AU719690B2 - Method and apparatus for forming bends in thermoplastic pipe - Google Patents

Method and apparatus for forming bends in thermoplastic pipe Download PDF

Info

Publication number
AU719690B2
AU719690B2 AU20368/99A AU2036899A AU719690B2 AU 719690 B2 AU719690 B2 AU 719690B2 AU 20368/99 A AU20368/99 A AU 20368/99A AU 2036899 A AU2036899 A AU 2036899A AU 719690 B2 AU719690 B2 AU 719690B2
Authority
AU
Australia
Prior art keywords
pipe section
pipe
mandrel
anvil
bend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU20368/99A
Other versions
AU2036899A (en
Inventor
Ranald John Pery-Johnston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vinidex Pty Ltd
Original Assignee
POLYFLOW IND Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPP2311A external-priority patent/AUPP231198A0/en
Application filed by POLYFLOW IND Pty Ltd filed Critical POLYFLOW IND Pty Ltd
Priority to AU20368/99A priority Critical patent/AU719690B2/en
Priority to GB9915869A priority patent/GB2351936A/en
Publication of AU2036899A publication Critical patent/AU2036899A/en
Application granted granted Critical
Publication of AU719690B2 publication Critical patent/AU719690B2/en
Priority to CA002319901A priority patent/CA2319901C/en
Assigned to Rodney Industries Pty Ltd reassignment Rodney Industries Pty Ltd Alteration of Name(s) in Register under S187 Assignors: POLYFLOW INDUSTRIES PTY LTD
Assigned to VINIDEX PTY LIMITED reassignment VINIDEX PTY LIMITED Alteration of Name(s) in Register under S187 Assignors: Rodney Industries Pty Ltd
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/02Bending or folding
    • B29C53/08Bending or folding of tubes or other profiled members
    • B29C53/083Bending or folding of tubes or other profiled members bending longitudinally, i.e. modifying the curvature of the tube axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Description

AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT Name of Applicant: Actual Inventor: Address for Service: Invention Title: POLYFLOW INDUSTRIES PTY LTD Ranald John Pery-Johnston CULLEN CO.
Patent Trade Mark Attorneys 240 Queen Street Brisbane, QId. 4000 Australia.
METHOD AND APPARATUS FOR FORMING BENDS IN THERMOPLASTIC PIPE No. PP2311 Associated Provisional Application: The following statement is a full description of this invention, including the best method of performing it known to us: TECHNICAL FIELD This invention relates to thermoplastic pipe. In particular, the invention relates to apparatus which can be used for forming bends in thermoplastic pipe. The invention also relates to a method of forming a bend in thermoplastic pipe, which method utilises the apparatus of the invention.
BACKGROUND ART Thermoplastic piping is now widely used for water and sewage reticulation and for gas supply. Such piping can be supplied as discrete lengths but in some instances is provided as rolls allowing continuous laying of pipe over long distances.
Irrespective of the length of the sections used to make up a piping system, bends are invariably required. This is despite the fact that thermoplastic pipe, particularly of smaller wall thicknesses, has some flexibility. Bends are typically provided at angles of 300 450, 600 or 90 To be incorporated into the piping system the bends must be connected to the *15 adjacent pipe sections in the same fashion as the pipe sections per se must be joined.
S"Thermoplastic pipe sections are commonly connected by electrofusion or butt welding.
In some cases, a butt flange may be provided between sections but each half of the butt flange must be connected to a section using the foregoing methods.
So that a join can be formed that is commensurate with the pressure rating of the 20 pipe, it is important that the ends of pipe sections to be joined are both circular. That 2. is, if one section has a circular end while the other end has a slightly oval end, an inferior joint will be produced.
According to present practice, bends are formed in sections of thermoplastic pipe by supporting a section of softened pipe at its ends and applying pressure at the centre of the section to form the desired bend.
A disadvantage of the known method for forming bends in thermoplastic pipe is that the pipe is stretched preferentially in the middle of the arc during the bending process. This is particularly the case with the outside wall of the bend. The stretching weakens the pipe wall and leads to derating of the pressure rating of the bend.
SUMMARY OF THE INVENTION The object of the present invention is to provide a method of forming a bend in a section of thermoplastic pipe, which method overcomes the disadvantages of the existing method for forming such bends.
In one aspect, the invention provides apparatus for forming a bend in a linear section of thermoplastic pipe, the apparatus comprising: an anvil having a concave working surface which defines an arc of at least the bend angle of the bend to be formed in said pipe section and which is transversely arced at a radius essentially the same as the radius of said pipe, said anvil further including a collar for retaining an end of said pipe section adjacent said working surface; and a flexible mandrel of substantially the same internal diameter as said pipe and of at least the same length as said pipe section.
In a second aspect, the invention provides a method of forming a bend in a linear section of thermoplastic pipe, the method comprising the steps of: heating said pipe section to the softening temperature thereof; (ii) driving a flexible mandrel of substantially the same internal diameter as said pipe and of at least the same length as said pipe section into said pipe section; (iii) loading said pipe section and mandrel onto an anvil having a concave working surface which defines an arc of at least the bend angle of the bend to be formed in said •0o0 pipe section and which is transversely arced at a radius essentially the same as the radius of said pipe, said anvil further including a collar for retaining an end of said pipe section adjacent said working surface; S-(iv) drawing the end of said pipe section opposite said retained end towards said working surface to bring the bulk of the pipe section into contact with said working surface; allowing said pipe section to cool to below said softening temperature while held in contact with said working surface; and (vi) withdrawing said mandrel from said pipe section.
S• As used herein, the terms "comprising" and variants thereof such as "comprise" and "comprised" denote that the described apparatus or method includes the stated integer or integers but do not necessarily exclude the inclusion of other integers.
The term "thermoplastic" as used herein applies particularly to polyolefins such as polyethylene and polypropylene.
It will be appreciated from the two aspects of the invention defined above that the anvil provides a former for the bend while the mandrel maintains the circularity of the pipe section, particularly at the ends of the section.
The anvil working surface is in effect a curved channel which receives the softened pipe section. As noted above, the radius of the transverse channel arc is essentially the same as the radius of the pipe. This aids maintenance of the circularity of the pipe during the bending process.
4 The angle of the arc defined by the anvil working surface can be equivalent to the desired bend angle of the pipe section. Preferably, however, the arc has an angle of about 1000. To provide for bend angles of less than 900 using the preferred anvil, the retaining collar is adapted to be repositionable. Thus, if a bend angle of only 30' is required, the retaining collar is repositioned to give an arc of about 35 To facilitate use of the anvil of apparatus according to the first aspect, the anvil is advantageously mounted to a support frame, which frame can be secured to a supporting surface such as a workshop floor or the like.
For use with pipe of greater than 125 mm diameter, apparatus according to the first aspect advantageously includes a stepped track for supporting the softened pipe section and the mandrel. A lower portion of the track is for supporting the pipe while a *higher portion supports the mandrel. The difference between the lower and higher portions of the track is roughly equivalent to the wall thickness of the pipe. This allows the mandrel to be slid from its supporting section of track directly into the bore of the 15 pipe section. The track advantageously comprises a pair of spaced apart rail members with a support frame.
In a particularly preferred embodiment of the invention, a trolley is provided on the upper portion of the track on which trolley the mandrel is carried. The trolley is advantageously height adjustable so that different wall thicknesses of the pipe section can be compensated for when the mandrel and pipe section axes need to be aligned.
With apparatus including a stepped track, the anvil is pivotally mounted to the support frame and positioned adjacent the lower portion end of the track with the "working surface of the anvil aligned with the track. For loading the softened pipe section, the anvil is pivoted towards the track to present the retaining collar to the track.
Once the collar has received the pipe end, the anvil can be pivoted away from the track so that the pipe section can be brought into contact with the working surface.
Turning to the mandrel of apparatus according to the first aspect of the invention, this typically comprises a coil spring within a sleeve of an elastomeric material such as rubber. Sizing rings can be provided at ends of the mandrel. The sleeve can be stepped to receive sizing rings.
Apparatus according to the invention can be used for forming bends in thermoplastic pipe sections of any diameter including diameters of 90 mm up to 1,000 mm. It will be appreciated, however, that apparatus components must be configured appropriately for the pipe section diameter.
In the method according to the second aspect, the section of thermoplastic pipe can be softened using any of the methods known to those of skill in the art. Preferably however, the pipe section is heated in a thermostatically-controlled bath of a nonvolatile liquid such as glycerine. Rollers can be included in the bath to ensure even heating of the pipe.
To aid insertion of the mandrel into the softened pipe section in step (ii) of the method, the mandrel is advantageously lubricated. A suitable lubricant is liquid soap.
Steps (ii) and (iii) of the method can be mechanically aided. For example, a winch can be used to drive the mandrel into the pipe section. A winch can also be used for steps (iii) and Pivoting of the anvil is typically aided by a hydraulic ram.
Withdrawal of the mandrel in step (vi) of the method according to the second aspect can be mechanically aided such as by using a winch.
Having broadly described the invention, apparatus will now be exemplified with reference to the accompanying drawings briefly described hereafter.
~BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is an elevational view of the apparatus for forming a bend in a section of S"thermoplastic pipe.
Figure 2 is an elevational view of a mandrel.
Figure 3 is a cross-sectional view of the mandrel as shown in Figure 2.
Figure 4 is a cross-sectional view of the anvil portion of the apparatus shown in 20 Figure 1 with a pipe section and mandrel in situ.
Figure 5 is the same elevational view shown in Figure 1 but with the pipe section in position on the apparatus anvil.
Figure 6 is an elevational view of the anvil portion of the apparatus shown in •Figure 1.
Figure 7 is the same elevational view shown in Figure 6 but with the anvil repositioned relative to the retaining collar.
BEST MODE OF CARRYING OUT THE INVENTION Referring now to Figure 1, there is shown apparatus 1 for forming a bend of up to 900 in a 250 mm diameter thermoplastic pipe of 10 mm wall thickness (230 mm ID).
The apparatus includes an anvil 2 and mandrel 3. Anvil 2 is pivotally mounted to a support frame 4 and includes circular collar 5 made up of two halves, one of which is fixed to an arm 6 which can pivot about the same axis 7 as anvil 2. A hydraulic ram 8 is provided for pivoting of anvil 2.
The apparatus also includes a track 9 having a lower step 10 for supporting a pipe section such as shown at 11 and a higher step 12 for supporting mandrel 3.
Track 9 is supported by a framework 13 and consists of a pair of rails 180 mm apart the upper edges of which slope downwardly towards the centre of the track. The rails in effect form a cradle for the mandrel and pipe section.
The stepped nature of track 9 results in alignment of the axes of mandrel 3 and pipe section 11 which axes are aligned with the axis of collar 5. This common axis is indicated by dashed line 13a. The common axis facilitates driving the mandrel into pipe section 11 and the ultimate homing of the end of pipe section 11 in collar A collar 14 is also provided for placement about the end of pipe section 11 opposite the end which will be received by collar 5. Collar 14 includes an inwardly directed lip which abuts the end of pipe section 11 with the collar in situ. Collar 14 thus in effect acts as a cap for the end of the pipe section. Collar 14 acts as a stop for the C. mandrel on anvil loading and has other functions as will be detailed below.
Turning to Figures 2 and 3 there is shown mandrel 3 having an elastomeric Ssleeve 15 which has a bore 16 in which there is a metal coil 17. Each end of sleeve is stepped as can be appreciated from Figure 3. The leading end 18 of the mandrel- Sthis is, the end which first enters the bore of pipe section 11-has a removeable sizing ring 19 thereabout which includes a handle 20. The trailing end 21 of the mandrel includes cylindrical plugs 22 and 23 within bore 16, sizing ring 24 and clamps 25 to 27.
Sleeve 22 has an end plate 28 which abuts the end of sleeve 15. End plate 28 has a diametric pin 29 thereacross which extends beyond the edge of the plate. A central eyelet 30 is also present on the end plate. The ends of pin 29 have keepers for retaining shackles, one of which is indicated at 31, which are used in the winching process to be described below.
The anvil portion 2 of the apparatus is shown in Figure 4 with pipe section 11 and the mandrel in situ. The leading end of pipe section 11 (shown in phantom) can be seen to lie within collar 5 of anvil 2 where it abuts an internal lip 32 on collar 5. Sizing ring 19 (in phantom) can also be seen. The end of the sizing ring can extend through the lipped end of collar 5 as can be appreciated from the drawing.
The cupped nature of the working surface 33 of anvil 2 can be appreciated from Figure 4 by virtue of the base 34 of the arced channel of the working surface being in cross-section. Figure 4 also shows that the collar end of the working surface is in fact linear. This provides a linear portion at the end of the formed bend, referred to as a "land". It will be further appreciated that pipe end 18 contacts working surface 33 in the region of collar 5. Thus, the term "adjacent" as used in the broad description of the invention embraces "in contact" with the working surface.
Track 9 of apparatus 1 has a length of 3,000 mm and stands a maximum of 1,280 mm above floor level. Anvil 2 has a centre line radius of 750 mm which is three times the diameter of the pipe to be bent. Mandrel 3 has a nominal diameter of 215 mm while collar 5 and collar 14 have nominal inside diameters of 260 mm. Transverse arc of working surface 33 of anvil 2 (see Figure 4) has a radius of 127 mm.
The process of forming a bend in pipe section 11 will now be described with reference to Figures 1,4 and 5. Pipe section 11, 400 to 1,600 kPa rated polyethylene, is first softened by incubating for 10 to 60 minutes in a glycerine bath of 126 0 C. The pipe section is then transferred to lower portion 10 of track 9 of apparatus 1 with collar 14 thereabout (see Figure A winch line is connected from winch 35 via pulleys and guides to both ends of pin 29 of mandrel 3. The winch is then used to drive mandrel 3 into pipe section 11. Initially, the leading end of pipe section 11 enters collar 5 where it abuts lip 32 of the collar (see Figure Continued winching homes the mandrel in pipe section 11. Further travel of the mandrel is prevented by tabs on clamp 26 (see 15 Figure 2) abutting collar 14.
SLoading of pipe section 11/mandrel 3 on anvil 2 is completed by pivoting of the anvil 2 to the position shown in Figure 5. Pivoting is effected by hydraulic ram 8. The .winch is used to draw the pipe section into contact with the working surface 33 of anvil 2 in which position it is retained by turnbuckles between screw-in pins on collar 14 and female threads on anvil 2. One such turnbuckle is indicated at 36. Winch 35 is connected to both ends of pin 29 by a line 37 which extends to pulley 38 which lies on a central plane of frame 13. The line splits into two beyond pulley 38 as generally indicated at 37a. The split lines extend to pulleys on each side of frame 13, one of which is indicated at 38a, then to pulleys on each side of anvil 2, one of which is indicated at 38b, and finally via a pair of cable guide rollers on each side of collar 14 to pin 29. Items 39 and 40 are the cable guide rollers comprising the pair of rollers on the side of the bending frame facing the viewer.
Once loaded, pipe section 11 is allowed to cool to 50 to 70 0 C (surface temperature). This can be aided by application of water of ambient temperature or less. The mandrel is then withdrawn using the winch. (A winch line 41 connected to eyelet 30 of end plate 28 is shown in Figure 1 but it will be appreciated that during withdrawal of mandrel 3, anvil 2 and pipe section 11 are in the positions shown in Figure The pipe section is then allowed to fully harden on the anvil 20 to minutes. Sizing ring 19 which is generally retained within the pipe section on withdrawal of the mandrel, can be removed via the winch after the bent pipe section is 8 reversed on the anvil Pipe formed by the above process has end dimension and ovality equal to pipe standard ASNZ 4130-1997. Another advantage of the process according to the present invention is that the pipe section is in effect compressed during the bending (this is by virtue of the section being retained between collars 5 and 14). Wall thickness of the section on the outside arc of the bend has minimal reduction from original and as a consequence bends do not have to be derated as is the case with conventional bending processes.
Figures 6 and 7 show how anvil 2 of Figure 1 can be adapted for forming bends of less than 90 As noted above, collar 5 comprises two halves items 5a and 5b of Figures 6 and 7 one of which (5a) is attached to pivotal arm 6. When the halves are aligned, such as for formation of a 900 bend, a ring 59 holds the halves together. Ring 59 is secured to the halves with screws. It can be appreciated from Figure 7 that the collar halves include a register stop for ring 59 in that the ends of each half are 9999 stepped. When a bend of less than 900 is desired, pivotal arm 6 is moved to the S-required position for the desired bend angle. For example, in Figure 7, arm 6 is positioned so that the available portion of working surface 33 of anvil 2 will allow a bend of 600 to be formed in the pipe. Arm 6 can be locked at required positions by a bolt through hole 42 which is received by a threaded hole 43 in anvil 2 (see Figure 6).
It will be appreciated from Figure 7 that arm 6 and collar half 5a are %woo perpendicularly positioned for pipe section/mandrel homing. Thus, anvil 2 is in a 99oo different position to that shown in Figure 1 which is for formation of a 900 bend.
*"9Figure 7 shows that when anvil 2 is used for less than 900 bends, the pipe end when homed in collar half 5a is slightly away from working surface 33. This allows retention of a short linear section, or land, at the end of the bend. Hence, the term "adjacent" as used above also embraces a situation where the pipe end is not in contact with the anvil working surface.
It will be further appreciated that many changes can be made to the apparatus and method as exemplified above without departing from the broad ambit and scope of the invention.

Claims (18)

1. Apparatus for forming a bend in a linear section of thermoplastic pipe, the apparatus comprising: an anvil having a concave working surface which defines an arc of at least the bend angle of the bend to be formed in said pipe section and which is transversely arced at a radius essentially the same as the radius of said pipe, said anvil further including a collar for retaining an end of said pipe section adjacent said working surface; and a flexible mandrel for positioning within said pipe section during formation of said bend, wherein said mandrel has substantially the same internal diameter as said pipe and is of at least the same length as said pipe section.
2. The apparatus according to claim 1, wherein said arc defined by said concave working surface is about 1000. 1 3. The apparatus according to claim 1 or claim 2, wherein said retaining collar is repositionable to allow formation of a bend of a desired angle. S4. The apparatus according to claim 3, wherein said desired angle is 300 to 900. The apparatus of any one of the preceding claims, wherein said anvil is mounted •to a support frame.
6. The apparatus according to any one of the preceding claims which further includes a stepped track for supporting said mandrel and pipe section, a higher portion of which supports said mandrel and the lower portion of which supports said pipe section, the difference between said higher and lower portions being about the same as the wall thickness of said pipe section, and wherein axes of said mandrel and pipe section are aligned when in position on said tack.
7. The apparatus according to claim 6, wherein said track comprises a pair of S"spaced apart rails with a support frame.
8. The apparatus according to claim 6 or claim 7, wherein a trolley for carrying said mandrel is provided on said track higher portion.
9. The apparatus according to claim 8, wherein said trolley is height adjustable.
10. The apparatus according to any one of claims 6 to 9 when dependent on claim wherein said anvil is pivotally mounted to said support frame with said working surface of said anvil adjacent said lower portion of said track and aligned therewith.
11. The apparatus according to any one of the preceding claims, wherein said mandrel comprises a coil spring within a sleeve of an elastomeric material.
12. The apparatus according to claim 11, wherein said elastomeric material is rubber.
13. The apparatus according to claim 11 or claim 12, wherein said mandrel sleeve is stepped at each end for receiving sizing rings.
14. A method of forming a bend in a linear section of thermoplastic pipe, the method comprising the steps of: heating said pipe section to the softening temperature thereof; (ii) driving a flexible mandrel of substantially the same internal diameter as said pipe and of at least the same length as said pipe section into said pipe section; (iii) loading said pipe section and mandrel onto an anvil having a concave working surface which defines an arc of at least the bend angle of the bend to be formed in said pipe section and which is transversely arced at a radius essentially the same as the radius of said pipe, said anvil further including a collar for retaining an end of said pipe section adjacent said working surface; (iv) drawing the end of said pipe section opposite said retained end towards said o working surface to bring the bulk of the pipe section into contact with said working surface; allowing said pipe section to cool to below said softening temperature while held in contact with said working surface; and (vi) withdrawing said mandrel from said pipe section. 20 15. The method according to claim 14, wherein said pipe section is heated to the softening temperature thereof in a thermostatically-controlled bath of a non-volatile *o liquid.
16. The method according to claim 15, wherein said bath includes rollers for rotating said pipe section therein. 25 17. The method according to any one of claims 14 to 16, wherein in step (ii) said mandrel is lubricated for insertion into said pipe section.
18. The method according to any one of claims 14 to 17, wherein steps (ii) to (vi) are mechanically aided.
19. The method according to claim 18, wherein said steps are mechanically aided by winching. The method according to any one of claims 14 to 19, wherein: prior to execution of step said anvil is pivoted into a position which presents said retaining collar to a track carrying said pipe section. during execution of step (ii) on end of said pipe section is brought into abutment with a lip in said retaining collar; and 11 during execution of step (iii) said anvil is pivoted away from said track to allow said pipe section to contact said concave working surface.
21. The method according to claim 20, wherein said pivoting of said anvil is mechanically aided.
22. The method according to claim 21, wherein said pivoting is by a hydraulic ram.
23. An apparatus for forming a bend in a linear section of thermoplastic pipe, which apparatus is substantially as hereinbefore described with reference to the accompanying drawings.
24. A method of forming a bend in a linear section of thermoplastic pipe, which method is substantially as hereinbefore described with reference to "Best Mode of Carrying out the Invention". DATED this 11th day of February 2000 POLYFLOW INDUSTRIES PTY LTD By their Patent Attorneys CULLEN CO 9 9 o•* ft
AU20368/99A 1998-03-13 1999-03-15 Method and apparatus for forming bends in thermoplastic pipe Ceased AU719690B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU20368/99A AU719690B2 (en) 1998-03-13 1999-03-15 Method and apparatus for forming bends in thermoplastic pipe
GB9915869A GB2351936A (en) 1998-03-13 1999-07-08 Forming bends in thermoplastic pipe
CA002319901A CA2319901C (en) 1998-03-13 2000-09-19 Method and apparatus for forming bends in thermoplastic pipe

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
AUPP2311 1998-03-13
AUPP2311A AUPP231198A0 (en) 1998-03-13 1998-03-13 Method and apparatus for forming bends in thermoplastic pipe
AU20368/99A AU719690B2 (en) 1998-03-13 1999-03-15 Method and apparatus for forming bends in thermoplastic pipe
GB9915869A GB2351936A (en) 1998-03-13 1999-07-08 Forming bends in thermoplastic pipe
CA002319901A CA2319901C (en) 1998-03-13 2000-09-19 Method and apparatus for forming bends in thermoplastic pipe

Publications (2)

Publication Number Publication Date
AU2036899A AU2036899A (en) 1999-09-23
AU719690B2 true AU719690B2 (en) 2000-05-18

Family

ID=27422670

Family Applications (1)

Application Number Title Priority Date Filing Date
AU20368/99A Ceased AU719690B2 (en) 1998-03-13 1999-03-15 Method and apparatus for forming bends in thermoplastic pipe

Country Status (3)

Country Link
AU (1) AU719690B2 (en)
CA (1) CA2319901C (en)
GB (1) GB2351936A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1771697A (en) * 1996-07-20 1998-01-29 Tfx Group Limited Improved method and apparatus for shaping thermoplastic tubes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922134A (en) * 1973-12-17 1975-11-25 Robintech Inc Pipe bending mandrel
ZA825769B (en) * 1981-08-11 1983-07-27 Impala Plastics Pty Pipe bending

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1771697A (en) * 1996-07-20 1998-01-29 Tfx Group Limited Improved method and apparatus for shaping thermoplastic tubes

Also Published As

Publication number Publication date
AU2036899A (en) 1999-09-23
CA2319901A1 (en) 2002-03-19
GB9915869D0 (en) 1999-09-08
CA2319901C (en) 2007-08-07
GB2351936A (en) 2001-01-17

Similar Documents

Publication Publication Date Title
US4986951A (en) Pipe liner process
EP0301697B1 (en) A method and apparatus for producing a deformed pipe liner of tubular cross-section.
FI90133B (en) OVER ANCHORING FOER ATT MED POLYMERFODRING FODRA ETT ROER
CN112549522B (en) Manufacturing equipment and method for lining plastic pipe
US4907326A (en) System for manipulation of small-diameter pipes and a processing device for vehicular brake, fuel and hydraulic lines
JPH0243024A (en) Method and device for inserting pipe for repair into existing pipeline
GB2172845A (en) Method for joining polyolefin pipes by fusion
US6540500B2 (en) Apparatus for forming bends in thermoplastic pipe
US5765285A (en) Method of bending a rigid thermoplastic pipe
CN110280954B (en) Frock clamp is used in metal pipe fitting welding
JPH06504498A (en) How to insert a liner into a tubular member while changing the angle
US6641124B2 (en) Pipe aligning device
US6694616B1 (en) Method of forming T-connectors
US7225660B1 (en) Apparatus and method for expanding a tube diameter and a pole formed thereby
EP0756687B1 (en) Method for lining a pipe with a polymer liner
AU719690B2 (en) Method and apparatus for forming bends in thermoplastic pipe
US4769892A (en) Pipe joining method
AU700234B2 (en) Method for forming a flange on a tube
CA1241262A (en) In-situ method for lining pipe with thermoplastic liner
EP0226410A2 (en) Method of making a plastic-lined pipe
US7475583B2 (en) Method for repairing metal pipe
NZ234169A (en) Plastics pipe with socket of increased diameter and thickness; positive axial draw of pipe body
AU2013100592A4 (en) Apparatus for forming bends in thermoplastic pipe
US8147236B1 (en) Reshaping tool for polymeric tubing
AU2003203314A1 (en) Improved Apparatus for Forming Bends in Thermoplastic Pipe

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
PC Assignment registered

Owner name: ON="RODNEY" INDUSTRIES PTY LTD; FT="FORMER" OWNER WAS: