AU744311B2 - Ammonia oxidation catalyst comprising aluminium oxide, bismuth oxide and anganese oxide - Google Patents

Ammonia oxidation catalyst comprising aluminium oxide, bismuth oxide and anganese oxide Download PDF

Info

Publication number
AU744311B2
AU744311B2 AU52579/98A AU5257998A AU744311B2 AU 744311 B2 AU744311 B2 AU 744311B2 AU 52579/98 A AU52579/98 A AU 52579/98A AU 5257998 A AU5257998 A AU 5257998A AU 744311 B2 AU744311 B2 AU 744311B2
Authority
AU
Australia
Prior art keywords
catalyst
oxide
nitrous oxide
ammonia
selectivity towards
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU52579/98A
Other versions
AU5257998A (en
Inventor
Vladimir Vasilievich Mokrinskii
Alexander Stepanovich Noskov
Elena Markovna Slavinskaya
Ilya Aleksandrovich Zolotarskii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solutia Inc
Original Assignee
Solutia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solutia Inc filed Critical Solutia Inc
Publication of AU5257998A publication Critical patent/AU5257998A/en
Application granted granted Critical
Publication of AU744311B2 publication Critical patent/AU744311B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/22Nitrous oxide (N2O)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Description

WO 98/25698 WO 9825698PCTfUS97/20830 AMMONIA OXIDATION CATALYST COMPRISING ALUMINIUM OXIDE, BISMUTH OXIDE AND MANGANESE
OXIDE
The present invention describes catalysts to be used for nitrous oxide production by ammonia oxidation with molecular oxygen in chemical industry.
Along with a high activity, understood as conversion at a definite residence time, catalysts for ammonia oxidation to produce nitrous oxide should also meet the following demands: ethey should provide a high selectivity towards nitrous oxide and a low selectivity towards nitrogen oxide in the whole temperature range of ammonia oxidation; they should perform well under conditions, when reaction mixture contains oxygen in stoichiometry amount or below the stoichiometry amount.
As a rule, the known catalysts do not comply with all above demands.
Thus a bulk manganese-bismuth catalyst [1I] containing 5% Bi 2
O
3 and 95 MnO 2 has a low activity. At a temperature of 200TC, when the selectivity towards nitrous oxide is is maximum, and equals 88.5% at an inlet ammonia concentration of 10.8 vol.% in the oxygen excess, a complete ammonia conversion occurs at a residence time of 5 s. Meanwhile the selectivity towards NO and NO 2 is As the process temperature increases to 300 0 C, the yields of nitrous oxide and NO+NO 2 are 79 and 3. 1 respectively. As ammonia concentration decreases to 3.02 vol.%, the selectivity towards nitrous oxide falls to Therefore, beside a low activity in ammonia oxidation by the oxygen excess, the catalyst shows a high selectivity towards nitrogen oxides.
Another catalyst for ammonia oxidation consists of the oxides of iron, bismuth and manganese in the following ratio: 79.45% Fe 2
O
3 11.53% Bi 2 0 3 7.2 1 MnO 2 The maximum yield of nitrous oxide in the said catalyst is 82%, and it is attained under the following conditions: temperature 350 0 C; inlet concentrations: ammonia 10 vol.%, oxygen 90 vol%. However, at this temperature the selectivity towards nitrogen oxide is At 300 0 C the selectivity towards nitrous oxide and nitrogen oxide is 79% and 1.5% respectively.
Therefore, the catalyst does not meet all demands in concern, because it has a low selectivity towards nitrous oxide at a high selectivity towards nitrogen oxide.
-2- Catalyst with a composition of 5% MnO 2 5% Bi 2 0 3 90% Fe20 is most close in performance and properties to the catalyst claimed in the present invention. It shows the following results. The maximum nitrous oxide yield is 87%, when reaction mixture containing 10% of ammonia in air (thus in oxygen excess, concentration 18.9 If s reaction mixture contains I ammonia part, 5 air parts, and 5 nitrogen parts, and so it is close to stoichiometry (9.1 vol.% ammonia and 9.55 vol.% oxygen), then the yield of nitrous oxide is 81 At 275-300 0 C the residence time for complete conversion is 3.6 s. Therefore, the catalyst has a low activity and not high enough selectivity towards nitrous oxide under conditions, when reaction mixture contains ammonia and oxygen in amounts close to stoichiomen),.
present invention aims at providing catalysts that are highly active under conditions, when reaction mixture contains oxygen in arnount close or below the stoichiometry one, showing a high selectivity towards nitrous oxide, and a low selectivity towards nitrogen oxide.
According to the present invention, there is provided a catalyst for production of nitrous oxide, including: 5.0-35.0% MnO 2 4.5-30.0% Bi 2 0 3 and 35.0-90.5% Al 2
O.
.The catalysts of the said composition are prepared by impregnating alumina with a solution of Mn and Bi nitrates, or by mixing the powders of Mn and Bi oxides with the powder of aluminum hydroxide to be then molded, or depositing the said components on an inert support. At the final stage the catalysts are dried, and calcined at 375-550"C. Thus obtained catalysts show a high activity, when the oxygen content in the reaction mixture is 2s close or lower the stoichiometry one, and exhibit a high selectivity towards nitrous oxide, and a low selectivity towards nitrogen oxide.
At a temperature of 350 0 C, and at a residence time of 0.7 sec, arnmonia/oxygen ratio being 1.44, and ammonia concentration being 7.3 vol.%, ammonia conversion on the said catalysts is 82-99.2%. The selectivity towards. nitrous and nitrogen oxides is 82-84.6 and 2.1- WO 98/25698 WO 9825698PCTIUS9720830 3- 2.7% respectively. After water and ammonia separation the final product contains 79.6-81.7% of nitrous oxide, 4.1-5.25% of nitrogen oxide, and 0.82-0.84% of oxygen.
At a temperature of 300 0 C, and at a residence time of 1.6 sec, ammonia/oxygen ratio being 1.44, and ammonia concentration being 7.3 vol.%, ammonia conversion on the said catalysts is 82.5-99.0%. The selectivity towards nitrous and nitrogen oxides is 83-86 and 0.3- 0.35% respectively. After water and ammonia separation the final product contains 82.2- 84.9% of nitrous oxide, 0.6-0.69% of nitrogen oxide, and 0.75-0.77% of oxygen.
The high activity and selectivity of the claimed catalysts in ammonia oxidation to nitrous oxide is provided by its components at the said percent ratios.
Catalyst specific surface area also has a positive effect. The tests show that at a stable high activity the catalyst shows the highest selectivity, when its specific surface area ranges within 5-80 m2/g.
Example 1. Catalyst with a composition of 1 3%MnO 2 /1 1 %Bi 2
O
3 /76%A1 2 0 3 is prepared as follows. 100 g of alumina granules are impregnated by incipient wetness with a i s solution of Mn and Bi nitrates, are dried in air and then in a drying chamber at 1 30 0 C for 2-4 h. Thus obtained product is once again impregnated with a solution of Mn and Bi nitrates, dried in air and in the drying chamber at 1 30'C for 4 hours. Then the granules were calcined in a furnace at 375-550 0 C for 2-4 h. Thus obtained catalyst is tested under reaction conditions similar to those described in reaction mixture composition being 9%NH 3 and 9%02. At 350 0 C and at a residence time of 0.7 s ammonia conversion is 99.2%. Selectivity towards nitrous oxide and nitrogen oxide is 87 and 2.8% respectively. At 300 0 C at the same gas composition and at a contact time of 1.6 s ammonia conversion is 99.4%. Selectivity towards nitrous oxide and nitrogen oxide is 88.6 and 0.30% respectively. Ssp is 10 m2Ig.
Example 2. Catalyst prepared as in example I is tested at ammonia to oxygen ratio equal to 1.44 and ammonia concentration equal to 7.3 vol.% in the reaction mixture.
At 350 0 C and at a residence time of 0.7 s ammonia conversion is 82%. Selectivity towards nitrous oxide and nitrogen oxide is 84.6 and 2.7% respectively. In the final product nitrous oxide to oxygen ratio is 97.4, nitrous oxide to nitrogen oxide ratio being 15.6. After 1- WO 98/25698 WO 9825698PCTIUS97/20830 -4ammonia and water separation the final product contains 82% of nitrous oxide, 5% of nitrogen oxide, and 0.84% of oxygen.
At 300'C at the same gas composition and at a contact time of 1.6 s ammonia conversion is 82.5%. Selectivity towards nitrous oxide and nitrogen oxide is 86 and 0.3 respectively. In the final product nitrous oxide ratio to oxygen is 1 10, while nitrous oxide to nitrogen oxide ratio is 121. The final product (after ammonia and water separation) contains 85.2% of nitrous oxide, 0.7% of nitrogen oxide, and 0.78% of oxygen.
Example 3. Catalyst with a composition of 5%MnO 2 /5%Bi 2
O
3 /Fe 2
O
3 is prepared as described in and tested under the following conditions: reaction mixture composition io 0.75%NH 3 1.5%02; residence time 0.072 s, temperature 350-300 0 C. At 350'C ammonia conversion is 73%. Selectivity towards nitrous oxide and nitrogen oxide is 76.9 and 3.9% respectively. At 300'C ammonia conversion is 35%. Selectivity towards nitrous oxide and nitrogen oxide is 68 and 1.4% respectively. Ssp is 4 m2/g.
Example 4. Catalyst with a composition of 1 5%MnO 2 /1 5%Bi 2
O
3 /70%A1 2 0 3 is prepared as in example I and tested as in example 2. At 300'C ammonia conversion is 38%.
Selectivity towards nitrous oxide and nitrogen oxide is 79 and 1.4% respectively. Ssp is I1I m2/g.
Example 5. Catalyst with a composition of 1 3%MnO 2 Il 1 %Bi 2
O
3 /76%AI 2 0 3 is prepared as in example 1 and tested as in example 2. At 350 0 C ammonia conversion is 76%.
Selectivity towards nitrous oxide and nitrogen oxide is 76% and 3.8% respectively. At 300 0
C
ammonia conversion is 39%. Selectivity towards nitrous oxide and nitrogen oxide is 83 and 1.3% respectively.
Example 6. Catalyst with a composition of I 5%MnO 2 /7,5%/Bi 2
O
3 /77.5%/A1 2 0 3 is prepared as in example 1 and tested as in example 2. At 350 0 C ammonia conversion is 93.2%.
Selectivity towards nitrous oxide and nitrogen oxide is 78.7% and 3.9% respectively. At 300'C ammonia conversion is 5 Selectivity towards nitrous oxide and nitrogen oxide is and 1.2% respectively. Ssp is 11I m2/g.
Example 7. Catalyst with a composition of I 0%MnO 2 /5%Bi 2
O
3 /85%A 2
O
3 is prepared as in example I and tested as in example 2. At 350'C ammonia conversion is 92.5%.
:77 77 WO 98/25698 PCT/US97/20830 Selectivity towards nitrous oxide and nitrogen oxide is 80% and 3.7% respectively. At 300 0
C
ammonia conversion is 62.4%. Selectivity towards nitrous oxide and nitrogen oxide is 77 and 1.3% respectively. Ssp is 11 m2/g.
Example 8. Catalyst with a composition of 16%MnO 2 /16%Bi 2
O
3 /68%A1 2 0 3 is prepared as in example I and tested as in example 2. At 350 0 C ammonia conversion is 73%.
Selectivity towards nitrous oxide and nitrogen oxide is 78.8% and 3.9% respectively. At 300 0 C ammonia conversion is 37%. Selectivity towards nitrous oxide and nitrogen oxide is 37 and 1.4% respectively. Ssp is 39 m2/g.
Example 9. Catalyst with a composition of 5%MnO 2 /4.5%Bi 2 O3/90.5%A1 2 0 3 is i0 prepared as follows. 100 g of alumina granules are impregnated by a solution of Mn and Bi nitrates, dried in air and in the drying chamber at 120-130 0 C for 4 h. The obtained product was calcined in the furnace in air at 375-550 0 C for 2-4 h. Thus obtained catalyst was tested as in example 2. At 350 0 C ammonia conversion is 79%. Selectivity towards nitrous oxide and nitrogen oxide is 76% and 3.6% respectively. At 300 0 C ammonia conversion is Selectivity towards nitrous oxide and nitrogen oxide is 80 and 1.3% respectively. Ssp is m2/g.
Example 10. Catalyst with a composition of 3 5%MnO 2 /30%Bi 2
O
3 /35%AI 2 0 3 prepared mixing a mass containing 52 g of Mn oxide and Bi oxide powders and 35 g of aluminum hydroxide powder with 25 cm 3 of water to obtain a moldable paste. Then the paste was molded as cylinder granules 3 mm in diameter, dried at room temperature for 10 h, dried in the chamber at 120 0 C for 2 h, and calcined in the furnace at 375-550 0 C for 2-4 h. Thus obtained catalyst was tested as in example 2. At 350 0 C ammonia conversion is 77%.
Selectivity towards nitrous oxide and nitrogen oxide is 78% and 3.1% respectively. At 300 0
C
ammonia conversion is 39%. Selectivity towards nitrous oxide and nitrogen oxide is 74 and 1.1% respectively. Ssp is 80 m 2/g.
References: 1. V.F. Postnikov, L.L. Kuz'min and N.K. Tsal'm,- J.Chem.Ind., 22, 1348 (1937) 2. Zawadzki, Discussions Faraday Soc., 1950, N8, p. 140 3. Schlecht, and von Nagel, Ger. Patent 503200 (1930) WO 98/25698 WO 9825698PCTIUS97/20830 example content, mass.% MnO 2 Bi 2
O
3 1 13 11 Table 1 conversion, 99.2 99.4 82 82.5 73 38 76 39 93.2 58.7 92.5 62.4 73 37 79 77 39 SN20o,/ 87 88.6 84.6 86 76.9 68 79 76 83 78.7 80 80 77 78.8 74.7 76 80 78 74 SNO,% T 0
C
2.8 0.35 2.7 0.35 3.9 1.4 1.4 3.8 1.3 3.9 1.2 3.7 1.3 3.9 1.4 3.6 1.3 3.1 1.1 350 300 350 300 350 300 300 350 300 350 300 350 300 350 300 350 300 350 300 -7 It will be clearly understood that, although a number of prior art publications are referred to herein, this reference does not constitute an admission that any of these documents forms part of the coimmon general knowledge in the art, in Australia or in any other country.
For the purposes of this specification it will be clearly understood that the word "comprising" means "including but not limited to", and that the words "comprise" and "comprises" have a corresponding meaning.
\melb-f iles \homne$ \mbaurke\Keep\Speci \5 2579 -98 SPECI .doc 3/01/02

Claims (3)

1. A catalyst for production of nitrous oxide, including:
5.0-35.0% MnO 2 4.5-30.0% Bi 2 0 3 and
35.0-90.5% A1 2 0 3 2. The catalyst of claim 1, in which the specific surface area of the catalyst is 5-80 m 2 /g. 3. The catalyst of claim 1, in which the specific surface area of the catalyst is 10-40 m 2 /g. 4. The catalyst of any one of claims 1 to 3, in which the catalyst consists of: 5.0-35.0% Mn0 2 4.5-30.0% Bi 2 0 3 and 35.0-90.5% A1 2 0 3 The catalyst of any one of claims 1 to 3, in which the catalyst includes: about 13% MnO 2 about 11% Bi 2 0 3 and about 76% A1 2 0 3 6. The catalyst of any one of claims 1 to 3, in which the catalyst includes: about 15% MnO 2 25 about 15% Bi 2 0 3 and about 70% A1 2 0 3 7. The catalyst of any one of claims 1 to 3, in which the catalyst includes: about 15% MnO 2 about 7.5% Bi 2 0 3 and about 77.5% A1 2 0 3 8. The catalyst of any one of claims 1 to 3, in which the catalyst includes: about 10% Mn0 2 about 5% Bi 2 0 3 and about 85% A1 2 0 3 9. The catalyst of any one of claims 1 to 3, in \\melb-files\home$\mbourke\Keep\Speci\52579-98 SPECI.doc 3/01/02 9 which the catalyst includes: about 16% Mn0 2 about 16% Bi 2 0 3 and about 68% A1 2 0 3 10. The catalyst of any one of claims 1 to 3, in which the catalyst includes: about 5% Mn0 2 about 4.5% Bi 2 0 3 and about 90.5% A1 2 0 3 11. The catalyst of any one of claims 1 to 3, in which the catalyst includes: about 35% Mn0 2 about 30% Bi 2 0 3 and about 35% A1 2 0 3 15 12. A catalyst for production of nitrous oxide, substantially as hereinbefore described with reference to any one of the foregoing examples. 0Dated this 3rd day of January 2002 S. 20 SOLUTIA, INC. o0By their Patent Attorneys GRIFFITH HACK oooooo* Fellows Institute of Patent and *oeo Trade Mark Attorneys of Australia °o ^7\\melb files\home$\mbourke\Keep\Speci\52579-98 SPECI.doc 3/01/02
AU52579/98A 1996-12-10 1997-11-12 Ammonia oxidation catalyst comprising aluminium oxide, bismuth oxide and anganese oxide Ceased AU744311B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RO96123343/04 1996-12-10
RU96123343A RU2102135C1 (en) 1996-12-10 1996-12-10 Catalyst for nitrous oxide synthesis
PCT/US1997/020830 WO1998025698A1 (en) 1996-12-10 1997-11-12 Ammonia oxidation catalyst comprising aluminium oxide, bismuth oxide and manganese oxide

Publications (2)

Publication Number Publication Date
AU5257998A AU5257998A (en) 1998-07-03
AU744311B2 true AU744311B2 (en) 2002-02-21

Family

ID=20187974

Family Applications (1)

Application Number Title Priority Date Filing Date
AU52579/98A Ceased AU744311B2 (en) 1996-12-10 1997-11-12 Ammonia oxidation catalyst comprising aluminium oxide, bismuth oxide and anganese oxide

Country Status (10)

Country Link
EP (1) EP0948404A1 (en)
JP (1) JP2001505817A (en)
KR (1) KR20000069398A (en)
CN (1) CN1245447A (en)
AU (1) AU744311B2 (en)
BR (1) BR9713999A (en)
CA (1) CA2274760A1 (en)
PL (1) PL333932A1 (en)
RU (1) RU2102135C1 (en)
WO (1) WO1998025698A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2127721C1 (en) 1997-07-29 1999-03-20 Институт органической химии им.Зелинского РАН Process for preparing phenol and derivatives thereof
EP1036761A1 (en) * 1999-03-16 2000-09-20 Phenolchemie GmbH & Co. KG Process for the preparation of nitrous oxide
RU2155181C1 (en) 1999-04-05 2000-08-27 Кустов Леонид Модестович Method of oxidation of toluene into phenol, and/or cresols
DE10344594A1 (en) 2003-09-25 2005-05-12 Basf Ag Process for the preparation of cyclododecanone
DE10344595A1 (en) 2003-09-25 2005-05-12 Basf Ag Process for the preparation of a ketone
DE102004046167A1 (en) 2004-09-23 2006-04-06 Basf Ag Process for purifying and concentrating nitrous oxide
DE102004046171A1 (en) 2004-09-23 2006-04-13 Basf Ag Process for the preparation of cyclopentanone
DE102005055588A1 (en) 2005-11-22 2007-05-24 Basf Ag Purification of gas mixture comprising dinitrogen monoxide, useful as oxidizing agent for olefins, comprises absorption of the gas mixture in solvent, desorption from the solvent, absorption in water and desorption from the water
BRPI0719326A2 (en) 2006-12-11 2014-02-04 Basf Se PROCESS TO PURIFY A GAS MIX
KR101581062B1 (en) 2008-04-02 2015-12-30 바스프 에스이 Process for purifying dinitrogen monoxide
UA99762C2 (en) 2008-04-02 2012-09-25 Басф Се Process for purifying of gas mixture, containing dinitrogen monoxide
DK2365961T3 (en) 2008-11-11 2013-03-25 Basf Se Process for producing cyclic diamines
US8362296B2 (en) 2009-08-21 2013-01-29 Basf Se Process for preparing 4-pentenoic acid
GB201019701D0 (en) 2010-11-19 2011-01-05 Invista Tech Sarl Reaction process
DE102014212602A1 (en) 2013-07-02 2015-01-08 Basf Se Process for the preparation of a ketone from an olefin
KR20160128354A (en) * 2014-02-27 2016-11-07 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Exhaust system having n2o catalyst in egr circuit
WO2024033126A1 (en) 2022-08-11 2024-02-15 Basf Se A process for the explosion-proof storage of nitrous oxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4419274A (en) * 1980-12-16 1983-12-06 Pohang Iron & Steel Co., Ltd. Nonmetallic catalyst compositions for oxidation of ammonia and process for making the catalyst
US5212137A (en) * 1990-01-09 1993-05-18 Standard Oil Company Catalyst for the manufacture of acrylonitrile and methacrylonitrile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4419274A (en) * 1980-12-16 1983-12-06 Pohang Iron & Steel Co., Ltd. Nonmetallic catalyst compositions for oxidation of ammonia and process for making the catalyst
US5212137A (en) * 1990-01-09 1993-05-18 Standard Oil Company Catalyst for the manufacture of acrylonitrile and methacrylonitrile

Also Published As

Publication number Publication date
JP2001505817A (en) 2001-05-08
BR9713999A (en) 2000-02-29
PL333932A1 (en) 2000-01-31
CA2274760A1 (en) 1998-06-18
WO1998025698A1 (en) 1998-06-18
EP0948404A1 (en) 1999-10-13
CN1245447A (en) 2000-02-23
RU2102135C1 (en) 1998-01-20
AU5257998A (en) 1998-07-03
KR20000069398A (en) 2000-11-25

Similar Documents

Publication Publication Date Title
AU744311B2 (en) Ammonia oxidation catalyst comprising aluminium oxide, bismuth oxide and anganese oxide
US8992870B2 (en) Catalyst for decomposing nitrous oxide and method for performing processes comprising formation of nitrous oxide
US4299734A (en) Catalyst for purifying exhaust gases and method for producing same
US4151123A (en) Catalytic perovskites on perovskite supports and process for preparing them
US4921829A (en) Catalyst for purifing exhaust gases
CA1335278C (en) Exhaust gas catalyst with a reduced tendency to accumulate sulfur dioxide and hydrogen sulfide emissions
EP0306944A1 (en) Catalytic oxidation of carbon monoxide on Pt and/or Pd/MgO catalysts
US4552733A (en) Polyfunctional catalysts and method of use
US5068217A (en) Carrier catalysts for oxidizing carbon monoxide and process for their production
SU652868A3 (en) Catalyst for furifying exhaust from nitrogen oxides
US4018710A (en) Reduction catalysts and processes for reduction of nitrogen oxides
EP0062912B1 (en) Process for the catalytic conversion of carbon monoxide and sulfactive co conversion catalyst
CN108126708B (en) CO normal temperature catalytic oxidation catalyst
EP0412501A1 (en) Oxidation of carbon monoxide and catalyst therefor
US5562888A (en) Nitrous oxide decomposition using a solid oxide solution
CA1125730A (en) Catalyst for reducing nitrogen oxides and process for producing the same
US7223715B2 (en) Purification catalyst, preparation process therefor and gas-purifying apparatus
EP1187669B1 (en) Method for the catalytic oxidation of volatile organic compounds
EP0513469A1 (en) Catalyst containing rare earth and carrier
US3824194A (en) Catalyst for use in conversion of gases and method for preparing thereof
CZ199799A3 (en) Catalyst for preparing nitrogen monoxide
KR100408880B1 (en) De-NOx CATALYSTS AND METHOD BY DIRECT CATALYTIC REDUCTION
US6077493A (en) Method for removing nitrogen oxides
RU2051734C1 (en) Catalyst for oxidation of ethanol to acetone
CN114054020A (en) Perovskite structure material and application thereof in removing formaldehyde at room temperature

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired