AU689914B2 - Low volatility luricating compositions - Google Patents

Low volatility luricating compositions Download PDF

Info

Publication number
AU689914B2
AU689914B2 AU28812/95A AU2881295A AU689914B2 AU 689914 B2 AU689914 B2 AU 689914B2 AU 28812/95 A AU28812/95 A AU 28812/95A AU 2881295 A AU2881295 A AU 2881295A AU 689914 B2 AU689914 B2 AU 689914B2
Authority
AU
Australia
Prior art keywords
oil
document
date
viscosity
multigrade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU28812/95A
Other versions
AU2881295A (en
Inventor
David Robert Adams
Paul Brice
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Ltd
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB9412066A external-priority patent/GB9412066D0/en
Priority claimed from GB9412065A external-priority patent/GB9412065D0/en
Application filed by Exxon Chemical Ltd, Exxon Chemical Patents Inc filed Critical Exxon Chemical Ltd
Publication of AU2881295A publication Critical patent/AU2881295A/en
Application granted granted Critical
Publication of AU689914B2 publication Critical patent/AU689914B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/048Mixtures of base-materials and additives the additives being a mixture of compounds of unknown or incompletely defined constitution, non-macromolecular and macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/06Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/144Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/146Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings having carboxyl groups bound to carbon atoms of six-membeered aromatic rings having a hydrocarbon substituent of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/086Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/24Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/088Neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/102Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon only in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/106Thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/108Phenothiazine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/065Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/061Esters derived from boron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/06Groups 3 or 13
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/14Group 7
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/16Groups 8, 9, or 10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/251Alcohol fueled engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/28Rotary engines

Description

WO 95134618 PCT/EP95/02272 1 Low volatility lubricating compositions This invention relates to low volatility lubricating compositions, particularly multigrade oils for crankcase lubrication of gasoline and diesel engines.
Lubricating oils used in gasoline and diesel crankcases comprise a natural and/or synthetic basestock containing one or more additives to impart desired characteristics to the lubricant. Such additives typically include ashless dispersant, metal detergent, antioxidant and antiwear components, which may be combined in a package, sometimes referred to as a detergent inhibitor (or DI) package. The additives in such a package may include functionalised polymers but these have relatively short chains, typically having a number average molecular weight ,n of not not more than 7000.
Multigrade oils ususally also contain one or more viscosity modifiers (VM) which are longer chain polymers, which may be functionalised to provide other properties when they are known as multifunctional VMs (or MFVMs), but primarily act to improve the viscosity characteristics of the oil over the operating range. Thus the VM acts to increase viscosity at high temperature to provide more protection to the engine at high speeds, without unduly increasing viscosity at low temperatures which would otherwise make starting a cold engine difficult. High temperature performance is usually measured in terms of the kinematic viscosity (kV) at 100°C (ASTM D445), while low temperature performance is measured in terms of cold cranking simulator (CCS) viscosity (ASTM D5293, which is a revision of ASTM D2602).
Viscosity grades are defined by the SAE Classification system according to these two temperature measurements. SAE J300 defines the following grades: WO 95/34618 PCT/EP95/02272 2 SAE VISCOSITY GRADES SAE viscosity Maximum CCS kV 100oC mm 2 /s kV 100oC mm 2 /s grade Viscosity minimum maximum 3 Pa,s (OC) 3500 3.8 3500 4.1 3500 5.6 4500 5.6 6000 9.3 5.6 <9.3 9.3 <12.5 -12.5 <16.3 16.3 <21.9 Multigrade oils meet the requirements of both low temperature and high temperature perfomance, and are thus identified by reference to both relevant grades. For example, a 5W30 mLtigrade oil has viscosity characteristics that satisfy both the 5W and the 30 viscosity grade requirements i.e. a maximum CCS viscosity of 3500.10- 3 Pa.s at -25°C, a minimum kV100°C of 9.3 mm 2 /s and a maximum kV100°C of <12.5 mm 2 /s.
For multigrade oils to meet these high temperature viscosity requirements, it is necessary to add significant amounts of VM which in turn results in increased low temperature viscosity. In order to meet the requirements for wide multigrades such as 5W20, 5W30, 10W40, 10W50, 15W40 and 15W50, it is usual to reduce the basestock viscosity by blending in less viscous oils i.e. to lower the average neutral number of the total basestock. If conventional mineral basestocks are used it is usual to replace higher viscosity basestocks such as 600N basestock in part by basestock of 150N or less to improve CCS performance in wide multigrades. This results in the formulated oil becoming more volatile which in turn increases oil consumption.
WO 95/36(i18 PCT/EP'95/02272 An alternative means of reducing the basestock viscosity and therefore improving CCS performance is to employ so-called non-conventional lubricants (or NCL), Examples of NCLs are synthetic basestocks such as polyalphaolefin oligomers (PAO) and diesters and specially processed mineral basestocks such as basestocks hydrocracked or hydroisomerised to give greater paraffinic content and lower aromatic content. These NCLs result in a smaller increase in volatility but are very expensive and do not respond well to conventional antioxidant systems.
The American Petroleum Institute (API) in their Publication 1509 dated January 1993 entitled "Engine Oil Licensing and Certification System" (EOLCS) in Appendix E, 1.2 provided a classification of basestocks in a number of categories, which are widely used in the lubricant inductry.
Conventional mineral basestocks are in Groups 1 and 2; NCLs are basestocks that do not fall within those two Groups.
new class of ashless dispersants comprising functionalized and/or atized olefin polymers based on polymers synthesized using metai;ocene catalyst systems are described in US-A-5128056, 5151204, 5200103, 5225092, 5266223, 5334775; WO-A-94/19436, 94/13709; and EP- A-440506, 513157, 513211. These dispersants are described as having superior viscometric properties as expressed in a ratio of CCS viscosity to "i kV100C.
25 It has now been found that certain multigrade crankcase oils may be formulated with this new class of dispersant to provide better volatility with reduced use or even without the use of expensive light neutral basestocks or non-conventional lubricant basestocks. In particular the invention enables multigrade oils to be prepared with volatility performance meeting the 30 requirements for Noack volatility, as proposed in VW 500.00, the proposed ACEA specifications and the proposed ILSAC GF-2 specification, while at the same time providing adequate control of sluJge and varnish. Noack volatiiLty is mpssured by determining the evaporative loss in mass% of an oil after 1 hour at 250 0 C according to the procedure of CEC-L-40-T-87.
WO 95/34618 PCT/EP95/02272 4 Accordingly in one aspect the invention provides a low volatility multigrade crankcase lubricating oil meeting SAE J300 viscosity grade 5W20, 5W30, 10W40, 10W50, 15W40 or 15W50 comprising: a) basestock having an average basestock neutral number of not less than 105 for a 5W multigrade, not less than 145 for a 10W multigrade and not less than 200 for a 15W multigrade, b) a detergent inhibitor package of lubricating oil additives including an ashless dispersant comprising an oil soluble polymeric hydrocarbon backbone having functional groups in which the hydrocarbon backbone is derived from an ethylene alpha-olefin (EAO) copolymer or alpha-olefin homoor copolymer having an Mn of from 500 to 7000, and c) a viscosity modifier comprising one or more polymeric additive having an Mn of greater than 20,000.
The oil may reduce or avoid the use of lighter mineral basestocks, and/or reduce or avoid the use of non-conventional lubricants, but in a preferred aspect the oil is substantially free of non-conventional lubricants as basestock.
Preferably the oil is a multigrade meeting the 5W30, 10W40 or 15W50 viscosity grade of SAE J300.
The oil preferably has a Noack volatility of not more than 17%, and more preferably not more than 13% for 10W and 15W multigrades, when measured according to CEC-L-40-T-87. The oil preferably meets the requirements of current specifications for sludge and varnish control, for example as specified in the API SH and VW 500,00 specifications.
The oil preferably contains at least 2.0 mass% of the ashless dispersant, more preferably at least 2.25 mass%, these percentages being based on active ingredient of the ashless dispersant additive.
In another aspect the invention provides the use in a multigrade crankcase oil of an ashless dispersant comprising an oil soluble polymeric hydrocarbon backbone having functional groups in which the hydrocarbon backbone is derived from an ethylene alpha-olefin (EAO) copolymer or alphaolefin homo- or copolymer having an M. of from 500 to 7000, to reduce the volatility of the oil. In a further aspect the invention provides a method of WO 95/34618 PCT/EP95/02272 reducing lubricating oil consumption in an engine, in which the engine is lubricated with a multigrade crankcase oil containing an ashless dispersant comprising an oil soluble polymeric hydrocarbon backbone having functional groups in which the hydrocarbon backbone is derived from an ethylene alpha-olefin (EAO) copolymer or alpha-olefin homo- or copolymer having terminal vinylidene unsaturation and an Mn of from 500 to 7000.
DETAILED DESCRIPTION A. BASESTOCK The basestock used in the lubricating oil may be selected from any of the natural mineral oils of API Groups 1 and 2 (EOLCS, Appendix E, 1.2) used in crankcase lubricating oils for spark-ignited and compression-ignited engines. The basestock is selected within the constraints of the invention, depending on the viscosity grade intended for the formulated oil. Mineral basestocks are typically available with a viscosity of from 2.5 to 12 mm 2 /s,more usually from 2.5 to 9 mm 2 /s at 1000C. Mixtures of conventional basestocks may be used if desired.
B. ASHLESS DISPERSANT The ashless dispersant comprises an oil soluble polymeric hydrocarbon backbone having functional groups that are capable of associating with particles to be dispersed. Typically, the dispersants comprise amine, alcohol, amide, or ester polar moieties attached to the polymer backbone often via a bridging group. The ashless dispersant may be, for example, selected from oil soluble salts, esters, amino-esters, amides, imides, and oxazolines of long chain hydrocarbon substituted mono and dicarboxylic acids or their anhydrides; thiocarboxylate derivatives of long chain hydrocarbons; long chain aliphatic hydrocarbons having a polyamine attached directly thereto; and Mannich condensation products formed by condensing a long chain substituted phenol with formaldehyde and polyalkylene polyamine.
The oil soluble polymeric hydrocarbon backbone used in an ashless dispersants in the detergent inhibitor package is selected from ethylene alpha-olefin (EAO) copolymers and alpha-olefin homo- and copolymers such as may be prepared using the new metallocene catalyst chemistry, which may II~L~ll~? I WO 95/34618 PCT/EP95/02272 6 have a high degree, of terminal vinylidene unsaturation. The term L.pha-olefin is used herein to refer to an olefin of the formula:
R'
H- C =-CH2 wherein R' is preferably a C 1
C
1 8 alkyl group. The requirement for terminal vinylidene unsaturation refers to the presence in the polymer of the following structure:
R
Poly C CH2 wherein Poly is the polymer chain and R is typically a C 1 C18 alkyl group, typically methyl or ethyl. Preferably the polymers will have at least 50%, and most preferably at least 60%, of the polymer chains with terminal vinylidene unsaturation. As indicated in WO-A-94/19426, ethylene/1-butene copblymers typically have vinyl groups terminating no more than about percent of the chains, and internal mono-unsaturation in the balance of the chains. The nature of the unsaturation may be determined by FTIR spectroscopic analysis, titration or C-13 NMR.
The oil soluble polymeric hydrocarbon backbone may be a homopolymer polypropylene) or a copolymer of two or more of such olefins copolymers of ethylene and an all '-olefin such as propylene or butylene, or copolymers of two different alpha-olefins). Other copolymers include those in which a minor molar amount of the copolymer monomers, 1 to 10 mole is an a,o-diene, such as a C3 to C22 non-conjugated diolefin a copolymer of isobutylene and butadiene, or a copolymer of ethylene, propylene and 1,4-hexadiene or 5-ethylidene-2-norbornene).
Atactic propylene oligomer typically having M of from 700 to 5000 may also be used, as described in EP-A-490454, as well as heteropolymers such as polyepoxides.
One preferred class of olefin polymers is polybutenes and specifically poly-n-butenes, such as may be prepared by polymerization of a C4 refinery stream. Other preferred classes of olefin polymers are EAO copolymers that preferably contain 1 to 50 mole% ethylene, and more preferably 5 to 48 mole% ethylene. Such polymers may contain more than one alpha-olefin and I" ii WO 95/34618 PCT/EP95/02272 7 may contain one or more C 3 to C22 diolefins. Also usable are mixtures of EAO's of varying ethylene content. Different polymer types, EAO, may also be mixed or blended, as well as polymers differing in components derived from these also may be mixed or blended.
The olefin polymers and copolymers preferably have an M, of from 700 to 5000, more preferably 2000 to 5000. Polymer molecular weight, specifically M, can be determined by various known techniques. One convenient method is gel permeation chromatography (GPC), which additionally provides molecular weight distribution information (see W. W.
Yau, J. J. Kirkland and D. D. Bly, "Modern Size Exclusion Liquid Chromatography", John Wiley and Sons, New York, 1979). Another useful method, particularly for lower molecular weight polymers, is vapor pressure osmometry (see, ASTM D3592).
The degree of polymerisation Dp of a polymer is: Dp= Mn x mol.% monomer I 100 x mol.wt monomer i i and thus for the copolymers of two monomers Dp may be calculated as follows: Mn x mol.% monomer 1 Mn x mol.% monomer 2
D=
p 100 x mol.wt monomer 1 100 x mol.wt monomer 2 In a preferred aspect of the invention the degree of polymerisation for the polymer backbones used in the invention is at least 45, typically from to 165, more preferably 55 to 140.
Particularly preferred copolymers are ethylene butene copolymers.
In a preferred aspect of the invention the olefin polymers and copolymers may be prepared by various catalytic polymerization processes using metallocene catalysts which are, for example, bulky ligand transition metal compounds of the formula: [L]mM[A]n I- -1 Y WO 95/34618 PCT/EP95/02272 8 where L is a bulky ligand; A is a leaving group, M is a transition metal, and m and n are such that the total ligand valency corresponds to the transition metal valency. Preferably the catalyst is four co-ordinate such that the compound is ionizable to a 1+ valency state.
The ligands L and A may be bridged to each other, and if two ligands A and/or L are present, they may be bridged. The metallocene compound may be a full sandwich compound having two or more ligands L which may be cyclopentadienyl ligands or cyclopentadienyl derived ligands, or they may be half sandwich compounds having one such ligand L. The ligand may be o0 mono- or polynuclear or any other ligand capable of r-5 bonding to the transition metal.
One or more of the ligands may n-bond to the transition metal atom, which may be a Group 4, 5 or 6 transition metal and/or a lanthanide or actinide transition metal, with zirconium, titanium and hafnium being particularly preferred.
The ligands may be substituted or unsubstituted, and mono-, di-, tri, tetra- and penta-substitution of the cyclopentadienyl ring is possible.
Optionally the substituent(s) may act as one or more bridges between the ligands and/or leaving groups and/or transition metal. Such bridges typically comprise one or more of a carbon, germanium, silicon, phosphorus or nitrogen atom-containing radical, and preferably the bridge places a one atom link between the entities being bridged, although that atom may and often does carry other substituents, The metallocene may also contain a further displaceable ligand, preferably displaced by a cocatalyst a leaving group that is usually selected from a wide variety of hydrocarbyl groups and halogens.
Such polymerizations, catalysts, and cocatalysts or activators are described, for example, in US-A-4530914, 4665208, 4808561, 4871705, 4897455, 4937299, 4952716, 5017714, 5055438, 5057475, 5064802, 5096867, 5120867, 5124418, 5153157, 5198401, 5227440, 5241025; EP-A- 129368, 277003, 277004, 420436, 520732; and WO-A-91/04257, 92/00333, 93/08199, 93/08221, 94/07928 and 94/13715.
The oil soluble polymeric hydrocarbon backbone may be functionalized to incorporate a functional group into the backbone of the I WO 95/34618 PCT/EP95/02272 9 polymer, or as one or more groups pendant from the polymer backbone. The functional group typically will be polar and contain one or more hetero atoms such as P, O, S, N, halogen, or boron, It can be attached to a saturated hydrocarbon part of the oil soluble polymeric hydrocarbon backbone via substitution reactions or to an olefinic portion via addition or cycloaddition reactions. Alternatively, the functional group can be incorporated into the polymer in conjunction with oxidation or cleavage of the polymer chain end as in ozonolysis).
Useful functionalization reactions include: halogenation of the polymer at an olefinic bond and subsequent reaction of the halogenated polymer with an ethylenically unsaturated functional compound maleation where the polymer is reacted with maleic acid or anhydride); reaction of the polymer with an unsaturated functional compound by the "ene" reaction absent halogenation; reaction of the polymer with at least one phenol group (this permits derivatization in a Mannich base-type condensation); reaction of the polymer at a point of unsaturation with carbon monoxide using a Koch-type reaction to introduce a carbonyl group in an iso or neo position; reaction of the polymer with the functionalizing compound by free radical addition using a free radical catalyst; reaction with a thiocarboxylic acid derivative; and reaction of the polymer by air oxidation methods, epoxidation, chloroamination, or ozonolysis.
The functionalized oil soluble polymeric hydrocarbon backbone is then further derivatized with a nucleophilic reactant such as an amine, aminoalcohol, alcohol, metal compound or mixture thereof to form a corresponding derivative. Useful amine compounds for derivatizing functionalized polymers comprise at least one amine and can comprise one or more additional amine or other reactive or polar groups. These amines may be hydrocarbyl amines or may be predominantly hydrocarbyl amines in which the hydrocarbyl group includes other groups, hydroxy groups, alkoxy groups, amide groups, nitriles, imidazoline groups, and the like. Particularly useful amine compounds include mono- and polyamines, e.g. polyalkylene and polyoxyalkylene polyamines of about 2 to 60, conveniently 2 to 40 3 to total carbon atoms and about 1 to 12, conveniently 3 to 12, and preferably 3 to 9 nitrogen atoms in the molecule. Mixtures of amine compounds may advantageously be used such as those prepared by reaction of alkylene dihalide with ammonia. Preferred amines are aliphatic saturated WO 95/34618 PCT/EP95/02272 amines, including, 1,2-diaminoethane; 1,3-diaminopropane; 1,4diaminobutane; 1,6-diaminohexane; polyethylene amines such as ditihylene triamine; triethylene tetramine; tetraethylene pentamine; and polypropyleneamines such as 1,2-propylene diamine; and di-(1,2propylene)triamine.
Other useful amine compounds include: alicyclic diamines such as 1,4-di(aminomethyl) cyclohexane, and heterocyclic nitrogen compounds such as imidazolines. A particularly useful class of amines are the polyamido and related amido-amines as disclosed in US 4,857,217; 4,956,107; 4,963,275; and 5,229,022. Also usable is tris(hydroxymethyl)amino methane (THAM) as described in US 4,102,798; 4,113,639; 4,116,876; and UK 989,409.
Dendrimers, star-like amines, and comb-structure amines may also be used.
Similarly, one may use the condensed amines disclosed in US 5,053,152.
The functionalized polymer is reacted with the amine compound according to conventional techniques as described in EP-A 208,560; US 4,234,435 and US 5,229,022.
The functionalized oil soluble polymeric hydrocarbon backbones also may be derivatized with hydroxy compounds such as monohydric and polyhydric alcohols or with aromatic compounds such as phenols and naphthols. Polyhydric alcohols are preferred, alkylene glycols in which the alkylene radical contains from 2 to 8 carbon atoms. Other useful polyhydric alcohols include glycerol, mono-oleate of glycerol, monostearate of glycerol, monomethyl ether of glycerol, pentaerythritol, dipentaerythritol, and mixtures thereof. An ester dispersant may also be derived from unsaturated alcohols such as allyl alcohol, cinnamyl alcohol, propargyl alcohol, 1-cyclohexane-3-ol, and oleyl alcohol. Still other classes of the alcohols capable of yielding ashless dispersants comprise the ether-alcohols and including, for example, the oxy-alkylene, oxy-arylene. They are exemplified by ether-alcohols having up to 150 oxy-alkylene radicals in which the alkylene radical contains from 1 to 8 carbon atoms. The ester dispersants may be di-esters of succinic acids or acidic esters, partially esterified succinic acids; as well as partially esterified polyhydric alcohols or phenols, esters having free alcohols or phenolic hydroxyl radicals. An ester dispersant may be prepared by one of several known methods as illustrated, for example, in US 3,381,022.
~L~srrBB I~a~aR l 111 1~ n- WO 95/34618 PCT/EP95/02272 I1 A preferred group of ashless dispersants includes those substituted with succinic anhydride groups and reacted with polyethylene amines tetraethylene pentamine), aminoalcohols such as trismethylolaminomethane and optionally additional reactants such as alcohols and reactive metals e.g., pentaerythritol, and combinations thereof). Also useful are dispersants wherein a polyamine is attached directly to the backbone by the methods shown in US 3,275,554 and 3,565,804 where a halogen group on a halogenated hydrocarbon is displaced with various alkylene polyamines.
Another class of ashless dispersants comprises Mannich base io condensation products. Generally, these are prepared by condensing about one mole of an alkyl-substituted mono- or polyhydroxy benzene with about 1 to 2.5 moles of carbonyl compounds formaldehyde and paraformaldehyde) and about 0.5 to 2 moles polyalkylene polyamine as disclosed, for example, in US 3,442,808. Such Mannich condensation products may include a polymer product of a metallocene cataylsed polymerisation as a substituent on the benzene group or may be reacted with a compound containing such a polymer substituted on a succinic anhydride, in a mannersimilar to that shown in US 3,442,808.
Examples of functionalized and/or derivatized olefin polymers based on polymers synthesized using metallocene catalyst systems are described in publications identified above.
The dispersant can be further post-treated by a variety of conventional post treatments such as boration, as generally taught in US 3,087,936 and 3,254,025. This is readily accomplished by treating an acyl nitrogencontaining dispersant with a boron compound selected from the group consisting of boron oxide, boron halides, boron acids and esters of boron acids, in an amount to provide from about 0.1 atomic proportion of boron for each mole of the acylated nitrogen composition to about 20 atomic proportions of boron for each atomic proportion of nitrogen of the acylated nitrogen composition. Usefully the dispersants contain from about 0.05 to wt. e.g. 0.05 to 0.7 wt. boron based on the total weight of the borated acyl nitrogen corr, -und. The boron, which appears be in the product as dehydrated boric acid polymers (primarily (HBO2) 3 is believed to attach to the dispersant imides and diimides as amine salts the metaborate salt of the diimid: Boration is readily carried out by adding from about 0.05 to 4, 1 to 3, wt. (based on the weight of acyl nitrogen compound) of a boron
II
18A sr;a~l mrrr~anrar rr~nrrarramr~ I- I-- WO 95/34618 PCT/EP95/02272 12 compound, preferably boric acid, usually as a slurry, to the acyl ni'rogen compound and heating with stirring at from 1350 to 1900 C, 140°-1700 C, for from 1 to 5 hours followed by nitrogen stripping. Alternatively, the boron treatment can be carried out by adding boric acid to a hot reaction mixture of the dicarboxylic acid material and amine while removing water.
C. VISCOSITY MODIFIERS The viscosity modifier used in the invention functions to impart high and low temperature operability to a lubricating oil. The VM used may have 1o that sole function, or may be multifunctional.
Multifunctional viscosity modifiers that also function as dispersants are also known and may be prepared as described above for ashless dispersants. The oil soluble polymeric hydrocarbon backbone will usually have a Mn of from 20,000, more typically from 20,000 up to 500,000 or greater. In general, these dispersant viscosity modifiers are functionalized polymers inter polymers of ethylene-propylene post grafted with an active monomer such as maleic anhydride) which are then derivatized with, for example, an alcohol or amine.
Suitable compounds for use as monofunctional viscosity modifiers are generally high molecular weight hydrocarbon polymers, including polyesters.
Oil soluble viscosity modifying polymers generally have weight average molecular weights of from about 10,000 to 1,000,000, preferably 20,000 to 500,000, which may be determined by gel permeation chromatography (as described above) or by light scattering.
Representative examples of suitable viscosity modifiers are polyisobutylene, copolymers of ethylene and propylene and higher alphaolefins, polymethacrylates, polyalkylmethacrylates, methacrylate copolymers, copolymers of an unsaturated dicarboxylic acid and a vinyl compound, inter polymers of styrene and acrylic esters, and partially hydrogenated copolymers of styrene/ isoprene, styrene/butadiene, and isoprene/butadiene, as well as the partially hydrogenated homopolymers of butadiene and isoprene and isopcene/divinylbenzene.
WO 95/34618 PCT/EP95/02272 13 The viscosity modifier can be chosen fi om any of the above categories of additive in such an amount to obtain the multigrade viscosity requirements of the oil of the invention. It is preferably a polyisobutylene or copolymer of ethylene and propylene or higher alpha-olefin, as such viscosity modifiers are particularly economic and effective. However to obtain oils having a particularly high shear stability a highly shear stable viscosity modifier having an SSI of 5 or less may be used and such viscosity modifiers include in particular hydrogenated polyisoprene star polymers and hydrogenated styrene-isoprene block copolymers. An example of commercially available viscosity modifers of this type is the family of products sold by Shell International Chemical Co. Limited as their Shellvis T M 200 series.
The viscosity modifier used in any aspect of the invention will be used in an amount to give the required viscosity characteristics. Since they are typically used in the form of oil solutions the amount of additive employed will depend on the concentration of polymer in the oil solution comprising the addii,,'e. However by way of illustration, typical oli solutions of polymer used as VMs are used in amount of from 1 to 30% of the blended oil. The amount of VM as active ingredient of the oil is generally from 0.01 to 6 wt%, and more preferably from 0.1 to 2 wt%.
OTHER DETERGENT INHIBITOR PACKAGE ADDITIVES Additional additives are typically incorporated into the compositions of the present invention. Examples of such additives are metal or ashcontaining detergents, antioxidants, anti-wear agents, friction modifiers, rust inhibitors, anti-foaming agents, demulsifiers, and pour point depressants.
Metal-containing or ash-forming detergents function both as detergents to reduce or remove deposits and as acid neutralizers or rust inhibitors, thereby reducing wear and corrosion and extending engine life.
Detergents generally comprise a polar head with a long hydrophobic tail, with the polar head comprising a metal salt of an acidic organic compound. The salts may contain a substantially stoichiometric cmount of the metal in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as may be measured by ASTM D2896) of from 0 to 80. It is possible to include large amounts of a metal base by reacting an excess of a metal compound such as an oxide or hydroxide WO 95/34618 PCT/EP95/02272 14 with an acidic gas such as carbon dioxide. The resulting overbased detergent comprises neutralised detergent as the outer layer of a metal base (e.g.
carbonate) micelle. Such overbased detergents may have a TBN of 150 or greater, and typically of from 250 to 450 or more.
Detergents that may be used include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates and other oil-soluble carboxylates of a metal, particularly tho alkali or alkaline earth metals, sodium, potassium, lithium, calcium, and o1 magnesium. The most commonly used metals are calcium and magnesium, which may both be present in detergents used in a lubricant, and mixtures of calcium and/or magnesium with sodium. Particularly convenient metal detergents are neutral and overbased calcium sulfonates having TBN of from to 450 TBN, and neutral and overbased calcium phenates and sulfurized phenates having TBN of from 50 to 450.
Sulfonates may be prepared from sulfonic acids which are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum or by the alkylation of aromatic hydrocarbons. Examples included those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl or their halogen derivatives such as chlorobenzens, chlorotoluene and chloronaphthalene. The alkylation may be carried out in the presence of a catalyst with alkylating agents having from about 3 to more than 70 carbon atoms. The alkaryl sulfonates usually contain from about 9 to about 80 or more carbon atoms, preferably from about 16 to about 60 carbon atoms per alkyl substituted aromatic moiety.
The oil soluble sulfonates or alkaryl sulfonic acids may be neutralized with oxides, hydroxides, alkoxides, carbonates, carboxylate, sulfides, hydrosulfides, nitrates, borates and ethers of the metal. The amount of metal compound is chosen having regard tc the desired TBN of the final product but typically ranges from about 100 to 220 wi (preferably at least 125 wt of that stoichiometrically required, Metal salts of phenols and sulfurised phenols are prepared by reaction with an appropriate metal compound such as an oxide or hydroxide and neutral or overbased products may be obtained by methods well known in the WO 95/34618 PCT/EP95/02272 art. Sulfurised phenols may be prepared by reacting a phenol with sulfur or a sufur containing compound such as hydrogen sulfide, sulfur monohalide or sulfur dihalide, to form products which are generally mixtures of compounds in which 2 or more phenols are bridged by sulfur containing bridges.
Dihydrocarbyl dithiophosphate metal salts are frequently used as antiwear and antioxidant agents. The metal may be an alkali or alkaline earth metal, or aluminum, lead, tin, molybdenum, manganese, nickel or copper.
The zinc salts are most commonly used in lubricating oil in amounts of 0.1 to 1o 10, preferably 0.2 to 2 wt. based upon the total weight of the lubricating oil composition. They may be prepared in accordance with known techniques by first forming a dihydrocarbyl dithiophosphoric acid (DDPA), usually by reaction of one or more alcohol or a phenol with P 2 S5 and then neutralizing the formed DDPA with a zinc compound. For example, a dithiophosphoric acid may be made by reacting mixtures of primary and secondary alcohols.
Alternatively, multiple dithiophosphoric acids can be prepared where the hydrocarbyl groups on one are entirely secondary in character and the hydrocarbyl groups on the others are entirely primary in character. To make the zinc salt any basic or neutral zinc compound could be used but the oxides, hydroxides and carbonates are most generally employed.
Commercial additives frequently contain an excess of zinc due to use of an excess of the basic zinc compound in the neutralization reaction.
The preferred zinc dihydrocarbyl dithiophosphates are oil soluble salts Sof dihydrocarbyl dithiophosphoric acids and may be represented by the following formula: s
R'O
P--S Zn W 2 wherein R and R' may be the same or different hydrocarbyl radicals containing from 1 to 18, preferably 2 to 12, carbon atoms and including radicals such as alkyl, alkenyl, aryl, arylalkyl, alkaryl and cycloaliphatic radicals. Particularly preferred as R and R' groups are alkyl groups of 2 to 8 carbon atoms. Thus, the radicals may, for example, be ethyl, n-propyl, ipropyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-athylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl. In order to obtain oil solubility, the total WO 95/34618 PCT/EP95/02272 16 number of carbon atoms R and in the dithiophosphoric acid will generally be about 5 or greater. The zinc dihydrocarbyl dithiophosphate can therefore comprise zinc dialkyl dithiophosphates. Conveniently at least (mole) of the alcohols used to introduce hydrocarbyl groups into the dithiophosphoric acids are secondary alcohols.
Oxidation inhibitors or antioxidants reduce the tendency of mineral oils to deteriorate in service which deterioration can be evidenced by the products of oxidation such as sludge and varnish-like deposits on the metal surfaces and by viscosity growth. Such oxidation inhibitors include hindered phenols, alkaline earth metal salts of alkylphenolthioesters having preferably C 5 to C12 alkyl side chains, calcium nonylphenol sulfide, ashless oil soluble phenates and sulfurized phenates, phosphosulfurized or sulfurized hydrocarbons, phosphorous esters, metal thiocarbamates, oil soluble copper compounds as described in US 4,867,890, and molybdenum containing compounds.
Typical oil soluble aromatic amines having at least two aromatic groups attached directly to one amine nitrogen contain from 6 to 16 carbon atoms. The amines may contain more than two aromatic groups.
Compounds having a total of at least three aromatic groups in which two aromatic groups are linked by a covalent bond or by an atom or group an oxygen or sulfur atom, or a -SO 2 or alkylene group) and two are directly attached to one arrine nitrogen also considered aromatic amines.
The aromatic rings are typically substituted by one or more substituents selected from alkyl, cycloalkyl, alkoxy, aryloxy, acyl, acylamino, hydroxy, and nitro groups.
Friction modifiers may be included to improve fuel eco, omy. Oilsoluble alkoxylated mono- and diamines are well known to improve boundary layer lubrication. The amines may be used as such or in the form of an adduct or reaction product with a boron compound such as a boric oxide, boron halide, metaborate, boric acid or a mono-, di- or trialkyl borate.
Other friction modifiers are known, Among these are esters formed by reacting carboxylic acids and anhydrides with alkanols. Other conventional friction modifiers generally consist of a polar terminal group carboxyl or hydroxyl) covalently bonded to an oleophillic hydrocarbon chain. Esters of WO 95/34618 ICT/EP95/02272 17 carboxylic acids and anhydrides with alkanols are described in US 4,702,850.
Examples of other conventional friction modifiers are described by M. Belzer in the "Journal of Tribology" (1992), Vol. 114, pp. 675-682 and M. Belzer and S. Jahanmir in "Lubrication Science" (1988), Vol. 1, pp. 3-26.
Rust inhibitors selected from the group consisting of nonionic polyoxyalkylene polyols and esters thereof, polyoxyalkylene phenols, and anionic alkyl sulfonic acids may be used.
Copper and lead bearing corrosion inhibitors may be used, but are typically not required with the formulation of the present invention. Typically such compounds are the thiadiazole polysulfides containing from 5 to carbon atoms, their derivatives and polymers thereof. Derivatives of 1,3,4 thiadiazoles such as those described in U.S. Pat, Nos. 2,719,125; 2,719,126; and 3,087,932; are typical. Other similar materials are described in U.S. Pat, Nos. 3,821,236; 3,904,537; 4,097,387; 4,107,059; 4,136,043; 4,188,299; and 4,193,882. Other additives are the thio and polythio sulfenamides of thiadiazoles such as those described in UK. Patent Specification No.
1,560,830, Benzotriazoles derivatives also fall within this class of additives.
When these compounds are included in the lubricating composition, they are preferrably present in an amount not exceding 0.2 wt active ingredient.
A small amount of a demulsifying component may be used. A preferred demulsifying component is described in EP 330,522. It is obtained by reacting an alkylene oxide 1/ith an adduct obtained by reacting a bisepoxide with a polyhydric alcohol. The demulsifier should be used at a level not exceeding 0.1 mass active ingredient. A treat rate of 0.001 to 0.05 mass active ingredient is convenient.
Pour point depressants, otherwise known as lube oil flow improvers, lower the minimum temperature at which the fluid will flow or can be poured.
Such additives are well known. Typical of those additives which improve the low temperature fluidity of the fluid are C 8 to C 1 8 dialkyl fumarate/vinyl acetate copolymers and polyalkylmethacrylates.
Foam control can be provided by many compounds including an antifoamant of the polysiloxane type, for example, silicone oil or polydimethyl siloxane.
Illli~L -YIIII*ll I WO 95/34618 PCTIEP95/02272
V.
a 18 Some of the above-mentioned additives can provide a multiplicity of effects; thus for example, a single additive may act as a dispersant-oxidation inhibitor. This approach is well known and does not require further elaboration.
When lubricating compositions contain one or more of the abovementioned additives, each additive is typically blended into the base oil in an amount which enables the additive to provide its desired function.
0o Representative effective amounts of such additives, when used in crankcase lubricants, are listed below. All the values listed are stated as mass percent active ingredient.
ADDITIVE MASS MASS (Broad) (Preferred) Ashless Dispersant 0.1 -20 1 8 Metal detergents 0.1 15 0.2 9 Corrosion Inhibitor 0 5 0 Metal dihydrocarbyl dithiophosphate 0.1 -6 0.1 -4 Supplemental anti-oxidant 0 -5 0.01 Pour Point Depressant 0.01 5 0.01- Anti-Foaming Agent 0 5 0.001-0.15 Supplemental Anti-wear Agents 0 -0.5 0 -0.2 Friction Modifier 0 5 0 Viscosity Modifier 0.01-6 0.1 2 Mineral Base Oil Balance Balance The components may be incorporated into a base oil in any convenient way. Thus, each of the components can be added directly to the oil by dispersing or dissolving it in the oil at the desired level of concentration.
Such blending may occur at ambient temperature or at an elevated temperature.
0 Preferably all the additives except for the viscosity modifier and the pour point depressant are blended into a concentrate or additive package described herein as the detergent inhibitor package, that is subsequently .A blended into basestock to make finished lubricant. Use of such concentrates WO 95134618 PCT/EP95/02272 19 is conventional. The concentrate will typically be formulated to contain the additive(s) in proper amounts to provide the desired concentration in the final formulation when the concentrate is combined with a predetermined amount of base lubricant.
Preferably the concentrate is made in accordance with the method described in US 4,938,880. That.patent describes making a premix of ashless dispersant and metal detergents that is pre-blended at a temperature of at least about 100°C. Thereafter the pre-mix is cooled to at least 85 0 C and o1 the additional components are added.
The final formulations may employ from 2 to 15 mass and preferably to 10 mass typically about 7 to 8 mass of the concentrate or additive package with the remainder being base oil.
The invention will now be described by of illustration onl!, reference to the following examples. In the examples, unless oti,,, i noted, all treat rates of all additives are reported as mass percent active ingredient.
Examples Comparative Examples 1 and 2, and Examples 1 and 2 A series of multigrade crankcase lubricating oils meeting API SH/CD specifications were prepared from a mixture of a non-conventional lubricant, a hydrocracked basestock commercially available as Shell XHVI5.7 (comprising 20 mass% of the oil), and one or more mineral basestocks, a detergent inhibitor package (DI package) containing an ashless dispersant, ZDDP, antioxidant, metal-containing detergents, friction modifier, demulsifier, and an antifoam agent, and a separate viscosity modifier and pour point depressant.
The Comparative Examples used a conventional borated polyisobutenyl succinimide dispersant whereas Examples of the invention used an ashless dispersants having an ethylene/butene copolymer backbone by GPC 2400, ethylene content 39 mole%, terminal vinylidene 64%) functionalised by the introduction of a carbonyl WO 95/34618 PCT/EP95/02272 group by the Koch reaction which is in turn reacted with a polyamine and borated (EBCO/PAM), The preparation of such an ashless dispersant is described in WO-A-94/13709. The EBCO/PAM ashless dispersants was used at a lower treat rate (2.4 mass%) to that used for PIBSA/PAM, since the better dispersant performance of the former means that a smaller quantity is required to achieve adequate performance, The kV100 0 C and CCS viscosity at -20°C for each oil was measured, and the average basestock neutral number (ave. BSNN) determined from the formula: log (ave. BSNN) BSR1 x log (BSNN1)/100 BSR2 x log (BSNN2)/100 where BSRn basestock ratio for basestock n (wt% basestock n/ wt% total basestock in oil) x 100% BSNNn= basestock neutral number for basestock n The results are shown in the following table, Table 1: M 'i WO 95134618 WO 9534618PCTIE P95/02272 Example Camp. I 1 Camp. 2 2 Dispers ant type PIBSA/PAM ESCO/PAM PlBSA/PAM EBCO/PAM treat rate 3.0 2.4 3,0 2.4
VMV
type 1 OP OP HPI HPI treat rate 9.8 9.0 7.5 Basestock 130N treat 12.1 0 34.4 0 rate (mass%) -ave. BSNN 136 145 141 158 Viscosity MVIOOOC 13.64 14.24 14.06 14.33 (mm 2 /s) CCS 3250 346 0 2 960' 3120 10-3 Pa.s Noack 15 13 13.5 12 volatility Footnote: 1.OCP an oil solution of an ethylene propylene copolymer having a shear stability index of 25. HP! a hydrogenated polylsoprene VM available from Shell International Chemical Co. Limited as Shelivis 201.
The Examples of the invention show that an oil can be prepared using less ashless dispersant, less VM, whether OCP or the more shear stable hydrogenated polyisoprene, and with no light neut,'al basestock (130N) while meeting the viscosity limits for 10OW40 viscosity grade oils and having io reduced volatility.
Comparative Examples 3 and 4. and examples 3 and 4 A further series of oils were tested at 1 5W40 and 1 5W50 viscosity grades. The results are set out in Table 2 below: WO 95/34618 PCT/EP95/02272 Example Comp. 3 3 Comp. 4 4 Dispersant -type PIBSA/PAM EBCO/PAM PIBSA/PAM EBCO/PAM treat rate 3.0 2.4 3.0 2.4 (mass%)
VM
-type 2 TLA TLA OCP OCP treat rate 6.7 6.0 13.0 10.5 (mass%) viscosity 15W40 15W40 15W50 15W50 grade Basestock average 178 211 191 208 neutral no.
Viscosity kV100°C 13.55 14.69 18.98 17.88 (mm 2 /s) CCS 3200 3290 3260 3290 103 Pa.s Noack 10.5 9 9.5 9 volatility Footnote: 2. OCP as defined in Table 1. TLA an oil solution of an ethylene propylene copolymer with SSI of 25, commercially available from Texaco Chemical Limited as TLA347E.
These results demonstrate that the invention enables low volatility wide multigrade oils to be prepared with higher average neutral number basestock and reduced amount of VM which may be beneficial in giving improved diesel performance such as reduced piston deposits and improved soot dispersancy in diesel lubrication and reduced turbocharger intercooler deposits.
I"

Claims (11)

1. A low volatillty multigrade crankcase lubricating oil meeting SAE J300 viscosity grade 5W-20, 5W-30, 10W-40, 10W-50, 15W-40 or 15W-50 comprising: a) basestock having an average basestock neutral number of not less than 105 for a 5W multigrade, not less than 145 for a multigrade and not less than 200 for a 15W multigrade, b) a detergent inhibitor package of lubricating oil additives including an ashless dispersant comprising an oil soluble polymeric hydrocarbon backbone having functional groups in which the hydrocarbon backbone is derived from an ethylene alpha-olefin (EAO) copolymer or alpha-olefin homo- or copolymer having >30% of terminal vinylidene unsaturation and an Mn of from 500 to 7000, and c) a viscosity modifier comprising one or more polymeric additive having an Mn of greater than 20,000 and wherein the oil is 20 substantially free of non-conventional lubricants as basestock. ao
2. An oil as claimed in claim 1, which is a 5W-30, 10W-40 or 15W-50 viscosity grade oil.
3. An oil as claimed in claims 1 or 2, which has a Noack volatility of not more than 17%, when measured according to CEC-L-40-T-87.
4. An oil as claimed in claim 3, which has a Noack volatility of not more than 13%, when measured according to CEC-L-40-T-87.
5. An oil as claimed in any preceding claim, which contains at least 2 mass of the ashless dispersant.
6. An oil as claimed in any of claims 1 to 5, in which the hydrocarbon backbone of the ashless dispersant is deri'e-l from an ethylene alpha- olefin (EAO) copolymer which has an Mn of from 2000 to 5000, u, AMENDED SHEET o IPEA/EP _1 I-. 94A019 24
7. An oil as claimed in any of claims 1 to 6, in which the polymeric hydrocarbon backbone has a degree of polymerisation of at least
8. An oil as claimed in claim 7, in which the polymeric hydrocarbon backbone has a degree of polymerisation of from 50 to 165.
9. A method of reducing lubricating oil consumption in an engine, in which the engine is lubricated with a multigrade crankcase oil as claimed in any of claims 1 to 8. AMENDED SHEET !PEA/EP INTERNATIONAL SEARCH REPORT Iuional Applicaion No PCT/EP 95/02272 A. CLASSIFICATION OF SUBJECT MAITER IPC 6 C10M161/00 C10M169/04 //(Ci.;lF1'1/00,129:95,133:52,143:00), (C10M169/04,101:02,129:95,133:52,i43:U'),C10N20:02,30:04,40:. According to International Paten Classification (IPC) or to both national classficaton and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classificttion symbols) IPC 6 CO1M C08F Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electromc data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passager Relevant to claim No. X EP,A,0 264 247 (EXXON CHEMICAL PATENTS) 20 1-6,8, April 1988 11,12 Y see page 2, line 39 page 4, line 26; 7,9,10 examples 3,8,9 X EP,A,0 307 132 (EXXON CHEMICAL PATENTS) 15 1-6,8, March 1989 11,12 Y see examples 6,7 7,9,10 Y US,A,5 229 022 (W.R.SONG) 20 July 1993 7,9,10 cited in the application see column 4, line 51 line 56 see column 5, line 20 column 6, line 33 Further documents are listed in the continuation of box C. Patent family it. are listed in annex. Special categones of cited documents: Special categories of cited dcumnts later document published after the intemational filing date A g te g l se of te at w s or priority date and not in conflict with the applicaton but document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of partcular relevance invention earlier document but published on or after the international document of particular relevance; the claimed unventior. filing date cannot be considered nodel or cannot be considered to document which may throw doubts on pnority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu- othr- means ments, such combination being obvious to a person skilled document published prior to the international filing date but in the art. later than the priority date claimed document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 26 October 1995 07.11.95 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL 2280 HV Riiswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo n, R ta rt Fax (+31-70) 340-3016 Rtsaert, L Form PCT/ISA/210 (second sheet) (July 1992) c INTERNATIONAL SEARCII RIEPOW!' tifnatton on patent faiuly memticrl -nAtlonxi Application No PCT/EP 95/02272 Patent document I Publication Patent family I Publication cited in search report I date Imember(s) I date EP-A-264247 20-04-88 AU-B- AU-B- CA-A- JP-A- 607161 7980387 1333596 63159497
28-02-91 21-04-88 20-12-94 02-07-88 EP-A-307132 15-03-89 US-A- 4863624 05-09-89 CA-A- 1315642 06-04-93 OE-A- 3866645 16-01-92 JP-A- 1148336 09-06-89 US-A- 5118432 02-06-92 US-A'-5229022 20-07-93 AU-B- 4052089 05-03-90 EP-A, B ES-T- JP-A- WO-A- US-A- US-A- US-'A- US-A- US-A- AU-B- AU-B- EP-A- JP-A- 0353935 2045444 2099598 9001503 5350532 5435926 5433757 5277833 5266223 635812 7010991 0441548 5005097 07-02-90 16-01-94 11-04-90 22-02-90 27-09-94 25-07-95 18-07-95 11-01-94
30-11-93 01-04-93 24-10-91 14-08-91 14-01-93 Form PCT/ISA/2IO (patint familly wex0) (July 19.92) A i
AU28812/95A 1994-06-16 1995-06-12 Low volatility luricating compositions Ceased AU689914B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB9412066A GB9412066D0 (en) 1994-06-16 1994-06-16 Low volatility lubricating compositions
GB9412066 1994-06-16
GB9412065A GB9412065D0 (en) 1994-06-16 1994-06-16 Low volatility lubricating compositions
GB9412065 1994-06-16
PCT/EP1995/002272 WO1995034618A1 (en) 1994-06-16 1995-06-12 Low volatility luricating compositions

Publications (2)

Publication Number Publication Date
AU2881295A AU2881295A (en) 1996-01-05
AU689914B2 true AU689914B2 (en) 1998-04-09

Family

ID=26305073

Family Applications (1)

Application Number Title Priority Date Filing Date
AU28812/95A Ceased AU689914B2 (en) 1994-06-16 1995-06-12 Low volatility luricating compositions

Country Status (6)

Country Link
EP (1) EP0765372B1 (en)
AU (1) AU689914B2 (en)
CA (1) CA2193120A1 (en)
DE (1) DE69520432T2 (en)
ES (1) ES2155522T3 (en)
WO (1) WO1995034618A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558802A (en) * 1995-09-14 1996-09-24 Exxon Chemical Patents Inc Multigrade crankcase lubricants with low temperature pumpability and low volatility
WO1998021297A1 (en) * 1996-11-13 1998-05-22 Exxon Chemical Patents Inc. Lubricating oil formulations with improved low temperature performance
GB9716283D0 (en) * 1997-08-01 1997-10-08 Exxon Chemical Patents Inc Lubricating oil compositions
US6303550B1 (en) * 1998-11-06 2001-10-16 Infineum Usa L.P. Lubricating oil composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0264247A2 (en) * 1986-10-16 1988-04-20 Exxon Chemical Patents Inc. High functionality low molecular weight oil soluble dispersant additive useful in oleaginous compositions
EP0307132A1 (en) * 1987-09-09 1989-03-15 Exxon Chemical Patents Inc. Improved dispersant additive mixtures for oleaginous compositions
US5229022A (en) * 1988-08-01 1993-07-20 Exxon Chemical Patents Inc. Ethylene alpha-olefin polymer substituted mono- and dicarboxylic acid dispersant additives (PT-920)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0264247A2 (en) * 1986-10-16 1988-04-20 Exxon Chemical Patents Inc. High functionality low molecular weight oil soluble dispersant additive useful in oleaginous compositions
EP0307132A1 (en) * 1987-09-09 1989-03-15 Exxon Chemical Patents Inc. Improved dispersant additive mixtures for oleaginous compositions
US5229022A (en) * 1988-08-01 1993-07-20 Exxon Chemical Patents Inc. Ethylene alpha-olefin polymer substituted mono- and dicarboxylic acid dispersant additives (PT-920)

Also Published As

Publication number Publication date
EP0765372A1 (en) 1997-04-02
DE69520432T2 (en) 2001-07-05
DE69520432D1 (en) 2001-04-26
CA2193120A1 (en) 1995-12-21
EP0765372B1 (en) 2001-03-21
AU2881295A (en) 1996-01-05
WO1995034618A1 (en) 1995-12-21
ES2155522T3 (en) 2001-05-16

Similar Documents

Publication Publication Date Title
EP1000131B1 (en) Lubricating oil compositions
AU711588B2 (en) Multigrade crankcase lubricants with low temperature pumpability and low volatibility
AU703294B2 (en) Ester-free synthetic lubricating oils
AU692579B2 (en) Multigrade lubricating compositions
US5789355A (en) Low volatility lubricating compositions
AU717838B2 (en) Low chlorine, low ash crankcase lubricant
AU688922B2 (en) Multigrade lubricating compositions containing no viscosity modifier
AU689914B2 (en) Low volatility luricating compositions
AU692888B2 (en) Lubricating oils containing alkali metal additives
EP0777713B1 (en) Improved lubricating oil compositions
US5652202A (en) Lubricating oil compositions
AU689911B2 (en) Shear stable lubricating compositions
EP0793706A1 (en) Lubricating oils containing ashless dispersant and metal detergent additives

Legal Events

Date Code Title Description
MK14 Patent ceased section 143(a) (annual fees not paid) or expired