BE595772A - - Google Patents

Info

Publication number
BE595772A
BE595772A BE595772DA BE595772A BE 595772 A BE595772 A BE 595772A BE 595772D A BE595772D A BE 595772DA BE 595772 A BE595772 A BE 595772A
Authority
BE
Belgium
Prior art keywords
acid
crystals
oxidation
zone
washing
Prior art date
Application number
Other languages
English (en)
Publication of BE595772A publication Critical patent/BE595772A/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description


   <Desc/Clms Page number 1> 
 



  Oxydation en   continu   des hydrocarbures aromatiques substitués et procède de récupération. 



   Cette invention se rapporte à un système continu d'oxyda- tion d'hydrocarbure aromatique ayant au moins un et de préférence deux ou plusieurs substituants oxydables en un produit qui cristal-   lise     dans   le milieu réactionnel dans les   conditions   de l'exyds- tion, ainsi qu'àun système perfectionné pour la réalisation de cette oxydation et la récupération du produit d'oxydation. L'in- vention sera décrite par son application à la préparation d'acide téréphtalique de haute qualité à partir de paraxylène. 



     L'invention procure   un système peu onéreux à   construire   et à utiliseret qui,en mème temps., donne des rendements plus élevés   d'un   produitde qualité supérieure que ce qui peut être obtenu par les systèmes d'oxydation bien connus. Un avantagepar- ticulier de ce système est la réduction de l'appareillage néces- 

 <Desc/Clms Page number 2> 

 saire à la cristallisation et à la récupération du produit. Un autre avantage est la préparation d'un produit qui est de qualité supérieure et qui est exempt des impuretés usuelles que l'on observe lorsque l'oxydation est effectuée par les procédés anté- rieurement connus. D'autres avantages apparaîtront au cours de la description détaillée de l'invention. 



   Dans un système pour la réalisation de cette invention, un   hydrocarbure   aromatique ayant un, et de préférence deux ou plusieurs substituant! oxydables comme par exemple un   paradial-   kylbenzéne pratiquement pur ou un acide p-alkylbenzoïque,   cornac   le p-xoylène ou l'acide p-toluique, est oxydé en continu par un gaz contenant de l'oxygène moléculaire, comme de l'air, dans une zone d'oxydation, à contre-courant, sous une pression comprise entre 50 et 500 livres/pouce carré (3,53 - 35,3 kg/cm2) et, de préférence, entre 200 et 350 livres/pouce carré (14,06 - 24,6 kg/cm2) à une température comprise entre 325 et 425 F   (163  -   218 F) et, de préférence, entre 350 et 400 F (177 C - 205 C0 pendant une durée de contact moyenne comprise entre 0,2 et 2 heu- res ou plus,

   le système d'oxydation à contre-courant comportant de préférence une série de stades au cours desquels le mélange est remué suffisamment pour que le produit d'oxydation, qui dans le cas de   l'oxydation   d'un p-dialkylbenzène ou d'un acide p-alkyl- benzoïque est de l'acide téréphtalique, soit maintenu en suspen- sion. On effectue la réaction en présence d'un acide aliphatique monocarboxylique ayant de   deux   à six atomes   de     carbone,   par exem- ple l'acide acétique, comme solvant. Le solvant de la réaction est utilisé dans un système de purification du produit final et de classification des cristaux avant   d'être   utilisé dans la zone d'oxydation.

   La quantité de solvant de réaction doit être au moins égale à 1:1 en volume par rapport à la charge oxydable mais elle peut   atteindre   5:1 et de toutes manières la quantité de solvant doit être suffisante pour que le produit de réaction dans le mé- lange réactionnel forme une suspension qui, puisse aisément être 

 <Desc/Clms Page number 3> 

 stérée et   pompée.   Grâce à l'utilisation   d'un   système en casca- contre-courant de séparateurs cyclones pour liquides, les mmédiaires de la réaction et les petits cristaux peuvent être syés dans la zone réactionnelle pour y former le mélange tionnel et, de plus, les cristaux de petite taille issus du beur sont immédiatement renvoyés dans la zone réactionnelle Ls servent de germes de   cristallisation.   



   Dans le but d'éviter une accumulation de sous-produits 'impuretés dans le système   d'oxydation   3t de récupération du uit, une partie du courant de petits cristaux peut être sé- e de l'opération primaire de séparation visant à la récupé- on du catalyseur et des sous-produits. On élimine en continu 'eau et une partie du solvant de réaction du réacteur, de ma- e à éviter que la concentration du mélange réactionnel ne a en dessous de 80% en poids environ, et bien que les vapeurs sont prélevées du réacteur dans le but de régler la tempéra- , contiennest des hydrocarbures, pratiquement tous ces hydro- ires ainsi qu'une portion du milieu aqueux condensé sont ren- s dans le réacteur d'oxydation. 



   Cet aspect de l'invention ressortira plus clairement de escription détaillée d'un exemple particulier donnée ci-après référence à la figure 1 des dessins annexés. 



   L'hydrocarbure aromatique substitué qui doit être soumis oxydation, dans le cas de cet exemple le paraxylène, est in- lit par la canalisation 10 dans un réacteur à température ré- 11, en mème temps que des intermédiaires et des petits cris- recyclés introduits par la canalisation 12, et que l'acide ±que et la quantité requise de catalyseur et de substance ap- unt du brome, qui sont Introduits par les canalisations   13,   t 15. De l'air est introduit à la base du réacteur par la cana- tion 16 en quantité suffisante pour que la quantité d'oxygène ente soit légèrement plus élevée que 3 moles d'oxygène par de xylène.

   Le réacteur fonctionne à une pression de 225 li- 

 <Desc/Clms Page number 4> 

 vres/pouce carré (15,8   kg/caz) à   une température moyenne d'envi- ron 375 F (191 C) et la durée de séjour est d'une heure environ. 



   Dans cet exemple, la quantité d'acide acétique introduite par la oanalisation 14 est approximativement égale à 2 fois la quantité de paraxylène frais introduite par la canalisation 10, la quanti- té de catalyseur, l'acétate de manganèse, est voisine de 1,5% en poids, sur la basa du poids du métal du catalyseur et du poids de la charge de paraxylène frais et on utilise environ   0,,7% en   poids de bromure d'ammoinum (également sur la base du poids du   parazylène   frais) comme substance apportant du brome. 



   Le système de catalyseur comportant un produit apportant du brome et un catalyseur   d'oxydation   contenant un métal lourd, utilisé dans le procédé de la présente invention, n'est pas re- vendiqué comme nouveau en soi parce qu'il constitue un perfec- tionnement réalisé par autrui et décrit dans le brevet belge n  546.191. Le système de catalyseur contient un métal lourd ou polyvalent, de préférence sous une forme qui est soluble dans le milieu réactionnel ou dans le solvant.

   Le métal du catalyseur peut avantageusement être choisi dans le groupe constitué par le manganèse, le cobalt, le nickel, le chrome, le   vanadium,   le molyb- dène, le   tungstène,   l'étain, le cérium ou les mélanges de ces métaux, et le métal peut être utilisé sous forme élémentaire, sous forme combinée ou sous forme ionique, et est de préférence      sous la forme de son acétate quand le milieu de réaction ou le solvant est l'acide acétique. Le promoteur est une substance apportant du brome, et le brome peut être sous   torme   élémentaire, sous forme ionique, organique ou inorganique.

   Le brome peut être utilisé par exemple sous forme de bromate de potassium, de bromu- re   d'ammonium,   de bromure de   benzyle,   de   tétrabromoéthane.,   de bromure de manganèse, etc... La proportion relative de catalyseur et de promoteur peut être approximativement stoechiométrique, comme par exemple dans le bromure de manganèse, et est générale- ment dans la gamme de 1110 à 10 :1 atomes de métal du catalyseur 

 <Desc/Clms Page number 5> 

 par atome de brome. La quantité de catalyseur utilisée est géné-        ralement   dans la gamme de 0,01% environ à 10% environ et au delà et est de préférence comprise entre 0,2% et   2%   en poids sur la base du poids de la charge d'hydrocarbure aromatique.

   Les cataly- seurs métalliques mixtes préférés sont des mélanges de manganèse sous la forme de bromure ou d'acétate avec du molybdate d'ammo- nium, du chromate d'ammonium, de l'acide   tungstique,   de l'acétate de cobalt etc... et les proportions relatives sont   généralement   voisines d'une à deux parties environ en poids de celle de manga- nèse par partie   en   poids du composé de l'autre métal. D'autre part les métaux catalyseurs peuvent évidemment être utilisés sous la forme de sels d'un acide qui est formé dans le système. 



   Dans cet   ezeanplei   le réacteur est un récipient cylindrique vertical à trois zones séparées par des chicanes annulaires   17   et 
18 qui servent à séparer le volume total du réacteur en trois zones séparées. Les agitateurs   19,   20 et 21 sont disposés dans chaque zone de manière à pouvoir mélanger intimement par rotation la charge en présence du milieu de réaction et du catalyseur avec le gaz oxydant, bien qu'il   suffise   généralement d'une agitation suffisante pour maintenir en suspension le produit d'oxydation cristallin. 



   Le réglage de température est réalisé par prélèvement des vapeurs au haut du réacteur 11 par la canalisation 22, le re- froidisseur 23 et le récepteur 24, et le refroidisseur 23 sert à condenser pratiquement l'ensemble des hydrocarbures contenus dans les vapeurs et une partie de l'eau et de l'acide acétique. Le cou- rant d'hydrocarbures condensés et d'une partie de l'acide acétique aqueux s'écoule par-dessus le seuil décanteur n  25   et   est renvoyé par la pompe 26 dans le réacteur pour contribuer à régler la température et à maintenir un rapport convenable acide acétique- hydrocarbure et eau à ee stade. L'acide acétique aqueux condensé est prélevé au   bail   du récepteur 24 par la canalisation 27 en vue de la récupération de l'acide acétique.

   Les vapeurs non condensées sont évacuées du récepteur par la canalisation 28 et barbotent dans! 

 <Desc/Clms Page number 6> 

 le récipient 29 dans de l'eau introduite par la canalisation 30 de manière qu'il n'y ait pratiquement plus d'acide dans les gaz évacués par la canalisation 31, et l'acide aqueux est renvoyé par la canalisation 32 dans le système de récupération d'acide. 



   Le courant de produit réactionnel est prélevé au bas du réacteur 11 par la canalisation 33 et envoyé dans le cyclone à liquide 34 qui sert de séparateur primaire et qui est conçu de manière à évacuer un courant de petits cristaux par le haut par la canalisation 35 et la plus grande partie de ce courant est renvoyée par la pompe 36 et la canalisation 12 au   réacteur   11. 



  Dans le but d'éviter une accumulation d'impuretés dans le système, une partie du courant des petits cristaux recyclé par la canali- sation 35 est détournée par la canalisation 37 vers le dispositif de récupération du catalyseur et du produit secondaire 38. L'acide acétique aqueux peut être renvoyé de ce dispositif de récupération au dispositif à récupération d'acide acétique par la canalisation 39. Si la charge contient quelque peu   d'éthylbenzène,   l'acide benzoïque formé peut être séparé par distillation sous vide et soutiré par la canalisation   40.   Les hydrocarbures, l'acide tolui- que et l'acide téréphtalique sont prélevés par la canalisation   41   et peuvent être renvoyés dans le réacteur 11. Le catalyseur et les produits de dégradation éventuels sont éliminés. 



   Le courant de grands cristaux séparés dans le cyclone à liquide 34 par la canalisation   42   contient des cristaux d'acide téréphtalique   suffisamment   grands pour permettre leur séparation efficace des eaux-acres par les appareils usuels de filtration on de centrifugation; les grands cristaux doivent avoir une taille particulaire d'au moins 20 microns et de préférence supérieure à 50 microns.

   Le courant de grands cristaux est combiné avec un cou- rant de liquide de lavage à base d'acide acétique venant de la canalisation 43 et introduit dans le cyclone à liquide   44   qui est utilisé comme séparateur secondaire et comme zone primaire de purification et d'où l'acide acétique et les intermédiaires en 

 <Desc/Clms Page number 7> 

 solution sont prélevés par la canalisation 14 et renvoyés dans le -éacteur 11 décrit ci-dessus. Le courant de grands cristaux séparés lans le cyclone à liquide 44 par la canalisation 45 est combiné avec un courant d'acide acétique venant de la canalisation 46 et pompé par la pompe 47 dans le cyclone à liquide   48   utilisé comme zone de séparation tertiaire et comme zone de purification secondaire.

   Le   courant   de petits cristaux qui quitte le sommet du cyclone 48 est renvoyé par la canalisation   43   dans la canalisation   42.   



   Le courant de grands cristaux venant du séparateur cyclone liquide   48   est prélevé par la canalisation 49 et est mélangé avec me quantité d'acide acétique d'appoint pratiquement pur introduite par la canalisation 50, et d'acide acétique pratiquement pur recy- lé, et ce mélange est introduit par la canalisation 51 dans le   réparateur   cyclone à liquide 52 qui effectue la séparation et la purification finale. Le courant de petits cristaux quitte ce sépa- ateur final par la canalisation   46   vers la canalisation   45   comme   lécrit   ci-dessus, et le courant de grands cristaux est séparé dans e cyclone final par la canalisation 53 et les   eaux-Mères   sont entrifugées dans la centrifugeuse 54.

   Comme les eaux-mères sont constituées dans ce cas par de l'acide acétique pratiquement pur,   lles   peuvent être renvoyées directement par la canalisation 55 au -éservoir de stockage d'acide acétique. 



   Les cristaux prélevés de la centrifugeuse par la canali- sation 56 sont introduits dans un sécheur rotatif   57   dans lequel en fait circuler un gaz inerte introduit par la canalisation 58 et compé par la pompe 59 dans le but d'éliminer toutes traces d'acide icétique résiduel qui pourraient adhérer à la surface des cristaux.

     et   acide acétique récupéré est condensé dans le refroidisseur 60, vecueilli dans le récepteur 61 et pompé par la pompe 62 et par la canalisation 63 vers le réservoir d'acide   acétique   64 d'où l'acide   icétique   est prélevé par la canalisation 65 et renvoyé par la pompe 06 pour être mélangé au courant de grands cristaux qui entre dans -a canalisation 51, venant de la canalisation   49.        

 <Desc/Clms Page number 8> 

 



   L'acide téréphtalique sec qui sort du sécheur sous la for- me d'un courant pulvérulent de cristaux 67 est remarquablement pur et il est obtenu avec un rendement éleTé sur la base de la charge de   parafions,   car les pertes par sous-produits sont remarquable- ment faibles dans ce système. 



   L'acide acétique aqueux venant des canalisations 27, 32 et 39 est introduit par la   canalisation     68   dans le distillateur de récupération d'acide 69. Les vapeurs qui quittent cet appareil de distillation par la canalisation 70 sont principalement des vapeurs d'eau, mais toute trace d'hydrocarbure présente dans le mélange introduit dans l'appareil de distillation est entraînée par distil- lation azéotropique avec les vapeurs d'eau. Ces vapeurs sont conden- sées dans le réfrigérant   71   et passent dans le récepteur 72 qui peut être muni d'un seuil de   décantation   qui permet la séparation des hydrocarbures qui peuvent être séparés par la canalisation 73. 



   Les vapeurs d'eau condensées sont prélevées par une pompe appro- priée et l'eau condensée qui n'est plus nécessaire au reflux est évacuée du système par la canalisation 74. Une partie de l'acide acétique chaud soutirée au bas de l'appareil de distillation par la pompe 75 est renvoyée par l'intermédiaire du rectificateur 76 et l'acide acétique récupéré est envoyé dans le réservoir de stockage   64.   



   On notera que non seulement l'oxydation du produit de dé- part, mais encore la cristallisation du produit final s'opèrent dans le réacteur   il,   et que la   système   de   purification     comporte une   sé- rie de cyclones à liquide qui fonctionnent sous une pression qui est approximativement la même que celle du réacteur 11, par exemple ne   s'en   écartant pas plus de 50 livres/pouce carré   (3,53   kg/cm2). 



   Les cyclones à liquide sont des   appareils   bien connus et sont dé- crits, par exemple, dans CHEMICAL   ENGINEERING   PROGRESS, 48 n  2, p. 75, dans un article Intitulé "Fine Size,   Close-Specific-Gravity   
Solid Séparation vith the Liquid-Solid cyclone". Le refroidisse- ment et/ou l'évaporation de solvant causé par une différence de pression importante ou brutale peut entraîner l'obstruction des 

 <Desc/Clms Page number 9> 

 canalisations, des vannes ou de l'appareillage par une cristallisa- tion pratiquement instantanée ou par une accumulation lente des cristaux. Cette accumulation lente peut être réduite dans une me- sure considerable en revêtant les canalisations et les récipients de   Tenon   (polymère de tétrafluoroéthylène), car les cristaux n'adhèrent pas à ce produit.

   On peut prévoir l'utilisation d'un dispositif d'extrusion à vis sans fin pour le prélèvement des cristaux au bas du réacteur ou un cyclone à liquide d'un type mo- difié, de manière qu'une différence de pression importante soit maintenue entre le réacteur et la zone d'évacuation. Ces systèmes impliquent cependant des problèmes d'entretien et demandent une quantité supplémentaire d'énergie et d'appareillage pour envoyer les liquides au réacteur et c'est pourquoi on préfèr3 utiliser un procédé de purification à plusieurs cyclones à liquide avec cir- culation rapide et   continue   dans le tout, sais sans variations importantes et discontinues de la pression.

   La température dans chaque cyclone à liquide est de préférence inférieure à la tempé- rature du cyclone précédent bien que toute la séparation et toute la purification puissent se faire dans la gamme de températures de 150 - 350 F (66 C- 177 C). Dans cet exemple, l'acide acétique est introduit à partir du réservoir de stockage   64   à une températu- re d'environ 100 F (38 C). 



   Un autre système de cette invention qui eomporte une oxy- dation ainsi qu'une cristallisation, un lavage et une récupération de l'acide aromatique préparé sera décrit dans l'exemple spécifique ci-après, avec référence à la figure 2 des dessins annexés. 



   Pendant l'oxydation, la réaction entre le   para:xylène   et l'oxygène moléculaire qui s'opère dans le réacteur 1 dégage une quantité considérable de chaleur qui se manifeste par la vaporisa- tion d'acide acétique, d'eau et d'une petite quantité de   paraxylène.   



  Ces vapeurs ainsi que   les   gaz non condensables passent par la cana- lisation 9 et pénètrent dans le condenseur 10 situé au-dessus du réacteur,   puis par   la canalisation 11 dans le décanteur 12. Dans 

 <Desc/Clms Page number 10> 

 ce décanteur, l'acide acétique, l'eau et le   parazylène   condensé se séparent en une ou   plusieurs  phases liquides qui sont renvoyées dans le réacteur 1 par la canalisation 13 pour régler la tempéra- ture dans le réacteur 1.

   Comme cependant le condenseur 10 n'est, le plus souvent,' pas suffisamment efficace pour condenser   l'ensem-   ble des vapeurs précieuses d'acide acétique et de   paraxylène,   les vapeurs résiduelles du décanteur 12 sont conduites par la canali- sation 14 dans le laveur 15 de gaz du réacteur, qui peut être une colonne chargée   d'anneaux   Baschig où le gaz barbote dans de l'eau qui y est introduite à raison de 200 livres/heure (90,6 kg/heure) par la canalisation 16. Le gaz résiduel est évacué par la canali- sation 18 et le liquide de barbotage contenant de.l'acide acétique aqueux dilué est soutiré par la canalisation 17 et envoyé sur la colonne de déshydratation du solvant 16 qui est décrite plus loin. 



   A la fin de l'oxydation, le mélange réactionnel est sou- tiré du réacteur 1, par la canalisation 20 et envoyé au tank 21. 



  Ce mélange se présente sous la tonne   d'une   suspension épaisse de cristaux d'acide téréphtalique et il est maintenu en suspension par pompage en circuit fermé dans la canalisation 22, la pompe 23 et les canalisations 24 et 25. Les vapeurs issues du réservoir 21 passent par la canalisation 27 dans le refroidisseur supérieur 28 où elles sont condensées et d'où les vapeurs d'acide acétique et d'eau sont renvoyées au tank 21, et par la canalisation 29 à l'ab-   sorbeur   de gaz résiduels à basse pression 59 qui élimine l'acide acétique par barbotage à l'eau.

   Dans l'absorbeur 59, de l'eau à raison de 100 livres/heure (45,3 kg/heuré) est introduite par la canalisation 60 et lave les vapeurs d'acide acétique du gaz ; le gaz résiduel est éliminé par la canalisation 61 tandis que le li- quide de barbotage passe par la canalisation 62 dans la colonne de déshydratation de solvant 66. 



   Le courant de produit de réaction   venant   du réacteur prin- : cipal est pompé du réservoir   21 à   l'état chaud par la canalisation 26 dans la centrifugeuse primaire 30 qui sépare les cristaux   d'aci-   

 <Desc/Clms Page number 11> 

   @e   téréphtalique humides bruts du mélange réactionnel. Compte tenu de la solubilité peu élevée de l'acide téréphtalique dans le mélan- re réaxtionnel, la centrifugation du liquide chaud convient pour -écupérer la quasi   tonalité   de cet acide tandis que les impuretés   -omme   le catalyseur, l'acide   isophtalique   et l'acide orthophtalique -estent dans le centrifugat.

   Les eaux-mères sont envoyées par la canalisation   34   dans la colonne de distillation de solvant 63 où commence la récupération de l'acide acétique et du catalyseur. 



  .es cristaux centrifugés sont lavés dans la centrifugeuse 30 au   ioyen   d'une quantité d'acide acétique à 95% comprise entre 0,1 et ,0 kg par kg de cristaux d'acide téréphtalique, et cet acide cétique est prélevé du liquide de lavage de la centrifugeuse se- ondaire 39, et passe finalement par la canalisation 34 dans la colonne de distillation de solvant 63. Ce lavage primaire est des- uiné à enlever le plus gros du milieu réactionnel liquide adhérant aux cristaux d'acide téréphtalique bruts. Les cristaux lavés sont envoyés par la canalisation 31 dans le tambour 35 utilisé pour re- lettre les solides en suspension et qui est muni d'un agitateur et   ie   déflecteurs verticaux.

   On ajoute ici de 1,0 à 5,0 kg d'acide acétique à   95%   par kg de cristaux, et cet acide vient de la colon- le de déshydratation de solvant 66 en passant par le réservoir 55 et les canalisations 56 et 37. En même temps, on fait passer un courant de gaz inerte, savoir le gaz de combustion produit dans e générateur de gaz inerte 49 en faisant brûler du gaz naturel ipporté par la canalisation 50, dans le tambour 35 pour   resuspen-   3ion des solides par la canalisation 36 et ce gaz inerte passe en- mite par la canalisation 31 dans la centrifugeuse primaire 30 d'où -1 est ensuite évacué par la canalisation 32, le condenseur 53, la analisatin 58 et l'absorbeur final de gaz à basse pression 59, ie manière à maintenir une pression légèrement positive dans tout Le système.. 



   La suspension d'acide téréphtalique dans l'acide acétique ast maintenue dans le réservoir 35 pendant plusieurs minutes à une 

 <Desc/Clms Page number 12> 

 température comprise entre environ 150 et 300 F (66 C- 149 C) par exemple 200 F   (93 C),   elle est agitée d'une manière continue et ensuite prélevée du réservoir à resuspension des solides 35 et envoyée à la centrifugeuse 39 par la canalisation 38. Dans la centrifugeuse 39, les cristaux humides d'acide téréphtalique sont séparés du magma, et les eaux--mères sont renvoyées en passant par la canalisation 43 et le réservoir   44   au réacteur par la canalisa- %ion   4.   Ces   eaux--mères   contiennent la plus grande partie des impu- retés initialement présentes dans l'acide téréphtalique brut.

   Les cristaux d'acide téréphtalique sont lavés dans la centrifugeuse 39 par un courant d'acide acétique à 95% qui contient une petite pro- portion de l'acide acétique qui a été déshydraté dans la colonne de déshydratation de solvant 66 et conservé dans le réservoir 55;    ,çet   acide de lavage est ensuite séparé des cristaux dans la centri-      fugeuse 39 et utilisé ultérieurement comme liquide de lavage dans la centrifugeuse primaire   30,   opérant ainsi la première purifica- tion de l'acide téréphtalique brut qui a été séparé du mélange réactionnel chaud. 



   Les cristaux lavés quittent alors la centrifugeuse 39 par la canalisation 45 et pénètrent dans le sécheur vibrant   46   qui est balayé par le-gaz inerte formé dans le générateur de gaz de combustion 49 et introduit par la canalisation   47   de manière que      les cristaux soient   sèches   à contre-courant et que l'acide   acéti-   que adhérant aux cristaux soit évaporé. Le gaz inerte et les vapeurs d'acide acétique sortent du sécheur vibrant par la canalisation 48   d'où   elles rejoignent un courant similaire venant de la centrifu- geuse 30 et de la centrifugeuse secondaire 39 (par la canalisation   51)   en vue de la récupération de l'acide acétique. 



   L'acide téréphtalique sec qui sort du sécheur vibrant 46 en une poudre cristalline, est remarquablement pur et est pratique-. ment exempt de toute impureté. Il peut le plus   souvent   être utilisé tel quel dans les applications où de lucide téréphtalique de haut degré de pureté est requis. Toutefois, lorsque les spécifications 

 <Desc/Clms Page number 13> 

 de pureté sont   exceptionneles,   on peut prévoir un traitement de pu- rification supplémentaire. Le système qui a été décrit fournit l'a- cide   téréphtalique   à raison de 1300 livres (590 kg) à l'heure ce qui représente un rendement en poids de 130% par rapport au para-   xylène   introduit dans le système. 



   La solution acétique de lavage ainsi que le milieu liquide qui a été séparé par centrifugation des cristaux d'acide téréphta-   lique   dans la   centrifugeuse   30, sont envoyés par la canalisation   34   dans la colonne de distillation de solvant 63 qui fonctionne sous une pression comprise entre la pression atmosphérique et une pression d'environ 75 livres/pouce carré (5,27 kg/cm2) par exemple 25 livres/pouce carré   (1,78     kg/cm2)   et à une température de 350 F (177 C) pour l'utilisation sous 25 livres/pouce carré (1,78 kg/cm2). 



  Dans la colonne 63, un courant qui contient pratiquement toute l'eau et l'acide acétique est distillé, et après condensation dans le condenseur supérieur 64, est scindé en un courant de reflux et un courant   récupéré   constitué par une solution aqueuse diluée d'a- cide acétique débitée à raison de 1982 livres (900 kg) à l'heure d'acide acétique et de 402 livres (184 kg) à l'heure d'eau, l'acide acétique étant ici exprimé en acide acétique à 95% contenant 5% d'eau. Une version simplifiée de la colonne de distillation de sol- vant 63 ne comporte pas le condenseur 64 et les vapeurs issues de la colonne 63 sont envoyée* directement à la colonne de déshydra- tation du solvant 66; ceci évite un condenseur et un récepteur et réduit la perte de charge sur la colonne de rectification 66.

   Les résidus de distillation de la colonne de distillation de solvant 63 contiennent le catalyseur d'oxydation à base de métal lourd, le promoteur contenant du brome,, des intermédiaires d'oxydation et des sous-produits ainsi qu'une trace d'acide téréphtalique. 



   Le distillat de tête de la colonne 63 qui contient de l'eau et de l'acide acétique est envoyé par la canalisation 65 à la colonne de déshydratation du solvant 66, qni. fonctionne sous une pression absolue comprise entre 8 et 30   livres/pouce   carré 

 <Desc/Clms Page number 14> 

   (0,56 -   2,1 kg/cm2) et de préférence entre 16 et 20 livres/pouce carré (1,13 et   1,41   kg/cm2) L'eau est ici distillée en tête de colonne tandis que l'acide acétique à 95% déshydraté est obtenu dans la canalisation 67 comme produit du pied de la colonne. Le distillat de la colonne 66 est condensé dans le condenseur 68 et envoyé par la canalisation 69 à l'égoût.

   La colonne de déshydrata- tion du solvant 66, peut, si on le désire, contenir l'un ou l'autre des agents qui permettent la distillation azéotropique du mélange acide acétique/eau, comme la méthylisobutylcétone, dans le but d'améliorer l'efficacité de la séparation. 



   Revenant à la colonne de distillation de solvant 63, le résidu de distillation de cette colonne, qui est usuellement solide et qui contient le catalyseur, le promoteur contenant du brome, des sous-produits acides et des produits intermédiaires ainsi que de l'acide téréphtalique éventuellement non isolé, est prélevé par la canalisation 66 et envoyé dans le récipient 88. Le récipient 88 est muni d'un agitateur racleur destiné à éviter l'accumulation de produit solide sur les parois du   récipient ;   il est chauffé au moyen d'une double paroi où circule de la -vapeur et peut fonctionner sous vide.

   Un courant de soude caustique concentrée ou d'une autre solution aqueuse d'un hydroxyde de métal alcalin monovalent est in- troduite par la canalisation 86 dans le but de mettre en solution les intermédiaires, les produits secondaires et l'acide téréphtali- que ce qui laisse le catalyseur d'oxydation à base de métal lourd sous la forme d'un résidu insoluble qui est vraisemblablement soit l'hydroxyde soit le téréphtalate du métal catalyseur. Le récipient 88 est maintenu sous vide et les vapeurs émises passent par la ca- nalisation 71, le condenseur de la pompe d'évacuation 72 et l'ab- sorbeur de gaz évacué à basse pression 59 par une canalisation qui n'est pas représentée. Le liquide qui est condensé dans le conden- seur 72 est renvoyé par la canalisation   74   à la colonne de distilla- tion de solvant 63.      



   Le catalyseur d'oxydation en suspension dans la soude 

 <Desc/Clms Page number 15> 

 rustique est envoyé du récipient 88 par la canalisation 75 au fil- e presse à plaques et cadres 76 où le catalyseur est filtré et cupéré sous la forme d'un gâteau de filtre réutilisable. Ce gâ-   .au   est renvoyé au récipient de préparation 5 où il est disper- sé dans de l'acide acétique et d'où il est ultérieurement renvoyé i réacteur d'oxydation 1.

   Il est clair que les catalyseurs d'oxy- lotion à base de métal lourd dont on se sert pour l';oxydation des   )mposés   aromatiques en vue de la préparation des acides carboxyli- les aromatiques peuvent être séparés des mélanges qu'ils forment vec les produits secondaires acides de la réaction par une extrac- Lon par des solutions aqueuses d'hydroxydes de métaux alcalins novalents. 



   Les eaux-mères venant du filtre presse 76 sont renvoyées ms le récipient pour précipitation de produit acide 79, où l'on utroduit de l'acide   nitrique à   40  Baumé afin de transformer les réduits secondaires acides de la réaction en acides organiques ibres qui sont Insolubles dans l'eau. Ces acides organiques, y   mpris   l'acide téréphtalique et les sous-produits sont récupérés ar le filtre presse des sous-produits 82 par la canalisation 83, andis que les   eaux-mères   sont évacuées par la canalisation   84.   



   Bien que cette invention ait été décrite comme un système e fabrication d'acide téréphtalique à partir de   paraxylène.,   il st clair qu'elle est applicable à l'oxydation de n'importe quel   aradialkylbenzéne   ou de n'importe quel acide parallkylbenzoïque. lle peut s'appliquer également à l'oxydation des métadialkylben- ènes et des acides méta-alkylbenzolques, comme le métaxylène et 'acide métatoluique. Le procédé t'applique également à la prépara- ion d'acides aromatiques quelconques qui   cristallisent   dans la one de réaction.

Claims (1)

  1. REVENDICATIONS. EMI16.1 ----------.------¯--- 1., Procédé de transformation d'un composé aromatique ayant au moins un substituant oxydable en un cide carboxylique qui cristallise dans le milieu réactionnel dans les conditions d'oxy- dation, comprenant la mise en contact de est hydrocarbure avec un gaz contenant de l'oxygène moléculaire en présence d'un acide EMI16.2 saturé aliphatinue nnocarboxyliqqe contenant de deux à huit ato- mes de carbone, utilisé comme solvant, d'un catalyseur d'oxydation contenant un métal lourd et d'un promoteur contenant du brome, à une pression de 50 - 500 livres/pouce carré (3,53 - 35,3 kg/cm2) et à une température de 325 - 425 F (163 - 218 C),
    caractérisé en ce que la réaction est effectuée pendant une période de temps suf- fisante pour permettre la formation des cristaux de l'acide carbo- xylique aromatique et la croissance de ces cristaux dans la zone d'oxydation, l'effluent est prélevé de la zone d'oxydation, les cristaux d'acide aromatique sont isolés de l'effluent, et les intermédiaires, les sous-produits secondaires, les impuretés et le catalyseur sont séparés du reste de l'effluent au cours d'au moins un stade ultérieur de séparation.
    2. - Procédé suivant la revendication 1, caractérisé en outre en ce que l'effluent prélevé de la zone d'oxydation est séparé en une fraction de petits cristaux et une fraction de grands cris- staux, une partie de la fraction des petits cristaux qui contient des intermédiaires est renvoyée dans la zone d'oxydation, des sous- produits, des intermédiaires et des petits cristaux sont séparés de la fraction des grands cristaux au cours d'une autre opération de séparation par centrifugation en se servant de l'acide carboxy- lique aliphatique comme liquide de lavage dans l'opération de sépa- ration par centrifugation,, et on retourne l'acide carboxylique ali- phatique à la zone d'oxydation où il y est utilisé comme milieu réactionnel.
    3. - Procédé suivant la revendication 2, caractérisé en outre en ce qu'une fraction liquide qui contient les cristaux plus <Desc/Clms Page number 17> petits que 10 microns environ est séparée de la fraction liquide contenant les gros cristaux dans une zone de séparation primaire où les grands cristaux sont ensuite lavés au moyen d'acide acétique dans un système de cyclones à liquide à contre-courant dont la per- te de charge de part et d'autre de la zone de séparation primaire est voisine de 50 livrs/pource carré (3,53 kg/cm2) et dont la perte de charge totale de part et d'antre des stades ultérieurs de lavage par cyclone n'est pas supérieure à 50 livres/pouce carré (353 kg/ cm3).
    4.- Procédé de préparation d'acide téréphtalique purifié par oxydation de parazylène par un gaz contenant de l'oxygène mo- léculaire dans une zone de réaction où ce paraxylène est en solu- tion dans un milieu liquide contenant un acide saturé monocarboxy- llque ayant de 2 à 8 atomes de carbone, en présence d'un catalyseur d'oxydation à base de métal lourd et d'un promoteur contenant du brome, à une température de 325 - 425 F (163 - 218 C) et à une pression de 50 - 500 livres/ponce carré (3,53 - 35,3 kg/cm2) carac-' térisé en ce que les cristaux d'acide téréphtalique bruts sont sé- parés du liquide prélevé dans la zone d'oxydation,
    la fraction li- quide de cette suspension est distillée de manière à obtenir de l'eau comme fraction de tête puis une fraction d'acide saturé mono- carboxylique déshydraté et comme résidus de distillation une frac- tion qui contient le catalyseur d'oxydation, les sous-produits et les intermédiaires acides, les cristaux d'acide téréphtalique brut séparés dans l'opération de séparation sont lavés par une fraction au moinsprépondérante de la fraction d'acide monocarboxylique satu- :
    ré déshydraté, l'acide mono carboxylique saturé est recyclé de l'opé- ration de lavage des cristaux vers la zone de la réaction d'oxyda- ' tion, les cristaux d'acide téréphtalique lavés sont séchés et ré- coltés sous la forme d'acide téréphtalique purifié et l'acide mono- carboxylique éliminé en cours de séchage est récupéré et renvoyé à l'opération de lavage.
    5.- Procédé suivant la revendication 4, caractérisé en <Desc/Clms Page number 18> ce que la purification des cristaux diacide téréphtalique brut est réalisée en trois opérations de lavage des cristaux, la première comportant un lavage par un liquide de lavage provenant du lavage final,l'opératlon intermédiaire comportant un lavage au moyen d'un liquide de lavage constitué en parties prépondérantes par l'acide monocarboxylique saturé déshydraté et le lavage final se faisant par une petite portion de l'acide monocarboxylique saturé déshy- draté.
    6. - Procédé suivant la revendication 5, caractérisé en ce que l'opération intermédiaire comporte également la mise en suspen- sion des cristaux d'acide téréphtalique qui ont subi. un premier lavage dans une grande portion d'acide moncoarboxylique saturé déshydraté. , 7.- Procédé suivant les revendications 1 à 6, caractérisé en outre en ce que l'acide monocarboxylique saturé est l'acide acé- tique.
    8.- Système perfectionné pour la préparation d'acide té- réphtalique modifié par-oxydation d'une charge constituée.essentiel- lement par du paraxylène, caractérisé en ce qu'il comprend une zone d'oxydation, une canalisation 'pour y introduire la charge de para- xylène, l'acide monocarboxylique saturé déshydraté ayant de deux à huit atomes de carbone, le catalyseur d'oxydation contenant un métal lourd, la substance apportant du brome, une autre canalisation pour introduire le gaz contenant de l'oxygène moléculaire à la base de la zone d'oxydation, un séparateur de phase solide-liquide pour séparer les cristaux d'acide téréphtalique brut contenus dans la suspension prélevée dans la zone d'oxydation, une zone de distilla- tion,
    une canalisation pour envoyer le liquide de la zone de sépa- ration à la zone de distillation, une canalisation pour transférer le condensat de la zone de distillation, constitué par de l'acide moncarboxylique saturé déshydraté, à la zone de lavage des cristaux d'acide téréphtalique bruts, une canalisation pour transférer l'aci- de monocarboxylique aliphatique après lavage à la zone de réaction, <Desc/Clms Page number 19> et un dispositif de séchage des eristaux diacide téréphtaliqne lavés permettant de récupérer ensuite l'acide téréphtalique purifia et séché.
    9.- Système suivant la revendication 8, caractérisé en ce que l'appareillage pour le lavage des cristaux décide téréphta- lique brut aoaporte au moins deux centrifugeuses, une canalisation pour apporter vers la première centrifugeuse une portion dn liquide de lavage de la de centrifugeuse, une canalisation pour appor- ' ter vers la première cantrifugeuse de l'acide monocarboxylique zatu- ré déshydrate en deux portions, une grande portion et une petite portion, une canaliuation pour envoyer la grmde portion vers la zone de réaction d'oxydation et une canalisation pour envoyer la petite portion vers la première cantrifugeurse.
    10.- Système suivant la revendication 9. caractérisé en outre en ce que les deux centrifugeuses sont séparées par un ré- cipient destiné à remettre en suspension les solides où les cris- taux d'acide téréphtalique préalablement lavés sont remis en sus- pension dans la grande portion d'acide monocarboxylique saturé déshydraté.
BE595772D BE595772A (fr)

Publications (1)

Publication Number Publication Date
BE595772A true BE595772A (fr)

Family

ID=192244

Family Applications (1)

Application Number Title Priority Date Filing Date
BE595772D BE595772A (fr)

Country Status (1)

Country Link
BE (1) BE595772A (fr)

Similar Documents

Publication Publication Date Title
US7470370B2 (en) Process for removal of impurities from mother liquor in the synthesis of carboxylic acid using pressure filtration
EP2450342B1 (fr) Procédé pour la fabrication d&#39;un gâteau d&#39;acide carboxylique séché approprié pour une utilisation dans la production de polyester
FR2473903A1 (fr) Procede de recuperation de catalyseurs
JPS639498B2 (fr)
KR20040108594A (ko) 카복실산의 합성시에 모액으로부터 불순물을 제거하기위한 추출 방법
BE1006355A3 (fr) Procede d&#39;oxydation du pseudocumene en acide trimellitique avec recyclage de la liqueur mere.
CA2808095C (fr) Taux de filtration de purge d&#39;acide terephthalique ameliore par commande du pourcentage d&#39;eau dans une boue d&#39;alimentation de filtre
KR101946657B1 (ko) 필터 공급 슬러리중 물의 백분율을 제어함으로써 테레프탈산 퍼지 여과 속도를 개선하는 방법
JP5973437B2 (ja) フィルターフィードスラリーにおける水のパーセントを制御することによるテレフタル酸パージろ過速度の向上
BE595772A (fr)
JP2013537548A5 (fr)
US20220340519A1 (en) A process for purifying 4,4&#39;-dichlorodiphenyl sulfone
CH654558A5 (fr) Procede pour la production d&#39;oxyfluorure de niobium.
JPS609699B2 (ja) ナフトキノンとフタル酸の分離法
KR20220050984A (ko) 4,4&#39;-디클로로디페닐 설폰의 제조 방법