AU672647B2 - Noise quenching method and apparatus for a colour display system - Google Patents

Noise quenching method and apparatus for a colour display system Download PDF

Info

Publication number
AU672647B2
AU672647B2 AU53108/94A AU5310894A AU672647B2 AU 672647 B2 AU672647 B2 AU 672647B2 AU 53108/94 A AU53108/94 A AU 53108/94A AU 5310894 A AU5310894 A AU 5310894A AU 672647 B2 AU672647 B2 AU 672647B2
Authority
AU
Australia
Prior art keywords
pixels
values
pixel
group
extremity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU53108/94A
Other versions
AU5310894A (en
Inventor
William Clark Naylor Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to AU53108/94A priority Critical patent/AU672647B2/en
Publication of AU5310894A publication Critical patent/AU5310894A/en
Assigned to CANON KABUSHIKI KAISHA reassignment CANON KABUSHIKI KAISHA Amend patent request/document other than specification (104) Assignors: CANON INC.
Application granted granted Critical
Publication of AU672647B2 publication Critical patent/AU672647B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Controls And Circuits For Display Device (AREA)

Description

Ii NOISE QUENCHING METHOD FOR A COLOUR DISPLAY SYSTEM j Field of the Invention The present invention relates to a colour display apparatus such as colour computer displays and colour printers, and, in particular, the display of colour images on a discrete level colour display apparatus.
Background of the Invention Various aspects of the prior art can now be discussed with reference to the follow- j ing drawings in which: i Fig. 1 is a schematic view of a pixel of a CRT-type display of a prior art device.
Fig. 2 is a schematic view of the range of colours that can be displayed with a pixel as shown in Fig. 1.
Fig. 3 is a block diagram form of the conventional arrangement for connecting a computer device to an output display.
Fig. 4 is a schematic view of an error diffusion process.
Colour display devices are well known in the art. For example, colours are often displayed on a computer display according to a particular model. The red, green, blue (RGB) primary colour model is one that is in common use with Cathode Ray Tubes (CRT) and colour raster display devices. Other colour display models include cyan,
I
magenta, yellow (CMY) often used in colour-printing devices. An example of the use of a RGB model is in +he NTSC picture display standard in common use with computer displays. In this standard, each pixel element is divided into three separate sub groupings.
These separate subgroupings represent the Red, Green and Blue portion of a given pixel element respectively.
25 As depicted in Fig. 1, the viewing surface of a colour RGB model CRT often consists of closely spaced pixels 1. Each pixel is made up of a red green(G) and blue phosphor dot or pixel element. These dots are so small that light emanating from the individual dots is perceived by the viewer as a mixture of the corresponding three colours.
A wide range of different colours can thus be produced by a given pixel by variation of the strength with which each phosphor dot is excited.
30 Referring now to Fig. 2. in order to conceptualize the range of colours that can be printed by this method it is helpful to map these colours into a unit cube 9. The directions of increasing intensity of individual primary colours is shown by axis 10. The maximum intensity values have been normalized to 1 and the minimum intensity value is normalized to zero. The individual intensity contributions of each of the three separate primary colours at any one particular point are vectorially added together to yield the final colour.
:P I(FLCD10)(257046) I 77__ p^ j
L\
g
:I
;P
-2- For.example, the main diagonal of the cube, with equal amounts of each primary colour, represents the different grey levels or grey scale, from black to white A driving arrangement (not shown but known in the art) is normally provided with the CRT type display so that the strength of each phosphor dot's excitation has some proportionality to the value that is input to the driving arrangement. A timing arrangement (not shown but similarly known) is also normally provided which is adapted for use in determining which pixel of the display is to be illuminated.
Turning now to Fig. 3, there is shown the normal prior art arrangement for an interface from an output device such as a computer device 11 to its preferred form of display 13 which is shown as a CRT type display 13. It is assumed that the display is an RGB type display. The output format from the computer device 11 is normally in the form of separate channels for red 51, green 52 and blue 53 display information for each primary colour of the display with the inclusion of an extra channel 54 for timing and control information. Alternatively the control and timing information is included in one of the primary colour's channel of infobrmation. This information is normally transferred to the display 13 by means of one or more cables 12 (seen in Fig. 5) able to carry the information.
The output information from the computer device 11 is normally conveyed to the display 13 in an analogue format with the channel level having some proportionality to the intensity to be displayed. As the channel information is in an analogue format, it is liable to pick up noise from its environment and from the limitations of the cabling through which the signal is travelling. If the display 11 to which the computer device is connected should require to convert this information to a digital format, the conversion process will be forced to include the noise in the determination of its digital output level.
With the input to the display 13 in an analogue format it is normally assumed that the display 13 is easily able to display a large number of different intensity levels for each primary colour of the input. Some discrete level display devices are unable to display the large number of intensity levels for each of the expected primary colours. For example, a black and white raster image display can only display two colours, namely black and white and is known as a bi-level device. Other colour display devices can only display a finite number of discrete intensity levels for each primary colour. By way of further example, in a colour bi-level device, such as a ferroelectric liquid crystal display (FLCD), each pixel element on the screen can be at just two intensity levels, either fully on or fully off. If, for example, a display device can display red, green, blue and white primary i Ii
I
i 1 i "i-I '3
~I
CC.
C C
'CCC
IC
(FLCD10)(257046) I I W M011111 Sii: colours the total number of different colours that each pixel can display will be 24 16 different colours.
If the input to the display device is in a format that assumes that there is a larger number of intensity levels for each channel then there will be an error in the colour displayed, being the difference between the exact pixel value required to be displayed and the approximated value actually displayed from the restricted set of possible display colours. Methods have been developed to increase the number of colours displayable on an discrete colour display device such as a bi-level colour display. The methods used are known generally as halftoning. For an explanation of the different aspects of halftoning and a survey of the field of halftoning reference is made to the book 'Digital Halftoning' by Robert Ulichney, published in 1991 by MIT Press.
One method described by Ulichney to improve the quality of a displayed image, is called error diffusion. This process was developed by Floyd and Steinberg for a single i colour (black or white) display and is described in "An Adaptive Algorithm for Spatial Gray Scale", Society for Information Display 1975 Symposium Digest of Technical Papers, 1975, 36. In the Floyd and Steinberg algorithm, the error associated with each pixel value is added to the values of some of the neighbouring pixels of the given current pixel in such a manner that the sum of these additions is equal to the error associated with the pixel value. This has the effect of spreading or diffusing the error over several pixels 20 in the final image to give an improved quality in the reproduction of a given input image.
*An example of this process is shown in Fig. 4. In this example, a decision is made to spread the error associated with a current pixel 2, such that two eighths of the error is assigned to a pixel 3 on the right of the current pixel 2, one-eighth is assigned to its neighbour 4, two eighths is assigned to a pixel 5 below the current pixel 2, and one eighth 25 is assigned to pixels marked 6, 7, 8 respectively.
Alternatively, a process of independent error diffusion of each primary'colour channel could be used. Also, other methods of halftoning can be used such as dithering of .the input image. All these methods of halftoning can be used to display an analogue iI ~output on a discrete level display.
30 Summary of the Invention SIn accordance with one aspect of the present invention, there is disclosed a method for suppressing noise in an input image comprising a plurality of pixels, the pixels having a range of possible values, the method comprising the steps of: determining a first group of pixel values which are less than a predetermined distance from an extremity of the range of possible values, (FLCD10)(257046) 7 *i, i for each pixel value in the first group of pixel values: examining the values of neighbouring pixels in the input image to determine if they are also at the extremity of the range of possible values, and where a second predetermined number of the neighbouring pixels a(re at the extremity of the range of possible values, reassigning the pixel value of the pixels to be at the extremity of the range of possible values.
In accordance with another aspect of the present invention, there is provided apparatus for suppressing noise in an input image, said image comprising pixels, said apparatus comprising: detecting means, for detecting if a group of pixels are near an extremity of possible values; reassignment means for reassigning said pixels to the extremity when said group is detected.
In accordance with another aspect of the present invention, there is provided a computer-implemented method for suppressing noise in an input image comprising a plurality of pixels, each of the pixels having a range of possible values between at least two extremities, said method comprising the steps of: determining a first group of pixels, each pixel of the first group having a value that is less than a predetermined amount from the value of at least one of said extremities; examining the values of pixels adjacent to each pixel in the first group to determine if the adjacent pixels are also members of the first group; reassigning, when a predetermined number of the pixels adjacent to a pixel of the •e first group are also members of the first group, the pixel value of that pixel in the first group and each of its adjacent pixels to have a value of said at least one of the extremities, 25 and when said predetermined numnber of pixels adjacent to a pixel in the first group are not members of the first group, leaving the values of said pixel and said predetermined number of pixels unaltered; and .1utilizing the reassigned pixel values in the production of an image.
In accordance with another aspect of the present invention, there is provided a computer implemented method for suppressing noise in an input image comprising a plurality of pixels, the pixels comprising a plurality of primary colors each having a range of possible values distributed between two extremity values, said method comprising the I steps of: I determining a first group of pixels, each pixel of the first group having primary S color values that are less than a predetermined amount from a corresponding one of the extremity values, FLCD1O. 257046 CFP0193AU L. i. I 4A i i i i i! examining corresponding primary color values of pixels adjacent to each pixel in the first group to determine if the adjacent pixels are also-members of said first group; and reassigning, when a predetermined number of the pixels adjacent to a pixel in the first group, at least one primary color value of that pixel in the first group and each of its' adjacent pixels to be equal to the said one corresponding extremity value, and when said predetermined number of pixels adjacent to a pixel in the first group are not members of said first group, leaving the values of said pixel and said predetermined number of pixels unaltered.
In accordance with another aspect of the present invention, there is provided an apparatus for suppressing noise'in an input image, the input image comprising a plurality of pixels each having a corresponding pixel value in a range of possible pixel values between two extremity values, said apparatus comprising: detecting means for detecting pixels that have a pixel value near one of the extremity values and for forming a group comprising the detected pixels; reassignment means for reassigning the value of the pixels in the group to said one extremity value, only when a predetermined number of the pixels adjacent to a detected pixel are also near one of the extremity values.
In accordance with another aspect of the present invention, there is provided an image processing apparatus for processing an input image including input image data, said image processing apparatus comprising: a color output device configured to display color image data corresponding to the input image data; suppressing means for suppressing noise included in the input image data; and mapping means for mapping the input image data into a restricted color space 25 that is defines colors displayable by said color output device.
Brief Description of the Drawings A preferred embodiment of the present invention will now be described with reference to the remaining drawings in which: Fig. 5 is a block diagram form of a display device for use with the preferred 30 embodiment, Fig. 6 is a schematic view of the different parts of a colour display system of Fig. Fig. 7 is a schematic view of the rendering uidt of the colour display system of Fig.
f 4L rr r r re :r IFL
E
L
0 ri r I r r r r LL( L Il L r. L: L 8 If~L i;L L C r r r ri r Fig. 8 is a schematic view of the colour mapping unit of Fig. 7; Fig. 9 illustrates the contrast enhancement process; and
I
FLCD1O 257046 CFP0193AU -II ~1 ,1
I;,
i r*nr 4. Fig. 10 is a schematic view of a second embodiment of the colour mapping unit of Fig. 7.
Fig. 11 is a graphical view of the pixel intensity level versus pixels on a line, for a region of constant intensity.
5 Fig. 12 is a graphical view of the pixel intensity level in Fig. 11 with noise added to the pixel intensity level.
Fig. 13 is a graphical view of an input pixel intensity level of zero with noise which has been rectified.
Fig. 14 is a schematic block diagram of an apparatus incorporating a simplified form of the preferred embodiment.
Description of the Preferred Embodiment ii i i i
I
25 1' I I 0 0 .1 0 H U A .1 FLCD10 2 0 CF 9 A c 9 J I 11 <v FLCD10 257046 CFP0193AU 9: l r 1 r t L; e' 11 3 o p u In Fig. 5 there is shown a discrete level display in the form of a Ferro-Electric Liquid Crystal (FLCD) Display 16, and its controller 15. A computer device 11 produces output in an analogue format as mentioned previously, and this information is sent for display along a cable 12. Interposed between the computer device 11 and the FLCD display 16 is a display system 14 for conversion of the analogue output from computer device 11 into a form suitable for display on the FLCD display 16. For the purposes of the preferred embodiment it can be assumed that display system 14 includes and analogue to digital converter for each input channel in cable 12, whereby the input in an analogue format is converted to a corresponding digital format for processing by the display system 14.
Referring now to Fig. 6, there is shown the display system 14 of the above mentioned application in more detail. The disp (ay system 14 includes an analogue to digital conversion unit 21 which converts analogue input into an 8 bit digitial representation of pixel values in addition to pixel clocking and associated control in I formation. A demultiplexer 31 groups together pixels, two at a time, so as to reduce :I processing speed requirements, and forwards them to a rendering unit 27.
Turning now to Fig. 7, the rendering unit 27 consists of a colour mapping unit 37 :j and a halftoning unit 38. A demultiplexer output bus 32 connects to the colour mapping unit 26 to supply RGB pixel information. Synchronization information comprising the 20 pixel clock, vertical sync and horizontal sync signals, are supplied with the pixel input.
S: The colour mapping unit 37 performs a series of transforms on the input RGB pixel data before sending the transformed pixels to the halftoning unit 38, via a colour mapping to halftoning pixel bus 39, to halftone the pixels to produce 4-bit pixel output. This output appears on rendering unit output bus 34.
25 Referring now to Fig. 8, there is shown in more detail a first embodiment of the colour mapping unit 37. The colour mapping unit 37 performs a series of transformations on RGB digital video data, mapping each pixel of the input data to a new position in RGB j 'space. The purpose of these transformations is to modify video data intended for display on a CRT so that it is suitable for display within the gamut of the FLCD display 30 The colour mapping unit 37 has a pipelined structure, with identical input and i output interfaces. Each of the colour transformations can be switched in or out by appropriate configuration. I The colour mapping unit 37 performs a series of transformations on the input RGB data prior to halftoning. These transformations are applied one after the other, re-mapping data within the RGB space to achieve the following effects: I:,1 (FLCD 10)(257046) '1 6- 1. Gamma Correction (also called DeGamma) 2. Contrast Enhancement 3. Colour Masking 4. Gamut Clipping 5. Noise Quench The pixel input data is taken from demultiplexer output bus 32, two pixels as a time.
The pixel input data is further demultiplexed by colour mapping demultiplexer 41 so that the rest of the colour mapping unit 37 works in parallel on four pixels at a time.
A colour mapping table lookup unit 42 implements the processes of gamma correction and contrast enhancement by replacing each pixel by a predetermined value stored in a lookup table whose values can be written through a configuration interface at system start-up.
Gamma correction is a monotonic, non-linear transformation applied to the Red, Green and Blue components of a pixel independently. Its purpose is to correct the intensity of the incoming colour components, which are originally intended for display on a CRT, to match a FLCD panel's characteristics. Given that the primary colour component values of each pixel is in the range of 0 to 255, the following formulae must be applied to each of the input colour components: Rout 255*(Rin/255)Y 20 Gou t 255*(Gin/255) SBout 255*(Bin/255)Y The value of y is a measurement of the colour response characteristics of a given panel and is determined by measurement. The colour mapping unit 37 can implement this degamma function using a lookup table.
25 Contrast Enhancement is a linear transformation, also applied to Red, Green and Blue components independently. Contrast enhancements moves all colours towards the corners of the input gamut, increasing the contrast between near-black and nea iwhite areas. Preferably contrast enhancement is implemented by changing the values loaded into the lookup table of colour mapping table lookup unit 42 as this avoids the colour 30 mapping unit 37 having any hardware dedicated specifically to contrast enhancement, Contrast enhafcement applies a linear multiplication factor to each of the R, G and B values of each sample, according to the formula: Rout ((Rin-128)*(256/h))+128 Gou t ((Gin-128)*(256/h))+128 Bou t ((Bin-128)*(256/h))+128 j (FLCD10)(257046) r Z 2 S I 44 I where h is an integer in the range 1 to 256.
Figure 9 shows the corresponding effect of contrast enhancement on input pixels for different values of h being one of 1, 64, 128, 256.
As seen in Fig. 8, a colour mapping matrix multiply unit 43 implements Colour Masking by applying a programmable matrix multiplication to the incoming RGB data.
Colour Masking is a matrix transformation of the input data where each output (Red, Green and Blue) depends on each of the Red, Green and Blue inputs. It is designed to compensate for any non-orthogonal colour characteristics of the FLCD display 16. A 4 possible additional function of the colour mask circuit is to perform RGB to luminance conversions employing the Green matrix multiply circuit only.
The colour mapping matrix multiply unit 43 includes nine programmable registers which hold matrix coefficients arr through to abb which are loaded at start-up time and are determined from measurement of the colour characteristics of the FLCD display 16. The colour mapping matrix multiply unit 43 produces output colours according to the following formula.
Rout arrRin argin arbBin Gout= agrRin aggGin agbBin o Bout= abrRin abgGin abbBin A gamut clipping unit 44 constituting an apparatus embodying the invention, 20 compensates for the fact that the RGBW display of the FLCD panel cannot represent all of the possible values in the RGB space. Values that cannot be represented, which are generally near-saturated colours, are remapped to within the panel's colour gamut.
A noise quenching unit 45 attempts to compensate for rectified noise in the nearsaturated regions of the input. It works by mapping near-saturated pixels to their spturated values if some number of the adjacent pixels are also saturated.
A colour mapping multiplexer 46, multiplexes the pixels so that the output format of the pixels is the same as that of the input to colour mapping demultiplexer 41. Referring o now to Fig. 7, the pixel and control information is subsequently forwarded on colour mapping to halftoning pixel bus 39 and to colour mapping to halftoning control bus 40 to 30 the halftoning unit 38.
Referring now to Fig. 10, there is shown a second embodiment of the colour mapping unit 37 containing only the colour mapping demultiplexer 41, gamut clipping unit 44, noise quenching unit 45 and colour mapping multiplexer 46. The second embodiment has the advantage of a substantial reduction in complexity in comparison to |(FLCD10)(257046) o
I.
1 preform gamma correction, contrast enhancement or colour masking.
Returning te Fig. 6 and Fig. 7, the halftoning unit 38 transforms continuous tone RGB data input on colour mapping to halftoning control bus 40, to 4-bit per pixel RGBW pixel data, suitable for display on the FLCD display 16. Output pixel data is forwarded to the frame store controller 18 for storage in the frame store 17. i b It is envisaged that different gamut clipping methods can be used for different areas of the RGB cube structure, additionally a combination of methods can be employed in areas where this is found to give superior results. Appendix 1 shows a C-code simulation of the simultaneous use of two different methods, being the shortest distance method and the drop clip method.
The particular values used in the C-code simulation are dependant on the position of various pixels including the white pixel in the input RGB colour space. In the Appendix, it i is assumed that the white pixel has co-ordinates R=G=B=102 and that the value of each I primary colour ranges from 0 to 255. In an actual implementation, the various pixelsi values can be loaded as a configitation variable.
In this simulation the drop-clip method is preferred in the used, blue-red (magenta) i and red saturated corners of the RGB cube and the shortest distance method is used near j the green, blue-green (cyan) and red-green (yellow) comersi T20 As a consequence of the description in the foregoing embodiment, it can be seen that input data presented in, for example, an RGB format can be displayed on a device having a different output format than the input format, while simultaneously attempting to use the full potential of the output display in its use of colours and their respective intensities. °R 25 Turning now to Fig. 11, an example is shown of the process of error diffusion which is normally used where the number of levels of an output device is less than the number of levels assumed by the input means to that device. Fig. 11 shows the granularity of the possible output levels, 62, 63, 64 is much less then t( ,m;anularity of the input levels 66. In the present example, the granularity of the output is 10 times less than the 30 granularity of the input. As a consequence, processes such as error diffusion or halftoning areused to attempt to approximate the displaof the desired input image as close as possible using the limited number of output levels available. Fig. 11 shows a region of a Sline at a constant intensity, with portions 68, 69 representing,adjacent pixels on a line I The preferred embodiment isl most effective in regions of near constant intensity level. In Fig. 11 ite ins assumed that such a region exists whereby the input 67 is of near
~E
II
-9r c r ril cr r ru r r rrr **rr *sr r-*i ssi ,uu*r constant intensity level for the portion of a line. In this example, the input intensity level 67 happens to also coincide with an output intensity level 63. Hence the error in the possible value that the output display can use to display this value is zero.
However, when using an input which is derived from an analogue source, it is inevitable that some form of 'noise' will be associated with the input signal. It is assumed for the purposes of discussion of the preferred embodiment that the form of noise is Gaussian and random in nature. The effect of this nois, is to produce fluctuations in the input signal and this in turn can cause fluctuations in the output of the analogue to digital converters that convert the analogue input to a corresponding digital output level. For the purposes of discussion of the preferred embodiment it can be assumed that each analogue 'to digital converter produces an 8-bit output format and hence are capable of producing one 256 different levels in the range of 0 to 255.
Referring now to Fig. 12, there is shown a noise input signal 70 which consists of the input signal 67 of Fig. 11 with the addition of random Gaussian noise. The nature of this noise is substantially symmetric about an actual intensity value and causes the output of the analogue to digital converter to deviate from the true value of input signal 67 (Fig.
11).
If an error diffusion process such as the Floyd-Steinberg process is now used on the input signal 70, it is found that the output produced by the process is substantially 20 unaffected by the effects of symmetrical forms of noise (provided they are not too large) as the effect of the error diffusion process is to spread the error associated with the display of a current pixel to adjacent pixels.
This has been found to have the affect of cancelling out low levels of symmetrical noise as the process acts somewhat like a low pass filter on an input signal. Hence the 25 noise is not a significant problem.
Referring now to Fig. 13, there is shown the effect of noise near the extremity of the outputs of the analogue to digital converter. Noise at this (lower) extremity (and at the other (higher) extremity of the analogue to digital converter) can lead to problems occurring. The lowest value that the analogue to digital converter can output is set to be at 30 a zero level, corresponding to the lowest analogue value expected from the computer device 11. Hence those values of the input signal that are below zero are rectified to zero by the analogue to digital converter and the output from the analogue to digital converter is in the form of rectified signal 72 with values less than output level signr.. 0 (71) being removed.
(FLCD10)(257046) V i rq A p~ i 3i, d
II.~
i (L il.r*-dYI As mentioned previously, in error diffusing the rectified signal 72, the normal process of error diffusion takes the rectified signal 72 and determines which level is the closest level to the rectified signal 72 level (in this case output level signal 0 and takes the difference between these two levels and distributes it to adjacent pixels according to the particular error diffusion schema, with Floyd-Steinberg coefficients being the preferred schema. However, as the input is now in a rectified form and all the resultant differences are also in a positive form, it has been found that by diffusing these positive errors to adjacent pixels, the value of adjacent pixels (which includes that pixels actual value as well as the summation of error values from its adjacent pixels) can be built up to such a point that the output level 1 (73) becomes the closest pixel and consequently output level 1 (73) will be displayed on the output display device 16.
This has been found to give a unsightly distraction on the output display.
Particularly in large areas of constant intensity of one colour as, when displaying the consequential error diffused representation of this area it is found that the area is 'sprinkled' with pixels of a different colour. This has been found to be particularly distracting and noticeable to an observer of the display. The problem does not appear to be as prominent in displaying areas of constant illuminated colour where the output level is other than at the extremity as the noise in the input signal will not be rectified by the analogue to digital converters and the error differences will be more likely to be smoothed 20 out by adjacent pixels.
The preferred embodiment is directed to a noise quench method designed to remove rectified noise in colours in which one component is saturated or near the extremity of an analogue to digital conversion device. Although the preferred embodiment will be described in relation to a single primary colour, by using the method described in the 25 preferred embodiment on each primary colour, the method can be applied to a display having multiple primary colours.
In the preferred embodiment, an attempt is made to determine if an input signal at the extremity of the analogue to digital converter is in essence only noise and hence the noise can be removed from the input signal before the input signal is used for halftoning.
30 For each pixel value that is less than a predetermined distance from zero, the three horizontally adjacent pixels on each side are examined. If two or more of these pixels are exactly zero, then the original pixel is assumed to really also represent a zero value and its value is set to zero. Similarly if a pixel's value is near 255(the saturation level), and two adjacent pixels of the three horizontally adjacent pixels on each side are exactly 255, the?, a r r r "i r r 1 i cr n: r~ a r fo r r (FLCD10)(257046)
_I
Y- J4 I if I 4/12 I I I ~t ft -11the pixel is set to 255. The predetermined distance value for deciding to force the pixel to a saturated value can be varied for each primary colour used in the display.
For an input line having M pixels on each line and primary colour input values being red, green and blue, the preferred method can be stated as: For i 0 to M-l: If R(i) <RLT, and two or more of are equal to 0, then Rout(i)= 0; If R(i) RUT, and two or more of are equal to 255, then R ou t(i) 255; Otherwise, Rout(i)=R(i).
If G(i) GLT, and two or more of G(i+3)} are equal to 0, then Gout(i) 0; If G(i) GUT, and two or more of G(i+3)} are equal to 255, then '.out(i) 255; Otherwise, Gout(i)=G(i).
IfB(i) BLT, and two or more of are equal to 0, then Bout(i)= 0; IfB(i) BUT, and two or more of are equal to 255, then Bout(i) 255; 20 Otherwise, Bout(i)=B(i).
Where B(i) represent the red, green and blue values respectively for the pixel at position i of a line.
RLT and RUT are the predetermined upper and lower thresholds of the red value of a pixel.
Rout(i), Gout(i), Bout(i) represent the values to be output to a halftoning arrangement for the red green and blue portiotis of a pixel i respectively.
Pixels at start and end of a line are treated as special cases and there values are not changed.
In order to better understand the preferred embodiment, ther( is provided in Appendix 1, a C-code simulation of the process of the preferred embodiment operating on a image having Red, Green and Blue components as outlined above. In this simulation, there is assumed to be provided an input colour image having a noise for each primary colour in an array The main subroutine 'suppressnoiseimage' uses another subroutine 'suppress noiseplane()' tosuppress the extremity noise of each individual primary colour separately.
~ri rr ~c a a* (FLCD10)(257046) 7
IL
I _I _li -12- Referring now to Fig. 14, there is shown an apparatus 82 incorporating a simplified version of the methods of the preferred embodiment. The apparatus is designed specifically but not exclusively to work with a colour display system such as that set out in Australian Patent Application No. 53 211/94 (Attorney Ref: (FLCD4CP)(257393)), entitled "Colour Display System", claiming priority from Australian Provisional Patent Application No. PL 6765, filed 11 January 1993 and the contents of which are hereby incorporated by cross-reference.
For the sake of clarity, only the Red data channel is shown, with the green and blue channels being equivalent.
In the apparatus 82, data is input 83 at a rate of four pixels at a time. If the sum of the four pixels is greater than an upper threshold, then all four pixel samples are set to 255. Similarly, if the sum of four pixels is less than a lower threshold, then all four samples are set to 0. Otherwise, the pixels are passed to the output unaltered. An adder and latch 84 adds together the input values while a latch 85 stores the input values. Once added together each pixel is compared against an upper threshold 86 and a lower threshold 87 to determine 88 whether each output pixel value 89 should be the highest possible value, the lowest possible value or the input value.
S. The foregoing describes only one embodiment of the present invention specific to a system for displaying RGB formatted data, modifications, including extensions to other 20 colour systems such as black and white or CYMK, obvious to those skilled in the art, can :be made thereto without departing from the scope of the present invention.
f c (FLCD10)(257046) 1 1 ~i r i: 13- APPENDIX I i g r I
I
typedef short int intl6; #define RED 0 #define GREEN 1 #define BLUE 2 #define PREDETERMINED THRESHOLD void suppress_noise_image(out,in,len_x,leny) This subroutine applies the method outlined in the preferred embodiment to each colour independently. The subroutine suppress_noise_plane0 suppresses rectified noise for an individual colour. 'in' is a 3 element array with each element containing the input image (with noise) for one of the primary colours. len_x is the number of pixels on a line and len_y is the number of lines in an image.The noise quenched image is similarly stored in 'out' suppressnoise*******image(out****************,in,lenle_y) void suppressnoiseimage(out,in,lenx,leny)
I
~I
1 i
I
Iii !1
R
intl6 int len_x,len_y; int color; for(color=0;color<3 ;++color) r cc c rtlr(r r a ~1 rcuf r:rrr D r rccr r i
I
1 ii I a i n r i t suppress_noise_plane(out[color],in[color],len_x,len_y); 30 void suppress_noiseplane(out,in,lenx,leny) This subroutine works on an image stored in a 2-dimensional array stored on a line by line basis. The input image is stored in the array 'in' and from this is created an output array stored in 'out'.
Firstly, the ends of each line are dealt with as a special case by copying over the 35 values in 'in' to 'out'.
(FLCD10)(257046) V A ~~Ln l" 7/12 -14- The method described in the preferred embodiment is then applied to each other pixel in the array.
void suppress noisejplane(out,in,len x,leny) intl6 **out,**in; mnt len x,leny; int xy,test x saturated-count;ii for(y=0;y<leny;++y){ deal with elements at the ends of each line u~]0 4y[1 out[yJ in[y][1]; 15out[y][1] in[y][1];p out[y] [len x- 1] in[y] [le x- 1] out[y] [len x-2] in[y] [len x-2]; out[y][len x-3 in[y][len x-3]; 20 for (y=0O;y<leny;++y) for (x=-3;x<len deal with all the other pixels if(in[y] PREDETERMINEDTHRESHOLD) determine if lower value should have been zero saturated-count 0; for(test x=x-3 ;test x<=x+3;++test-x) if(in[y] [test x] 0) 1 ++saturated count; if (saturated-count 2) than 2 of its neighbours were zero so considerthcurn value to be actually zero out[y][x] =0; (FLCDO)(257046) 15 else do nothing out[y] in[y] else if 255 PREDETERMINEDTHRESHOLD) determine if upper value should have been equal to the maximum output value*/ saturated-countO for (test x=X-3;test-x<=X+-3;++testx) iffin[yI[tesLx] 255){ ++saturated-count; if(saturated-count 2) {/*currient pixel really should have been 255 out[y] 25 S S else out[y] Ex] inry][x]; .~1 .4 5,55 en.
else outly][lx] "~.(FLCD1)(257046) -1

Claims (17)

1. A method for suppressing noise in an input image comprising a plurality of pixels, the pixels having a range of possible values, the method comprising the steps of: determining a first group of pixel values which are less than a predetermined distance from an extremity of the range of possible values, for each pixel value in the first group of pixel values: examining the values of neighbouring pixels in the input image to determine if they are also at the extremity of the range of possible values, and where a second predetermined number of the neighbouring pixels are at the extremity of the range of possible values, reassigning the pixel value of the pixels to be at the extremity of the range of possible values.
2. A.method as claimed in claim 1, wherein each pixel value comprises a plurality of primary values, the determining step includes determining, for each primary value, whether the primary value is less than a predetermined distance from a corresponding extremity value, and ifhi I gt B'i d j I r the examining step includes examining corresponding primary values for neighbouring pixels to determine if there are at an extremity of a corresponding primary value range of possible values.
3. A method for suppressing noise in an input image comprising a plurality of pixels, the pixels comprising a plurality of primary colour values having a range of possible values, the method comprising the steps of: determining a first group of pixels which have the primary colour values which are less than a predetermined distance from an extremity of the range of possible values, 25 for each pixel of the first group of pixels, examining corresponding primary colour values of neighbouring pixels to determine if they are at the extremity of the range of **values, and where a second predetermined number of neighbouring pixels are at the extremity *.o1 C of the range of possible values reassigning the primary colour value of the pixels to be S 30 equal to the extremity of the range of pixel values.
4. A method as claimed in claim 3, wherein the neighbouring pixels are pixels on the same line of the image as the current line. Apparatus for suppressing noise in an input image, said image comprising Spixels, said apparatus comprising: '046 CFP0193AU i :I 4 1 :1 i i I i:; i ,:g Pr~rrt2 flPIt~. 1, -I Y k*gt e ~~I1 ;jk 17 detecting means, for detecting if a group of pixels are near an extremity of possible values; reassignment means for reassigning said pixels to the extremity when said group is detected.
6. Apparatus for suppressing noise in an input image as claimed in claim wherein said detection means includes means for adding together groups of pixels and determining if the sum of said group exceeds a first upper threshold or is less than a second lower threshold.
7. An image processing method including: noise quenching for a colour output device inputting a color image data; quenching a noise including the input color image data; and mapping the input color image signal into a restricted color space that is defined by displayable color of said color output device.
8. An image processing method according to claim 7, wherein said quenching includes smoothing the input color image data.
9. An image processing method according to claim 7, further comprising: determining a first group of pixels having the primary color values which are less than a predetermined distance from an extremity of the range of possible values; examining corresponding primary color values of neighboring pixels to determine if they are at the extremity of the range of value; and reassigning the primary color value of the pixels to be equal to the extremity of the range of pixel values where a second predetermined number of neighboring pixels are at the extremity of the range of possible values.
10. A method for suppressing noise in an input image, substantially as 25 hereinbefore described with reference to Fig. 5 to Fig. 8.
11. Apparatus for suppressing noise in an input image, substantially as hereinbefore described with reference to Fig. 9.
12. A computer-implemented method for suppressing noise in an input image comprising a plurality of pixels, each of the pixels having a range of possible values between at least two extremities, said method comprising the steps of: determining a first group of pixels, each pixel of the first group having a value that is less than a predetermined amount from the value of at least one of said extremities; examining the values of pixels adjacent to each pixel in the first group to determine if the adjacent pixels are also members of the first group; d I i 1~ a 9 B t f n a ::I I r !i ZFL(1'0 257046 CFP0193AU .I a 7t- js I.-L -rc L MI~ mT~~ -18 reassigning, when a predetermined number of the pixels adjacent to a pixel of the i first group are also members of the first group, the pixel value of that pixel in the first group and each of its adjacent pixels to have a value of said at least one of the extremities, and when said predetermined number of pixels adjacent to a pixel in the first group are n6t 3 members of the first group, leaving the values of said pixel and said predetermined number of pixels unaltered; and utilizing the reassigned pixel values in the production of an image.
13. A computer implemented method as recited in claim 12, wherein each pixel value comprises a plurality of primary values, wherein the determining step includes determining, for each of the plurality of primary values, whether the primary value is less than a predetermined amount from a corresponding extremity value, and wherein said examining step includes-examining corresponding primary values of adjacent pixels to: determine if the corresponding primary values are at an extremity of a corresponding. primary value range.
14. A computer implemented method for suppressing noise in :an input image comprising a plurality of pixels, the pixels comprising a plurality of primary colors each having a range of possible values distributed between two extremity values, said method 4 comprising the steps of: determining a first group of pixels, each pixel of the first group having primary color values that are less than a predetermined amount from a corresponding one of the extremity values, Sexamining corresponding primary color values of pixels adjacent to each pixel in the first group to determine if the adjacent pixels are also members of said first group; and reassigning, when a predetermined number of the pixels adjacent to a pixel in the 25 first group, at least one primary color value of that pixel in the first group and each of its adjacent pixels to be equal to the said one corresponding extremity value, and when said predetermined number of pixels adjacent to a pixel in the first group are not members of .said first group, leaving the values of said pixel and said predetermined number of pixels i unaltered. u d30 5. A computer implemented method as recited in claim 14, wherein the plurality tof pixels comprising the input image are arranged in lines, and wherein a pixel in the first S: group and its adjacent pixels are pixels onthe same line ofthe image;
16. An apparatus for suppressing noise in an input image, the input image comprising a plurality of pixels each having a corresponding pixel value in a range of possible pixel values between two extremity values, said apparatus comprising: 257046 CFP0193AU iiLs-a tj (FLCD1 0)(257046) 19 detecting means for detecting pixels that have a pixel value near one of the extremity-values and for forming a group comprising the detected pixels; reassignment means for reassigning the value of the pixels in the group to said one extremity value, only when a predetermined number of the pixels adjacent to a detected I pixel are also near one of the extremity values. i
17.. An apparatus for suppressing noise in an input image as recited in claim 16, I wherein said detecting means comprises means for adding together pixel values of 1 groups of pixels and determining if the resulting sum exceeds a first upper threshold or is i less than a second lower threshold.
18. An image processing apparatus for processing an input image including input image data, said image processing apparatus comprising: a color output device configured to display color image data. corresponding to the input image data; suppressing means for suppressing noise included in the input image data; and mapping means for mapping the input :image data into a restricted color space that iw defines colors displayable by said color output device.
19. An image processing apparatus as' recited in claim 18, wherein said suppressing means smooths the input image data. An image processing apparatus according to claim 18, wherein the input image comprises a plurality of pixels each having a plurality of primary colors having a I range of possible values between two corresponding extremity values, and wherein said suppressing means comprises fis gu determining means for determining a first group of pixels, each pixel of the first group having primary color values that are less than a predetermined amount from a 25 corresponding one of the extremity values; Sexamining means for examining corresponding primary color values of pixels adjacent to each pixel in the first group to determine if the adjacent pixels are also members of said first group; and i reassigning means for reassigning, when a predetermined number of the pixels adjacent to a pixel in the first group are also members of the first group, at least one i primary color value of that pixel in the first group and each of its adjacent pixels to be c equal to said one corresponding extremity value. i' I o :DATED this Fourth Day of July 1996 Canon Kabushiki Kaisha i ,Patent Attorneys for the Applicant i |j jSPRUSON FERGUSON S"1 ^^/y257046 CFP0193AU 1 1 1 i i i 1 l Ji l 1 1 I 1 i' ~i Abstract Noise Quenching Method and Apparatus for a Colour Display System An input image may have noise associated with it. If this image is in an analogue format and is passed through an analogue to digital convertel (21) then the non- symmetrical treatment of the converter at the extremities (63,64) of the converters range can result in unwanted artifacts (70) occurring in constant colour regions of the image when the image is halftoned for display Apparatus (82) and methodology is provided for overcoming this problem through the reduction of noise components near the extremities of the analogue to digital converters. ~i I SII t i i I- Fig. 11, 12 S.t S S S *S S S. S o 5.1000 1
AU53108/94A 1993-01-11 1994-01-10 Noise quenching method and apparatus for a colour display system Ceased AU672647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU53108/94A AU672647B2 (en) 1993-01-11 1994-01-10 Noise quenching method and apparatus for a colour display system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AUPL675993 1993-01-11
AUPL6759 1993-01-11
AU53108/94A AU672647B2 (en) 1993-01-11 1994-01-10 Noise quenching method and apparatus for a colour display system

Publications (2)

Publication Number Publication Date
AU5310894A AU5310894A (en) 1994-07-14
AU672647B2 true AU672647B2 (en) 1996-10-10

Family

ID=25629980

Family Applications (1)

Application Number Title Priority Date Filing Date
AU53108/94A Ceased AU672647B2 (en) 1993-01-11 1994-01-10 Noise quenching method and apparatus for a colour display system

Country Status (1)

Country Link
AU (1) AU672647B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630307A (en) * 1984-09-10 1986-12-16 Eastman Kodak Company Signal processing method and apparatus for sampled image signals
EP0206466A2 (en) * 1985-06-11 1986-12-30 Beltronics, Inc. Method and apparatus for eliminating spot flashing in video displays
JPH04127775A (en) * 1990-09-19 1992-04-28 Sony Corp Picture data processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630307A (en) * 1984-09-10 1986-12-16 Eastman Kodak Company Signal processing method and apparatus for sampled image signals
EP0206466A2 (en) * 1985-06-11 1986-12-30 Beltronics, Inc. Method and apparatus for eliminating spot flashing in video displays
JPH04127775A (en) * 1990-09-19 1992-04-28 Sony Corp Picture data processing method

Also Published As

Publication number Publication date
AU5310894A (en) 1994-07-14

Similar Documents

Publication Publication Date Title
EP0606993B1 (en) Colour gamut clipping
JP3737149B2 (en) Color image generation system and method
US5377041A (en) Method and apparatus employing mean preserving spatial modulation for transforming a digital color image signal
US6393148B1 (en) Contrast enhancement of an image using luminance and RGB statistical metrics
US5375002A (en) Color error diffusion
KR100782821B1 (en) Methods and systems for video processing using super dithering
US5734801A (en) Method of and apparatus for producing color proof
EP0338457A1 (en) Color conversion display apparatus and method
JPH05501341A (en) Color digital halftone gradation processing method using vector error diffusion method
US5434672A (en) Pixel error diffusion method
US5991512A (en) Ink relocation for color halftones
US5715073A (en) Processing by separate stages monochrome digital images to provide halftone color images
JPH08249465A (en) Method for formation of multilevel halftone image from input digital image
US6853468B2 (en) Reducing quantization errors in imaging systems
US5754309A (en) Tone correction for multi-level halftoned images
US6600573B2 (en) Fast green/magenta dithering of color images
JPH08265568A (en) Method and device for digital gradation processing
US5757516A (en) Noise quenching method and apparatus for a colour display system
US20040090654A1 (en) FM screening with sub-dot phase modulation
US20040085553A1 (en) Multitoning a digital image having at least one group of similar colors channels
KR20000026847A (en) Image data processing device
AU672647B2 (en) Noise quenching method and apparatus for a colour display system
AU674037B2 (en) Colour gamut clipping
US20060232797A1 (en) Image processing for expressing gradation
AU674551B2 (en) Block parallel error diffusion method and apparatus

Legal Events

Date Code Title Description
MK14 Patent ceased section 143(a) (annual fees not paid) or expired