AU9707001A - Operating device for game machine - Google Patents

Operating device for game machine Download PDF

Info

Publication number
AU9707001A
AU9707001A AU97070/01A AU9707001A AU9707001A AU 9707001 A AU9707001 A AU 9707001A AU 97070/01 A AU97070/01 A AU 97070/01A AU 9707001 A AU9707001 A AU 9707001A AU 9707001 A AU9707001 A AU 9707001A
Authority
AU
Australia
Prior art keywords
main body
operating
operating unit
signal
thrusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU97070/01A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Interactive Entertainment Inc
Original Assignee
Sony Computer Entertainment Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Computer Entertainment Inc filed Critical Sony Computer Entertainment Inc
Priority to AU97070/01A priority Critical patent/AU9707001A/en
Publication of AU9707001A publication Critical patent/AU9707001A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Switches With Compound Operations (AREA)

Description

AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT Applicant(s): SONY COMPUTER ENTERTAINMENT INC.
.0.0 Invention Title: OPERATING DEVICE FOR GAME MACHINE The following statement is a full description of this invention, including the best method of performing it known to me/us: la This specification is a divisional of Australian patent application 25220/97.
DESCRIPTION
Operating Device for Game Machine Technical field This invention relates to an operating device used in a game machine employing a display device for, for example, a television receiver. More particularly, it relates to an operating device controlling the operation of rotating a display character displayed on a display screen, continuously changing its speed of movement or deforming the display character.
Background Art Heretofore, a game machine employing a television receiver has a main body portion connected to the television receiver used as a display device, and an operating device connected to this main body portion of the game machine over a connection cable for a controlling the display character displayed on the display screen S of the television receiver.
The main body portion of the game machine has enclosed therein a disc driving unit for reproducing an optical disc as a recording medium carrying a recorded game program and a picture processing device for displaying the display character along with a background scene on the screen of the television receiver in accordance with the game program recorded on the optical disc.
Plural operating buttons are arranged in the operating device connected to the main body portion of the game machine.
The user operates these operating buttons provided on the 2 operating device for entering to the picture processing device the command information concerning the movement of the display character displayed on the display screen of the television receiver for controlling the direction of movement of the display character in accordance with the command information for carrying out the game.
The operating device used in this sort of the game machine is used by being gripped with hand or finger. That is, such operating device is used which has, on its one side, a direction command operating unit including a cross-shaped or circular direction command operating button and which also has, on its *other side, a function setting unit including plural function ~setting/executing buttons for setting or executing the operating functions of the display characters. The direction command operator includes four switches arranged at right angles to one 0. 0 another and having operating units adapted for being contacted 0 with or moved away from associated contacts. These switches are selectively turned on and off by the cross-shaped or circular direction command operating buttons for moving the display o characters. For example, the display character is moved in a direction along which is arrayed the one of the four switches that has been turned on. The function setting/executing unit has switches arranged in association with the plural function setting/executing buttons. By turning on the switch associated with the function setting/executing button, the function of the display character allocated to the button is set or the function proper to the display character is executed.
Since the direction command operating unit of the operating device simply affords a command signal for moving the display character in a direction along which is arrayed the one of the four switches arranged at right angle to each other, the operating unit cannot issue the command information of rotating the display character as it is advanced, or of changing the line of sight of the display character. The result is that difficulties are encountered in constructing the game program employing a display character performing variegated movements.
On the other hand, since the switches making up the direction command operating unit merely issue the command information of controlling the movement of the display character by being turned on and off by actuation of the direction command operating buttons, the display character performs intermittent movements, while being unable to perform a series of continuous e movements.
Thus, such an operating device has been proposed having an operating unit to which can be entered a command signal enabling the display character to be moved as it rotates or as it changes its speed or enabling the display character to change its form or configuration.
An operating device of this type has been disclosed in Japanese Laid-Open Patent Application 7-88252.
2 7 JN. 2001 4 However, if a large number of operating units are provided in the operating device, it becomes difficult to smoothly select the operating units.
Summary of the Invention It is therefore an object of the present invention to provide an operating device for a game machine capable of smoothly operating a large number of operating units.
It is another object of the present invention to provide an operating device for a game machine designed for facilitating the operation of the operating unit issuing the command information for moving the display character as it rotates or as it changes its speed or enabling the display character to change its form or configuration.
It is still another object of the present invention to provide an operating device for a game machine enabling ooeo the use of a game program having a display character :capable of executing variegated movements or operations.
It is yet another object of the present invention to 20 provide an operating device for a game machine enabling execution of a game having excellent simulated reality feeling.
According to a first aspect of the present invention, there is provided an operating device for a 25 game machine, comprising: *oo a main body having front and rear sides and upper and lower surfaces; .first and second grips protruding at spaced positions from the rear side of the main body; a first operating unit mounted in the main body adjacent one of the spaced positions, the first operating unit having a plurality of first thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the first thrusting H: \ayo\Keep\specifications\2552 209 7 div.doc 5/12/01 5 operators is depressed; a second operating unit mounted in the main body adjacent the other one of the spaced positions, the second operating unit having a plurality of second thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the second thrusting operators is depressed; and third and fourth operating units arranged on the rear side of the main body, the third operating unit being positioned adjacent the first grip and the first operating unit, the fourth operating unit being positioned adjacent the second grip and the second operating unit, so that the third and fourth operating units confront one another, the 15 third and fourth operating units each having a rotation ooo o *..member and at least one signal input element for generating a signal in response to an operation of the corresponding rotation member.
According to a second aspect of the present 20 invention, there is provided an operating device for a game machine, comprising: a main body having front and rear sides and upper and lower surfaces; first and second grips protruding at spaced positions from the rear side of the main body; a first operating unit mounted in the main body adjacent one of the spaced positions, the first operating unit having a plurality of first thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the first thrusting operators in depressed; a second operating unit mounted in the main body H;\amyo\Keep\Specifjcations\255220.97 div.doc 5/12/01 6 adjacent the other one of the spaced positions, the second operating unit having a plurality of second thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the second thrusting operators is depressed; and third and fourth operating units arranged on the rear side of the main body between the first and second grips and in confronting relationship to one another, the third and fourth operating units each having a rotation member and at least one signal input element for generating a signal in response to an operation of the corresponding rotation member.
According to a third aspect of the present 15 invention, there is provided an operating device for a game machine, comprising: a main body having front and rear sides and upper and lower surfaces; first and second grips protruding at spaced 20 positions from the rear side of the main body; a first operating unit mounted in the main body adjacent one of the spaced positions, the first operating unit having a plurality of first thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the first thrusting operators is depressed; a second operating unit mounted in the main body adjacent the other one of the spaced positions, the second operating unit having a plurality of second thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the second H: \amyO\Kee\Specifications\255220o97 div.doc 5/12/01 -6athrusting operators is depressed; and third and fourth operating units mounted to the main body adjacent the spaced positions and in confronting relationship to one another, the third and fourth operating units each having a rotation member and at least one signal input element for generating a signal in response to an operation of the corresponding rotation member.
According to a fourth aspect of the present invention, there is provided a game machine, comprising: a main unit for reading a game program; and an operating device interconnected with the main unit, the operating device including a main body having front and rear sides and upper and lower surfaces; o.
first and second grips protruding at spaced positions from the rear side of the main body; a first operating unit mounted in the main body adjacent one of the spaced positions, the first operating S. 20 unit having a plurality of first thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the first thrusting operators is depressed; a second operating unit mounted in the main body adjacent the other one of the spaced positions, the second operating unit having a plurality of second thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the second thrusting operators is depressed; and third and fourth operating units arranged on the rear side of the main body, the third operating unit being H:\amyo\Keep\Specifications\255220-9 7 div.doc 5/12/01 6b positioned adjacent the first grip and the first operating unit, the fourth operating unit being positioned adjacent the second grip and the second operating unit, so that the third and fourth operating units confront one another, the third and fourth operating units each having a rotation member and at least one signal input element for generating a signal in response to an operation of the corresponding rotation member.
According to a fifth aspect of the present invention, there is provided a game machine, comprising: a main unit for reading a game program; and an operating device interconnected with the main unit, the operating device including a main body having front and rear sides and upper and lower surfaces; first and second grips protruding at spaced positions from the rear side of the main body; a first operating unit mounted in the main body adjacent one of the spaced positions, the first operating 20 unit having a plurality of first thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the first thrusting operators is depressed; a second operating unit mounted in the main body adjacent the other one of the spaced positions, the second operating unit having a plurality of second thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the second thrusting operators is depressed; and third and fourth operating units arranged on the rear side of the main body between the first and second H: \amyo\Keep\Specifications\255220-97 div.doc 5/12/01 6c grips and in confronting relationship to one another, the third and fourth operating units each having a rotation member and at least one signal input element for generating a signal in response to an operation of the corresponding rotation member.
According to a sixth aspect of the present invention, there is provided a game machine, comprising: a main unit for reading a game program; and an operating device interconnected with the main unit, the operating device including a main body having front and rear sides and upper and lower surfaces; first and second grips protruding at spaced positions from the rear side of the main body; a first operating unit mounted in the main body adjacent one of the spaced positions, the first operating unit having a plurality of first thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the first thrusting operators is depressed; a second operating unit mounted in the main body adjacent the other one of the spaced positions, the second operating unit having a plurality of second thrusting operators protruding from the upper surface of the main 00 body and a plurality of signal input elements each for generating a signal when a corresponding one of the second thrusting operators is depressed; and third and fourth operating units mounted to the main body adjacent the spaced positions and in confronting relationship to one another, the third and fourth operating units each having a rotation member and at least one signal input element for generating a signal in H:\amyo\Keep\Specifications\255220-97 div.doc 5/12/01 6d response to an operation of the corresponding rotation member.
Brief Description of the Drawings Fig.l is a perspective view showing an operating device for a game machine according to the present invention.
Fig.2 is a plan view of the operating device for a game
S
"e
S**
H:\amyo\Keep\Specifications\255220-97 div.doc 5/12/01 machine shown in Fig.l.
Fig.3 is a back side view of the operating device for the game machine shown in Fig.l.
Fig.4 is a front view of the operating device for the game machine shown in Fig.l.
is a right-hand side view of the operating device for the game machine shown in Fig.l.
Fig.6 is a left-hand side view of the operating device for the game machine shown in Fig.l.
Fig.7 is a perspective view showing the state of use of the operating device for the game machine shown in Fig.l.
Fig.8 is a side view showing the state of use of the operating device for the game machine shown in Fig.l, with the operating device being mounted on a mounting surface.
Fig.9 is a perspective view showing essential portions of the first operating unit.
Fig.10 is a partial cross-sectional view showing the first operating unit.
Fig.ll is a cross-sectional view showing the inoperative state of first to fourth thrusting operators making up the first operating unit.
S. Fig.12 is a cross-sectional view showing the state of the second thrusting operator of the first operating unit being thrust.
Fig.13 is a cross-sectional view showing the state of the 8 second thrusting operator of the first operating unit having been thrust.
Fig.14 is an exploded perspective view showing a multidirectional input device making up third and fourth operating units.
is a cross-sectional view showing the multidirectional input device with an operating shaft in its initial state.
Fig.16 is a cross-sectional view showing the multidirectional input device with the operating shaft having been rotated.
Fig.17 is a cross-sectional view showing the multidirectional input device showing the state of operating a thrusting type switch element.
Fig. 18 is a cross-sectional view showing the multidirectional input device showing the state of the thrusting type switch element having been operated.
Fig.19 is an exploded perspective view showing a vibration imparting mechanism.
•Fig.20 is a perspective view showing the state in which the vibrating imparting mechanism has been built in the main body portion of the game machine.
Fig.21 is a plan view showing the state in which the operating device for the game machine according to the present invention has been connected to the main body portion of the game machine.
Detailed Description of the Preferred Embodiments Referring to the drawings, an operating device for a game machine according to the present invention will be explained in detail.
The operating device for the game machine is connected to a main body portion of the game machine for controlling the operation of the present game machine for executing the game software recorded on an optical disc. The main body portion of the game machine has enclosed therein a disc driving unit for reproducing an optical disc as a recording medium having a game program recorded thereon and a picture processing unit for displaying a display character along with a background picture on the screen of a television receiver in accordance with a game program recorded on the optical disc.
The operating device 1 for the game machine according to •ooooe the present invention includes a main body portion 4 made up of an upper half 2 and a lower half 3 abutted and secured to each other such as with set-screws, as shown in Fig.l. Referring to Figs.l and 2, a first grip portion 5 and a second grip portion 6 are protuberantly formed on the lateral surface on both ends of the main body portion 4 so that, when the device 1 is connected to the main body portion of the game machine for playing the game, the grip portion of the game machine for playing the game, the grip portions 5, 6 will be gripped by being held in their entirety with the user's palms. These first and second grip portions are progressively spaced apart from each other towards their distal ends while being directed downwardly of the main body portion 4, as shown in Figs.2, 3 and 4.
For enabling the gripping over an extended time, the first and second grip portions 5, 6 are tapered from their connection to the main body portion 4, while being arcuately shaped on the peripheral surfaces and on the distal ends thereof, as shown in Figs.2, 5 and 6.
On one end side of the main body portion 4 is mounted a first operating unit 9 having first to fourth thrusting operators 8a, 8b, 8c and 8d protruding from the upper surface of the main body portion 4 at right angels to each other, as shown in Figs.l and 2. The first to fourth thrusting operators 8a, 8b, 8c and 8d making up the first operating unit 9 are unified to a rotation actuating member 10 having its center portion supported for rotation and are arrayed at right angles to one another about the center of rotation of the rotation actuating member That is, the first to fourth thrusting operators 8a, 8b, 20 8c and 8d making up the first operating unit 9 are connected as one to one another. The first operator 9 is provided with switch devices, as signal input devices, in [.association with the first to fourth thrusting operators 8a, 8b, 8c and 8d. The first operator 9 operates as a 25 direction command controller controlling the movement of the display character, such that, by selectively actuating the first to fourth thrusting operators 8a, 8b, 8c and 8d and by selectively turning on/off the switch devices associated with the thrusting operators, the display character is moved in the arraying direction of the thrust operator 8a, 8b, 8c or 8d.
On the opposite side of the main body portion 4 is mounted a second operating unit 12 having protuberant first to fourth thrusting operators lla, llc, llc and lld arrayed at right angles to one another. These first to fourth thrusting operators lla, lib, llc and lld are H:\evonnee\Keep\Speci\25220.97.doc 27/06/01 11 formed as independent members and switch devices as signal input devices are mounted in association with these thrusting operators lla, lib, llc and lid. By turning on the switch devices associated with the first to fourth thrusting operators lla, lib, llc and lid, the second operating unit 12 sets the functions of the display character allocated to other thrusting operators lla, lib, llc and lid or executes the functions of the display character, the second operating unit 12 thus operating as a function setting and/or executing section.
The operating device 1 of the present invention has third and fourth operating units 14, 15 on the proximal sides of the first and second grip portions 5, 6 where 15 they connect to main body portion 4. Each of these third and fourth operating devices 14, 15 includes a rotation member 16 rotatable in a 3600 direction about a pivot 16a as the center of rotation and a signal input element, such as a variable H:\evonnee\Keep\Speci\25220.9 7 .doc 27/06/01 resistance element, operated by this rotation member 16.
Specifically, the rotation member 16 is mounted towards the distal end of a pivot 16a mounted so as to be reset to its neutral position by a biasing member and is rotated in a 3600 direction about the pivot 16a as center of rotation. These third and fourth operating units 14, 15 are used for enabling inputting of a command signal for enabling analog movements such as combined rotation and linear movement, linear movement with a variable speed or change of the configuration of the display character by rotational operation of the rotation member 16.
On the left and right ends towards the front side of the main body portion 4 opposite to its back side from which are protruded the first and second grip portions 5, 6 are arranged fifth and sixth operating units 17, 18. These fifth and sixth operating units 17, 18 include first and second thrusting operators 19a, 19b and 20a, 20b, respectively. These thrusting operators 19a, 19b and 20a, 20b are associated with switch devices. By turning on the switch associated with the first and second thrusting operators 19a, 19b and 20a, 20b, the fifth and sixth operating units 17, 18 set the function of the display character allocated to the thrusting operators 19a, 19b and or execute the functions owned by the display character, the fifth and sixth operating units 17, 18 thus operating as function setting and/or executing sections.
27 JUN 2001 13 Between the first operating unit 9 and the second operating unit 12 on the upper surface of the main body portion 4 are mounted, side-by-side, a start switch 22 for commanding start of a game and a selection switch 23 for selecting, at the time of starting the game, the degree of ease or difficulty with which the game is played. Between the third and fourth operating units 14, 15 on the upper surface of the main body portion 4 are mounted a mode selecton switch 24 for selecting the operating mode of the third and fourth operating units 14, 15 and a display unit 25 for displaying the state of the operating mode of the third and fourth operating units 14, 15. This display unit is constituted by a light emitting device, such as light emitting diode. By switching the mode selecton switch 24, an operating mode enabling the inputting of a command signal from the third and fourth operating units 14, 15 or an operating mode inhibiting the inputting of the command signal from the third and fourth operating units. 14, 15 is selected. In addition, an operating mode is selected which enables inputting of a command signal from the third and fourth operating units 14, 15 and which has switched the functions of the first to fourth thrusting operators lla to lid and the functions of the first and second thrusting operators 19a, 19b, 20a, 20b of the fifth and sixth operating units 17, 18. Depending on the states of the operating modes, the display unit 25 is turned on and off, with switching of the display light.
S7 Ji'MN 2001 14 In the lower surface of the main body portion 4 are formed engagement recesses 26, 27 engaged by a portion of left and right fingers Lf, Rf when the first and/or second grip portions 5, 6 are gripped by these fingers, as shown in Fig.7. These engagement recesses 26, 27 are formed as smoothly curved reentrant portions, as shown in Figs.5 and 6.
In register with the engagement recesses 26, 27 on the front side of the main body portion 4 are formed depending finger supports 28, 29 as also shown in Figs.5 and 6.
Specifically, the finger supports 28, 29 are protruded from the lower ends of protuberant portions 31, 32 on both ends *000 on the front side of the main body portion 4 carrying the fifth and sixth operating units 17, 18.
15 With the above-described operating device of the present invention, in which the first and second grip portions 5, 6 are protuberantly formed on the main body 0 portion 4, since the first and second grip portions 5, 6 are S held by being entirely wrapped with both palms, there is no 20 necessity of supporting the main body portion 4 with these fingers, such that the operating device can be gripped in such a state that ten fingers at the maximum and six fingers in the least of both hands can be moved freely. If, for example, the first and second grip portions 5, 6 are gripped as they are wrapped entirely with both palms, both thumb fingers Lfl, Rfl of left and right hands can be extended over rotation members 16 of the third and fourth operating units 14, 15, and over the first to fourth H:\evonnee\Keep\Speci\25220.9 7 .doc 27/06/01 thrusting operators 8a to 8d of the first operating unit 9 and the first to fourth thrusting operators lla to lid of the secondt operating unit 12 to enable selective thrusting of the rotation member 16, thrusting operators 8a to 8d and thrusting operators 11a to 1id. In particular, since the rotation members 16 of the third and fourth operating units 14, are arranged facing the proximal ends which are coupling sides to the main body portion 4 of the first and second grip portions 6 gripped by being entirely enclosed by both palms, the rotation members 16 lie closest to the thumb fingers Rfl, Lf~l when the first and second grip portions 5, 6 are gripped by left sees and right hands. Thus, the rotation members 16 can be turned easily with the thumb fingers Rfl, Lfl.
Also, when the first and second grip portions 5, 6 are 55:8 gripped by being entirely enclosed by both palms, as shown in Fig.7, the index fingers Rf, Lf2 and second fingers Rf3, Lf3 of both hands can be extended to positions enabling selective thrusting of the first and second thrusting operators 19a, 19b and 20a, 20b of the fifth and sixth operating units 17, 18.
Thus, when the operating device 1 is gripped by both hands, the -first and second grip portions 5, 6 are enclosed with both 00000 palms and both third fingers Lf4, Rf4 and/or little fingers of left and right hands can be engaged in the engagement recesses 26, 27 and set on the finger supports 28, 29, so that the main body portion 4 can be gripped in position. Since the 01N 1001 16 fingers can be set in position on the first to sixth grip portions 9, 12, 14, 15, 17 and 18 correct operations can be realized.
Instead of being gripped by hand and fingers, the operating device 1 can also be set on a planar setting surface S, such as a table, as shown in Fig.8. The operating device 1 is designed so that, if the device 1 is set on the setting surface S with the distal ends of the first and second grip portions 5, 6 and the distal ends of the finger supports 28, 29 as supports, the operating surfaces of the first to fourth thrusting operators 8a to 8d of the first operating unit 9 and of the first to fourth operators lla to lild of the operating unit 12 will be \oo substantially parallel to the setting surface S. Thus the operating device 1 can be set on the planar setting surface S and, with the palms set on the first and second grip portions 6, the first to sixth operators 9, 12, 14, 15, 17 and 18 can be manipulated with free fingers.
The first operating unit 9 of the operating device 1 is explained in further detail. Referring to Figs.l, 9 and 10, the first operating unit 9 is. designed so that the first to fourth thrusting operators 8a to 8d formed on a rotation actuating member 10 protrude into a substantially cross-shaped recess towards one end of the upper surface of the main body portion 4. On upper, lower, left and right ends of the cross-shaped recess 30 are formed bearing indicators 31a, 31b, 31c and 31d on 2 7 JUN 9nr" 17 the inner sides of which are formed four apertures 32 at right angles to one another for allowing the first to fourth thrusting operators 8a to 8d to protrude towards the upper side of the main body portion 4. At a mid portion surrounded by these apertures 32 is formed a center support boss 33 for supporting the center of the upper surface of the rotation actuating member This center support boss 33 is formed as one with the inner upper surface of the main body portion 4. Facing the rotation actuating member 10 is mounted an elastic member 35 having four movable contacts 34 thrust by the first to fourth thrusting operators 8a to 8d. At the center of the elastic member 35 is held a spherically-shaped fulcrum element 36, such as a stainless steel ball, for supporting the center of the bottom surface of the rotation actuating member 10. Facing the elastic member 35 is arranged a circuit board 38 having four fixed contacts 37 associated with movable contacts 34.
Referring to Figs.9 and 10, the rotation actuating member constituting the first operating unit 9 includes a circularshaped base portion 39, first to fourth thrusting operators 8a to 8d formed as one on an upper portion of the base portion 39, a spherically-shaped first recess 41, a spherically-shaped second recess 42 and a contact guide 43. The first recess 41 is formed on the bottom surface of the center portion of the base portion 39 for engaging with the spherical surface of the fulcrum element 36, while the second recess 42 is formed on the upper surface of the 27 1' W 'yr"r' 18 center portion of the base portion 39 for engaging with the center support boss 33. The contact guide 43 is protuberantly formed on the lower surface of the base portion 39 for thrusting the back side of the movable contacts 34 of the elastic member 35. Referring to Fig. 9, the four thrusting operators 8a to 8d, formed as one with the rotation actuating member 10, are formed on the upper surface of the base portion 39 so as to have facing ends tapered and so as to be thicker from the center towards the outer sides, and protrude from the upper surface side of the main body portion 4 via the respective apertures 32.
The elastic member 35 is sandwiched between he circuit board 38 and the rotation actuating member 10 and includes four movable rubber contacts 34 in association with the first :15 to fourth thrusting operators 8a to 8d.
The fulcrum element 36 is spherically-shaped and is .oeeoi arranged at a central portion of the rotation actuating member 10 in register with the center support boss 33 so as to be engaged in the first recess 41 formed at the center of the rotation actuating member When the rotation actuating member 10 is arranged in body portion 4, the first to fourth thrusting operators 8a to 8d are arranged radially with the center support boss 33 as a center and are gradually increased in height from the facing ends towards the opposite outer ends. Thus, when the finger tip is set on the center portion of the recess 30 surrounded by the first to fourth thrusting operators 8a to 8d the relative position of the latter can be easily discerned, by H:\evonnee\Keep\Speci\25220.97.doc 27/06/01 19 the tactile feel at the fingertip and by the step difference between the center portion and the first to fourth thrusting operators 8a to 8d. Moreover, if the fingertip is shifted during the switch operation from the center portion towards the outer side of the recess 30, it can be easily discerned by the tactile feel at the fingertip which of the first to fourth thrusting operators 8a to 8d is being thrust.
In the above-described structure of the first operating unit 9, if none of the first to fourth thrusting operators 8a to 8d is thrust, the rotation actuating member 10 is raised via the contact guide 43, under the bias of the elastic member with the center support boss 33 becoming engaged in the spherically-shaped second recess 42 of the rotation actuating member 10. Simultaneously, the peripheral portion of the circular-shaped base portion 39 is retained by the ends of the apertures 32, so that the rotation actuating member 10 is retained in an initial position in which the first to fourth thrusting operators 8a to 8d protruded beyond the upper surface of the main body porion 4.
If, with the first to fourth thrusting operators 8a to 8d in the initial position, the third thrusting operator 8c is thrust in the direction of arrows A or B in Fig. 12, the rotation actuating member 10 is rotated in a direction indicated by arrow R1 or towards the right in fig.12, as the first recess 41 is rotated on the spherical surface of the fulcrum element 36, with the elastic member 35 being thrust downwards by the third thrusting operator 8c. If the third thrusting operator 8c is thrust further, the rotation H:\evonnee\Keep\Speci\25220.97.doc 27/06/01 20 actuating member 10 if further rotated in the direction of arrow RI, with the fulcrum element 36 as the center of rotation, as shown in Fig.13, for establishing electrical connection by the movable contact 34 being contacted with the underlying fixed contact 37.
If the thrusting on the third thrusting operator 8c is released, the first recess 41 is moved in a direction away from the fulcrum element 36, with which it has so far been in contact, under the bias of the elastic member 35. That is, the third thrusting operator 8c is rotated in the direction of arrow R2 in Fig.13 for spacing the movable contact 34 away from the fixed contact 37. If the third thrusting operator 8c *is rotated further in the direction indicated by arrow R2 in Fig.13, until the center support boss 33 is engaged with the 15 second recess 42,the rotation actuating member 10 is reset to the initial position shown in Fig.1l.
On the other hand, if the first thrusting operator 8a is thrust towards the front side of the main body operation 4 as indicated by arrow c in Fig.10, the elastic member 35 is deformed under its own elasticity so that, as the first recess 41 is rotated on the spherical surface of the fulcrum element 36, the first thrusting operator 8a is moved in a direction indicated H:\evonnee\Keep\Speci\25220.97.doc 27/06/01 21 by arrow C in Fig.10 for realizing a switching operation by the movable contact 34 contacting the underlying fixed contact 37.
The movable contact 34 and the underlying fixed contact 37 make up a switch device and the switch on/off oceration takes place by the movable contact 34 being contacted with or displaced away from the underlying fixed contact 37 to permit inputting of a command signal for, for example, moving the display character.
In the'operation of the first to fourth thrusting operators 8a to 8d of the first operating unit 9, since the fulcrum point is formed by relative engagement of the spherically-shaped fulcrum element 36 and the spherically-shaped first recess 41, the contact between the spherically-shaped.surfaces is exploited for varying the stroke of the rotation actuating member 10 for realizing the switching operation. Moreover, the thrusting operators 8a to 8d are arranged in a segmented manner on the main body portion 4, the direction of thrusting the first to fourth thrusting operators 8a to 8d is not limited in a fixed direction but the smooth switching operation may be realized by actuation from any arbitrary direction to prevent vibrations of the o rotation actuating member 10 or shifting or distortion of the center position for improving operating characteristics.
The second operating unit 12 of the operating device 1 will be explained in further detail. Referring to Figs.l and 2, the second operating unit 12 has a substantially cross-shaped recess 53 on the opposite side end on the upper surface of the main body 27 JUN ?0o 22 portion 4 and apertures 52 are formed at upper, lower, left and right ends of the recess 53. The first to fourth thrusting operators lla to lid making up the second operating unit 12 are arranged on the main body portion 4 -so that the distal ends thereof protrude from the upper surface of the main body portion 4. Within the inside of the main body portion 4 are arranged switch devices actuated by the first to fourth thrusting operators 1la to lid. These switch devices are turned on or off by thrusting the first to fourth thrusting operators lla to lid for entering a command signal for setting the functions or executing the operations of the display character.
On the distal end faces of the first to fourth thrusting operators 11a to lid are inscribed symbols indicating the functions of the thrusting operators lla to lid, such as 0, X, O or A. In the present embodiment, -the first thrusting operator lla, second thrusting operator lib, third thrusting operator lic and the fourth thrusting operator lid are affixed with the symbols A, O, X and 0, respectively. Specifically, the third thrusting operator 11c and the fourth thrusting operator lid, disposed towards the second grip portion 6 for facilitating the manipulation by the thumb finger, are reserved for entering ~command signals, such as "YES" or frequently used in playing the game. The third thrusting operator lic and the fourth thrusting operator lid therefore are affixed with marks O and X corresponding to the commands of "YES" and resoectivelv.
7 Thus, in the operating device 1 designed to have a large number of operating units, the third and fourth thrusting operatorE lic and lid are placed at such positions as to permit facilitated manipulation to improve operability of the smallest number of thrusting operators required in playing the game.
The first to fourth thrusting operators lla to lid may be designed to display the respective functions by colors. That is, these first to fourth thrusting operators Ila to lid may be of different colors for displaying their functions.
The third and fourth operating units 14 and 15 will now be explained. Referring to Fig.l, these third and fourth 15 operating units 14 and 15 are arranged on substantially cylindrically-shaped mounting portions 47, 48 at corner portions of the connection of the proximal ends of the first and second grip portions 5, 6 to the main body portion 4.
Since the third and fourth operating units 14 and 15 are of the same structure, the third operating unit 14 only is explained.
The third operating unit 14 has a multi-directional input S. device as shown in Fig.14. This multi-directional input 10 device has a box-shaped upper frame and an arched first interlock member 51, as shown in Fig.14. This interlock member 51 has its warped end 52 engaged by a rotational shaft 54 of a first variable resistor 53a constituting a rotary detector secured to a- lateral side 50a of the upper frame 50. The 27 JUN 24 interlock member 51 has on its opposite warped end 52 a boss loosely fitted in an opening 56 formed in a lateral side facing the lateral side 50a of the frame 50 for rotatably supporting the first interlock member 51 on the upper frame An operating shaft 57 is mounted at the center of the upper frame 50. This operating shaft 57 has a saucer-shaped operating member 58 and a disk 59 at its mid portion. This disk 59 has an orifice 60 and a rotation member 16 is mounted on the upper end of the operating shaft 57.
Within the upper frame 50 is arranged a second interlock member 62 extending at right angles to the operating shaft 57.
~The second interlock member 62 has a center ball 63 from which are transversely extended a pair of arms 64a, 64b. An 15 elongated slot 65 extends from the upper surface to the lower surface of the ball 63. The operating shaft 57 and the disk 59 are inserted into the elongated slot 65. After registration of the orifice 60 in the disk 59 relative to a S" lateral side opening 66 in the ball 63, a pin 67 is inserted .a into the opening 66 and the orifice 60. The operating shaft 57 is thus mounted on the second interlock member 62 for rotation in the elongated slot 65 with the pin 67 as the center of rotation.
The end of the arm 64a of the second interlock member 62 is engaged with the rotary shaft 54 of the second variable resistor 53b secured to a lateral side 50c of the upper frame while the end of the opposite side arm 64b is fitted in an H:\evonnoe\Keep\Sppci\25220.97.doc 27/06/01 elongated opening 70 formed in the lateral side 50d of the upper frame 50 so as to protrude outwardly from the lateral side 50d of the upper frame 50. The operating shaft 57 is passed through the elongated slot 71 in the first interlock member 51 so as to protrude outwards via an_opening 72 in the upper surface of the upper frame The operating shaft 57 is supported on a restoration member 73 having on its upper surface a recess 74 in which is rotatably housed the saucer-shaped operating member 58.
On the lower end .side of the upper frame 50 is mounted a lower frame; 75'. The upper surface of the lower frame _7-5 is formed with a supporting wall section 77 for vertically movably housing a flange 76 of the restoration member 73. Between the bottom surface of the lower frame 75 and an outer peripheral edge S 78 of the restoration member 73 is housed a spirally extending return spring 79. The restoration member 73 is biased upwards by this return spring 79. The end of the opposite side arm 64b of the second interlock member 62 is pressed against the upper edge of the elongated opening 70 on the lateral surface 50d of the upper frame 50. The second interlock member 62 is rotatably mounted on the upper frame 50 in a direction perpendicular to the first interlock member 51 below the first interlock member 51.
On the lateral side 50d of the upper frame 50 is mounted a thrust type switch device 80 which has its state changed over by pressing a spring-biased thrusting operator 81 against the spring 27 JUN2001 26 bias. The switch device 80 has a thrusting operator facing an end 82 of arm 64b of the second interlock member 62. This end 82 protrudes in the same direction as a mountain leg 83 mounted on the lower edge of the upper frame 50 and terminals 84 of first and second variable resistors 53a, 53b.
The operating states of the multi-directional inputting device are as follows: If the user grips the rotation member 16 for rotating the operating shaft 57 in an arbitrary direction, the operating shaft 57 is rotated about the point of intersection of the second interlock member 62 and the pin 67 as the center of rotation.
With rotation of the operating shaft 57, the first interlock member 51 and the second interlock member 62 are rotated and further the rotational shafts 54 of the first and second variable resistors 53a, 53b are rotated for adjusting the resistance values.
The automatic restoration operation of the operating shaft 57 is as follows: In a neutral state in which the operating shaft 57 is not in operation, the operation shaft 57 is upstanding through opening 72 in the upper surface of the upper frame 50. The bottom surface of the operating member 58 compresses against the inner bottom surface of the restoration member 73 by the return spring 79. If the operating shaft 57 is tilted from this state in the clockwise direction, as shown in Fig.16, the flange 85, having an arcuate 27 JUN2001 27 JUN2001 27 portion with a progressively increasing radius of curvature towards an outer side of the operating member 58, thrusts the restoration member 73 so that the restoration member 73 is moved downwards along the supporting wall section 77 of the lower frame against the force of the return spring 79. If the operating force on the operating shaft 57 is released, the operating shaft 57 is reset to the neutral state shown in Fig.15, that is to' an upstanding position, under the bias of the return spring 79.
The operation of the switch device 80 is explained by referring to Figs.17 and 18.
In the non-operating state, the operating shaft 57 is in the position shown in Fig.17 in which the end of the arm 64b of -the second interlock member 62 is spaced apart from the thrusting operator 81 of the switch device 80, with the end of the arm 64b being pressed against the upper edge of the elongated opening in the lateral side 50d of the frame 50. If the operating shaft 57 is pressed downwards from this state, the end of the arm 64b of the second interlock member 62 is moved downwards along the elongated opening 70, against the force of the return spring 79, with the engagement point of the arm 64a with the rotary shaft 54 of the variable resistor 53b as a fulcrum, until the end of the arm 64b is retained by the lower edge of the elongated opening 70 operating as a stop. In the interim, the end of the arm 64b thrusts the thrusting operator 81 of the switch device downwards for changing over the state of the switch device 2 7 JUN 2001 28 If the thrusting on the operating shaft 57 ceases, the end of the arm 64b is reset to the state shown in Fig.17, under the force of repulsion of the return spring 79, with the end of the arm 64b being reset to the state of Fig. 17 in which it is abutted against the upper edge of the elongated slot 70. Meanwhile, the switch device 80 is operated even if the operating shaft 57 is thrust downwards when the actuating shaft 57 has been rotated in an optional direction.
Thus, by rotating the rotation member 16 for actuating the first and second- variable resistors 53a, 53b, the third and fourth operatorsl4, 15 can issue the command information of continuously moving the. display character with an accelerated movement, rotating the display character as it is advanced or varying the line of sight of the display character.
The fifth and sixth operating units 17, 18 arranged on the front side of the main body portion 4 are now e>plained.
The fifth and sixth operators 17, 18 are designed so that the first and second thrusting operators 19a, 19b, 20a, arranged on both sides on the front side of the main body portion S" 4 protrude at the distal ends thereof from the front surface of the main body portion 4 through upper and lower pairs of apertures 91 arranged parallel to each other. Within the main body portion 4 are arranged switch devices in association with these thrusting operators 19a, 19b and 20a, The operating device 1 of the present invention is provided 27 JUN 2001 29 with a vibration imparting mechanism 92 for imparting vibrations to the user so -that the game will be played with a higher simulated reality feeling. This vibration imparting mechanism 92 is provided on the proximal end of the first grip portion held by the left hand when the user grips the operating device 1. This vibration imparting mechanism 92 is made up of a driving motor 93 driven by a driving command signal supplied from the main body portion of the game machine and an offset member mounted on a driving shaft 94 of the driving motor 93. The offset member 95 is formed by a metallic member of a large weight mass to constitute a semi-circular weight 95a offset with respect to a fitting hole 96 into which is fitted the driving I shaft 94 and which operates as a center of rotation. The driving motor 93, having the offset member 95 mounted on the driving shaft 94, is mounted by fitting the motor housing 98 in a fitting recess 97 in the form of a rectangular tube on the inner side of the first grip portion With the vibration imparting mechanism 92 constructed as described above, the driving motor 93 is driven for rotating the offset member 95, so that the driving motor 93 undergoes a vibrations. These vibrations are transmitted via a peripheral wall section 97a constituting the fitting recess 97 to the first grip portion 5 and thence transmitted to the hands and fingers gripping the grip portion The vibration imparting mechanism 92 may also be provided 7 j'1,!J 2001 on the second grip portion 6.
The above-described operating device 1 for the game machine according to the present invention is connected to a main body portion 101 of the game machine, as shown in Fig.21.
The operating device 1 is connected to the main body portion 101 of the game machine by a connection cord 102 extending from the mid portion on the front side of the main body portion 4. This connection cord 102 has an end connector 103 which connects the operating device 1 to the main body portion 101 of the game machine by connecting the connector 103 to a jack 104 provided on a lateral surface of the main body portion 101 of the game machine.
@o*o The main body portion 101 of the game machine is provided with plural jacks 104 for connection to plural operating devices 1.
*e 4* The main body portion 101 of the game machine is provided with a disc driving unit 105 for reproducing an optical disc having recorded thereon game programs and a picture processing device for displaying the display character along with the background picture on a screen of a television receiver in accordance with the game program recorded on the optical disc.
The main body portion 101 of the game machine is also provided with a reset switch 106 for resetting the game then going on, a power switch 107 and a lid opening button 109 for opening a lid 108 adapted for opening/closing a disc mounting portion of the ?7 JUN 2001 disc driving unit.
The main body portion 101 of the game machine is connected to a television receiver as a display device for displaying the display character along with a background picture for the game.
With the above-described operating device 1 for the game machine according to the present invention, the user can operate the first to sixth operating units 9,12, 14, 15, 17 or 18, using ten fingers at the maximum, as the first and second grip portions 6 are held with both hands. The operating device for the game machine can also be operated with only one of the first and second grip portions 5, 6 gripped. That is, by properly actuating the first to sixth operating units 9,12, 14, 15, 17 or 18, not only can the display character be moved horizontally, but also the display character can be rotated or moved with accelerated movements in meeting with the game with the three-dimensional a t t spatial picture. Moreover, since vibrations can be imparted to the user, the game can be played with excellent simulated reality feeling.
Thus, by using the operating device 1 for the game machine according to the present invention, the display character can perform complex movements to carry out a game program with improved simulated reality feeling. For example, such a game can be played in which an airplane or a submarine is moved through a three-dimensional spacing.
27 JUN 2001 With the operating device for a game machine according to the. present invention, the third and fourth operating units provided with signal input elements manipulated by rotation members are provided facing each other on the proximal ends of the first and second grip portions, so that a game program can be easily executed which has a display character capable of executing variegated movements. In addition, a vibration imparting mechanism is provided in the operating device for the game machine so that vibrations can be imparted to the user during the game for enabling the game to be played with improved simulated reality feeling.
It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or in any other -country.
oee.o. For the purposes of this specification it will be clearly understood that the word "comprising" means "including but not limited to", and that the word "comprises" has a corresponding meaning.
S1 oo *005 27 JUN ?001_.

Claims (8)

1. An operating.device for a game machine, comprising: a main body having front and rear sides and upper and lower surfaces; first and second grips protruding at spaced positions from the rear side of the main body; a first operating unit mounted in the main body adjacent one of the spaced positions, the first operating unit having a plurality of first thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the first thrusting operators is depressed; .a second operating unit mounted in the main body adjacent the other one of the spaced positions, the second operating unit having a plurality of second thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the second thrusting operators is depressed; and third and fourth operating units arranged on the *o rear side of the main body, the third operating unit being positioned adjacent the first grip and the first operating unit, the fourth operating unit being positioned adjacent the second grip and the second operating unit, so that the third and fourth operating units confront one another, the third and fourth operating units each having a rotation member and at least one signal input element for generating a signal in response to an operation of the corresponding rotation member. H:\amyo\Keep\Specifications\255220-97 div.doc 5/12/01 34
2. An operating device for a game machine, comprising: a main body having front and rear sides and upper and lower surfaces; first and second grips protruding at spaced positions from the rear side of the main body; a first operating unit mounted in the main body adjacent one of the spaced positions, the first operating unit having a plurality of first thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the first thrusting operators in depressed; a second operating unit mounted in the main body adjacent the other one of the spaced positions, the second operating unit having a plurality of second thrusting 0. operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the second thrusting operators is depressed; and third and fourth operating units arranged on the rear side of the main body between the first and second grips and in confronting relationship to one another, the third and fourth operating units each having a rotation member and at least one signal input element for generating a signal in response to an operation of the corresponding rotation member.
3. An operating device for a game machine, comprising: a main body having front and rear sides and upper and lower surfaces; first and second grips protruding at spaced H:\amyo\Keep\Specifications\25522 0 -97 div.doc 5/12/01 35 positions from the rear side of the main body; a first operating unit mounted in the main body adjacent one of the spaced positions, the first operating unit having a plurality of first thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the first thrusting operators is depressed; a second operating unit mounted in the main body adjacent the other one of the spaced positions, the second operating unit having a plurality of second thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the second thrusting operators is depressed; and third and fourth operating units mounted to the main body adjacent the spaced positions and in confronting *ooo relationship to one another, the third and fourth operating units each having a rotation member and at least one signal input element for generating a signal in response to an operation of the corresponding rotation member.
4. A game machine, comprising: a main unit for reading a game program; and an operating device interconnected with the main unit, the operating device including a main body having front and rear sides and upper and lower surfaces; first and second grips protruding at spaced positions from the rear side of the main body; a first operating unit mounted in the main body adjacent one of the spaced positions, the first operating H:\amyo\Keep\Specifications\255220o97 div.doc 5/12/01 36 unit having a plurality of first thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the first thrusting operators is depressed; a second operating unit mounted in the main body adjacent the other one of the spaced positions, the second operating unit having a plurality of second thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the second thrusting operators is depressed; and third and fourth operating units arranged on the rear side of the main body, the third operating unit being positioned adjacent the first grip and the first operating "unit, the fourth operating unit being positioned adjacent the second grip and the second operating unit, so that the third and fourth operating units confront one another, the •.third and fourth operating units each having a rotation member and at least one signal input element for generating a signal in response to an operation of the •corresponding rotation member.
5. A game machine, comprising: a main unit for reading a game program; and an operating device interconnected with the main unit, the operating device including a main body having front and rear sides and upper and lower surfaces; first and second grips protruding at spaced positions from the rear side of the main body; a first operating unit mounted in the main body adjacent one of the spaced positions, the first operating H:\amyo\Keep\Specifications\2552 2097 div.doc 5/12/01 37 unit having a plurality of first thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the first thrusting operators is depressed; a second operating unit mounted in the main body adjacent the other one of the spaced positions, the second operating unit having a plurality of second thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the second thrusting operators is depressed; and third and fourth operating units arranged on the rear side of the main body between the first and second grips and in confronting relationship to one another, the third and fourth operating units each having a rotation *ee member and at least one signal input element for ooo generating a signal in response to an operation of the o corresponding rotation member.
6. A game machine, comprising: a main unit for reading a game program; and an operating device interconnected with the main unit, the operating device including a main body having front and rear sides and upper and lower surfaces; first and second grips protruding at spaced positions from the rear side of the main body; a first operating unit mounted in the main body adjacent one of the spaced positions, the first operating unit having a plurality of first thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a H:\amyo\Keep\Specifications\255220.9 7 div.doc 5/12/01 38 signal when a corresponding one of the first thrusting operators is depressed; a second operating unit mounted in the main body adjacent the other one of the spaced positions, the second operating unit having a plurality of second thrusting operators protruding from the upper surface of the main body and a plurality of signal input elements each for generating a signal when a corresponding one of the second thrusting operators is depressed; and third and fourth operating units mounted to the main body adjacent the spaced positions and in confronting relationship to one another, the third and fourth operating units each having a rotation member and at least one signal input element for generating a signal in response to an operation of the corresponding rotation gig. member. .oo*
7. An operating device for a game machine, substantially as here in described with reference to the accompanying figures.
8. A game machine, substantially as herein described with reference to the accompanying figures. Dated this 5th day of December 2001 SONY COMPUTER ENTERTAINMENT INC. *By their Patent Attorneys GRIFFITH HACK Fellows Institute of Patent and Trade Mark Attorneys of Australia H:\amyo\Keep\Specifications\255220-97 div.doc 5/12/01
AU97070/01A 1996-10-11 2001-12-05 Operating device for game machine Abandoned AU9707001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU97070/01A AU9707001A (en) 1996-10-11 2001-12-05 Operating device for game machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8-30240 1996-10-11
AU97070/01A AU9707001A (en) 1996-10-11 2001-12-05 Operating device for game machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU25220/97A Division AU737919B2 (en) 1996-10-11 1997-04-11 Operating device for game machine

Publications (1)

Publication Number Publication Date
AU9707001A true AU9707001A (en) 2002-02-28

Family

ID=3764378

Family Applications (1)

Application Number Title Priority Date Filing Date
AU97070/01A Abandoned AU9707001A (en) 1996-10-11 2001-12-05 Operating device for game machine

Country Status (1)

Country Link
AU (1) AU9707001A (en)

Similar Documents

Publication Publication Date Title
AU737919B2 (en) Operating device for game machine
EP0903659B1 (en) Actuating device for game machine
US6641479B1 (en) Control unit and system utilizing the control unit
JP3628358B2 (en) Game console controller
US6171191B1 (en) Actuating device and system exploiting the actuating device
US6186896B1 (en) Operating device with analog joystick
EP0470615B1 (en) Controller for a game machine
AU9707001A (en) Operating device for game machine
JPH06139878A (en) Controller for television game machine
JP3453263B2 (en) Operation device for game machine
JP3380233B2 (en) Game console controller
MXPA98007711A (en) Drive device for thread machine
JP2000061146A (en) Game system
JPH1083742A (en) Operation device for game machine
JPH1085455A (en) Game system

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application