AU700168B2 - Method of refining oils and fats - Google Patents

Method of refining oils and fats Download PDF

Info

Publication number
AU700168B2
AU700168B2 AU66075/96A AU6607596A AU700168B2 AU 700168 B2 AU700168 B2 AU 700168B2 AU 66075/96 A AU66075/96 A AU 66075/96A AU 6607596 A AU6607596 A AU 6607596A AU 700168 B2 AU700168 B2 AU 700168B2
Authority
AU
Australia
Prior art keywords
oil
fat
sodium
fatty acids
free fatty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU66075/96A
Other versions
AU6607596A (en
Inventor
Hyam Myers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Myers Hyam Consulting Pty Ltd
Original Assignee
Myers Hyam Consulting Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPN4750A external-priority patent/AUPN475095A0/en
Application filed by Myers Hyam Consulting Pty Ltd filed Critical Myers Hyam Consulting Pty Ltd
Priority to AU66075/96A priority Critical patent/AU700168B2/en
Publication of AU6607596A publication Critical patent/AU6607596A/en
Application granted granted Critical
Publication of AU700168B2 publication Critical patent/AU700168B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Fats And Perfumes (AREA)

Description

WO 97/07186 PCT/AU96/00494 1 METHOD OF REFINING OILS AND FATS This invention relates to a new method for refining oils and fats. In particular it relates to a process for removing or separating free fatty acids (FFA) or residual soaps from oils and fats.
Background Free fatty acids and soaps may be present in many different types of fats and oils and generally it is desirable to remove or minimise the concentration thereof.
By the term "crude oil" as used herein we mean any oil that is obtained from seeds or other plant and animal matter. These oils may be produced by any known method. For example they may have been extracted from any known source of oil by any known mechanical or chemical extraction process.
When a crude oil or fat is produced by pressing, extraction, rendering or any other means it contains a variety of non-triglyceride impurities such as free fatty acids (FFA), phosphatides, sterols, pigments and hydrocarbons. Not all of these impurities are undesirable as in some instances they can impart important or preferred characteristics to the final oil product.
It is generally desirable, however, to remove or minimise the content of free fatty acids and soaps in the processed oil. Whilst the level of reduction of free fatty acids in the end product will vary depending on the desired use of the fat or oil, it is generally desirable to reduce the level of free fatty acids to less than Similarly it is generally desirable to reduce the level of soaps to less than 50 parts per million (ppm).
In most instances the free fatty acids are removed by the standard alkali refining process which includes the addition of caustic soda (NaOH) to the crude oil to form a largely oil insoluble sodium based soap which is then separated from the oil.
If soaps are present in an oil or fat they are generally removed by water washing to reduce the soap concentration to about 50 ppm then reduced further by treatment with a suitable bleaching earth or other adsorbent material.
The advantages of using caustic soda to remove free fatty acids include that it is readily available and it may also assist with the removal of other WO 97/07186 PCT/AU96/00494 2 impurities such as phosphatides, carbohydrates and protein fragments.
Further, it has been found that large quantities of oil can be refined with a high efficiency and minimum attention after the selection of: preferred or optimum selection of the best method of separating the soap from the oil'and the optimum quantity and concentration of caustic soda.
The disadvantages of using caustic soda include that in general it is necessary to use a multi-step process to remove all the impurities and to handle the caustic materials. Further such an oil refining process produces a soap stock which is not environmentally friendly and requires further processing prior to disposal. Historically the soap stock was used in traditional soap processes, however, its disposal this way has decreased over recent years due to the greater use of detergents in preference to soaps. One solution for overcoming the disposal problem has been to further process the soap stock by acidulation to form free fatty acids which may be used as a high-energy ingredient in animal feeds or for chemical use. However, these further processes can be expensive and usually involve the use of other undesirable chemicals.
Attempts to effectively refine oils with other alkali materials such as calcium hydroxide and sodium carbonate have been tried. However, these compounds have not been proven to be as satisfactory as caustic soda and their use has been either abandoned or curtailed. For example, calcium hydroxide added as a "cream" to a crude oil requires several hours to reduce the FFA to about Sodium carbonate, on the other hand, does not possess the decolourising capacity of caustic soda but saponifies very little neutral oil.
It is also desirable in some instances to remove free fatty acids and/or soaps from, or minimise them in, fats and oils where the level of said free fatty acids or soaps have increased due to one or more chemical reactions such as during hydrogenation or esterification or frying. For example, the interesterification of fats and oils may use an alkaline compound, notably sodium methoxide, to effect the randomisation. Water added at the completion of the WO 97/07186 PCT/AU96/00494 3 reaction causes soap to be formed, these being usually removed by acidification and/or water washing.
In Russian Patent No. SU207310 it is reported that it is known to neutralise vegetable oils by treating them with magnesium oxide. This document teaches that this process can be improved by adding a dehydration agent to the oil with the magnesium oxide. The dehydration agent disclosed in this document is gypsum. However, this process has not been widely used and it does not result in the removal of the free fatty acids to commercially acceptable levels. This document also does not suggest or teach that any other alkali metal oxide could be used in an oil or fat refining process.
It is an object of the present invention to develop a method for refining oils and fats to reduce the level of free fatty acids or soaps from the oils or fats in an economical and environmentally friendly way.
Summary of the Invention According to a first aspect of the invention there is provided a method of refining an oil or fat to reduce the level of free fatty acids and/or soaps in the oil or fat, wherein said method includes mixing calcium oxide with said oils or fats.
Applicant has found that this process removes substantially all of the free fatty acids and/or soaps in the oil or fat and forms environmentally friendly soaps which are insoluble in the oil or fat. The level of free fatty acids and soaps remaining in the oil or fat after the method of the invention will depend on the type of free fatty acids or soaps which are present and need to be removed.
However, it in general reduces the level of free fatty acids to less than 0.2% and the level of soaps to less than 50 ppm.
The calcium oxide may be added to the oil or fat in any suitable form.
The calcium oxide may be added in a granular or powder form or in the form of a solution or as a mixture of various forms. The selection of the form of the calcium oxide will depend upon the physical parameters of the reaction site and the desired reaction kinetics.
The calcium oxide may be provided from any known source. Preferred sources of calcium oxide are high calcium quicklime and dolomite quicklime.
WO 97/07186 PCT/AU96/00494 4 Some of the advantages of selecting calcium oxide are that it is readily available and the calcium soaps produced by the method of the invention are environmentally friendly and may be used as direct additives for other products such as animal food products. A further advantage of adding calcium oxide is that it allows for the development and implementation of an essentially dry refining process (hereinafter referred to as DRP), which utilises relatively economical and environment friendly reactants as compared to those used in traditional processes for removing free fatty acids from oils and fats.
In a preferred embodiment of the invention other materials may also be added which may assist with the ability of the calcium oxide to remove or minimise the level of free fatty acids. For example, any suitable alkali metal or ammonium compound may be added to the oil or fat with the calcium oxide.
The alkali metal compound may be any suitable hydroxide, oxide or salt of the alkali metal. Examples of suitable alkali metal or ammonium compounds include sodium hydroxide, potassium hydroxide, ammonium hydroxide or any other hydroxide of the alkali metals of Group 1 of the periodic table. A further embodiment of the invention permits the use of water soluble inorganic and organic salts of either ammonia or alkali metals which can react with the calcium oxide to form hydroxides. Examples of these compounds are sodium sulphate, sodium carbonate, sodium orthophospate, sodium metasilicate, sodium lauryl sulphate and sodium oxalate.
In a particularly preferred embodiment of the process of the invention sodium hydroxide (caustic soda) is added to the oil or fat with the calcium oxide. Any suitable amount of caustic soda may be added. It has been found, however, that it is not necessary to add such quantities of caustic soda as would be required in a traditional alkali refining method.
The alkali metal or ammonium compound may be added to the oil or fat in any suitable form. The alkali metal or ammonium compound may be added in a granular or powder form. Preferably the alkali metal or ammonium compound is added in the form of an aqueous solution.
In a preferred embodiment of the invention the calcium oxide and alkali metal or ammonium compound may be added to the oil or fat in any particular WO 97/07186 PCT/AU96/00494 order. Alternatively the calcium oxide and alkali metal or ammonium compound may be added simultaneously.
In a preferred embodiment of the invention it is desirable to mix in additional water with the fat or oil. The water may be added either before or after the addition of the metal oxide and alkali earth compound.
Ideally the reaction conditions for the method of the invention are selected to reduce the presence of the free fatty acids and soaps in the oil or fat. These reaction conditions include the selection of reaction temperature and time to reduce or minimise the level of residual free fatty acids in the oil or fat.
Whilst not wishing to be bound to any particular theory it has been postulated that the various reactions taking place to remove the free fatty acids are as follows: 1. CaO 2RCOOH
(RCOO)
2 Ca H 2 0 2. CaO H 2 0 Ca(OH) 2 In the embodiment of the invention where sodium hydroxide is also added to the oil, it has been postulated that the various reactions taking place may be as follows: 1. NaOH RCOOH RCOONa H 2 0 2. 2RCOONa CaO +H 2 0 (RCOO) 2 Ca 2NaOH 3. CaO H 2 0 Ca(OH) 2 4. CaO NaOH CaO.NaOH It is also important to note that the object of the invention is to reduce the level of free fatty acids and soaps in the oils or fat. Thus additional processing either before or after the method of the invention may be undertaken to remove other impurities from the said oil or fat. For example, removal of phospholipids and minor contaminants may require implementing either one or more other known degumming or bleaching processes.
In order to assist in arriving at an understanding of the present invention, some preferred embodiments of the invention are illustrated in the following examples. However, it should be understood that the following description is WO 97/07186 PCT/AU96/00494 6 illustrative only and should not be taken in any way as a restriction on the generality of the invention as described above.
In the examples determinations of the level of Free Fatty Acids are referred to. In these examples the level of Free Fatty Acids (FFA) is determined by AOCS Method Ca 5a-40. The determinations were conducted by placing a sample in 95% ethanol and titrating with 0.1N NaOH, and using phenolphthalein as the indicator. The %FFA was calculated by the formula %FFA V x 56 x 0.05/W where V titration, W sample weight. Soap determinations were by AOCS method Cc17-79.
Example 1 A sample of cold pressed canola oil was obtained. Commercial grade Stearic Acid was added to this oil to achieve an oil sample with a level of 1.2% free fatty acids (FFA).
100 ml of the canola oil with 1.2% FFA was heated to about 80 0 C and 0.3gm of quicklime was added and stirred thoroughly for about five minutes.
The mixture was filtered to obtain a clear oil.
The level of FFA in the resulting clear oil was determined to be 0.16%.
Example 2 A second sample of canola oil having 1.2% FFA was prepared by the same method as described for example 2.
100 ml of the canola oil with 1.2% FFA was heated to about 800C and 0.2ml of 25% NaOH was subsequently added and stirred for about one minute.
Immediately following this 1.0gm of quicklime was added to the mixture and stirred for about another five minutes. 0.2gm of filter aid was added to the mixture which was then filtered to obtain a clear oil.
The level of FFA in the resulting clear oil was determined to be 0.025%.
Example 3 A 100ml sample of sunflower oil containing about 10% by weight of meal fines (foots) and having a FFA of 0.37% was obtained.
This sample was heated to about 80 0 C and 0.2ml of 25% NaOH was added and stirred for about 1 minute. Immediately following this 0.7gm of WO 97/07186 PCT/AU96/00494 7 quicklime was added and stirred for about another 5 minutes. 0.2gm of filter aid was added to the mixture which was then filtered to obtain a clear oil.
The level of FFA in the resulting clear oil was determined to be 0.06%.
Example 4 To 100gm crude sunflower oil was added 0.3gm quicklime. The mixture was shaken for 1 minute then 0.3 ml 15% w/w solution of ammonium sulphate was added. The mass was then shaken intermittently for 20 minutes at room temperature, allowed to stand for 30 minutes, heated to about 60C then filtered to obtain a clear oil.
The level of FFA in the resulting oil was 0.18%.
The above trial was repeated but 0.3 ml of water added after 20 minutes of shaking and after heating the mass to about 600C. The water was mixed in for 5 minutes before filtration.
The level of FFA in the resulting oil was 0.05%.
Example A sample of refined, bleached and deodorised canola oil was obtained.
A commercial grade of stearic acid and the calculated quantity of 25% caustic soda were added to provide a soap concentration of 1200 ppm.
To 100gm of this oil was added 0.18 gm CaO, calculated to react with both the sodium soap and the water. The mass was stirred for 5 minutes at room temperature, 0.5 gm filter aid added and the mixture filtered to obtain a clear oil.
The resulting oil had a soap content of 38 ppm.
Those skilled in the art will appreciate that there may be many variations and modifications of the examples of the processes described herein which are within the scope of the present invention.

Claims (9)

1. A method of refining an oil and fat to reduce the level of free fatty acids or soaps in the oil or fat, wherein said method includes mixing calcium oxide with said oil or fat.
2. A method according to claim 1 wherein the source of calcium oxide is selected from high calcium quicklime or dolomitic quicklime.
3. A method according to claim 1 or claim 2 wherein an alkali metal or ammonium compound is also added to the oil or fat.
4. A method according to any one of claims I to 3 wherein the alkali metal or ammonium compound is selected from any one or a mixture of sodium hydroxide, potassium hydroxide, ammonium hydroxide, ammonium sulphate, sodium sulphate, sodium carbonate, sodium orthophosphate, sodium metasilicate, sodium lauryl sulphate or sodium oxalate.
A method according to claim 4 wherein the alkali metal or ammonium compound is sodium hydroxide.
6. A method according to any one of claims 1 to 5 wherein additional water is mixed with the oil or fat.
7. A method according to any one of claims 1 to 6 wherein the level of free fatty acids is reduced to less than 0.2%.
8. A method according to any one of claims 1 to 7 wherein the level of soaps is reduced to less than 50 ppm.
9. A method according to claim 1 substantially as herein before described with reference to any one of the examples.
AU66075/96A 1995-08-11 1996-08-07 Method of refining oils and fats Ceased AU700168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU66075/96A AU700168B2 (en) 1995-08-11 1996-08-07 Method of refining oils and fats

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AUPN4750A AUPN475095A0 (en) 1995-08-11 1995-08-11 Removal of free fatty acids from oil and fats
AUPN4750 1995-08-11
AU66075/96A AU700168B2 (en) 1995-08-11 1996-08-07 Method of refining oils and fats
PCT/AU1996/000494 WO1997007186A1 (en) 1995-08-11 1996-08-07 Method of refining oils and fats

Publications (2)

Publication Number Publication Date
AU6607596A AU6607596A (en) 1997-03-12
AU700168B2 true AU700168B2 (en) 1998-12-24

Family

ID=25635019

Family Applications (1)

Application Number Title Priority Date Filing Date
AU66075/96A Ceased AU700168B2 (en) 1995-08-11 1996-08-07 Method of refining oils and fats

Country Status (1)

Country Link
AU (1) AU700168B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU207310A1 (en) * Н. Г. Шахова, И. Н. Путилова , Л. Ф. Горин
JPS58217596A (en) * 1982-06-11 1983-12-17 荒木 康夫 Manufacture of colorless odorless vegetable oil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU207310A1 (en) * Н. Г. Шахова, И. Н. Путилова , Л. Ф. Горин
JPS58217596A (en) * 1982-06-11 1983-12-17 荒木 康夫 Manufacture of colorless odorless vegetable oil

Also Published As

Publication number Publication date
AU6607596A (en) 1997-03-12

Similar Documents

Publication Publication Date Title
US4808426A (en) Vegetable oil extraction process
US6111120A (en) Method of refining oils and fats
US5278325A (en) Vegetable oil extraction process
CS197206B2 (en) Method of refining trigliceride oils,especially removing resinous parts
US20090113786A1 (en) Process for Recovering Tall Oil or Tall Oil Fuel
GB2038864A (en) Method of refining oils and fats
WO2015174822A1 (en) Process of refining a crude palm fruit oil product
AU675544B2 (en) Method of degumming a fatty substance and fatty body so obtained
KR890001463B1 (en) Refined edible oil and process for its preparation
JPH0153999B2 (en)
US6448423B1 (en) Refining of glyceride oils by treatment with silicate solutions and filtration
AU700168B2 (en) Method of refining oils and fats
US5449797A (en) Process for the removal of soap from glyceride oils and/or wax esters using an amorphous adsorbent
AU631891B2 (en) Process for soap splitting using a high temperature treatment
JPH0232208B2 (en)
RU2285718C1 (en) Method for refining of vegetable oil mixture for producing of food products, preferably ketchup
US4110356A (en) Recovery of domestic oil from spent clay
KR0123840B1 (en) Process making of feed in fish oil
Chakawa et al. The novel use of calcium sulphate dihydrate as a bleaching agent for pre-processing beef tallow in the soap manufacturing process
US2121545A (en) Art of refining edible oils, fats and analogous products
SK277771B6 (en) Method of refining of vegetable oils for food purpose
RU2078799C1 (en) Method for production of acids of fish oil
RU2025478C1 (en) Process for preparing lanolin
JPH11349980A (en) Production of metallic soap
JP2006103989A (en) Water repellent for cement products and manufacturing method thereof and using method