BE1011730A4 - Generator, that produces a mechanical capacity by using the attractive force between the poles of an equal tension electrically charged condenser - Google Patents

Generator, that produces a mechanical capacity by using the attractive force between the poles of an equal tension electrically charged condenser Download PDF

Info

Publication number
BE1011730A4
BE1011730A4 BE9800086A BE9800086A BE1011730A4 BE 1011730 A4 BE1011730 A4 BE 1011730A4 BE 9800086 A BE9800086 A BE 9800086A BE 9800086 A BE9800086 A BE 9800086A BE 1011730 A4 BE1011730 A4 BE 1011730A4
Authority
BE
Belgium
Prior art keywords
capacity
dielectric
poles
charge
mechanical
Prior art date
Application number
BE9800086A
Other languages
Dutch (nl)
Original Assignee
Bousse Georges Albert
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bousse Georges Albert filed Critical Bousse Georges Albert
Priority to BE9800086A priority Critical patent/BE1011730A4/en
Application granted granted Critical
Publication of BE1011730A4 publication Critical patent/BE1011730A4/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/008Alleged electric or magnetic perpetua mobilia

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Mechanical capacity is obtained from combustion motors and steam turbines from fossil or nuclear fuels. The conversion yield is far below 50% due to heat losses and loss of capacity to return to the initial position and there are detrimental ecological side effects. The condenser-construction represented in fig I supplies a mechanical capacity via the connection of force FI. The load energy is not used, yet it falls slowly depending on the insulating characteristics of the dielectric material. The capacity required to return to the initial position is only a fraction of the capacity available on the axis. This makes it possible to obtain a yield of over 100% and the ecological damage is removed. An application of the electrostatic attraction between the poles of a condenser, can be seen in electrostatic voltmeters, although with an alpha angle = 90 degrees. With an alpha angle deviating from 90 degrees all current mechanical capacities, generation can be replaced with a high yield and in an ecologically friendly way.<IMAGE>

Description

       

   <Desc/Clms Page number 1> 
 



  Generator, die een mechanisch vermogen levert door qebruik te maken van de aantrekkinqskracht tussen de polen van een met gelijkspanning, electrischgeladencondensator. 



  Het geleverde mechanische vermogen kan gebruikt worden : a-op de plaats van de opwekking, zoals bij   windmolens, water-   molens of ontploffingsmotoren. b-op andere locaties, zoals thans gebeurt via omzetting in electrische energie in de centrales en verdeelt via net- werken. 



  In de huidige techniek komen wij aan mechanisch vermogen via a-natuurverschijnselen zoals windkracht, waterstroming en getijdenwerking van de   zee. Via wind-, watèr-   en getijde- centrales wordt een nuttig mechanisch vermogen opgewekt. 



   Deze direkt verbruikbare energie is ecologisch zuiver, doch voldoet niet aan onze"just in   time" behoeften.     b-geconserveerde   energieën, zoals fossiele energieën (steen- kool, aardolie en aardgas) en materie energie (kernenergie)
Om een nuttig mechanisch vermogen te bekomen moeten we gaan via stoomopwekking in thermo-dynamische of thermo- nucleaire centrales, of via de   ontploffing   motoren. Het voordeel is nu de"just in time" beschikbaarheid, doch het grote nadeel is de ecologische   belasting.   



  De vermogen generator is geconstrueerd als volgt : a-loodrecht op een vlakke ronde plaat met lage ohmse weer- stand, wordt een   geïsoleerde   as gemonteerd. (fig. 1) b-een even grote ronde bovenconstructie bestaat uit verschü- lende kleinere polen (AB), welke in een circel zijn opge- steld (diameter 30 cm. en 63 stuks) en zich op hetzelfde electrische potentiaal   bevinden. Het vlak AB-CD (1   cm diep) 
 EMI1.1 
 bestaat uit een diëlectricum met een hoge (Et =1000) dië- lectrische relatieve   waarde, en is vast   met AB verbonden zodat het kan meedraaien om de as en glijden over de on-   derplaat.

   De   capaciteit tussen AB en   C D wordt   sterk benaderd door de capaciteit van een vlakke condensator met een evenwijdig vlak aan AB door het punt   K   en met een   afstand   tussen de polen   EK   (7,5   mm.)   

 <Desc/Clms Page number 2> 

 
 EMI2.1 
 De hiervoor beschreven con-' Gen met een oelijkspanning (30 K Volt) geleverd door een sp2nningsbron met hoge inwendige weerstand. nuttige kracht F= cosi 4 cosc < 
 EMI2.2 
 (=45O) berekenen we als volgt fo. , ---1 , 3 5 -3 - d o-J6 x 109 r - 6 2 6 2 Opp. x 0, = 1890 x 10 C = 2, x 10-9 Farad De krachtis = F. 



  CE2 fp F = 2d = of 9, 69 kg. 
 EMI2.3 
 



  Door invloed van de kracht F zal de bovenconstructie draaien tegenover de onderplaat. de lading tussen ; encator, uordt gelD1 D1 mee verschuiven met de   bovenconstructie. Daar   de   ohmse   weerstand in de onderplaat de enigste remming is, zal slechts een verwaarloosbaar klein gedeelte van F gebruikt worden om terug in de uitgangspositie te komen. 
 EMI2.4 
 



  09 hoekof wordt in stand gehouden door de grootte relatieve uasrde . 0) an het dielectricum. de relatieve waar- de 1 zou zijn (luchtledige) zou   de'hoek=9Doen F=D.   



  Vanaf een relatieve diëlectrische waarde rond 100 is het systeem werkbaar, doch de beste resultaten worden bereikt met relatieve waarden vanaf 1000 en meer. 



  De huidig gekende ferro-electrische diglectrica zijn de beste keuze. Ze zijn meestal samengesteld met bariumtitanaat   els   hoofdbestanddeel en worden in de zqakstroom gebruikt voor   microfoons, piezo   electrische toepassingen enz. 



  Verder dient het diglectricum een zo klein mogelijk   dielec-   trisch verlies te   hebben, plus   een hoge doorslagvastheid. 
 EMI2.5 
 



  Om de condensator te laden (spanning aanbrengen) een vreemd vermogen aangevoerd te worden. - 
 EMI2.6 
 - - enoen ie - Joule e 2 

 <Desc/Clms Page number 3> 

 dientVoorga2nde energie dient alleen maar om de ladingen op de condensator aan te brengen. Ze wordt door de   draaiende   generator niet verbruikt. Ze kan enkel, zoals bij alle condensatoren, na een zekere tijd verminderen.Deze tijd is afhankelijk van het isolerend vermogen van het diëlectrioum. 



  Hierdoor bekomt onze vermogen generator een uiterst hoog rendement. 
 EMI3.1 
 



  Verder kan het vermogen opgevoerd worden door meerere/j condensator circels ? te brengen in de bovenconstructie, en door m. aan te bren- '4 3) gen op een äs. 
 EMI3.2 
 



  De voordelen van de vermogen generator zijn : an-ecologischezuiverheid   -"just   in   time"oproeping   mogelijk -toepasbaar zowel in collectieve verbruikerstoepassing (electrische centrales) als individuele. (auto enz. ) - zeer hoog rendement - bruikbaar op   ardniveau 21s   in de ruimte.



   <Desc / Clms Page number 1>
 



  Generator, which provides mechanical power by using the pulling force between the poles of a DC voltage charged capacitor.



  The mechanical power supplied can be used: a-at the place of generation, such as with windmills, watermills or explosion engines. b-at other locations, as is currently done via conversion into electrical energy in the power stations and distributed via networks.



  In current technology, we obtain mechanical power through non-natural phenomena such as wind power, water flow and tidal action from the sea. A useful mechanical power is generated via wind, water and tidal power stations.



   This directly consumable energy is ecologically pure, but does not meet our "just in time" needs. b-conserved energies, such as fossil energies (coal, petroleum and natural gas) and matter energy (nuclear energy)
To obtain a useful mechanical power, we have to go through steam generation in thermodynamic or thermonuclear power plants, or through the explosion engines. The advantage is now "just in time" availability, but the major drawback is the ecological burden.



  The power generator is constructed as follows: a-perpendicular to a flat round plate with low ohmic resistance, an insulated shaft is mounted. (fig. 1) b-an equally large round superstructure consists of several smaller poles (AB), which are arranged in a circle (diameter 30 cm and 63 pieces) and are at the same electrical potential. The AB-CD plane (1 cm deep)
 EMI1.1
 consists of a dielectric with a high (Et = 1000) dielectric relative value, and is fixedly connected to AB so that it can rotate about the axis and slide over the base plate.

   The capacitance between AB and C D is strongly approximated by the capacitance of a flat capacitor with a parallel plane to AB through the point K and with a distance between the poles EK (7.5 mm.)

 <Desc / Clms Page number 2>

 
 EMI2.1
 The previously described con- genes with a supply voltage (30 K Volt) supplied by a voltage source with high internal resistance. useful force F = cosi 4 cosc <
 EMI2.2
 (= 45O) we calculate as follows fo. , --- 1, 3 5 -3 - d o-J6 x 109 r - 6 2 6 2 Opp. x 0, = 1890 x 10 C = 2, x 10-9 Farad The force is = F.



  CE2 fp F = 2d = or 9.79 kg.
 EMI2.3
 



  Due to the influence of the force F, the superstructure will rotate opposite the bottom plate. the load between; encator, gelD1 D1 can be moved along with the superstructure. Since the ohmic resistance in the bottom plate is the only inhibition, only a negligibly small portion of F will be used to return to the starting position.
 EMI2.4
 



  09 angle or is maintained by the size relative angle. 0) on the dielectric. the relative value would be 1 (airless) would the angle = 9 Do F = D.



  The system is workable from a relative dielectric value around 100, but the best results are achieved with relative values from 1000 and more.



  The currently known ferroelectric diglectrica are the best choice. They are usually formulated with barium titanate alder main ingredient and are used in the zqak current for microphones, piezo electrical applications etc.



  Furthermore, the diglectric must have as little dielectric loss as possible, plus a high dielectric strength.
 EMI2.5
 



  To charge the capacitor (apply voltage), a foreign power must be supplied. -
 EMI2.6
 - - enoen ie - Joule e 2

 <Desc / Clms Page number 3>

 serves for the purpose of energy only to apply the charges to the capacitor. It is not consumed by the running generator. It can only decrease after a certain time, as with all capacitors, depending on the insulating capacity of the dielectric.



  This gives our power generator an extremely high efficiency.
 EMI3.1
 



  Furthermore, the power can be increased by multiple / j capacitor circles? to be placed in the superstructure, and by applying m. 4 3) to an axis.
 EMI3.2
 



  The advantages of the power generator are: an ecological purity - "just in time" call possible - applicable both in collective consumer application (power plants) and individual. (car etc.) - very high efficiency - usable at ard level 21s in space.


    

Claims (4)

Conclusie De werking bazeert zicn op drie, in de electriciteitsleer zoekende principes. a-aantrekkingskracht tussen de polen van een electrisch geladen condensator. (fig. 1 de kracht F1) b-de verschuiving van de electrische lading in een geleider. c-gebruik van een ferro-electrisch aiuieciricum.   Conclusion The effect is based on three principles in the study of electricity. a-attraction between the poles of an electrically charged capacitor. (fig. 1 the force F1) b-the shift of the electric charge in a conductor. c-use of a ferro-electric cellulose. Bij electrisch laden ontstaat (fig.1) de kracht F aie een nuttig koppel geeft aan de as.Bij 1000 t/min. is er een vermogen van ongeveer 2 P. ter beschikking. With electric charging (fig. 1) the force F gives a useful torque to the shaft. At 1000 rpm. there is a power of about 2 P. available. De lading tussen C1D1 , zal bij rotatie een afstand van 942 m/min. afleggen.Bij gebruik van materialen (bv. Cu) met een lage onmse weerstand in de onderconstructie, zal slech ts een klein gedeelte va net opewekt veringen no- EMI4.1 dig zijn om teru. ano & positie te oelnaen. ladingsverschuiving orat in stand ehouaen ae g in ae uithoge relatieve waarde van het diëlectricum. The charge, between C1D1, will rotate at a distance of 942 m / min. When using materials (e.g. Cu) with a low resistance to the substructure, only a small part of newly generated springs will  EMI4.1  dig to be back. ano & position in ulnaen. charge shift orat maintain ae g in ae high relative dielectric value. Door ae ladingsverschuiving in dê onderplaat en het in stand houden van ae hoekt (via het diëlectricum, blijft de functionaliteit bestaan Het activeren van het systeem vergt gelents een energie van 10 Joule. Due to the charge shift in the bottom plate and the maintenance of the angle (via the dielectric, the functionality remains. Activating the system requires an energy of 10 Joules. De werkinggblijft oestaan totdat ae condensator zieh via het diëlectricum heeft ontladen. The operation remains until the capacitor has discharged through the dielectric. De ontladingstijd is afhankelijK van de karakteristieken van het diëlectrioum. The discharge time depends on the characteristics of the dielectric. Het vermogên wordt opgevoerd met de spanning, het gebruik van meerdere circels in boven en onuercostructie en aoor meerdere schijven (fig.3) op één as te plaatsen. The power is increased with the tension, the use of several circles in top and on the construction and by placing several discs (fig. 3) on one axis. De voordelen zijn : 1 - het rendement. The advantages are: 1 - the return. 2 - just in time beschikbaarheid.  2 - just in time availability. 3-ecologischezuiverheid.  3-ecological purity. 4 - in zetbaar in alle huidige energie opweksystemen, zowel op aardniveau (zuarstof aanwezig) als ruimte.  4 - Can be used in all current energy generation systems, both at earth level (with oxygen present) and space.
BE9800086A 1998-02-05 1998-02-05 Generator, that produces a mechanical capacity by using the attractive force between the poles of an equal tension electrically charged condenser BE1011730A4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BE9800086A BE1011730A4 (en) 1998-02-05 1998-02-05 Generator, that produces a mechanical capacity by using the attractive force between the poles of an equal tension electrically charged condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE9800086A BE1011730A4 (en) 1998-02-05 1998-02-05 Generator, that produces a mechanical capacity by using the attractive force between the poles of an equal tension electrically charged condenser

Publications (1)

Publication Number Publication Date
BE1011730A4 true BE1011730A4 (en) 1999-12-07

Family

ID=3891076

Family Applications (1)

Application Number Title Priority Date Filing Date
BE9800086A BE1011730A4 (en) 1998-02-05 1998-02-05 Generator, that produces a mechanical capacity by using the attractive force between the poles of an equal tension electrically charged condenser

Country Status (1)

Country Link
BE (1) BE1011730A4 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122384A1 (en) * 2004-06-11 2005-12-22 Athanasios Nasikas Propulsion of a wavy asymmetric capacitor having a zero potential casing
RU2471283C1 (en) * 2011-04-28 2012-12-27 Владимир Андреевич Степанец Method of electromechanical conversion of energy and electrostatic capacitance motor on its basis
WO2018106148A1 (en) * 2016-12-09 2018-06-14 Евгений Анатольевич ОБЖИРОВ Planar-type capacitive electrical machine
WO2018106147A1 (en) * 2016-12-09 2018-06-14 Евгений Анатольевич ОБЖИРОВ Capacitive electrical machine with tensioned electrodes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR432831A (en) * 1911-08-01 1911-12-16 Jean Francois Georges Begue Rotating electrostatic motor powered by a single electricity, either positive or negative
US1974483A (en) * 1930-02-07 1934-09-25 Brown Thomas Townsend Electrostatic motor
US3517225A (en) * 1967-09-18 1970-06-23 Johnson Service Co Electrostatically driven apparatus
JPH0421367A (en) * 1989-02-14 1992-01-24 Ricoh Co Ltd Actuator
FR2710469A1 (en) * 1993-09-20 1995-03-31 Cornille Patrick High efficiency electrostatic motor.
JPH0947042A (en) * 1995-07-28 1997-02-14 Topcon Corp Electrostatic actuator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR432831A (en) * 1911-08-01 1911-12-16 Jean Francois Georges Begue Rotating electrostatic motor powered by a single electricity, either positive or negative
US1974483A (en) * 1930-02-07 1934-09-25 Brown Thomas Townsend Electrostatic motor
US3517225A (en) * 1967-09-18 1970-06-23 Johnson Service Co Electrostatically driven apparatus
JPH0421367A (en) * 1989-02-14 1992-01-24 Ricoh Co Ltd Actuator
FR2710469A1 (en) * 1993-09-20 1995-03-31 Cornille Patrick High efficiency electrostatic motor.
JPH0947042A (en) * 1995-07-28 1997-02-14 Topcon Corp Electrostatic actuator

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANGRIST S W: "PERPETUAL MOTION MACHINES", SCIENTIFIC AMERICAN, vol. 218, no. 1, January 1968 (1968-01-01), pages 114 - 122, XP002036811 *
DATABASE WPI Section EI Week 9217, Derwent World Patents Index; Class T06, AN 92-135054 *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 288 (E - 781) 30 June 1989 (1989-06-30) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 178 (E - 1196) 28 April 1992 (1992-04-28) *
PATENT ABSTRACTS OF JAPAN vol. 097, no. 006 30 June 1997 (1997-06-30) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122384A1 (en) * 2004-06-11 2005-12-22 Athanasios Nasikas Propulsion of a wavy asymmetric capacitor having a zero potential casing
RU2471283C1 (en) * 2011-04-28 2012-12-27 Владимир Андреевич Степанец Method of electromechanical conversion of energy and electrostatic capacitance motor on its basis
WO2018106148A1 (en) * 2016-12-09 2018-06-14 Евгений Анатольевич ОБЖИРОВ Planar-type capacitive electrical machine
WO2018106147A1 (en) * 2016-12-09 2018-06-14 Евгений Анатольевич ОБЖИРОВ Capacitive electrical machine with tensioned electrodes

Similar Documents

Publication Publication Date Title
US7439630B2 (en) System and methodology for generating electricity using a chemical heat engine and piezoelectric material
Liang et al. Multi-unit hydroelectric generator based on contact electrification and its service behavior
Saadatnia et al. A heaving point absorber‐based triboelectric‐electromagnetic wave energy harvester: An efficient approach toward blue energy
JPH1198868A (en) Electrostatic power generation device
Fahmi et al. The performance of a solar PV system using supercapacitor and varying loads
BE1011730A4 (en) Generator, that produces a mechanical capacity by using the attractive force between the poles of an equal tension electrically charged condenser
Maroti et al. A novel 2L-Y DC-DC converter topologies for high conversion ratio renewable application
CN109698544B (en) Wind power generation integrated system based on friction nano generator
Fuchs et al. Overview of nonelectrochemical storage technologies
US20100148720A1 (en) Solar Powered Electrical Energy Generating Device
Chiba et al. Innovative wave power generation system using electroactive polymer artificial muscles
US8945738B2 (en) Device and method for producing electrical energy that uses solutions with different ionic concentration
Zhou et al. Hybrid diesel/MCT/battery electricity power supply system for power management in small islanded sites: case study for the ouessant French island
CN101652918A (en) Apparatus comprising low voltage power source
Obeidat et al. Graphene and poly (3, 4-ethylenedioxythiophene)(PEDOT) based hybrid supercapacitors with ionic liquid gel electrolyte in solid state design and their electrochemical performance in storage of solar photovoltaic generated electricity
Bopche et al. Combination of parallel connected supercapacitor & battery for enhancing battery life
US20190353232A1 (en) Mechanical Energy Storage System
JP2010142099A5 (en)
Gopalakrishnan Testing and evaluation of different energy storage devices for piezoelectric energy harvesting under road conditions
Prajyusha et al. Development of ultracapacitor-based DVR for power quality improvement
RU2236723C2 (en) Method for direct conversion of heat power to electric energy
Collaguazo et al. Electric generation from hydraulic fluctuations using piezoelectric ceramics
RU2364018C2 (en) Device for changing voltage in &#34;capacitive pump&#34; network
Surya et al. Energy Management Using Battery And Ultra Capacitor Of Wind Turbine Generating System
RU66125U1 (en) CAPACITY-KINETIC SOURCE OF ENERGY