AU755732B2 - Polymeric composition for coating electric cables having an improved resistance to water treeing and electric cable comprising said composition - Google Patents

Polymeric composition for coating electric cables having an improved resistance to water treeing and electric cable comprising said composition Download PDF

Info

Publication number
AU755732B2
AU755732B2 AU47175/00A AU4717500A AU755732B2 AU 755732 B2 AU755732 B2 AU 755732B2 AU 47175/00 A AU47175/00 A AU 47175/00A AU 4717500 A AU4717500 A AU 4717500A AU 755732 B2 AU755732 B2 AU 755732B2
Authority
AU
Australia
Prior art keywords
ester
polymeric
polymeric composition
carbon atoms
branched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU47175/00A
Other versions
AU4717500A (en
Inventor
Valeria Garcia
Franco Peruzzotti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prysmian Cavi e Sistemi Energia SRL
Original Assignee
Pirelli Cavi e Sistemi SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU55811/96A external-priority patent/AU5581196A/en
Application filed by Pirelli Cavi e Sistemi SpA filed Critical Pirelli Cavi e Sistemi SpA
Publication of AU4717500A publication Critical patent/AU4717500A/en
Application granted granted Critical
Publication of AU755732B2 publication Critical patent/AU755732B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Description

Our Ref:7509010 P/00/011 Regulation 3:2
AUSTRALIA
Patents Act 1990
ORIGINAL
COMPLETE SPECIFICATION STANDARD PATENT r Applicant(s): Address for Service: Pirelli Cavi E Sistemi S.p.A.
Viale Sarca 222 1-20126 Milano Italy DAVIES COLLISON CAVE Patent Trade Mark Attorneys Level 10, 10 Barrack Street SYDNEY NSW 2000 r Invention Title: Polymeric composition for coating electric cables having an improved resistance to water treeing and electric cable comprising said composition The following statement is a full description of this invention, including the best method of performing it known to me:- 5020 PC 669 ,,Polymeric composition for coating electric cables having an improved resistance to water treeing and electric cable comprising said composition"
DESCRIPTION
In a general aspect, the present invention relates to electric cables comprising at least one conducting core and at least one insulation coating comprising a polyolefin polymeric base.
More particularly, the present invention relates to an electric cable comprising an insulation coating having an improved resistance against the formation of the so-called water trees.
The present invention also relates to a polymeric composition which has a preferred, although not exclusive, use in the manufacture of an insulation coating in electric cables for power transmission at medium or high voltage.
*15 In the following description, the terms: medium and high voltage, are used to indicate voltages of from 1 to 35 kV and, respectively, over 35 kV.
As is known, one of the more difficult problems to solve in the *o manufacture of electric cables for power transmission or energy S. 20 cable, is that of ensuring that the insulation coating of the conducting core achieves an effective control of the electric field generated during the energy transmission, dissipates as little power as possible and preserves its dielectric and structural characteristics along time.
It is also known that to obtain such characteristics the best material for manufacturing the insulation coating is constituted by olefin polymers and in particular by polyethylene and copolymers or terpolimers thereof.
More particularly, among the latter, cross-linked polyethylene commonly indicated by the acronym XLPE has either good dieletric characteristics or a low loss factor (minimum PC 669 2 dissipated power).
But together with these good characteristics, olefin polymers generally possess a low resistance against a particular degradation phenomenon, known in the art by the term: "water treeing", which may cause in time a degradation of the electric characteristic of the insulation material.
Such phenomenon essentially consists in the formation of microfractures having a branched shape (trees), progressively growing in time and responsible, in some cases, for an electric weakening of the insulation coating.
Even though the mechanism leading to the formation of these microfractures or weak zones has not yet been fully clarified, the formation of such zones or "trees" is anyhow attributed to the combined action of the electric field generated by the 15 current flow in the conducting core of the cable and of the moisture existing in the inside of the insulation coating.
The problem represented by the formation of the above water trees is particularly felt in the cables for power transmission *oo at medium or high voltage which are not provided with external 20 protection elements, wherein the insulation coating may be directly in touch with water or anyhow with humid environments.
In order to reduce somehow the formation of water trees, different solutions have been proposed in the art, which are essentially based either on the selection of suitable polymeric materials for the manufacture of the insulation coatings_ or on the use of suitable retarding additives, so-called treeretardants.
So, for instance, it is known from US Patent 5,246,783 the use of an ethylene copolymer and of an alpha-olefin having 3 to carbon atoms, having a molecular weight distribution of from to 30 and a distribution index of the alpha-olefin comonomer greater than PC 669 3 European Patent EP 0 179 845 discloses, on the other hand, the combined use of an ethylene polymer or of an ethylene copolymer with an alpha-olefin, with an ethylene-alkylacrylate or an ethylene-alkylmethacrylate copolymer, in a cross-linkable coating composition resistant to the formation of water trees, for medium/high voltage energy cables.
As to the use of the so-called tree-retardant additives, it is known from the US Patents Nos. 4,212,756 and 4,144,202 the use of particular organo silanes comprising an acrylic/methacrylic group and, respectively, an epoxy group.
According to the present invention, it has now been found that the simultaneous presence of ester groups and epoxy groups in a polyolefin polymeric composition may impart to said composition a particular resistance to the phenomenon of water trees in the 15 working condition of an electric cable.
According to the invention, in fact, a surprising synergistic effect in terms of increased resistance to the water treeing •coo phenomenon has been observed, due to the simultaneous presence of ester groups and epoxy groups within a selected concentration .oo, range.
When the aforementioned groups are simultaneously present in the polymeric base forming the insulation coating of the cable, it has been noticed in particular that the retarding effect against water tree formation is evidently greater than the sum of the effects of the same groups when the latter are present alone.
According to a first aspect thereof, the present invention therefore provides an electric cable comprising at least a conductor and at least an insulation coating comprising a polyolefin polymeric base, which is characterized in that said polyolefin polymeric base comprises, in parts by weight to the total weight of the same: from 0.5 to 15 parts of ester groups; and PC 669 4 from 0.01 to 5 parts of epoxy groups.
According to a further aspect of the invention, the problem of an adequate resistance to the phenomenon of water trees is therefore solved by a cable which is characterized in that said polyolefin polymeric base comprises a first predetermined amount of ester groups and a second predetermined amount of epoxy groups, said first and second predetermined amounts being such as to reduce the water tree formation in the insulation coating material after electric ageing in water.
In the following description and the subsequent claims, the term: electric water ageing, is used to indicate an ageing treatment of the insulation coating carried out in water and in the presence of an electric field such as for instance the treatment proposed by EFI (Norwegian Electric Power Research Institute), illustrated below, or analogous treatments well known in the art.
According to a further aspect thereof, the present invention also provides a polyolefin polymeric composition resistant to water treeing, in particular for the manufacture of an S 20 insulation coating for electric cables, which is characterized in that it comprises in parts by weight to the total weight thereof from 0.05 to 15 parts of ester groups and from 0.01 to 5 parts of epoxy groups.
In the following description and the subsequent claims, the term: polyolefin polymeric base, is used to indicate a polymer selected from the group comprising high-, medium- and lowdensity polyethylene homopolymers, ethylene copolymers and ethylene terpolymers with an alpha-olefin having 3 to 20 carbon atoms, ethylene-alpha-olefin-diene terpolymers and mixtures thereof.
The term: polyolefin polymeric composition, on the other hand, is used to indicate a polymeric composition comprising a polyolefin polymeric base of the above defined type.
PC 669 5 Preferably, the polyolefin polymeric base of the invention is an ethylene polymer selected from the group comprising: polyethylene, copolymers obtainable by polymerizing ethylene with at least one alpha-olefin, linear or branched, having 3 to 14 carbon atoms, terpolymers obtainable by polymerizing ethylene, an alpha-olefin, linear or branched, having 3 to 14 carbon atoms and a diene having 4 to 25 carbon atoms having a density (measured according to ASTM D-792) of from 0.860 g/cm 3 to 0.940 g/cm 3 and a Melt Index (measured according to ASTM D- 1238) of from 0.1 g/10' to 40 In the terpolymers of the invention, the above diene is preferably selected from the group comprising: 1,4 pentadiene, 1,4 hexadiene, 1,5 hexadiene, dicyclopentadiene, 4-vinylcyclohexene, 1-vinyl-1-cyclopentene, ethyl norbornene (LNB), 15 alkylbicyclononadiene, indene, norbornene and mixtures thereof.
4*oe According to the invention, it has been observed that to achieve an adequate resistance to the water tree formation, the 4* polyolefin matrix forming the insulation coating of the cable conducting core should preferably comprise at least 0.5% by 20 weight of ester groups and at least 0.01% by weight of epoxy groups.
S. On the other hand, it has been observed that amounts exceding by weight of ester groups and, respectively, 5% by weight of epoxy groups do not produce a substantial additional benefit in terms of resistance to the phenomenon of water trees, against a marked increase in the power dissipated by the insulation coating (increase of the loss factor or tg delta), with ensuing increase in the energy transmission costs.
According to the invention, is has also been observed that the aforementioned improved resistance to the water trees formation is not substantially affected by the way in which the ester groups and the epoxy groups are incorporated into the polymeric composition, provided that these groups are present in the aforementioned amounts, as indicated above.
PC 669 6 So, for instance, in a first embodiment of the invention, a polymeric composition comprising the above minimum amount, of ester groups and epoxy groups may be prepared by adding. to a polyolefin polymeric base a first compound, either polymeric or not, incorporating an ester group and, respectively, a. second compound, either polymeric or not, incorporating an.epoxy group.
Preferably, the above compound incorporating an ester group is an acrylic or vinyl polymer selected from the group comprising: i) copolymers obtainable by polymerizing ethylene with at least an acrylic ester of the formula: CH CH-C-O-R 2
(I)
I I II
R
3
R
1 0 wherein R 1 is H or CH 3
R
2 is an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to carbon atoms, and R 3 is hydrogen or an alkyl or aryl hydrocarbon group, preferably a phenyl, linear or branched, having 1 to carbon atoms; ii) copolymers obtainable by polymerizing ethylene with at least a vinyl ester of a carboxylic acid of the formula: 20 CH 2
=CH-O-C-R
2
(II)
II
0 wherein R 2 is an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to 10 carbon atoms.
For the purposes of the invention, the acrylic copolymers having the formula of preferred use comprise ethylene copolymers with a comonomer selected from the group comprising the following acrylic esters: methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, iso-butyl acrylate, methyl methacrylate, ethyl methacrylate, and mixtures thereof.
PC 669 7 Among them, particularly preferred are the acrylic esterethylene copolymers and, more particularly, those having, an amount of acrylic comonomer of from 2% to 40% by weight, such as for instance those commercially available under the trade names ENATHENE EATM (Quantum Chemical Corporation, Cincinnati, Ohio, OPTEMATM (Exxon Chemical) and LOTRYL T M (Elf Atochem).
For the purposes of the invention, the vinyl copolymers of preferred use comprise ethylene copolymers with a comonomer selected from the group comprising vinyl acetate and vinyl propionate, such as for instance those commercially available under the trade names LEVAPREN TM (Bayer), ESCORENETM (Exxon Chemical), ELVAXTM (Du Pont de Nemours International and EVATANETM (Elf Atochem).
o According to an advantegeous aspect of the invention, optimal homogeneity characteristics of the polymeric composition may be achieved when the acrylic or vinyl copolymers having the formula and (II) have a Melt Index value near that of the polyolefin polymeric base in which they may be easily incorporated.
For the purposes of the invention, such Melt Index value 20 (measured according to ASTM D-1238) preferably ranges from 0.1 g/10' to 40 According to a preferred embodiment, the above amount of ester groups may be reached when the polymeric composition comprises at least 5% by weight of the above acrylic or vinyl polymers having the formula and or greater values depending upon the ester groups content within said polymers.
Furthermore, the polymeric composition of the invention preferably comprises from 5% to 40% by weight of the aforementioned acrylic or vinyl polmers having the formula (I) and (II).
According to the invention, the above-identified compound incorporating an epoxy group may be: PC 669 8 a) a glycidyl ether of the formula:
R
4
-C--CH
2 -CH CH 2
(III)
9 9 9 wherein R 4
R
6 and R 7 are independently a hydrogen atom, an alkyl or aryl hydrocarbon group, linear or branched, preferably an optionally substituted phenyl, having 1 to 25 carbon atoms or a glycidyl ether group of the formula:
-(O-CH
2 -CH CH 2 0 b) a polyfunctional derivative of the glycidyl ether of formula (III), or c) an epoxy resin.
For the purposes of the invention, the glycidyl ethers having the formula (III) may be mono-, bi-, tri- or tetrafunctional; those of preferred use are mono- and bifunctional glycidyl ethers selected from the group comprising: p-t-butyl-phenylglycidyl ether, 2-ethyl-hexyl-glycidyl ether, dodecyl-glycidyl ether, tetradecyl-glycidyl ether, glycidyl-isopropyl-etherbutylglycidyl ether, 1,4-butanediol-diglycidyl ether, 1,6-hexen-dioldiglycidyl ether and mixtures thereof.
Epoxy resins of preferred use comprise instead resins of the aliphatic, cycloaliphatic or aromatic type, preferably having a dynamic viscosity at 25 0 C of from 60 to 55,000 mPa x s, preferably between 7,000 and 10,000 mPa x s, and an epoxy content (measured according to ASTM D-1652) of from 0.1 to 0.7 gram eq/100g of resin, preferably between 0.53 and 0.55 gram eq/100 g of resin.
Examples of such resins are those commercially available under PC 669 9 the trade name EUREPOXTN (SCHERING) and preferably those named
EUREPOX
TM 730.
Preferably, the polymeric composition comprises from 0.2 to by weight of at least one glicydyl ether having the formula (III) or polyfunctional derivatives thereof and/or from 0.2 to by weight of said epoxy resin, so as to reach the aforementioned amount of epoxy groups indicated hereinabove.
According to a further embodiment of the invention, the aboveidentified minimum amount of ester groups and epoxy groups may be reached by adding to a polyolefin polymeric base a compound, either polymeric or not, incorporating either an ester group or an epoxy group.
Bifunctional compounds of preferred and advantageous use are, more particularly, those selected from the group comprising the 15 glycidyl esters of the formula:
R
3 -C C-C-O-CH 2
-CH-CH
2
(IV)
I II
R
5 O O wherein R 3 and R 5 are independently H, an alkyl or aryl 20 hydrocarbon group, linear or branched, preferably a phenyl, having 1 to 10 carbon atoms; R 1 is H or CH 3 Among them, the glycidyl esters of the acrylic or methacrylic acid are preferred.
For the purposes of the invention, particularly preferred is glycidyl methacrylate (GMA), commercially available under the trade name BLEMMER GTM (Blemmer Chemical Corp.).
In this case, the aforementioned amount of ester and epoxy groups may be reached when the polymeric composition preferably comprises from 0.03 to 15% by weight of at least a glycidyl ester having the formula (IV).
PC 669 10 Bifunctional compounds of the polymeric type of preferred and advantageous use are those selected from the group comprising.: a) terpolymers obtainable by polymerizing ethylene with: i) at least one acrylic ester of the formula: CH CH-C-O-R 2
(I)
I I II
R
3 R1 0 wherein R 1 is H or CH 3
R
2 is an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to carbon atoms and R 3 is hydrogen or an alkyl or aryl hydrocarbon group, preferably a phenyl, linear or branched, having 1 to carbon atoms; ii) at least one glycidyl ester of the formula: 10i 0 i0 o *oo *c oooo a a. o o a..
oo a a a.
a
R
3 -C C-C-O-CH 2
-CH-CH
2 I II
R
5 0 O
(IV)
wherein the meaning of R 1
R
3 and R 5 are those indicated hereinabove; b) terpolymers obtainable by polymerizing ethylene with: i) at least one vinyl ester of a carboxylic acid of the formula:
CH
2
=CH-(-C-R
2
II
0
(IT)
wherein R 2 is an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to 10 carbon atoms; ii) at least one glycidyl ester of the formula: PC 669 11 R1
R
3 -C C-C-O-CH 2
-CH-CH
2
(IV)
I II
R
5 0 0 wherein the meaning of R 1
R
3 and R 5 are those indicated hereinabove; c) copolymers obtainable by polymerizing ethylene with at least one glycidyl ester of the formula:
R
1
I
R
3 -C C-C-0-CH 2
-CH-CH
2
(IV)
I II 10
R
5 O 0 o wherein R 3 and R 5 are independently H, an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to 10 carbon atoms; R 1 is H or CH 3 Also in these cases, glycidyl esters having the formula (IV) of 15 preferred use are the glycidyl esters of the acrylic or methacrylic acids and, particularly, glycidyl methacrylate.
0** Ethylene/acrylic ester/glycidyl methacrylate terpolymers and ethylene/glycidyl methacrylate copolymers of preferred and advantageous use are commercially available under the trade 040se "20 names LOTADERTM GMA AX8900 and LOTADERTM GMA AX8840 (Elf Atochem), respectively.
As previously explained, in this case too optimum homogeneity characteristics of the polymeric composition may be obtained when the above bifunctional terpolymers or copolymers have a Melt Index of from 0.1 g/10' to 40 In this case, the aforementioned amount of ester and epoxy groups may be reached when the polymeric composition comprises from 3 to 30% by weight of at least an ethylene/acrylic ester/glycidyl methacrylate terpolymer or ethylene/vinyl PC 669 12 ester/glycidyl methacrylate terpolymer and from 1 to 40% by weight of at least an ethylene/glycidyl methacrylate copolymer.
Obviously, both the bifunctional compounds, either polymeric or not, may be used in the polymeric composition of the invention, either alone or combined with the aforementioned monofunctional compounds (acrylic or vinyl polymers, glycidyl ether, epoxy resin), so as to reach the desired amount of ester and epoxy groups.
According to a further aspect thereof, the present invention relates to a new use of one of the above bifunctional compounds either polymeric or not incorporating either an ester group or an epoxy group, as a tree retardant additive in a polymeric composition for coating an electric cable.
In fact, it is advantageously possible to confer to a polyolefin 15 polymeric base the desired characteristics of resistance to the water treeing phenomenon by simply adding said bifunctional compounds to said base in the aforementioned amounts.
Preferably, the amount of the ester and epoxy groups falls within said range of 0.5-15% parts by weight and, respectively, 20 of 0.01-5% parts by weight to the total weight of the composition so obtained.
In a preferred embodiment, the polymeric composition of the invention is cross-linked by means of one of the methods known in the art to this end.
Preferably, the polymeric composition is chemically crosslinked; for this purpose, it incorporates an effective amount of at least one cross-linking agent, such as for instance terbutyl-cumyl peroxide.
In order to achieve an improved stability, furthermore, the polymeric composition of the invention advantageously incorporates an effective amount of at least one antioxidant agent, such as for instance 4,4'-thio-bis(3-methyl-6-ter- PC 669 13 butyl)phenol.
Depending upon the particular use of the cable, moreover, the polymeric composition of the invention may incorporate other additives and fillers conventional in themselves, such as for instance pigments, dyes, stabilizers, lubricants, etc.
Further advantages and characteristics of the invention will be better apparent from the following description of some preferred embodiments thereof, which are reported in the following by way of non-limitative illustration, with reference to the attached drawing, whose only figure shows, in perspective view and partial cross-section, a cable according to the invention.
In such figure, reference 1 indicates a cable comprising an electric conducting core 2 including a plurality of wires, i.e.
of copper, all indicated by 3.
15 The conducting core 2 is enclosed within several coaxial coating layers, including an inner semiconducting layer 4, an insulation layer 5, an outer semiconducting layer 6, a metal screen 7 and an outer polymeric sheath 8.
The above described cable 1 may be produced starting from the conducting core 2 according to known methods, for instance by subsequently extruding layers 4, 5 and 6, by applying the metal screen 7 and by finally extruding the external sheath 8.
With reference to the description hereinabove, some merely illustrative and not limitative examples of polymeric compositions according to the invention, particularly suitable for the manufacture of the insulation layer of a cable, such as for instance the layer 5 of the cable described above, will be provided in the following.
EXAMPLE 1 A polymeric composition according to the invention was prepared by mixing in an extruder the following ingredients, in parts by PC 669 14 weight for each 100 parts of polymeric base (phr): polymeric base ethylene/acrylic ester/glycidyl methacrilate terpolymer 90 phr 10 phr 2 phr peroxide antioxidant 0.34 phr 4* As polymeric base low-density polyethylene (LDPE) was used, having a density of 0.923 g/cm 3 and a Melt Flow Index of 2 (Enichem).
As ethylene/acrylic ester/glydidyl methacrylate terpolymer, LOTADERTM GMA AX 8900 TM (Elf Atochem) was used.
The peroxide and the antioxidant used were ter-butyl-cumyl peroxide (TRIGONOXTM T produced by AKZO) and 4-4'-thio-bis(3methyl-6-ter-butyl)phenol (SANTONOXTMR produced by MONSANTO).
EXAMPLE 2 According to the same preparation methods and using the same ingredients as the previous Example 1, a polymeric composition was prepared having the following composition in parts by weight for each 100 parts of polymeric base (phr): 9 a o *oo *o *o polymeric base 85 phr ethylene/acrylic ester/glycidyl methacrilate terpolymer peroxide antioxidant 15 phr 2 phr 0.34 phr EXAMPLE 3 PC 669 15 According to the same preparation methods and using the same ingredients as the previous Example 1, a polymeric composition was prepared having the following composition in parts by weight for each 100 parts of polymeric base (phr): polymeric base 80 phr ethylene/acrylic ester/glycidyl methacrilate terpolymer 20 phr peroxide 2 phr antioxidant 0.34 phr 10 EXAMPLE 4 Comparison) According to conventional preparation methods known in the art and using the same ingredients of the previous Example 1, a polymeric composition including only the polyolefin polymer, the cross-linking agent and the antioxidant agent was prepared, having the following composition in parts by weight for each 100 parts of polymeric base (phr): polymeric base 100 phr peroxide 2 phr 99** antioxidant 0.34 phr EXAMPLE (Comparison) According to conventional preparation methods known in the art and using the same ingredients of the previous Example 1, a polymeric composition including acrylic ester groups was prepared, having the following composition in parts by weight for each 100 parts of polymeric base (phr): polymeric base 82.5 phr PC 669 16 ethylene/acrylic-ester copolymer 17.5 phr peroxide 2 phr antioxidant 0.34 phr As ethylene/acrylic-ester copolymer the ethylene/butyl acrylate copolymer commercially available under the trade name ENATHENE
TM
EA 720 (USI QUANTUM) was used.
EXAMPLE 6 (Comparison) According to conventional preparation methods known in the art i 10 and using the same ingredients of the previous Example 1, a polymeric composition according to the prior art and including epoxy groups was prepared, having the following composition in parts by weight for each 100 parts of polymeric base (phr): polymeric base 100 phr 15 epoxy resin 1.5 phr peroxide 2 phr antioxidant 0.34 phr As epoxy resin the resin commercially available under the trade name EUREPOX TM (SCHERING) was used.
EXAMPLE 7 (Evaluation of the water tree resistance) The resistance properties to the formation of water trees of the polymeric compositions according to Examples 1-6 hereinabove, were evaluated according to the methodology proposed by EFI (Norwegian Electric Power Research Institute) in the publication "The EFI Test Method for Accelerated Growth of Water Trees", presented at the "1990 IEEE International Symposium on Electrical Insulation", held in Toronto, Canada, on 3-6 June PC 669 17 1990.
According to such a methodology, the cable is simulated by preparing cup-shaped multilayered test-samples, wherein the material constituting the insulation coating is sandwiched between two layers of semiconducting material.
More particularly, the layer of insulation material is heatmoulded in the shape of a cup at the temperature of 120 0
C,
starting from a tape having a thickness of 5-7 mm, in an electric press capable of developing a pressure of about 90 t, so as to obtain a thickness of about 0.50 mm.
The layers of semiconducting material, extruded and preshaped in an analogous way until a thickness of about 0.5 mm is obtained, are then pressed and heat-welded on opposite sides of the insulation layer at a temperature of about 180 0 C for 15 minutes 15 in an electric press similar to that used to form the same layers.
co ~The test-samples so obtained, once cooled at room temperature, are then submitted to an accelerated electric ageing test, filling with water the cavity defined inside the cup-shaped 20 test-sample, immersing in the water a high voltage electrode and laying the resulting equipment on a metal plate (earth electrode).
The accelerated trees growth is then induced in the insulation layer by applying a voltage generally of from 2 to 15 kV between In order to further accelerate the phenomenon, the test is heatperformed, for instance in a suitable oven.
In the tests carried out, the polymeric compositions of Examples 1-6 were coupled to a semiconducting screen constituted by a XLPE mix, commercially available under the trade name NCPE 0 5 92 TM (Borealis Bruxelles, Belgium).
PC 669 18 According to the above described EFI methodology, 5 test-samples were produced for each polymeric composition, which were submitted to accelerated ageing in the following test conditions: electric gradient: 5 kV/mm temperature: 70 0
C
At the end of a 30-day period, 20 100 /im-thick sections were taken off from each test-piece, dyed with methylene blue according to the CIGRE standards and then examined with an optical microscope at a magnification of from 100 to 200X.
From such observation the density of water trees, expressed in V .number of trees per cm 3 was then calculated for each testsample. The mean values are shown in the following Table 1.
TABLE 1
C
Example nr. 1 2 3 4 5 6 Trees density (nr./cm 3 190 140 95 980 470 780 From the data shown in the table, it may be observed that the resistance to the water tree formation of the polymeric compositions of the invention (Examples comprising ester groups and epoxy groups, is markedly greater that that offered by the control polymeric compositions, incorporating only acrylic groups (Example 5) or epouy groups (Example v.
In this connection, it has to be observed that, quite surprisingly, the combined effects of the above ester groups and epoxy groups is of a synergistic type, much greater than the sum of the individual effects ascribable to each of them considered in isolation.
This synergistic effect is so marked that, in the case of the composition of Example 3, a density of water trees has been PC 669 19 observed whose order of magnitude was even lower than that of the cross-linked polyethylene taken as control.
EXAMPLE 8 (Evaluation of dielectric strength) The dielectric strength properties of the polymeric compositions according to the previous Examples 1-6 were evaluated on testsamples obtained by the ageing methodology proposed by EFI, described in the preceding example.
In this case, 20 test-samples were produced which were submitted to accelerated water ageing in the following test conditions: 1 5 oqU, 20 o electric gradient: temperature: 5 kV/mm 70 0
C
On a batch of 5 non-aged test-samples (control) and on three batches of 5 test-samples taken after 7, 15 and 30 days respectively from the beginning of the accelerated electric ageing, the value of the dielectric strength was then measured according to the ASTM D-149 standard.
The dielectric strength tests were carried out with silicone oil in the inside and on the outside of the test-samples, using a circular electrode and applying a voltage gradient of 2 kV/s.
The results of the tests carried out (mean values of 5 tests) are shown in the following Table 2.
TABLE 2 Example 1 2 3 4 5 6 as is 120 130 135 105 120 110 Strength 7 days 60 75 85 55 60 58 (kV/mm) 15 days 55 70 80 45 50 47 days 55 70 75 45 50 47 PC 669 From the data shown in the table, it may be observed that after ageing the dielectric strength of the polymeric compositions of the invention (Examples is as a whole greater than that of the control compositions, independently from the original starting values, with an advantageous improvement of the insulating properties of the composition.
EXAMPLE 9 (Evaluation of the loss factor) The evaluation of the so-called loss factor (tan delta) of the polymeric compositions according to the previous Examples 1-6 was carried out according to the ASTM D-150 standard (AC Loss Characteristics and Dielectric Constant (Permettivity) of Solid Electrical Insulating Material) eeee More particularly, the loss factor was measured by using as test-samples moulded flat plates of 20 x 20 cm of side, 1.0 mm -thick, and using circular electrodes with guard ring.
Before taking the measures, the test-samples had been submitted to heat treatment at 90 0 C in order to remove the cross-linking by-products in each plate.
The results of the tests performed (mean values out of 5 tests) are shown in the following Table 3.
TABLE 3 Example nr. 1 2 3 4 5 6 tg delta (room T) 0.0002, 0.0003 0.0004 0.0001 0.0001 0.0010 tg delta (90 0 C) 0.0008 0.0024 0.0110 0.0003 0.0004 0.0110 As it may be observed from the above table, the presence of ester groups and epoxy groups in the polymeric composition of PC 669 21 the invention may bring about an increase in the loss factor; hence, the content of said groups may be selected having regard to the desired resistance characteristics to the formation of water trees and to the other performances required to the cable.
To this end, the optimum amount of ester groups and epoxy groups in the polymeric composition may be selected by a man skilled in the art in relation to the specific application requirements of the cable.
From what has been described and illustrated above it is immediately evident that the cable of the invention possesses a combination of features that render the same useable for all those applications and in particular for power transmission at medium/high voltage where a particular resistance to water treeing is required.
15 In particular, according to the invention, the use of ester groups and epoxy groups in predetermined amount in a given polymeric composition allows to increase the resistance to the phenomenon of water treeing compared to the case when in the same polymeric composition such groups are not present and, as 20 a consequence, to increase, after electric water ageing, the dielectric strength of the insulation coating of a cable manufactured with the same polymeric base.
Obviously, those skilled in the art may introduce variants and modifications to the above described invention, in order to satisfy specific and contingent requirements, variants and modifications which fall anyhow within the scope of protection as is defined in the following claims.
The reference numerals in the following claims do not in any way limit the scope of the respective claims.
7 July 2000 -21A- Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
The reference to any prior art in this specification is not, and should not be taken as, an acknowledgement or any form of suggestion that that prior art forms part of the common general knowledge in Australia.
9*
*C

Claims (20)

1. An electric cable comprising at least one conducting core and at least one insulation coating consisting essentially of a polymeric composition including a polyolefin polymeric base, said polymeric composition including, in parts by weight to the total weight thereof, from 0.5 to 15 parts of ester groups and from 0.01 to 5 parts of epoxy groups, characterized in that said amounts of ester and epoxy groups are provided in the polymeric composition by a polymeric compound having ester and epoxy groups, said polymeric compound having a Melt Index of from 0.1 g/10' to 40
2. An electric cable according to claim 1, characterized in that said polymeric compound is selected from the 15 group comprising: a) a terpolymer obtained by polymerizing ethylene with i) at least one acrylic ester of the formula: CH CH-C-O-R 2 (I) I I II SR 3 R O0 20 wherein R 1 is H or CH 3 R 2 is an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to 10 carbon atoms, and R 3 is hydrogen or an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to 10 carbon atoms; and ii) at least one glycidyl ester of the formula: 23 R 1 R 3 -C C-C-O-CH2-CH-CH 2 (IV) S II R 5 O O wherein R 3 and R 5 are independently f, an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to 10 carbon atoms; R 1 is H or CH3; b) a terpolymer obtained by polymerizing ethylene with i) at least one vinyl ester of a carboxylic acid of the formula: i 10 0 CC2=CHo--CHR2 II)HH2 i II o wherein R 2 is an alkyl or aryl hydrocarbon group, h g linear or branched, preferably a phenyl, having 1 to carbon atoms; and ii) at least one glycidyl ester of the formula: R 3 -C C-C-O-CH 2 -CH-CH 2 (IV) 15whe R o wherein R3 and R 5 are independently H, an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to 10 carbon atoms; R 1 is H or Cl 3 c) a copolymer obtained by polymerizing ethylene with at least one glycidyl ester of the formula 24 R1 R 3 -C C-C-O-CH 2 -CH-CH 2 (IV) 1 II R 5 0 0 wherein R 3 and R 5 are independently H, an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to 10 carbon atoms; R 1 is H or CH 3
3. An electric cable according to claim 1, characterized in that said polyolefin polymeric base includes a polymer selected from the group comprising high-, medium- and low-density polyethylene homopolymers, ethylene copolymers and ethylene terpolymers wi.th an alpha-olefin having 3 to 20 carbon atoms, ethylene-alpha-olefin-diene terpolymers and mixtures thereof.
4. An electric cable according to claim 2, characterized in that said at least one glycidyl ester is glycidyl methacrylate.
5. An electric cable 'according to anyone of the preceding claims, characterized in that said polyolefin polymeric base further includes an effective amount of at least one cross-linking agent.
6. An electric cable according to claim 5, characterized in that said at least one cross-linking agent is tert- butyl-cumyl peroxide.
7. An electric cable according to anyone of the preceding claims, characterized in that said polyolefin polymeric base further includes an effective amount of at least one antioxidant agent.
8. A polyolefin polymeric composition resistant to water treeing, in particular for the manufacture of an insulating coating for electric cables, including a 25 polyolefin polymeric base, said polymeric composition including, in parts by weight to the total weight thereof, from 0.5 to 15 parts of ester groups and from 0.01 to 5 parts of epoxy groups, characterized in that said amounts of ester and epoxy groups are provided in the polymeric composition by a polymeric compound having ester and epoxy groups, said polymeric compound having a Melt Index of from 0.1 g/10' to 40
9. A polymeric composition according to claim 8, characterized in that said polymeric compound is selected from the group comprising: a) a terpolymer obtained. with by polymerizing ethylene i) at least one acrylic ester of the formula: CH CH-C-O-R 2 I 1 11 R 3 R 1 i0 20 wherein R 1 is H or CH 3 R 2 is an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to 10 carbon atoms, and R 3 is hydrogen or an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to carbon atoms; and ii) at least one glycidyl ester of the formula: i-C C-C-O-CH,-CH-CF, -I II\/ (IV) wherein R 3 and R 5 are independently H, an alkyl or aryl hydrocarbon group, linear or branched, 26 preferably a phenyl, having 1 to 10 carbon atoms; R 1 is H or CH 3 b) a terpolymer obtained by polymerizing ethylene with i) at least one vinyl ester of a carboxylic acid of the formula: CH 2 =CH-O-C-R 2 (II) 0 wherein R 2 is an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to 10 10 carbon atoms; and ii) at least one glycidyl ester of the formula: .R 1 R 3 -C C-C-O-CH 2 -CH-CH 2 (IV) I II O O wherein R 3 and R 5 are independently H, an alkyl or aryl hydrocarbon group, linear or branched, 15 preferably a phenyl, having 1 to 10 carbon atoms; R 1 is H or CH 3 c) a copolymer obtained by polymerizing ethylene with at least one glycidyl ester of the formula Rp R3-C C-C-O-CH-CH-CH- (IV) S II R 5 O O wherein R 3 and R 5 are independently H, an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to 10 carbon atoms; R 1 is H or CH 3 27 A polymeric composition according to claim 8, characterized in that it includes a polymer selected from the group comprising high-, medium- and low-density polyethylene homopolymers, ethylene copolymers and ethylene terpolymers with an alpha-olefin having 3 to carbon atoms, ethylene-alpha-olefin-diene terpolymers and mixtures thereof.
11. A polymeric composition according to claim 9, characterized in that said at least one glycidyl ester is glycidyl methacrylate.
12. A polymeric composition according to anyone of the preceding claims 8-11, characterized in that it further includes an effective amount of at least one cross- linking agent. 15 13. A polymeric composition according to claim 12, characterized in that said at least one cross-linking agent is tert-butyl-cumyl peroxide.
14. A polymeric composition according to anyone of the preceding claims 8-13, characterized in that it further 20 includes an effective amount of at least one antioxidant agent. 0 Use of a polymeric composition according to anyone of claims 8-14 for the insulation of electric cables.
16. Use of a terpolymer obtained by polymerizing ethylene with i) at least one acrylic ester of the formula: CH CH-C-O-R 2 (I) I I II R 3 Ri O 28 wherein R 1 is H or CH 3 R 2 is an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to 10 carbon atoms, and R 3 is hydrogen or an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to carbon atoms; and ii) at least one glycidyl ester of the formula: RI I R 3 -C C-C-O-CH2-CH-CH 2 (IV) I II R 5 O O wherein R 3 and R 5 are independently H, an alkyl or 10 aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to 10 carbon atoms; R 1 is H or CH 3 as tree retardant additive in a polymeric composition including a polyolefin polymeric base for coating an electric cable, said polymeric composition including, in parts by weight to the total weight thereof, from 0.5 to 15 parts of ester groups and from 0.01 to 5 parts of epoxy groups, said amounts of ester and epoxy groups being provided in the polymeric composition by a 20 polymeric compound having ester and epoxy groups, said polymeric compound having a Melt Index of from 0.1 to 40
17. Use of a terpolymer obtained by polymerizing ethylene with i) at least one vinyl ester of a carboxylic acid of the formula: 29 CH 2 =CH-O-C-R 2 (II) 0 wherein R 2 is an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to carbon atoms; and ii) at least one glycidyl ester of the formula: R 3 -C C-C-O-CH 2 -CH-CH2 I0 0 0 (IV) .9. .9 9 15 9*9* 9* wherein R 3 and R 5 are independently H, an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to 10 carbon atoms; R 1 is H or CH 3 as tree retardant additive in a polymeric composition including a polyolefin polymeric base for coating an electric cable, said polymeric composition including, in parts by weight to the total weight thereof, from 0.5 to 15 parts of ester groups and from 0.01 to 5 parts of epoxy groups, said amounts of ester and epoxy groups being provided in the polymeric composition by a polymeric compound having ester and epoxy groups, said polymeric compound having a Melt Index of from 0.1 to 40
18. Use according to claims 16 or 17, characterized in that said terpolymer has a Melt Index-of from 0.1 to 40
19. Use according to claims 16 or 17, characterized in that said at least one glycidyl ester is glycidyl methacrylate. 30 Use of a copolymer obtained by polymerizing ethylene with at least one glycidyl ester of the formula: R 1 R 3 -C C-C-O-CH2-CH-CH2 (IV) I I \I/ R 5 O 0 wherein R 3 and R 5 are independently H, an alkyl or aryl hydrocarbon group, linear or branched, preferably a phenyl, having 1 to 10 carbon atoms; R 1 is H or CH 3 as tree retardant additive in a polymeric composition including a polyolefin polymeric base for coating an electric cable, said polymeric composition including, in 10 parts by weight to the total weight thereof, from 0.5 to 15 parts of ester groups and from 0.01 to 5 parts of epoxy groups, said amounts of ester and epoxy groups being provided in the polymeric composition by a polymeric compound having ester and epoxy groups, said polymeric compound having a Melt Index of from 0.1 to 40
21. Use according to claim 20, characterized in that said o at least one glycidyl ester is glycidyl methacrylate.
22. Use according to claim 20, characterized in that said 20 copolymer has a Melt Index of from 0.1 g/10' to 40
23. An electric cable, substantially as herein described with reference to the accompanying drawings.
24. A polyolefin polymeric composition resistant to water treeing, substantially as herein described with reference to the accompanying drawings. Dated this 2 7 th Day of September, 2002 Pirelli Cavi E Sistemi Spa BY Their Patent Attorneys DAVIES COLLISON CAVE
AU47175/00A 1995-06-21 2000-07-12 Polymeric composition for coating electric cables having an improved resistance to water treeing and electric cable comprising said composition Ceased AU755732B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI95A1330 1995-06-21
AU55811/96A AU5581196A (en) 1995-06-21 1996-06-05 Polymeric composition for coating electric cables having an improved resistance to water treeing and electric cable comprising said composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU55811/96A Division AU5581196A (en) 1995-06-21 1996-06-05 Polymeric composition for coating electric cables having an improved resistance to water treeing and electric cable comprising said composition

Publications (2)

Publication Number Publication Date
AU4717500A AU4717500A (en) 2000-09-21
AU755732B2 true AU755732B2 (en) 2002-12-19

Family

ID=3741440

Family Applications (1)

Application Number Title Priority Date Filing Date
AU47175/00A Ceased AU755732B2 (en) 1995-06-21 2000-07-12 Polymeric composition for coating electric cables having an improved resistance to water treeing and electric cable comprising said composition

Country Status (1)

Country Link
AU (1) AU755732B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122745A (en) * 1974-08-16 1976-02-23 Sumitomo Chemical Co HORIOREFUINKEIJUSHISOSEIBUTSU
GB2131439A (en) * 1982-10-26 1984-06-20 Sanyo Kokusaku Pulp Co Coating composition for polypropylene resins
JPH0689608A (en) * 1992-09-07 1994-03-29 Hitachi Cable Ltd Electric insulator composition and wire/cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122745A (en) * 1974-08-16 1976-02-23 Sumitomo Chemical Co HORIOREFUINKEIJUSHISOSEIBUTSU
GB2131439A (en) * 1982-10-26 1984-06-20 Sanyo Kokusaku Pulp Co Coating composition for polypropylene resins
JPH0689608A (en) * 1992-09-07 1994-03-29 Hitachi Cable Ltd Electric insulator composition and wire/cable

Also Published As

Publication number Publication date
AU4717500A (en) 2000-09-21

Similar Documents

Publication Publication Date Title
US6436536B2 (en) Electric cable coated with polyolefin and polymer with ester and epoxy groups
KR100536616B1 (en) Cables with a halogen-free, recyclable coating containing polypropylene and ethylene copolymers with high structural uniformity
AU2012238586B2 (en) Silane crosslinkable polymer composition
US6372344B1 (en) Cables with a halogen-free recyclable coating comprising polypropylene and an ethylene copolymer having high elastic recovery
AU721027B2 (en) Water tree resistant insulating composition
US6274066B1 (en) Low adhesion semi-conductive electrical shields
EP2508558B1 (en) Silane crosslinkable polymer composition
US6410651B1 (en) Cables with a halogen-free recyclable coating comprising polypropylene and an ethylene copolymer having high structural uniformity
AU578095B2 (en) Insulation composition for cables
US20140017494A1 (en) Insulations containing non-migrating antistatic agent
AU755732B2 (en) Polymeric composition for coating electric cables having an improved resistance to water treeing and electric cable comprising said composition
WO2013030124A1 (en) Article comprising a silane crosslinkable polymer composition
JPH06251639A (en) Water tree resistant cable

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)