AU747520B2 - Ship for offshore operations with vertical openings - Google Patents

Ship for offshore operations with vertical openings Download PDF

Info

Publication number
AU747520B2
AU747520B2 AU28625/99A AU2862599A AU747520B2 AU 747520 B2 AU747520 B2 AU 747520B2 AU 28625/99 A AU28625/99 A AU 28625/99A AU 2862599 A AU2862599 A AU 2862599A AU 747520 B2 AU747520 B2 AU 747520B2
Authority
AU
Australia
Prior art keywords
ship
areas
deck
hull bottom
moonpool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU28625/99A
Other versions
AU2862599A (en
Inventor
Arne Smedal
Kare Syvertsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitec Systems AS
Original Assignee
Hitec Systems AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitec Systems AS filed Critical Hitec Systems AS
Publication of AU2862599A publication Critical patent/AU2862599A/en
Application granted granted Critical
Publication of AU747520B2 publication Critical patent/AU747520B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/48Decks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B2003/147Moon-pools, e.g. for offshore drilling vessels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Vibration Prevention Devices (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Foundations (AREA)
  • Earth Drilling (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

Ship for Offshore Operations with Vertical Openings In this specification, where a document, act or item of knowledge is referred to or discussed, this reference or discussion is not an admission that the document, act or item of knowledge or any combination thereof was at the priority date: part of common general knowledge; or (ii) known to be relevant to an attempt to solve any problem with which this specification is concerned.
10 The present invention relates to a ship for use in offshore operations which has one or more vertical openings in the hull, so-called moonpools. Openings in the hull of a ship which, is to be used as a drill ship, are quite common today, occurring both singly
S..
Sand severally, and are used for a variety of tasks. In some situations it is desirable to arrange fixedly mounted equipment in proximity to such a moonpool in order to carry out specific tasks. This could be, a derrick, a crane arrangement for launching and taking up, for instance, ROV, or other equipment for the execution of operations through these openings in the hull.
0O50 •ooo The openings are usually arranged along the longitudinal centre line of the ship and may be of a variety of cross-sectional shapes and sizes, but often they are rectangular or approximately rectangular, and if there are several openings, these are arranged one after the other along the longitudinal centre line of the ship and may have the same cross-sectional shape and size. If the openings are not used for specific tasks, they may be built into a ship to have an impact on its motions The rectangular openings have an effect on the stress distribution in, inter alia, the deck and hull bottom plates when the ship is exposed to stresses caused by waves and other loads. In some areas, notches may occur which result in concentrations of stress, where the level of stress may be considerably higher than the average stresses in the deck or hull bottom plates. Stress concentrations will occur in particular at the corners of rectangular openings, even though the corners are designed so as to minimise notch effect. It is also possible to alleviate the situation by designing bracket plates and local reinforcements appropriately, but the stress concentration factor will often be high, and a stress concentration factor of 2 is by no means unusual.
When designing and constructing a drill ship, it will be necessary to take such local stress concentrations into account, and they form the basis for calculating, inter alia, the fatigue life of a ship. Under certain operating conditions, such as, long-term operations in the North Sea, fatigue may be a decisive criterion for the dimensioning of a typical transverse section of a drill ship. In practice, this means that the dimensions of the deck o and hull bottom plates must be increased considerably to meet the fatigue capacity requirements. In addition to the production process being more complex, this will also Sinvolve substantially higher costs. Furthermore, the load picture and the stress S distribution will be more complicated and uncertain when, a derrick for use through the hull opening is to be fixedly mounted in the area of stress concentrations, or in 0e .oproximity to such areas. When positioning fixed equipment of this kind, it is of course an S 15 advantage that stresses and stress concentration should be the lowest and most uniform o6 possible with no local stress concentrations, or the potential for these. This may also result in designs that are simpler to produce, which in turn will help to reduce costs in oconnection with the production of the ship.
oo *666 The conventional notion of stress distribution in deck and hull bottom plates is that the S° stresses in the deck and hull bottom plates will, when the ship is exposed to stresses caused by waves and other loads, increase approximately linearly with the distance from the transverse neutral axis of the ship. In other words, the deck and hull bottom plates which are arranged furthest from the ship's transverse neutral axis will have the highest stress level. Furthermore, the stresses are intensified in local stress concentrations as a result of the design of the deck and hull bottom plates, if included in this design there are elements which produce notch effect. These elements may be sharp corners, openings, welded-in equipment or the like. Thus, on the basis of these factors, two solutions for the reduction of the stress concentrations become evident. One of these is to reduce the notch effect in the deck and hull bottom plates, and the other solution, towards which the present invention is directed, concentrates on the positioning and design of the deck and hull bottom plates at the site of cut-outs which, are rectangular, in relation to the Stransverse neutral axis of the ship.
According to one embodiment of the invention there is provided a ship for use in offshore operations, comprising a moonpool passing through a hole in the ship's hull bottom, first hull bottom areas adjacent to said moonpool being displaced upwardly in relation to remaining, second hull bottom areas, to a level closer to the ship's transverse neutral axis, but spaced a substantial distance from said transverse neutral axis, wherein said moonpool also passes through a hole in the ship's deck structure, first deck areas adjacent to said moonpool being displaced downwardly in relation to second deck areas, to a level closer to the ship's transverse neutral axis, but spaced a substantial distance from said transverse neutral axis.
0O0 Preferably in this embodiment the intermediate transition areas between said first and *second deck areas extend steplessly, sloping from the higher level of said second deck areas to the lower level of said first deck areas.
*0 0 00 0 15 According to another embodiment of the invention there is provided a ship for use in offshore operations, comprising a moonpool passing through a hole in the ship's hull bottom, first hull bottom areas adjacent to said moonpool being displaced upwardly in relation to remaining, second hull bottom areas, to a level closer to the ship's transverse
*S.S
00000" neutral axis, but spaced a substantial distance from said transverse neutral axis, wherein S 20 intermediate transition areas between said first and second hull bottom areas extend OS 50 S0steplessly, sloping from the higher level of said first hull bottom areas to the lower level of said second hull bottom areas.
::so According to a further embodiment of the invention there is provided a ship for use in offshore operations, in said ship's hull structure comprising a plurality of moonpools, first hull bottom areas between adjacent moonpools being displaced upwardly in relation to remaining, second hull bottom areas, positioning said first, upwardly displaced hull bottom areas vertically closer the ship's transverse neutral axis, wherein said first hull bottom areas and said second hull bottom areas overlap.
Preferably the ship's deck structure surrounds a small upper portion of each of a plurality of moonpools, first deck areas between adjacent moonpools being displaced downwardly in relation to remaining, second deck areas, positioning said first, downwardly displaced U deck areas vertically closer to the ship's transverse neutral axis.
According to another embodiment of the invention there is provided a ship for use in offshore operations, comprising a moonpool passing through a hole in the ship's hull bottom, first hull bottom areas adjacent to said moonpool being displaced upwardly in relation to remaining, second hull bottom areas, to a level closer to the ship's transverse neutral axis, but spaced a substantial distance from said transverse neutral axis, wherein said moonpool is also passed through a hole in the ship's deck structure, first deck areas adjacent to said moonpool being displaced downwardly in relation to remaining, second deck areas, to a level closer to the ship's transverse neutral axis, but spaced a substantial distance from said transverse neutral axis.
o l0 Preferably in this embodiment the intermediate transition areas between said first and second hull bottom areas extend steplessly, sloping from the higher level of said first hll bottom areas to the lower level of said second hull bottom areas, intermediate transition o 0 areas between said first and second deck areas extend steplessly, sloping from the higher 15 level of said second deck areas to the lower level of said first deckareas.
If the ship's deck and hull bottom plates which have cut-outs for moonpools are placed closer to the transverse neutral axis, the average stress level will be lower, and the stress 0•00 concentrations resulting from notches will be smaller. This in turn will be a major S 20 consideration when dimensioning of the deck and hull bottom plates, and especially in 0 •o relation to dimensioning for dynamic load and fatigue life. On drill ships having moonpools, as covered by the present application, there will at all times be stress concentrations as a result of notches at the points where the openings, or the so-called 0oo0 moonpools, pass through the deck and hull bottom plates. By displacing these deck and hull bottom plates, or optionally just the deck plate or the hull bottom plate towards the transverse neutral axis of the ship, a lower average stress level will be obtained. This will give lower stress peaks and thus help to reduce the need for plate thickness, which in turn results in a less costly ship.
In the proposed arrangement, the deck plates (on the upper deck) and the bottom plates on the side of the moonpool will be continuous without any cut-outs which result in notches and thus stress concentrations.
The invention will now be explained in more detail with reference to the following figures: Fig. 1 is a lateral sectional view of a hull with three moonpools taken through the centre line of the ship, wherein the deck and hull bottom plates between each moonpool are displaced in accordance with the present invention; Fig. 2 is a lateral sectional view of a ship with one moonpool taken through the centre line of the ship, wherein the deck and hull bottom plates abaft of and forward of S: the moonpool are displaced in accordance with an embodiment of the present 10 invention; **Fig. 3 is a lateral sectional view of a ship with one moonpool taken through the centre oo line, wherein the deck and hull bottom plates are displaced in accordance with an embodiment of the present invention; Fig. 4 is a top view of the hull as shown in Fig. 1; 0* 00 Fig. 5 is a top view of the hull shown in Fig. 2; 00 so 0 *0 o Fig. 6 is a top view of the hull shown in Fig. 3; Fig. 7 is a transverse section in the centre of a moonpool of a ship having a double bottom and double deck, wherein the deck and hull bottom plates are arranged in accordance with the present invention; Fig. 8 is a transverse section in the centre of a moonpool of a ship having a double bottom and double deck, wherein the deck and hull bottom plates are arranged in accordance with the present invention; Fig. 9 is a transverse section in the centre of a moonpool of a ship having a single bottom and single deck, wherein the deck and hull bottom plates are arranged in accordance with the present invention; and Fig. 10 is a transverse section in the centre of a moonpool of a ship having a double bottom but not a double deck. The deck plate at the moonpool is displaced in accordance with the present invention.
S.
0
S
S
S
0S 0 0 p 05
C
SS
0 0 One embodiment of the present invention is indicated in Fig. 1 in a lateral sectional view through the centre line of a hull having three through-going vertical openings 2, also known as moonpools, positioned one after the other in the longitudinal direction. In accordance with the invention, the deck area 8 and the hull bottom area 4 between each of the openings 2 have been displaced in such a way that the deck plates 8 are displaced down towards the ship's transverse neutral axis TNA (as shown in Fig. and similarly the hull bottom plates 4 are displaced relative to the rest of the ship's hull bottom, 15 towards the ship's transverse neutral axis. This can also be seen from Fig. 4, where the same construction as that in Fig. 1 is shown in a top view, wherein the openings, or the moonpools 2, are positioned along the centre line of the ship with deck areas 8 therebetween. The hatched deck areas 8 have thus been moved to an area where the average stress level is lower, and as a result of this positioning, the impact of the notch 20 effect at comers etc. will be reduced.
Fig. 2 is a lateral sectional view of a hull with a moonpool 2 taken through the centre line.
The deck area on each side of the moonpool is divided into the areas 9 and 10, both of which are displaced towards the ship's transverse neutral axis relative to the rest of the deck. Furthermore, the hull bottom plates 5 and 6 have also been displaced in a vertical direction towards the transverse neutral axis of the ship. Like the displacement of areas 4, 8 in Fig. 1, this results in a lower average stress level in the deck and hull bottom plates.
The solution in Fig. 2 differs from that in Fig. 1 in that in this case it is the deck and hull bottom plate areas in the forward and after edge of the moonpool 2 that have been displaced, whilst in Fig. 1 it is only the areas between each individual moonpool that are displaced. Apart from these two solutions, a combination is conceivable in a ship having more than one moonpool, wherein the deck and hull bottom areas between the moonpools may be displaced towards the transverse neutral axis of the ship, whilst the MeIN eck and hull bottom areas on the forward and after sides of the row of moonpools may also be displaced towards the ship's transverse neutral axis. The solution in Fig. 2 is also shown in Fig. 5 in a top view, where it is shown clearly that the deck areas 9 and 10 at the forward and after ends of the moonpool 2 only cover a part of the ship's deck area. Both the displacement of the deck plates 9 and 10 and the displacement of the hull bottom plates 5 and 6 are arranged stepwise so that the deck plates 9 and the hull bottom plates are displaced further in a vertical direction towards the ship's transverse neutral axis than the deck plates 10 and the hull bottom plates 6. This is done to further reduce the notch effect, thereby helping to reduce the stress concentrations in the construction of the deck area and hull bottom area in addition to the displacement thereof towards an area having 10 a lower average stress level.
0 0 :0 0Another alternative embodiment is disclosed in Fig. 3, which shows a lateral sectional *0O@ view of a hull with one moonpool 2 taken through the centre line, and the deck areas on the after and forward sides of the moonpool are displaced in accordance with the .0 15 invention at deck areas 1la and llb. Furthermore, the hull bottom plate areas on the *00 forward and after sides of the moonpool 2 are displaced at the hull bottom plates 7a and 7b. In contrast to the solution disclosed in Fig. 2, the junction between the displaced 00. areas and the rest of the surrounding deck and hull bottom plate areas is indicated by an approximately linear inclined plane 7b, 1 1b, which is also a design model for reducing the notch effect in the areas around the moonpool. This, in addition to the displacement of the deck areas towards the ship's transverse neutral axis, where the average stress level is lower, will help to reduce the stress concentration in the areas around the moonpool 2.
The solution from Fig. 3 is also shown in a top view in Fig. 6.
oloo The degree of displacement of the deck plate or hull bottom plate towards the ship's transverse neutral axis, in accordance with the present invention, may vary according to the average stress level that is desirable, whilst the practical considerations relating to the design of the ship will prevail with respect to the positioning of these deck and hull bottom plates.
Fig. 7 shows a transverse section of a ship having a double bottom and "double" deck and a centrally located moonpool 2. In accordance with the present invention, the deck area and hull bottom area at the forward and/or after side of the moonpool are displaced 14 MN relative to the rest of the deck area and hull bottom area towards the ship's transverse neutral axis TNA. In Fig. 7, this has been done by removing the upper deck plate and lower hull bottom plate in the double deck and double bottom construction, thereby displacing the deck plate area and the hull bottom area in the vertical direction to the position of the lower deck plate and the upper hull bottom plate. The local stress notches around the moonpool have been moved to a level where the average stress level in the cross section is lower. If this displacement achieves a reduction in the average stress level of 20-40%, it could at a rough estimate have the effect of increasing fatigue life by something in the range of 100 to 200%.
o 10 Fig. 8 also shows a transverse section of a hull having a moonpool 2 wherein there is provided both a double deck and a double bottom. In this case, the deck area and the hull bottom area on each side of the moonpool have been displaced in the vertical direction towards the ship's transverse neutral axis by placing a separate deck level between the upper and lower deck in the double deck configuration, and also a separate S: 15 hull bottom level between the upper and lower bottom in the double bottom go construction.
Fig. 9 shows a transverse section of a hull with moonpool 2, wherein there is provided a single deck and a single hull bottom. In this case, the displacement of the deck area and 0 G ,20 hull bottom area on each side of the moonpool has not been related to any lower deck o0 °0 0 levels or upper hull bottom levels, and the advantageous effect of the invention has been achieved here simply by displacing a part of the deck area and the hull bottom area in the vertical direction towards the transverse neutral axis of the ship. The displacement of the deck area and the hull bottom area need not be symmetrical by their being displaced an equal distance towards the transverse neutral axis. Similarly, it is not necessary to displace both deck area and hull bottom area, which is illustrated in Fig. 10. This figure shows a transverse section of a hull with moonpool 2 where only the deck area has been displaced in the vertical direction towards the ship's transverse neutral axis.
Within the scope of the exemplary embodiments described above, a ship having one or more moonpools is conceivable, wherein one or more of the areas between these moonpools may be displaced in the vertical direction towards the ship's transverse neutral axis. The displacement need not be symmetrical about the neutral axis, that the deck \plate and hull bottom plate are not necessarily displaced an equal distance, or that only one of them is displaced in the vertical direction. Furthermore, if there are more than two moonpools, it may be appropriate to have different vertical displacement between the different moonpools. Irrespective of the number of moonpools provided in the hull, it may be appropriate to displace the deck area and the hull bottom area abaft of the moonpool located closest to the ship's stem, and forward of the moonpool that is most forward in the longitudinal direction. These displacements of the ship need not be of the same magnitude, nor does it need to be related to any displacement of the deck and/or hull bottom plates between several moonpools. Displacement in the vertical direction of deck plates and hull bottom plates abaft and forward of the moonpools positioned at the S; 10 extremes in the longitudinal direction, may also be combined with a gradual stepping, a L e *S o elinear junction or an approximately arcuate junction between the displaced area and the rest of the deck and/or hull bottom area.
The word 'comprising' and forms of the word 'comprising' as used in this description and in the claims does not limit the invention claimed to exclude any variants or additions.
15 Modifications and improvements to the invention will be readily apparent to those skilled in the art. Such modifications and improvements are intended to be within the scope of this invention.
S
0 0 o oo o\

Claims (5)

1. A ship for use in offshore operations, comprising a moonpool passing through a hole in the ship's hull bottom, first hull bottom areas adjacent to said moonpool being displaced upwardly in relation to remaining, second hull bottom areas, to a level closer to the ship's transverse neutral axis, but spaced a substantial distance from said transverse neutral axis, wherein said moonpool also passes through a hole in the ship's deck structure, first deck areas adjacent to said moonpool being displaced downwardly in relation to second deck areas, to a level closer to the 1 ship's transverse neutral axis, but spaced a substantial distance from said 0 10 transverse neutral axis.
2. A ship for use in offshore operations, comprising a moonpool passing through a ohole in the ship's hull bottom, first hull bottom areas adjacent to said moonpool Sea. being displaced upwardly in relation to remaining, second hull bottom areas, to a level closer to the ship's transverse neutral axis, but spaced a substantial distance S 15 from said transverse neutral axis, wherein intermediate transition areas between said first and second hull bottom areas extend steplessly, sloping from the higher level of said first hull bottom areas to the lower level of said second hull bottom areas. A ship for use in offshore operations, in said ship's hull structure comprising a S 20 plurality of moonpools, first hull bottom areas between adjacent moonpools being 00 04 "displaced upwardly in relation to remaining, second hull bottom areas, positioning said first, upwardly displaced hull bottom areas vertically closer the ship's transverse neutral axis, wherein said first hull bottom areas and said second •00 -•hull bottom areas overlap.
4. A ship for use in offshore operations, comprising a moonpool passing through a hole in the ship's hull bottom, first hull bottom areas adjacent to said moonpool being displaced upwardly in relation to remaining, second hull bottom areas, to a level closer to the ship's transverse neutral axis, but spaced a substantial distance from said transverse neutral axis, wherein said moonpool is also passed through a hole in the ship's deck structure, first deck areas adjacent to said moonpool being displaced downwardly in relation to remaining, second deck areas, to a level closer to the ship's transverse neutral axis, but spaced a substantial distance from said L 1 transverse neutral axis. <c' 3( .1 11 A ship for use in offshore operations as set forth in claim 3, said ship's deck structure surrounding a small upper portion of each of a plurality of moonpools, first deck areas between adjacent moonpools being displaced downwardly in relation to remaining, second deck areas, positioning said first, downwardly displaced deck areas vertically closer to the ship's transverse neutral axis.
6. A ship for use in offshore operations as set forth in claim 1, wherein intermediate transition areas between said first and second deck areas extend steplessly, sloping from the higher level of said second deck areas to the lower level of said first deck areas. 6 10 7. A ship for use in offshore operations as set forth in claim 4, wherein intermediate transition areas between said first and second hull bottom areas extend steplessly, sloping from the higher level of said first hull bottom areas to the lower level of said second hull bottom areas, intermediate transition areas between said first and second deck areas extend steplessly, sloping from the higher level of said second 15 deck areas to the lower level of said first deck areas.
8. A ship for use in offshore operations, substantially as hereinbefore described and with reference to any one of the accompanying drawings. Hitec Systems AS 4 March, 2002 0e 00 C. 0
AU28625/99A 1998-02-05 1999-02-03 Ship for offshore operations with vertical openings Ceased AU747520B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO19980498 1998-02-05
NO980498A NO308348B1 (en) 1998-02-05 1998-02-05 Ships for offshore operations, with vertical openings
PCT/NO1999/000034 WO1999039971A1 (en) 1998-02-05 1999-02-03 Ship for offshore operations with vertical openings

Publications (2)

Publication Number Publication Date
AU2862599A AU2862599A (en) 1999-08-23
AU747520B2 true AU747520B2 (en) 2002-05-16

Family

ID=19901632

Family Applications (1)

Application Number Title Priority Date Filing Date
AU28625/99A Ceased AU747520B2 (en) 1998-02-05 1999-02-03 Ship for offshore operations with vertical openings

Country Status (14)

Country Link
EP (1) EP1053171B1 (en)
JP (1) JP2002502761A (en)
KR (1) KR20010040670A (en)
CN (1) CN1119259C (en)
AU (1) AU747520B2 (en)
BR (1) BR9910888A (en)
CA (1) CA2319487A1 (en)
DE (1) DE69912244T2 (en)
ES (1) ES2211054T3 (en)
NO (1) NO308348B1 (en)
PL (1) PL342664A1 (en)
PT (1) PT1053171E (en)
RU (1) RU2243128C2 (en)
WO (1) WO1999039971A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101159196B1 (en) * 2008-10-27 2012-06-25 삼성중공업 주식회사 Moonpool and drillship having the same
CN101725162B (en) * 2008-10-10 2011-11-16 鄂州市三祥机械有限公司 Well-type grab bucket sand dredging and desilting ship
NL2014763B1 (en) * 2015-05-04 2017-01-26 Gustomsc Resources Bv A vessel provided with a moon pool.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081163A (en) * 1976-10-04 1978-03-28 Guinn David C Blow out preventer handling system
US4281716A (en) * 1979-08-13 1981-08-04 Standard Oil Company (Indiana) Flexible workover riser system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081163A (en) * 1976-10-04 1978-03-28 Guinn David C Blow out preventer handling system
US4281716A (en) * 1979-08-13 1981-08-04 Standard Oil Company (Indiana) Flexible workover riser system

Also Published As

Publication number Publication date
CA2319487A1 (en) 1999-08-12
CN1295523A (en) 2001-05-16
KR20010040670A (en) 2001-05-15
RU2243128C2 (en) 2004-12-27
CN1119259C (en) 2003-08-27
AU2862599A (en) 1999-08-23
NO980498L (en) 1999-08-06
BR9910888A (en) 2001-04-17
PL342664A1 (en) 2001-07-02
DE69912244D1 (en) 2003-11-27
JP2002502761A (en) 2002-01-29
PT1053171E (en) 2004-02-27
NO980498D0 (en) 1998-02-05
NO308348B1 (en) 2000-09-04
EP1053171B1 (en) 2003-10-22
ES2211054T3 (en) 2004-07-01
WO1999039971A1 (en) 1999-08-12
EP1053171A1 (en) 2000-11-22
DE69912244T2 (en) 2004-08-26

Similar Documents

Publication Publication Date Title
US11052971B2 (en) Floating offshore platform
US8544404B2 (en) Mono-column FPSO
US8220407B2 (en) Battered column semi-submersible offshore platform
US7918174B2 (en) Anti-sloshing device in moon-pool
US6997132B2 (en) Semi-submersible offshore vessel and methods for positioning operation modules on said vessel
AU735556B2 (en) Hull construction
AU747520B2 (en) Ship for offshore operations with vertical openings
KR102107297B1 (en) Floating Body
US6397770B1 (en) Ship for offshore operations with vertical openings
CN1193912C (en) Motion-reducing floating structure
CN110027671B (en) Container ship bottom structure with centralized bottom longitudinal girders
US6854411B2 (en) Semi-submersible offshore platform and methods for positioning operation modules on said platform
JP4401346B2 (en) Double hull structure in ship engine room
US11059544B2 (en) Inboard extended column semi-submersible
GB2187679A (en) Floating platform structure
US9725137B2 (en) Semisubmersible with five-sided columns
US20110044764A1 (en) Strake system for submerged or partially submerged structures
KR102666914B1 (en) The floating type structure for the offshore wind power
KR20120044879A (en) Container loading structure for ship
US6561110B1 (en) Passive stabilizer for floating petroleum-production systems
JP3780615B2 (en) Double bottom ship&#39;s double bottom traffic device
KR102551516B1 (en) Floating body
JP3107481U (en) Ship&#39;s bulwark structure
JP2002255090A (en) Floating pier for mooring ship
WO2012130281A1 (en) Semisubmersible platform

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)