões com grande quantidade de materiais nanoestruturado após processo utilizando-se mistura com apenas um óxido.[020] Figure 1 represents the micrograph of the slag with NTC/NFC. In this, regions with a large amount of nanostructured materials are observed after a process using a mixture with just one oxide.

[021] A Figura 2 representa a micrografia da escória com NTC/NFC. Nesta, observa-se regiões com grande quantidade de materiais nanoestruturado após processo utilizando-se mistura com um ou mais óxidos.[021] Figure 2 represents the micrograph of the slag with NTC/NFC. In this, regions with a large amount of nanostructured materials are observed after a process using a mixture with one or more oxides.

DESCRIÇÃO DETALHADA DA TECNOLOGIADETAILED TECHNOLOGY DESCRIPTION

[022] A presente invenção trata de um processo de deposição química da fase vapor para a síntese de nanotubos de carbono (NTC) e nanofibra de carbono (NFC), no qual a escória de alto-forno é usada como matriz cerâmica para suporte de nanopartículas de metais de transição (catalisador).[022] The present invention deals with a vapor phase chemical deposition process for the synthesis of carbon nanotubes (CNT) and carbon nanofiber (NFC), in which blast furnace slag is used as a ceramic matrix to support transition metal nanoparticles (catalyst).

[023] Trata-se de um processo de síntese direta de NTC/NFC suportados em escória de alto-forno, que posteriormente podem ser misturados ao cimento através da mistura física, gerando um compósito de nanotubos de carbono/escória de alto-forno/cimento.[023] This is a direct synthesis process of CNT/NFC supported on blast furnace slag, which can later be mixed with cement through physical mixing, generating a composite of carbon nanotubes/blast furnace slag/ cement.

[024] Nesse processo, um gás hidrocarboneto leve passa por um reator onde é decomposto a temperaturas entre 600 a 750 °C. Essa decomposição é catalisada pela presença de nanopartículas metálicas gerando uma concentração local aumentada de carbono o que induz a formação de NTC ou NFC sobre o suporte catalítico e consequentemente quando esse material é sintetizado e misturado ao cimento gera o cimento nanoestruturado.[024] In this process, a light hydrocarbon gas passes through a reactor where it is decomposed at temperatures between 600 and 750 °C. This decomposition is catalyzed by the presence of metallic nanoparticles, generating an increased local concentration of carbon, which induces the formation of CNT or NFC on the catalytic support and consequently, when this material is synthesized and mixed with cement, it generates nanostructured cement.

[025] O método proposto na presente invenção compreende as seguintes etapas: a) Enriquecer a escória de alto-forno em fase sólida e/ou fase líquida com metais ou óxidos ou compostos organometálicos de metais de transição ou sais, compreendendo cátions de metais de transição tais como Ti, Cr, Mn, Cu, Mo, W, Al, Ta, Rh, Pt, Pd, Au, Ir, Ru, Nb, Zr, sendo preferencialmente Fe, Co e Ni; b) Introduzir a escória de alto-forno enriquecida em um reator, de atmosfera controlada e redutora, com a injeção de fontes precursoras de carbono, preferencialmente hidrocarbonetos leves, e um gás inerte como agente carreador e aplicação de altas temperaturas nesse ambiente para a ocorrência da reação de pirólise e consequente síntese de NTC e/ou NFC. c) Submeter o material produzido em “b” a um resfriamento natural.[025] The method proposed in the present invention comprises the following steps: a) Enrich blast furnace slag in solid phase and/or liquid phase with metals or oxides or organometallic compounds of transition metals or salts, comprising transition metal cations. transition such as Ti, Cr, Mn, Cu, Mo, W, Al, Ta, Rh, Pt, Pd, Au, Ir, Ru, Nb, Zr, preferably Fe, Co and Ni; b) Introduce the enriched blast furnace slag into a reactor, with a controlled and reducing atmosphere, with the injection of carbon precursor sources, preferably light hydrocarbons, and an inert gas as a carrier agent and application of high temperatures in this environment for the occurrence of the pyrolysis reaction and consequent synthesis of CNT and/or NFC. c) Subject the material produced in “b” to natural cooling.

[026] Na etapa “a”, o enriquecimento em fase sólida pode ser realizado pela mistura física de metais ou óxidos ou compostos organometálicos de metais de transição às fases resultantes da calcinação dos precursores da escória de alto-forno, preferencialmente os suportes óxidos de metais alcalinos ou metais alcalinos terrosos, aluminosilicatos de metais alcalinos ou alcalinos terrosos, silicatos de metais alcalinos ou alcalinos terrosos, óxidos de metais alcalinos terrosos, metais de transição e semi-metais tais como Al2O3, SiO2, CaO, MgO ou fases decorrentes de misturas destes compostos.[026] In step “a”, solid phase enrichment can be carried out by physically mixing metals or oxides or organometallic compounds of transition metals to the phases resulting from the calcination of blast furnace slag precursors, preferably the oxide supports. alkali metals or alkaline earth metals, aluminosilicates of alkaline or alkaline earth metals, silicates of alkaline or alkaline earth metals, oxides of alkaline earth metals, transition metals and semi-metals such as Al2O3, SiO2, CaO, MgO or phases resulting from mixtures of these compounds.

[027] Na etapa “a”, para o enriquecimento em fase sólida pode-se utilizar uma concentração, em massa, entre 0,1 e 10% dos metais de transição em relação à escória de alto-forno (suporte).[027] In step “a”, for solid phase enrichment, a mass concentration of between 0.1 and 10% of transition metals can be used in relation to blast furnace slag (support).

[028] A incorporação, em fase sólida, de óxidos ou compostos de metais de transição ou mistura deles na etapa “a” pode ocorrer após a produção do clínquer de cimento preferencialmente.[028] The incorporation, in solid phase, of oxides or transition metal compounds or mixtures thereof in step “a” can occur after the production of the cement clinker preferably.

[029] O enriquecimento em fase líquida deve compreender a adição de íons de metais de transição à escória pelas seguintes etapas: i) Dissolução de compostos de metais de transição como soluto, preferencialmente em líquidos orgânicos polares anidros e voláteis como solventes; ii) Mistura da solução obtida em (i) à escória de alto-forno, até se alcançar uma mistura homogênea; iii) Secagem da mistura obtida em (ii) por evaporação do solvente; iv) Calcinação da mistura obtida em (iii) em temperaturas de 200°C a 800°C.[029] Liquid phase enrichment must comprise the addition of transition metal ions to the slag through the following steps: i) Dissolution of transition metal compounds as solute, preferably in anhydrous and volatile polar organic liquids as solvents; ii) Mixing the solution obtained in (i) with blast furnace slag, until a homogeneous mixture is achieved; iii) Drying the mixture obtained in (ii) by evaporation of the solvent; iv) Calcination of the mixture obtained in (iii) at temperatures from 200°C to 800°C.

[030] Os seguintes ânions podem ser utilizados na etapa “a”: sulfatos, nitratos, oxalatos, citratos, fosfatos, acetatos ou compostos organometálicos de metais de transição.[030] The following anions can be used in step “a”: sulfates, nitrates, oxalates, citrates, phosphates, acetates or organometallic compounds of transition metals.

[031] Na etapa “b”, as fontes precursoras de carbono são os hidrocarbonetos leves metano, etileno, propano, acetileno, monóxido de carbono, gás natural, sendo preferencialmente utilizado gás natural. Os gases inertes utilizados como agentes carreadores são nitrogênio, argônio, hélio, sendo preferencialmente o nitrogênio.[031] In step “b”, the carbon precursor sources are the light hydrocarbons methane, ethylene, propane, acetylene, carbon monoxide, natural gas, with natural gas being preferably used. The inert gases used as carrier agents are nitrogen, argon, helium, with nitrogen being preferred.

[032] Na etapa “b”, pode-se utilizar forno, preferencialmente tubular inclinado rotativo (parte central giratória) para um crescimento de modo homogêneo dos nanotubos de carbono sobre o pó da escória pode ser utilizado; além do tempo de residência do pó da escória dentro do forno ser controlado pela variação da inclinação do mesmo.[032] In step “b”, an oven can be used, preferably a rotating inclined tubular (rotating central part) for homogeneous growth of carbon nanotubes on the slag powder; in addition, the residence time of the slag powder inside the furnace is controlled by varying its inclination.

[033] A faixa de temperatura possível deve ser entre 600 a 1400°C, sendo preferencialmente 800°C e a pressão total próxima e superior à pressão atmosférica. A atmosfera deve ser controlada para evitar a entrada de oxigênio do ambiente externo.[033] The possible temperature range should be between 600 to 1400°C, preferably 800°C and the total pressure close to and above atmospheric pressure. The atmosphere must be controlled to prevent the entry of oxygen from the external environment.

[034] O processo de síntese de nanomateriais de carbono proposto na presente invenção compreende uma reação catalítica de síntese “in situ” de nanomateriais sobre a escória de alto-forno.[034] The carbon nanomaterials synthesis process proposed in the present invention comprises a catalytic reaction for the “in situ” synthesis of nanomaterials on blast furnace slag.

[035] O processo proposto na presente invenção produz um compósito nanoestruturado caracterizado por ser constituído de nanomateriais de carbono integrados à escória de alto-forno, resultado do referido processo. Tal compósito pode ser utilizado para a formulação de produtos nanoestruturados.[035] The process proposed in the present invention produces a nanostructured composite characterized by being made up of carbon nanomaterials integrated into blast furnace slag, the result of said process. Such a composite can be used to formulate nanostructured products.

[036] O cimento nanoestruturado, compreendendo o compósito nanoestruturado obtido pelo processo descrito na presente invenção, apresenta melhoria nas propriedades físicas e químicas pela presença de nanoestruturas de carbono integradas à sua estrutura.[036] The nanostructured cement, comprising the nanostructured composite obtained by the process described in the present invention, presents improvement in physical and chemical properties due to the presence of carbon nanostructures integrated into its structure.

[037] Os produtos obtidos através do processo descrito na presente invenção podem ser utilizados em diversas modalidades de obas na construção civil.[037] The products obtained through the process described in the present invention can be used in various types of construction work.

[038] A presente invenção pode ser mais bem compreendida através dos exemplos que se seguem, não limitantes da tecnologia.[038] The present invention can be better understood through the following examples, which are not limiting to the technology.

EXEMPLO 1. SÍNTESE DE NANOTUBOS DE CARBONO SUPORTADOS SOBRE ESCÓRIA DE ALTO-FORNO COM MISTURA DE UM ÓXIDO.EXAMPLE 1. SYNTHESIS OF CARBON NANOTUBES SUPPORTED ON BLAST FURNACE SLAG WITH A MIXTURE OF AN OXIDE.

[039] Dez gramas de escória de alto-forno moída foram misturadas a 1,44 g de Fe2O3, o que gera uma mistura com composição 10% em peso de Fe em relação à massa da escória de alto-forno. A mistura do material foi levada a um reator tipo CVD, durante 30 minutos sobre uma placa de carbeto de silício (SiC). O material foi submetido a uma atmosfera inerte de argônio em um fluxo de 100 sccm e um fluxo de etileno a 40 sccm. Em seguida, o fluxo de etileno é interrompido e a amostra é resfriada até a temperatura ambiente sob fluxo de argônio a 100 sccm. Após o resfriamento, a amostra é retirada do reator. Este processo de síntese foi caracterizado por microscopia eletrônica de varredura para verificar a eficiência do processo, como demonstrado na Figura 1. Nesta figura observa-se a formação de NTC e NFC com diferentes morfologias.[039] Ten grams of ground blast furnace slag were mixed with 1.44 g of Fe2O3, which generates a mixture with a composition of 10% by weight of Fe in relation to the mass of blast furnace slag. The material mixture was taken to a CVD-type reactor for 30 minutes on a silicon carbide (SiC) plate. The material was subjected to an inert argon atmosphere at a flow rate of 100 sccm and an ethylene flow at 40 sccm. Then, the ethylene flow is stopped and the sample is cooled to room temperature under argon flow at 100 sccm. After cooling, the sample is removed from the reactor. This synthesis process was characterized by scanning electron microscopy to verify the efficiency of the process, as demonstrated in Figure 1. In this figure, the formation of CNTs and NFCs with different morphologies is observed.

EXEMPLO 2. SÍNTESE DE NANOTUBOS DE CARBONO SUPORTADOS SOBRE ESCÓRIA DE ALTO-FORNO COM MISTURA DE DOIS OU MAIS ÓXIDOS.EXAMPLE 2. SYNTHESIS OF CARBON NANOTUBES SUPPORTED ON BLAST FURNACE SLAG WITH A MIXTURE OF TWO OR MORE OXIDES.

[040] Dez gramas escória de alto-forno moída foi misturado a 1,44 g de Fe2O3, o que gera uma mistura com composição 10% em peso de Fe em relação à massa da escória de alto-forno. Alternativamente, adicionou-se 0,2 g de Al2O3 que representa uma composição com 0,2% em peso de Al em relação à massa da escória de alto-forno. A seguir, a mistura foi espalhada sobre uma placa de carbeto de silício (SiC) e levada sob atmosfera inerte a 750°C num fluxo de argônio e etileno, respectivamente, de 100 sccm e 40 sccm durante 30 minutos. Em seguida, o fluxo de etileno é interrompido e a amostra é resfriada até a temperatura ambiente sob fluxo de argônio a 100 sccm. Após o resfriamento, a amostra é retirada do reator. Esta amostra foi caracterizada por microscopia eletrônica de varredura e os resultados são mostrados na Figura 2.[040] Ten grams of ground blast furnace slag was mixed with 1.44 g of Fe2O3, which generates a mixture with a composition of 10% by weight of Fe in relation to the mass of blast furnace slag. Alternatively, 0.2 g of Al2O3 was added, representing a composition with 0.2% by weight of Al in relation to the mass of blast furnace slag. Next, the mixture was spread on a silicon carbide (SiC) plate and taken under an inert atmosphere at 750°C in a flow of argon and ethylene, respectively, of 100 sccm and 40 sccm for 30 minutes. Then, the ethylene flow is stopped and the sample is cooled to room temperature under argon flow at 100 sccm. After cooling, the sample is removed from the reactor. This sample was characterized by scanning electron microscopy and the results are shown in Figure 2.

Claims (12)

1- PROCESSO PARA SÍNTESE DE NANOMATERIAIS DE CARBONO, caracterizado por utilizar a escória de alto-forno como suporte catalítico para o crescimento “in situ” de nanotubos de carbono (NTC) e/ou nanofibra de carbono (NFC) compreendendo as seguintes etapas: a) Enriquecer a escória de alto-forno em fase sólida ou em fase líquida com metais ou óxidos ou compostos organometálicos de metais de transição ou sais, compreendendo cátions de metais de transição tais como Ti, Cr, Mn, Cu, Mo, W, Al, Ta, Rh, Pt, Pd, Au, Ir, Ru, Nb, Zr, Fe, Co e Ni; b) Introduzir a escória de alto-forno enriquecida em um reator, de atmosfera controlada para evitar a entrada de oxigênio e redutora, com a injeção de hidrocarbonetos leves e um gás inerte como agente carreador e aplicação de uma temperatura na faixa de 600 a 1.400°C nesse ambiente para a ocorrência da reação de pirólise e consequente síntese de NTC e/ou NFC; c) Submeter o material produzido em “b” a um resfriamento natural.1- PROCESS FOR SYNTHESIS OF CARBON NANOMATERIALS, characterized by using blast furnace slag as a catalytic support for the “in situ” growth of carbon nanotubes (CNT) and/or carbon nanofiber (NFC) comprising the following steps: a) Enrich blast furnace slag in solid or liquid phase with metals or oxides or organometallic compounds of transition metals or salts, comprising transition metal cations such as Ti, Cr, Mn, Cu, Mo, W, Al, Ta, Rh, Pt, Pd, Au, Ir, Ru, Nb, Zr, Fe, Co and Ni; b) Introduce the enriched blast furnace slag into a reactor, with a controlled atmosphere to prevent the entry of oxygen and reducer, with the injection of light hydrocarbons and an inert gas as a carrier agent and application of a temperature in the range of 600 to 1,400 °C in this environment for the occurrence of the pyrolysis reaction and consequent synthesis of CNT and/or NFC; c) Subject the material produced in “b” to natural cooling. 2- PROCESSO PARA SÍNTESE DE NANOMATERIAIS DE CARBONO, de acordo com a reivindicação 1, caracterizado pelo fato de que, na etapa “a”, o enriquecimento em fase sólida é realizado pela mistura física de metais ou óxidos ou compostos organometálicos de metais de transição às fases resultantes da calcinação dos precursores da escória de alto-forno, os suportes óxidos de metais alcalinos ou metais alcalinos terrosos, aluminosilicatos de metais alcalinos ou alcalinosterrosos, silicatos de metais alcalinos ou alcalinos terrosos, óxidos de metais alcalinos terrosos, metais de transição e semi-metais, tais como Al2O3, SiO2, CaO, MgO ou fases decorrentes de misturas destes compostos.2- PROCESS FOR SYNTHESIS OF CARBON NANOMATERIALS, according to claim 1, characterized by the fact that, in step “a”, solid phase enrichment is carried out by physical mixing of metals or oxides or organometallic compounds of transition metals to the phases resulting from the calcination of blast furnace slag precursors, the supports oxides of alkali metals or alkaline earth metals, aluminosilicates of alkali metals or alkaline earth metals, silicates of alkaline metals or alkaline earth metals, oxides of alkaline earth metals, transition metals and semi-metals, such as Al2O3, SiO2, CaO, MgO or phases resulting from mixtures of these compounds. 3- PROCESSO PARA SÍNTESE DE NANOMATERIAIS DE CARBONO, de acordo com a reivindicação 2, caracterizado por utilizar uma concentração, em massa, entre 0,1 e 10% dos metais de transição em relação à escória de alto-forno (suporte).3- PROCESS FOR SYNTHESIS OF CARBON NANOMATERIALS, according to claim 2, characterized by using a concentration, by mass, between 0.1 and 10% of transition metals in relation to blast furnace slag (support). 4- PROCESSO PARA SÍNTESE DE NANOMATERIAIS DE CARBONO, de acordo com a reivindicação 1, caracterizado pelo fato de que, na etapa “a”, o enriquecimento em fase líquida compreende a adição de íons de metais de transição à escória e compreende as seguintes etapas: i) Dissolução de compostos de metais de transição como soluto, em líquidos orgânicos polares anidros e voláteis como solventes; ii) Mistura da solução obtida em (i) à escória de alto-forno, até se alcançar uma mistura homogênea; iii) Secagem da mistura obtida em (ii) por evaporação do solvente; iv) Calcinação da mistura obtida em (iii) em temperaturas de 200°C a 800°C.4- PROCESS FOR SYNTHESIS OF CARBON NANOMATERIALS, according to claim 1, characterized by the fact that, in step “a”, the enrichment in liquid phase comprises the addition of transition metal ions to the slag and comprises the following steps : i) Dissolution of transition metal compounds as solute, in anhydrous and volatile polar organic liquids as solvents; ii) Mixing the solution obtained in (i) with blast furnace slag, until a homogeneous mixture is achieved; iii) Drying the mixture obtained in (ii) by evaporation of the solvent; iv) Calcination of the mixture obtained in (iii) at temperatures from 200°C to 800°C. 5- PROCESSO PARA SÍNTESE DE NANOMATERIAIS DE CARBONO, de acordo com a reivindicação 1, caracterizado pelo fato de que a etapa “a” compreende os seguintes ânions: sulfatos, nitratos, oxalatos, citratos, fosfatos, acetatos ou compostos organometálicos de metais de transição.5- PROCESS FOR SYNTHESIS OF CARBON NANOMATERIALS, according to claim 1, characterized by the fact that step “a” comprises the following anions: sulfates, nitrates, oxalates, citrates, phosphates, acetates or organometallic compounds of transition metals . 6- PROCESSO PARA SÍNTESE DE NANOMATERIAIS DE CARBONO, de acordo com a reivindicação 1, caracterizado pelo fato de que na etapa “b” as fontes precursoras de carbono são selecionadas do grupo compreendendo hidrocarbonetos leves metano, etileno, propano, acetileno, monóxido de carbono, gás natural.6- PROCESS FOR SYNTHESIS OF CARBON NANOMATERIALS, according to claim 1, characterized by the fact that in step “b” the carbon precursor sources are selected from the group comprising light hydrocarbons methane, ethylene, propane, acetylene, carbon monoxide , natural gas. 7- PROCESSO PARA SÍNTESE DE NANOMATERIAIS DE CARBONO, de acordo com a reivindicação 1, caracterizado pelo fato de que na etapa “b” os gases inertes como agentes carreadores são selecionados do grupo compreendendo nitrogênio, argônio, hélio.7- PROCESS FOR SYNTHESIS OF CARBON NANOMATERIALS, according to claim 1, characterized by the fact that in step “b” the inert gases as carrier agents are selected from the group comprising nitrogen, argon, helium. 8- PROCESSO PARA SÍNTESE DE NANOMATERIAIS DE CARBONO, de acordo com a reivindicação 1, caracterizado pelo fato de que a etapa “b” é realizada em forno tubular inclinado rotativo (parte central giratória) para um crescimento de modo homogêneo dos nanotubos de carbono sobre o pó da escória, e o tempo de residência do pó da escória dentro do forno é controlado pela variação da inclinação do mesmo.8- PROCESS FOR SYNTHESIS OF CARBON NANOMATERIALS, according to claim 1, characterized by the fact that step “b” is carried out in a rotating inclined tubular furnace (central rotating part) for homogeneous growth of carbon nanotubes on the slag dust, and the residence time of the slag dust inside the furnace is controlled by varying its inclination. 9- PROCESSO PARA SÍNTESE DE NANOMATERIAIS DE CARBONO, de acordo com a reivindicação 1, caracterizado pelo fato de que a etapa “b” é realizada à temperatura de 800°C.9- PROCESS FOR SYNTHESIS OF CARBON NANOMATERIALS, according to claim 1, characterized by the fact that step “b” is carried out at a temperature of 800°C. 10- PROCESSO PARA SÍNTESE DE NANOMATERIAIS DE CARBONO, de acordo com a reivindicação 1, caracterizado pelo fato de que a etapa “b” é realizada a uma pressão total próxima e superior à pressão atmosférica.10- PROCESS FOR SYNTHESIS OF CARBON NANOMATERIALS, according to claim 1, characterized by the fact that step “b” is carried out at a total pressure close to and greater than atmospheric pressure. 11- COMPÓSITO NANOESTRUTURADO, obtido pelo processo tal como definido na reivindicação 1, caracterizado por ser constituído por nanomateriais de carbono integrados à escória de alto-forno.11- NANOSTRUCTURED COMPOSITE, obtained by the process as defined in claim 1, characterized by being made up of carbon nanomaterials integrated into blast furnace slag. 12- USO DO COMPÓSITO definido na reivindicação 11, caracterizado por ser para a produção de produtos nano estruturados e de cimento nanoestruturado, para a construção civil.12- USE OF THE COMPOSITE defined in claim 11, characterized by being for the production of nano-structured products and nano-structured cement, for civil construction.
BR102017011334-5A 2017-05-30 2017-05-30 PROCESS FOR SYNTHESIS OF CARBON NANOMATERIALS ON BLAST FURNACE SLAG, PRODUCTS AND USE BR102017011334B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR102017011334-5A BR102017011334B1 (en) 2017-05-30 2017-05-30 PROCESS FOR SYNTHESIS OF CARBON NANOMATERIALS ON BLAST FURNACE SLAG, PRODUCTS AND USE
ARP180101216A AR111920A1 (en) 2017-05-30 2018-05-09 PROCESS FOR THE SYNTHESIS OF CARBON NANOMATERIALS ON BLAST FURNACE SLAG, ITS PRODUCTS AND THEIR USE
PCT/BR2018/050175 WO2018218325A1 (en) 2017-05-30 2018-05-28 Process for synthesizing carbon nanomaterials on blast-furnace slag, products and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BR102017011334-5A BR102017011334B1 (en) 2017-05-30 2017-05-30 PROCESS FOR SYNTHESIS OF CARBON NANOMATERIALS ON BLAST FURNACE SLAG, PRODUCTS AND USE

Publications (2)

Publication Number Publication Date
BR102017011334A2 BR102017011334A2 (en) 2018-12-18
BR102017011334B1 true BR102017011334B1 (en) 2023-11-07

Family

ID=64454285

Family Applications (1)

Application Number Title Priority Date Filing Date
BR102017011334-5A BR102017011334B1 (en) 2017-05-30 2017-05-30 PROCESS FOR SYNTHESIS OF CARBON NANOMATERIALS ON BLAST FURNACE SLAG, PRODUCTS AND USE

Country Status (3)

Country Link
AR (1) AR111920A1 (en)
BR (1) BR102017011334B1 (en)
WO (1) WO2018218325A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115594457B (en) * 2022-09-14 2023-11-24 中建海龙科技有限公司 Industrial tailing inorganic artificial stone with toughness and artistry and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099640A1 (en) * 2008-02-08 2009-08-13 Northwestern University Highly-dispersed carbon nanotube-reinforced cement-based materials
BRPI0802018B1 (en) * 2008-04-30 2019-01-29 Univ Minas Gerais synthesis process of carbon nanotubes on cement clinker and nanostructured composite
CN102603235B (en) * 2012-03-14 2013-07-03 河海大学 Carbon nano-tube cement-based waterproof material and preparation method thereof
JP6079539B2 (en) * 2013-09-30 2017-02-15 日本ゼオン株式会社 Method for producing carbon nanostructure

Also Published As

Publication number Publication date
WO2018218325A1 (en) 2018-12-06
AR111920A1 (en) 2019-09-04
BR102017011334A2 (en) 2018-12-18

Similar Documents

Publication Publication Date Title
US9085487B2 (en) Large scale production of carbon nanotubes in portland cement
Gulino et al. C2H6 as an active carbon source for a large scale synthesis of carbon nanotubes by chemical vapour deposition
Musso et al. Influence of carbon nanotubes structure on the mechanical behavior of cement composites
JP5634543B2 (en) Highly conductive carbon nanotubes having an ultra-low bulk density bundle portion and method for producing the same
Louis et al. High yield synthesis of multi-walled carbon nanotubes by catalytic decomposition of ethane over iron supported on alumina catalyst
Song et al. High-yield production of large aspect ratio carbon nanotubes via catalytic pyrolysis of cheap coal tar pitch
Tsoufis et al. Catalytic production of carbon nanotubes over Fe–Ni bimetallic catalysts supported on MgO
Li et al. Mechanically activated catalyst mixing for high-yield boron nitride nanotube growth
Mudimela et al. Synthesis of carbon nanotubes and nanofibers on silica and cement matrix materials
Ghaharpour et al. Parametric investigation of CNT deposition on cement by CVD process
Li et al. Preparation of silicon carbide nanowires via a rapid heating process
Chu et al. In situ synthesis of homogeneously dispersed SiC nanowires in reaction sintered silicon-based ceramic powders
Men et al. Amorphous liquid phase induced synthesis of boron nitride nanospheres for improving sintering property of h-BN/ZrO2 composites
JP6797459B2 (en) Manufacturing method of carbon nanotube fiber and carbon nanotube fiber manufactured by this method
Jiang et al. Improving the strength and oxidation resistance of phenolic resin derived pyrolytic carbons via Cu-catalyzed in-situ formation of SiC@ SiO2
Kang et al. Synthesis and growth mechanism of metal filled carbon nanostructures by CVD using Ni/Y catalyst supported on copper
Peng et al. Growth and Mechanism of Network‐Like Branched Si3N4 Nanostructures
Xu et al. Catalytic synthesis of carbon nanotubes and carbon spheres using Kaolin supported catalyst
BR102017011334B1 (en) PROCESS FOR SYNTHESIS OF CARBON NANOMATERIALS ON BLAST FURNACE SLAG, PRODUCTS AND USE
Xu et al. Nanostructured Hybrid Carbon Nanotube/UltraHigh‐Temperature Ceramic Heterostructures: Microstructure Evolution and Forming Mechanism
Wang et al. Effects of different catalysts on performance of self-bonded SiC refractories
Hongjie et al. SiC powders prepared from fly ash
JP5448067B2 (en) Method for producing boron nitride nanotubes
Warakulwit et al. Controlled production of carbon nanofibers over cement clinker via oxidative dehydrogenation of acetylene by intrinsic carbon dioxide
Chesnokov et al. Effect of the carbon nanomaterials structure on silica carbothermal reduction

Legal Events

Date Code Title Description
B03A Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette]
B25M Entry on limitation or onus of patent assignment [chapter 25.13 patent gazette]

Owner name: UNIVERSIDADE FEDERAL DE MINAS GERAIS (BR/MG) ; INTERCEMENT BRASIL S.A (BR/SP)

Free format text: ANOTACAO DE LIMITACAO OU ONUSREF.: PROCESSO SEI/INPI 52402.000424/2021-88FICA ANOTADO, DE ACORDO COM O ART. 59, II, DA LPI, O ARROLAMENTO DO REFERIDO BEM, CONFORME SOLICITACAO DO RENATO CESAR LEITE, DELEGADO DA RECEITA FEDERAL.

B06W Patent application suspended after preliminary examination (for patents with searches from other patent authorities) chapter 6.23 patent gazette]
B06A Patent application procedure suspended [chapter 6.1 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 30/05/2017, OBSERVADAS AS CONDICOES LEGAIS