BE1001588A3 - Procede de fabrication d'un materiau calorifuge pour utilisation a temperature elevee. - Google Patents

Procede de fabrication d'un materiau calorifuge pour utilisation a temperature elevee. Download PDF

Info

Publication number
BE1001588A3
BE1001588A3 BE8800465A BE8800465A BE1001588A3 BE 1001588 A3 BE1001588 A3 BE 1001588A3 BE 8800465 A BE8800465 A BE 8800465A BE 8800465 A BE8800465 A BE 8800465A BE 1001588 A3 BE1001588 A3 BE 1001588A3
Authority
BE
Belgium
Prior art keywords
organic
temperature
insulating material
binder
heat
Prior art date
Application number
BE8800465A
Other languages
English (en)
Inventor
Hanz Kummermehr
Original Assignee
Micropore Internat Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micropore Internat Ltd filed Critical Micropore Internat Ltd
Priority to BE8800465A priority Critical patent/BE1001588A3/fr
Application granted granted Critical
Publication of BE1001588A3 publication Critical patent/BE1001588A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)

Abstract

...en employant des substances non organiques réfractaires, telles que notamment des fibres de verre et/ou minérales, selon lequel, au cours de la fabrication du matériau calorifuge, on apporte aux substances non organiques des additions de substances organiques servant à leur liaison, leur finissage ou analogue, caractérisé en ce que, avant son utilisation à température élevée, on soumet le matériau calorifuge, pourvu de ses additifs non organiques, à une action thermique qui conduit à une décomposition des additifs organiques au moins dans les zones de ce matériau calorifuge qui sont soumises à une température au-dessus de la température de décomposition de ces additifs organiques.

Description


   <Desc/Clms Page number 1> 
 



  Procédé de fabrication d'un matériau calorifuge pour utilisation   ä   température élevée 
La présente invention concerne un procédé permettant de fabriquer un matériau calorifuge, destiné à une utilisation   ä   température élevée, en employant des substances non organiques réfractaires, telles que notamment des fibres de verre et/ou des fibres minérales, selon lequel, au cours de la fabrication du matériau calorifuge, on apporte aux substances non organiques des additions de substances organiques servant   ä   leur liaison, leur finissage ou analogue. 



   On fabrique des feutres de fibres minérales en réduisant en fibres, dans des appareillages   prévus à eet   effet, des masses minérales fondues et en les déposant sur une bande continue de production, les fibres qui tombent sur celle-ci recevant une pulvérisation de liant, en général de résine phénolique. 11 se forme, sur la bande continue de production, une couche de fibres qu'on comprime à l'aide de cylindres, le liant étant durai dans un four tunnel. Suivant le   degre de contpression   et la teneur en liant, on obtient des feutres peu compacts et qu'on peut rouler, offrant une faible densité apparente, de par exemple 15 ä 30   kg/m3,   ou des plaques plus compactes et plus dures, offrant des densités apparentes plus élevées, atteignant 200 kg/m3 et plus. 



   On utilise les feutres ou plaques de fibres minérales ainsi produits, pour résoudre les divers problèmes d'isolation thermique et on les adapte du mieux possible à l'application considérée, grâce à un choix approprié de la densité apparente, de la teneur en liant, du finissage,   etc..   Dans la mesure où on doit utiliser de 

 <Desc/Clms Page number 2> 

 tels feutres de fibres minérales pour l'isolation thermique d'appareils chauffants, leurs propriétés précises se déterminent plus particulièrement en accord avec le fabricant d'appareils et leur livraison s'effectue avec des feutres de fibres minérales spécialement préparés pour eux et qui sont alors mis en place dans les appareils chez leur fabricant. 



   Si un tel produit sert alors pour l'isolation thermique de surfaces chaudes d'appareils chauffants, il se produit, au cours du fonctionnement de l'appareil, une arrivée considerable de chaleur sur la face du feutre de fibres minérales qui est tournée vers la surface chaude. 



  Même si, compte tenu de sa destination, ce feutre de fibres minérales assure une bonne isolation thermique, en créant ainsi une forte chute de température à travers son épaisseur, les zones superficielles voisines de la surface chaude peuvent néanmoins etre soumises à des températures de plusieurs centaines de  C. La charge thermique précise existant dans le cas particulier considéré est déterminée par les propriétés de l'appareil que le fabricant d'appareils garnit de produit en fibres minérales. 



  Toutefois, les liants habituellement utilisés, tels qu'une résine phénolique, ne résistent qu'à des temperatures de   100 oe à 200 oe   et se décomposent donc   ä   des températures plus élevées. Il se dégage à cette occasion des gaz qui, bien que non nocifs en soi, émettent une odeur ressentie parfois comme désagréable, si bien que, lors de la mise en service d'appareils chauffants neufs comportant de telles isolations thermiques, de telles odeurs sont inévitables dans la phase initiale, jusqu'à ce que le liant présent dans les zones subissant une charge thermique se soit decompose et qu'il ne se dégage plus de gaz lors du renouvellement ou de la poursuite de la charge thermique. 



   Afin d'éviter une telle incommodation par l' odeur, on a déjà travaillé avec des feutres de fibres 

 <Desc/Clms Page number 3> 

 minérales sans liant, auxquels il n'est donc pas ajouté de liant dans la goulotte de chute située au-dessous de l'appareil de réduction en fibres. A la place de cela, le renforcement mécanique du feutre s'effectue ä l'aide d'aiguilles, de piquages ou analogues. 



   Bien que, de cette manière, on évite 1'incommodation due à l'odeur, on ne peut toutefois produire de tels feutres aiguilletés, mats piqués et analogues dans des conditions de fabrication industrielle   qu'à   de faibles vitesses de production, de par exemple 10 m/mn, etant donné que le traitement mecanique du feutre demande un certain temps. Dans le cas de feutres de fibres minérales contenant un liant, les vitesses habituelles de production sont de l'ordre de grandeur de 40   m/mn   et plus, ce qui permet une fabrication industrielle beaucoup plus rationnelle. 



   En vue d'une isolation thermique hautement efficace des appareils chauffants, notamment de fours électriques à accumulation nocturne, on utilise aussi fréquement un matériau calorifuge microporeux   ä   base d'oxyde métallique produit par pyrogénation, en particulier un aerogel de silice, ce matériau comportant un renforcement de fibres minérales ou céramiques et une addition d'opacifiant et étant comprime sous forme de plaque. La présente demanderesse produit un tel matériau calorifuge sous la désignation MINILEIT (marque déposée). 



  Ainsi qu'il est par exemple connu par le   DE-A-2. 928. 695,   on peut, ä cet effet, introduire le matériau pulverulent dans une enveloppe de tissu de fibres de verre et l'y comprimer   ä   la densité apparente voulue. L'enveloppe sert dans ce cas a assurer l'intégrité mécanique de la plaque ainsi formée, étant donné que la poudre   ä   base d'aérogel de silice ne contient en généra1 pas de liant afin de ne pas nuire   ä   la capacité d'isolation thermique. C'est sous cette forme enveloppée que les plaques sont livrées au 

 <Desc/Clms Page number 4> 

 fabricant d'appareils, par exemple au fabricant de fours   ä   accumulation nocturne, et sont mises en place par celui-ci dans les appareils. 



   Lors de la fabrication de tissus de fibres de verre, on applique aux fils en filaments de verre un   revetement   d'encollage qui permet de les travailler sans endommagement dans le métier à tisser. Cet encollage est principalement constitué de matières organiques usuelles à cet effet. On stabilise en outre souvent le tissu fini à l'aide d'un revêtement d'encollage afin   d'accrottre   ses propriétés anti-eraillantes et sa résistance au flambage. 



   Lors de la mise en service du four a accumulation nocturne, on atteint la temperature de service de plusieurs centaines de OC et, à cette occasion, l'encollage organique se decompose en libérant les gaz correspondants, s'accompagnant d'une incommodation due   ä   l'odeur, jusqu'à ce que cet encollage ne soit plus présent qu'à l'état décomposé et qu'ait disparu cette source d' incommodation. 



   Des incommodations analogues, dues aux odeurs, se présentent aussi lorsque le matériau calorifuge microporeux lui-même contient un liant destiné à un supplément de stabilisation, ou lorsque les plaques calorifuges sont munies d'enveloppes, ou sont revêtues de couches, qui contiennent des substances organiques qui se décomposent à la température d'utilisation. 



   C'est pourquoi l'invention a pour but de fournir un procédé de fabrication de matériaux calorifuges pour utilisation à température élevée, du type précité, qui rende minimales, ou supprime totalement, de telles incommodations dues aux odeurs lors du début de l'utilisation   ä   température élevée, sans que soient éventuellement nécessaires des interventions nuisibles sur le processus opératoire habituel qui a fait ses preuves dans la fabrication du matériau calorifuge. 

 <Desc/Clms Page number 5> 

 



   A cet effet, l'invention a pour objet un procédé du type précité, caractérisé en ce que, avant son utilisation   ä   température élevée, on soumet le matériau calorifuge, auquel on a apporte les additifs non organiques, à une action thermique qui conduit ä une décomposition des additifs organiques au moins dans les zones de ce matériau calorifuge qui, lors de l'application prévue, sont soumises à une température située au-dessus de la température de décomposition des additifs organiques. 



   De ce fait, le matériau calorifuge se trouve essentiellement produit de la manière habituelle, en utilisant des substances organiques, sans aucune intervention sur le processus opératoire qui a fait ses preuves. Toutefois, avant la première utilisation   ä   température élevée, on soumet ce matériau   calorifuge'a   une action thermique qui provoque la decomposition des composes organiques qui, sinon, se décomposent en cours d'utilisation.

   Cette action thermique peut conduire, sans nuire de façon indésirable   ä   la structure non organique du matériau calorifuge, a une application de température qui correspond a celle se présentant lors de l'utilisation   ä   température élevée, ou au contraire la dépasse ou ne l'atteint pas, suivant les conditions à chaque fois   necessaires   pour une décomposition la plus complete possible des substances organiques concernées. On peut exécuter cette action thermique immédiatement avant l'application, par exemple la mise en place dans un four d'accumulation thermique, ou au contraire immédiatement   ä   la suite de la finition ou d'une phase de celle-ci, suivant le moment où, dans le cas particulier, se présente la possibilité la plus favorable à cet effet. 



   Si on utilise, comme matériau calorifuge, une matière microporeuse à moulage par compression, sans liant organique et placée dans une enveloppe en tissu de 

 <Desc/Clms Page number 6> 

 fibres de verre, et si, à la manière habituelle, il n'existe, comme seule substance organique, que l'encollage présent dans le tissu de fibres de verre, on peut, afin de décomposer l'encollage, soumettre la plaque ainsi enveloppée   a   l'action thermique appropriée, sur sa face qui est chaude lors de l'utilisation ultérieure.

   Dans ce mode avantageux de mise en oeuvre, on peut toutefois exercer l'action thermique appropriée sur le tissu de fibres de verre, avant qu'on ne le remplisse du matériau microporeux pulvérulent; étant donné que, en commun avec son contenu, ce tissu de fibres de verre forme une plaque   calorifuge, il'constitue   aussi un matériau calorifuge conforme à l'invention. Dans ce cas d'une action thermique sur le tissu de fibres de verre seul, on n'a pas   ä   tenir compte du caractère intact de la matière à moulage par compression, si bien qu'on dispose d'une grande liberté de choix dans la conduite du procédé.

   De plus, on peut éventuellement atteindre une simplification technique de l'installation si on élève la température de l'ensemble de la bande continue de tissu, en rouleau, ou si cette bande traverse une zone d'action thermique, au lieu de devoir traiter de la manière voulue les plaques calorifuges à   l'état   fini. 



   Après l'action thermique servant   ä   décomposer l'encollage organique, on peut   ä   nouveau enduire le tissu de fibres de verre d'un encollage non organique, afin de pouvoir mieux le travailler au cours du remplissage, du piquage et de la compression. Plus particulièrement dans le cas de l'utilisation de verre non alcalin, relativement peu réfractaire, un tel encollage non organique peut en outre accroître ses propriétés réfractaires. 



   L'invention concerne également un   precede   de fabrication d'un feutre en fibres minérales se présentant en forme de rouleau ou de plaque et destiné à une utilisation à température élevée, notamment pour 

 <Desc/Clms Page number 7> 

 l'isolation thermique de surfaces chaudes présentes sur des appareils chauffants, tels que des fours de cuisson, selon lequel, en y ajoutant un liant organique de façon continue ou fractionnée, on dépose et comprime les fibres minérales sur une bande de production, de façon   ä   donner un mat à teneur en liant qui est uniforme ou   décroit   à travers l'épaisseur, et on durcit le liant.

   Dans ce cas, où on utilise comme matériau calorifuge un matériau en fibres minérales, le procédé conforme à l'invention prévoit, après avoir   realise   ä la manière habituelle l'addition de liant, de soumettre ensuite la surface de la bande de fibres minérales, au cours de la production, à une action thermique qui produit avantageusement, sur cette surface de la bande de fibres minérales, une température superficielle d'au moins   500 oc. Grâce à   une telle action thermique, le liant se trouve décomposé, ou épuisé, jusqu'à une profondeur voulue.

   Une telle decomposition, ou épuisement, du liant s'avère particulièrement Judicieuse dans une zone superficielle, en complétant une addition de liant réduite pour cette zone superficielle, ce qui est d'autant plus favorable sur le plan coût compte tenu de la plus faible utilisation de liant. Compte tenu de l'épuisement qui va suivre, il   n'est   par contre besoin de prévoir aucun moyen complexe particulier pour obtenir déjà une zone presque dépourvue de liant   des le depot   des fibres, mais on peut cependant réaliser une réduction de l'addition de liant sur les fibres situées du côté de la surface, dans une mesure où 
 EMI7.1 
 il n'y a à s'attendre en aucune facon ä des perturbations du déroulement de la production. 



   Avantageusement, l'action thermique nécessaire pour l'épuisement complet du liant situe du   cote   de la surface est exercée au-dessous d'une température qui correspond à la température de frittage des fibres minérales. De la sorte, cette action thermique peut 

 <Desc/Clms Page number 8> 

 s'exercer, sans nuire aux fibres, d'une façon telle, et en un espace de temps tel, que la totalité du liant voulu est épuisée d'une manière sure, sans qu'on doive craindre une variation de la consistance des fibres minérales. 



   D'une maniere particulièrement avantageuse, on execute, au cours d'une seconde phase, une action thermique seulement temporaire qui produit une température se trouvant au-dessus de la température de ramollissement des fibres. De ce fait, les fibres situées du cote de la surface se soudent entre elles à leurs points de contact et la surface se trouve rendue lisse et stabilisée. Ainsi, mime après élimination du liant, il se crée dans cette zone un renforcement de la surface du feutre de fibres minérales qui est à chaque fois suffisant, si bien que, lors de la manipulation, ce feutre ne présente aucun inconvénient, tel qu'une tendance poussée à l'endommagement, par rapport ä une plaque totalement durcie dans l'épaisseur ou analogue. 



     11   est vrai qu'il est déjà connu,   d'après 1es   documents   DE-A-3. 147. 316   et   DE-A-3. 504. 873,   de produire, sur un feutre de fibres minérales, une zone superficielle dépourvue de liant. Toutefois, les produits en fibres minérales considérés dans ce cas ne sont pas prévus pour une utilisation à température élevée, mais sont employés dans le bätiment, à la température ambiante. L'élimination du liant dans une zone superficielle sert, dans un cas, à réduire la teneur en substances non organiques existant à cet endroit, afin d'influer sur le résultat d'un essai d'inflammation en puits, en utilisant en supplement un 
 EMI8.1 
 revêtement organique, et, dans l'autre c. as, à réaliser des r eve real conduites de drainage pour un rejet d'eau. 



   D'autres caractéristiques et avantages de l'invention ressortiront de la description qui va suivre,   ä   titre d'exemple non limitatif et en regard des dessins annexés sur lesquels : 

 <Desc/Clms Page number 9> 

 la figure 1 représente une vue en perspective d'un four de cuisson dont la paroi extérieure est partiellement arrachée, la figure 2 représente, en coupe et   ä   plus grande échelle, la zone à arrachement de la paroi de la figure 1 et la figure 3 représente une coupe d'une plaque calorifuge, en matière   microporeuse à   moulage par compression, enveloppée dans un tissu de fibres de verre. 



   Sur le dessin, la référence 1 désigne un appareil chauffant, tel qu'un four de cuisson ou analogue, dont il n'est représenté qu'une paroi qui possède une surface   chaude exterieure   3. Il convient de calorifuger celle-ci, par rapport à une paroi extérieure de boîtier 4 de l'appareil chauffant l, sur un espace étroit et d'une   facon   telle que la face extérieure de cette paroi extérieure de boitier 4 n'offre pas de température trop élevée pour l'utilisation de l'appareil chauffant 1. 



   A cet effet, il est interposé, entre la paroi 2 et la paroi extérieure de boltier 4, un feutre de fibres minérales 5 qui   offre, à 1a traversée   de sa section transversale représentée, une chute brusque et convenable de température vers sa surface 8 se trouvant sur la paroi extérieure de boîtier, comme cela est connu et usuel. 



   A la manière usuelle, le feutre de fibres minérales 5 est réalisé avec, en tant que liant organique, de la résine phénolique qui, dans les feutres de fibres minérales habituels, est répartie d'une façon essentiellement homogène. Si la temperature de la surface chaude 3, dont la valeur maximale est déterminée par 
 EMI9.1 
 l'utilisation prescrite de l'appareil chauffant 1, atteint une valeur supérieure à environ 200"C, la temperature qui se développe alors dans la zone superficielle du feutre de fibres minérales 5 qui est voisine de la surface chaude 3 et est désignée par la référence 6, est alors si élevée que le liant se trouvant a cet endroit serait décomposé. 

 <Desc/Clms Page number 10> 

 



    11   se dégage de ce fait des gaz qui, en soi, ne sont pas nocifs, mais sont parfois ressentis comme offrant une odeur incommodante. 



   Afin d'éviter cela, le feutre de fibres minérales 5 est soumis, au cours de sa production chez le fabricant de fibres minérales dans le cas du présent exemple, ä une action thermique qui est exercée sur la surface, désignée par la référence   7,   de sa zone superficielle 6 et qui conduit   ä   une decomposition correspondante du liant se 
 EMI10.1 
 trouvant à c. et endroit. En variante, ou de far "on auxiliaire, on peut aussi, dans le cadre du dépôt des fibres, réaliser une couche superficielle à teneur réduite en liant. 11 en résulte dans chaque cas que la zone superficielle 6 est pratiquement dépourvue de liant organique jusqu'à la ligne 9 indiquée en trait mixte, une fois le feutre de fibres minérales mis en place dans l'appareil chauffant 1.

   En tenant compte de l'action thermique maximale obtenue à partir de la surface chaude 3 et de la chute de température dans le feutre de fibres minérales 5, on choisit la profondeur, désignée par t, de la zone superficielle 6 jusqu'à la ligne 9 indiquée en trait mixte de façon telle qu'il n'existe plus, à l'endroit de cette ligne 9, qu'une temperature de 150  C ou moins, si bien que la zone du feutre 5 qui se trouve, sur le dessin, au-dessous de la ligne 9   n'est   soumise à aucune action thermique qui décomposerait le liant   s'y   trouvant en   crevant une   odeur incommodante. 



   De cette maniere, on évite d'une façon simple et sure une incommodation due à l'odeur lors de la première mise en service de l'appareil chauffant. 



   Bien entendu, l'elimination du liant dans la zone superficielle 6 conduit   ä   une réduction correspondante des forces de liaison existant à cet endroit. Dans les cas où, lors de la manipulation ou lors du montage, cela risque de gener du fait d'une tendance à l'endommagement de la zone 

 <Desc/Clms Page number 11> 

 superficielle 6, on peut, au cours, ou à la suite, de l'elimination du liant, exercer une action thermique supplémentaire sur la surface de la zone superficielle 6, grâce   ä   une température qui se trouve au-dessus de la température de ramollissement des fibres minérales.

   De ce fait, les fibres minérales situées du   cote   de la surface fondent les unes sur les autres, se lient et constituent une surface relativement ferme, résistante   ä   l'usure et stable, sans qu'on utilise de liant organique. 



   Etant donné que, bien que ce soit dans des buts tout   ä   fait différents et pour des cas d'utilisation tout à fait différents, la technique consistant à éliminer des 
 EMI11.1 
 feutres de fibres minérales le liant se trouvant du côté de la surface est connue en soi, de meme que le renforcement du c. 8té surface par ramollissement des fibres minérales, par exemple à l'aide de chalumeaux, on peut se passer d'une description et d'une représentation plus détaillées de ces techniques. 



   La figure 3 représente une coupe transversale d'une plaque calorifuge qui comprend une enveloppe 11 en tissu de fibres de verre qui est fermée par des coutures 12 et qui, dans le cas de l'exemple ici représenté, possède, sur sa surface intérieure, un revêtement 13 comportant un encollage non organique. Cette enveloppe 11 entoure une matière microporeuse à moulage par compression   14, à   base, dans le cas du présent exemple, d'aérogel de silice, et qui possède des fibres minérales ou céramiques servant de renforcement, ainsi que d'opacifiant permettant de réduire la possibilité de traversée du rayonnement, comme cela est connu en soi. 



   La fabrication   d'une   telle plaque calorifuge se réalise en remplissant d'abord de matière microporeuse pulvérulente l'enveloppe 11 encore ouverte, puis en la fermant tout autour à l'endroit des coutures 12 et en comprimant le coussin ainsi forme pour lui donner la forme 

 <Desc/Clms Page number 12> 

 représentée, ce qui fait subir un compactage voulu à la. matière microporeuse   ä   moulage par compression 14. 



   Dans le cas du présent exemple, cette matière microporeuse   ä   moulage par compression 14 pourrait ne comporter aucun liant organique, de sorte qu'il ne serait à craindre aucune odeur incommodante lorsqu'elle est chauffée. Par contre, le tissu de fibres de verre de l'enveloppe 11 contient un encollage organique. 



  L'utilisation d'un tel encollage, en général en amidon et en une huile liant la poussière, est necessaire pour le traitement de surface des fils en filaments de verre, afin de pouvoir travailler ceux-ci parfaitement dans le métier à tisser. Finalement, on assure le finissage du tissu fini à   1 f aide d'un   encollage   supplementaire,   afin d'accroître ses propriétés   anti-éraillantes   et sa résistance au flambage. 



   Pour fabriquer la plaque calorifuge qui n'est représentée   qu'a   titre d'exemple, on encolle le tissu de fibres de verre de l'enveloppe 11 avant de travailler sur lui pour réaliser cette enveloppe 11. La temperature de l'opération d'épuisement ici utilisée s'élève, dans le cas du présent exemple, à 500  C à 600  C, chaque emplacement du tissu de fibres minérales étant soumis   ä   l'action thermique sur une période d'environ 5 secondes. Pour obtenir cette action thermique, on peut utiliser des éjecteurs de gaz, des radiateurs soufflants ou analogues. 



  Le tissu de verre ainsi encollé a une couleur légèrement 
 EMI12.1 
 brunâtre qui passe avec un chauffage prolonge. onge- 
On peut alors découper le tissu de fibres de verre ainsi encollé et le fermer sur trois   c8tés   par des coutures 12, de sorte que, par le côté restant ouvert, on peut réaliser le remplissage en matière prévue pour la substance microporeuse   ä   moulage par compression 14 et que, après avoir aussi cousu ce   cotez   on peut exécuter la compression nécessaire. La plaque calorifuge se trouve 

 <Desc/Clms Page number 13> 

 alors être sans substance organique et ne dégage, lorsqu'on la chauffe, aucune odeur incommodante. 



   Par contre, dans le cas qui n'est représenté qu'ä titre d'exemple, après l'encollage   ä   l'aide du revêtement 13, on a pourvu d'un encollage non organique une face du tissu de fibres de verre et on l'a ainsi cousu. Cet encollage non organique peut, lorsqu'on le désire, restaurer des propriétés souhaitées du tissu de fibres de verre dont a été éliminé l'encollage organique. 



   En variante, ou de façon auxiliaire, le revêtement 13 en encollage non organique peut aussi être appliqué suur la face extérieure de l'enveloppe 11. Dans ce cas, on peut, lorsqu'on le désire, réaliser aussi bien le   désenc011age   que la nouvelle enduction à l'aide d'un encollage non organique, après la compression de la matière microporeuse à moulage par compression 14. 



   A la figure 3, les dimensions de la plaque calorifuge en épaisseur sont exagérées par rapport aux dimensions en largeur, afin de rendre visibles les couches, notammeent dans le détail aggrandi. En réalité, le revêtement 13 est appliqué sous la forme d'une couche d'encollage extrêmement mince par dessus le tissu de fibres de verre également mince et, lors de   1'opération   de compression, il ne gene en particulier pas la possibilité pour ce dernier d'être traversé par l'air. 



   Pour l'encollage non organique, on peut utiliser une substance a base de sol de silice, éventuellement avec des additions de charges non organiques, notamment lorsque le revêtement 13 est appliqué sur la face extérieure de l'enveloppe 11 et doit améliorer les propriétés réfractaires de celle-ci. Concernant des particularités de tels revetements, on se reportera au document US-A- 3. 490. 065.

Claims (6)

  1. REVENDICATIONS 1. Procédé de fabrication d'un matériau calorifuge pour utilisation ä température élevée, en employant des substances non organiques réfractaires, telles que notamment des fibres de verre et/ou minérales, selon lequel, au cours de la fabrication du matériau calorifuge, on apporte aux substances non organiques des additions de substances organiques servant ä leur liaison, leur finissage ou analogue, caractérisé en ce que, avant EMI14.1 son utilisation à température élevée, on soumet le pera matériau calorifuge, pourvu de ses additifs non organiques, à une action thermique qui conduit ä une décomposition des additifs organiques au moins dans les zones de ce matériau c.
    a1orifuge qui, dans l'application prévue, sont soumises ä une temperature se trouvant audessus de la température de décomposition de ces additifs organiques.
  2. 2. Procédé suivant la revendication 1, caractérisé en ce qu'on utilise un matériau calorifuge à base de substance microporeuse a moulage par compression, telle qu'un oxyde métallique produit par pyrogénation, notamment un aerogel de silice, éventuellement avec un opacifiant et une addition de fibres, matériau calorifuge qu'on introduit sous forme pulvérulents dans une enveloppe en tissu de fibres de verre, puis qu'on comprime dans cette enveloppe, caractérisé en ce que, avant l'assemblage de la plaque ainsi constituée, de préférence avant le remplissage de l'enveloppe en tissu de fibres de verre, on soumet ce tissu, au moins sur une surface plane de la plaque, a une température a laquelle se decompose l'encollage organique adhérent sur les filaments du tissu de fibres de verre.
  3. 3. Procédé suivant la revendication 2, <Desc/Clms Page number 15> caractérisé en ce que, après 1a décomposition de l'encollage organique, on applique sur le tissu de fibres de verre un encollage non organique.
  4. 4. Procédé de fabrication d'un feutre de fibres minérales se présentant sous forme de rouleau ou de plaque et destiné à une utilisation ä température élevée, notamment pour l'isolation thermique de surfaces chaudes d'appareil chauffants, tels que des fours de cuisson ou analogues, selon lequel, en y ajoutant un liant organique de façon uniforme ou fractionnée, on dépose et comprime les fibres minérales sur une bande de production, sous forme d'un mat à teneur en liant uniforme ou décroissant ä travers l'épaisseur, et on fait durcir le liant, caractérisé en ce que, après le durcissement du liant, on soumet la surface de la bande de fibres minérales à une action thermique qui produit, à la surface de la bande de fibres minérales, une température de préférence d'au moins 500 OC.
  5. 5. Procédé suivant la revendication 4, caractérisé en ce que l'action thermique produit une température qui se trouve au-dessous de la température de frittage des fibres minérales.
  6. 6. Procédé suivant l'un quelconque des revendications 4 ou 5, caractérisé en ce que, dans une seconde phase, on réalise une action thermique lors de laquelle est produite provisoirement une température se trouvant au-dessus de la temperature de ramollissement des fibres.
BE8800465A 1988-04-22 1988-04-22 Procede de fabrication d'un materiau calorifuge pour utilisation a temperature elevee. BE1001588A3 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BE8800465A BE1001588A3 (fr) 1988-04-22 1988-04-22 Procede de fabrication d'un materiau calorifuge pour utilisation a temperature elevee.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE8800465A BE1001588A3 (fr) 1988-04-22 1988-04-22 Procede de fabrication d'un materiau calorifuge pour utilisation a temperature elevee.

Publications (1)

Publication Number Publication Date
BE1001588A3 true BE1001588A3 (fr) 1989-12-12

Family

ID=3883375

Family Applications (1)

Application Number Title Priority Date Filing Date
BE8800465A BE1001588A3 (fr) 1988-04-22 1988-04-22 Procede de fabrication d'un materiau calorifuge pour utilisation a temperature elevee.

Country Status (1)

Country Link
BE (1) BE1001588A3 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381330A (en) * 1980-08-02 1983-04-26 Toyo Kogyo Co., Ltd. Surface treated glass-wool mat and the method for making the same
DE3147316A1 (de) * 1981-11-28 1983-06-01 Rheinhold & Mahla Gmbh, 6800 Mannheim Kaschierte mineralfasermatte und verfahren zu ihrer herstellung
US4421700A (en) * 1980-09-11 1983-12-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and technique for installing light-weight, fragile, high-temperature fiber insulation
EP0130629A1 (fr) * 1981-12-10 1985-01-09 Grünzweig + Hartmann und Glasfaser AG Corps calorifuge d'une matière isolante à haute dispersion densifié par compression et procédé de sa fabrication
EP0251150A2 (fr) * 1986-06-24 1988-01-07 General Signal Corporation Procédé pour la fabrication d'un produit moulé de fibres réfractaires

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381330A (en) * 1980-08-02 1983-04-26 Toyo Kogyo Co., Ltd. Surface treated glass-wool mat and the method for making the same
US4421700A (en) * 1980-09-11 1983-12-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and technique for installing light-weight, fragile, high-temperature fiber insulation
DE3147316A1 (de) * 1981-11-28 1983-06-01 Rheinhold & Mahla Gmbh, 6800 Mannheim Kaschierte mineralfasermatte und verfahren zu ihrer herstellung
EP0130629A1 (fr) * 1981-12-10 1985-01-09 Grünzweig + Hartmann und Glasfaser AG Corps calorifuge d'une matière isolante à haute dispersion densifié par compression et procédé de sa fabrication
EP0251150A2 (fr) * 1986-06-24 1988-01-07 General Signal Corporation Procédé pour la fabrication d'un produit moulé de fibres réfractaires

Similar Documents

Publication Publication Date Title
FR2614388A1 (fr) Procede de fabrication d&#39;un materiau calorifuge pour utilisation a tempe
EP0517593B1 (fr) Chemise de tube de canon en matériau composite, et son procédé de fabrication
CA1337095C (fr) Procede de fabrication d&#39;une piece notamment d&#39;un disque de frein en carbone - carbone et piece obtenue
BE1001588A3 (fr) Procede de fabrication d&#39;un materiau calorifuge pour utilisation a temperature elevee.
FR2546441A1 (fr) Procede de fabrication d&#39;une structure composite renforcee en matiere ceramique
WO1989010248A1 (fr) Procede et methode pour preimpregner des elements de renforts utilisables pour realiser un materiau composite, produit obtenu
EP3359507A1 (fr) Procédé de fabrication d&#39;un assemblage fibreux imprégné
EP0452199A1 (fr) Procédé de conformation de préformes pour la fabrication de pièces en matériau composite thermostructural, notamment de pièces en forme de voiles ou panneaux
WO2018024962A1 (fr) Procede d&#39;isolation et appareil obtenu
WO1995011869A1 (fr) Procede d&#39;infiltration chimique en phase vapeur d&#39;un materiau au sein d&#39;un substrat fibreux avec etablissement d&#39;un gradient de temperature dans celui-ci
FR2801304A1 (fr) Procede de fabrication d&#39;un bol en materiau composite thermostructural, notamment pour une installation de production de silicium monocristallin
FR2686907A1 (fr) Procede d&#39;elaboration de preformes fibreuses pour la fabrication de pieces en materiaux composites et produits obtenus par le procede.
FR2763616A1 (fr) Isolant thermique plus particulierement adapte aux sols chauffants
FR2588595A1 (fr) Element tubulaire prefabrique, notamment pour cheminees
EP1322807B1 (fr) Procede et ensemble de fabrication de feutres en fibres minerales
EP0229854A1 (fr) Appareil de chauffage équipé d&#39;une couche en vermiculite
KR100747477B1 (ko) 진공 단열재 및 이를 적용한 냉장고의 단열 구조
FR2772748A1 (fr) Procede de fabrication de ressort en materiau composite thermostructural
EP1230508B9 (fr) Procede pour appliquer une couche isolante sur une surface d&#39;un objet et produit isole correspondant
WO2020126883A1 (fr) Matériau multicouche de protection de câble pour hautes températures
FR2465042A1 (fr) Panneau d&#39;isolation pour toiture
EP2722429B1 (fr) Produit isolant
FR2613469A1 (fr) Procede de realisation d&#39;un bloc de garnissage destine a la couche de garnissage thermiquement isolant d&#39;un four
EP0923436B1 (fr) Procede de fabrication de plaques renforcees
FR2497792A1 (fr) Revetements fibreux refractaires pour temperatures elevees et procede de fabrication

Legal Events

Date Code Title Description
RE Patent lapsed

Owner name: MICROPORE INTERNATIONAL LTD

Effective date: 19900430