AU658401B2 - Opiate receptor antagonist modulates hyperkinetic movement disorder - Google Patents

Opiate receptor antagonist modulates hyperkinetic movement disorder Download PDF

Info

Publication number
AU658401B2
AU658401B2 AU14563/92A AU1456392A AU658401B2 AU 658401 B2 AU658401 B2 AU 658401B2 AU 14563/92 A AU14563/92 A AU 14563/92A AU 1456392 A AU1456392 A AU 1456392A AU 658401 B2 AU658401 B2 AU 658401B2
Authority
AU
Australia
Prior art keywords
subject
receptor antagonist
opiate receptor
document
naloxone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU14563/92A
Other versions
AU1456392A (en
Inventor
Conan Kornetsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston University
Original Assignee
Boston University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston University filed Critical Boston University
Publication of AU1456392A publication Critical patent/AU1456392A/en
Assigned to TRUSTEES OF BOSTON UNIVERSITY reassignment TRUSTEES OF BOSTON UNIVERSITY Alteration of Name(s) of Applicant(s) under S113 Assignors: KORNETSKY, CONAN
Application granted granted Critical
Publication of AU658401B2 publication Critical patent/AU658401B2/en
Priority to AU2006201454A priority Critical patent/AU2006201454A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/485Morphinan derivatives, e.g. morphine, codeine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Psychiatry (AREA)
  • Emergency Medicine (AREA)
  • Epidemiology (AREA)
  • Addiction (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

A method for modulating onset of tardive dyskinesia in a subject includes the step of administering to the subject an opiate receptor antagonist concomitantly with the neuroleptic. Also, a method for modulating a genetic or idiopathic or psychogenic hyperkinetic movement disorder, such as that characteristic of Huntington's Disease, includes the step of administering to the subject an opiate receptor antagonist.

Description

OPI DATE 15/09/92 AOJP DATE 29/10/92 APPLN. ID 14563 92
PCT
PCT NUMBER PCT/US92/01418 S(PCT) INTERNATIONAL (51) Internationai Patent Classification 5 (11) International Publication Number: WO 92/14364 A1N 43/42 Al (43) International Publication Dte: 3 September 1992 (03.09.92) (21) International Appl'-ation Number: PCT/US92/01418 Published With international search report.
(22) International Filing Date: 25 February 1992 (25.02.92) Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
Priority data: 660,543 25 February 1991 (25.02.91) US s (51)(72) Applicant and Inventor: KORNETSKY, Conan [US/ US]; 7 Rumford Road, Lexington, MA 02173 (US).
(74) Agent: KENNEDY, Bill; Choate, Hall Stewart, Exchange Place, 53 State Street, Boston, MA 02109 (US).
(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (uropean patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), MC (European patent), NL (European patent), SE (European patent).
h) "sr(2 oP BOSTQO S or \\Jps l' 113 14-7 Ba ~cr& cA 02:21 c-Ac\ 5c-ates oC( A Cr Q iCc (54) Title: OPIATE RECEPTOR ANTAGONIST MODULATES HYPERKINETIC MOVEMENT DISORDER (57) Abstract A method for modulating onset of tardive dyskinesia in a subject includes the step of administering to the subject an opiate receptor antagonist concomitantly with the neuroleptic. Also, a methodfor modulating a genetic or idiopathic or psychogenic hyperkinetic movement disorder, such as that characteristic of Huntington's Disease, includes the step of administering to the subject an opiate receptor antagonist.
WO 92/14364 PCT/US92/01418 1 OPIATE RECEPTOR ANTAGONIST MODULATES HYPERKINETIC MOVEMENT DISORDER This invention was made in the course of work supported in part by U.S. Governmen funds, and the Government has certain rights in the invention.
Background of the Invention This invention relates to treatment of hyperkinetic movement disorders such as, for example, tardive dyskinesia and the hyperkinesia associated with Huntington's Diseeae. Tardive dyskinesia is an extrapyramidal hyperkinetac movement disorder that appears in some patients being treated by administration of certain antipsychotic agents ("neuroleptics"). A progressive dyskinesia ("chorea") is characteristic of Huntington's Disease Hyperkinetic movement disorders are characterized by nonpurposeful, repetitive, disordered motor acts, variously termed "compulsive", "compulsive", "rhythmical", or "stereotyped". The term "stereotypy" refers here to a repeated behavior that appears repetitively with slight variation or, less commonly, as a complex series of movements. In humans stereotypies can be psychogenic tics), idiopathic (as in, Tourette's syndrome and Parkinson's Disease, genetic (as in, the chorea characteristic of Huntington's Disease), infectious (as in, Sydenham's Chorea), or, as in TD, drug-induced.
The most generally accepted theory of the etiology of TD is that chronic administration of the neuroleptic (typically, for example, a butyrophenone such as haloperidol, or a phenothiazine such as fluphenazine) results in a postsynaptic dopamine receptor supersensitivity.
Evidence for such supersensitivity comes from receptor binding studies showing specific changes in striatal dopamine receptors (see, Burt et al.
(1977), Science, Vol. 196, pp. 326-28; Muller et al. (1978), Psychopharmacology, Vol. 60, pp. 1-11; and, more recently, McGonigle et al.
(1989), Synapse, Vol. 3, pp. 74-82; and Wilmot et al. (1989), Brain Res., WO 92/14364 PCT/US92/01418 2 Vol. 487, pp. 288-298); and behavioral studies which have focused on the production of oral stereotypic behaviors resulting from chronic dopamine antagonist treatment alone (Weiss et al. (1977), Psychopharmacology, Vol.
53, pp. 289-93; Waddington et al. (1983), Science, Vol. 220, pp. 530-32). The oral stereotypy produced by chronic neuroleptic treatment in animals has been described as almost identical in physical character to that seen in humans (Ellison et al. (1989), Psychopharmacology, Vol. 98, pp. 564-66).
Because spontaneous oral dyskinesias are uncommon in animals receiving neuroleptics (Klawans et al. (1972), Jour. Neural Trans., Vol. 33, pp.
235-46), the administration of a dopamine agonist following two to three weeks of neuroleptic treatment results in an oral stereotypy (Tarsy et al.
(1974), Neuropharmacology, Vol. 13, pp. 927-40; Ellison et al. (1988), Psychopharmacology, Vol. 96, pp. 253-57) that has become a widely used animal model of TD (Hall et al. (1982), British Jour. Pharmacol., Vol. 76, p. 233P).
At present opiate antagonists are in use principally in urban emergency care settings, where they are administered to reverse effects of an overdose of heroin or morphine. Naloxone (marketed for example as Narcan®), the opiate antagonist most often used for this purpose, has a short duration of action, and must be administered parenterally.
Naltrexone (marketed for example as Trexan®), an opiate antagonist that is longer acting than naloxone and can be orally administered, was introduced more recently. Naltrexone is in use principally to treat overdose of an opiate.drug, and to treat and persons who are physically dependent on opiate drugs, such as, heroin. Daily administration of naltrexone completely blocks the euphoric effects of opiate agonists such as morphine or heroin, and if administered to persons who are physically dependent on opiate drugs naltrexone precipitates withdrawal.
Summary of the Invention I have discovered that administration of an opiate receptor antagonist can be effective in modulating hyperkinetic movement disorders in -3mammals. Administration of an opiate receptor antagonist to a subject mammal can prevent and can block neuroleptic-mediated oral stereotypes in the subject.
Concomitant administration of an opiate receptor antagonist with a neuroleptic can prevent neuroleptic-induced onset of tardive dyskinesia.
In general, one aspect, the invention provides a method for preventing neuroleptic-induced tardive dyskinesia in a subject, in whom neuroleptic treatment is indicated but who has not received a neuroleptic, comprising commencing administration of an effective dose of an opiate receptor antagonist to the subject concurrently with the commencement of administration of a neuroleptic prior to appearance of symptoms of hyperkinesia. The opiate receptor antagonist is administered "concomitantly", as that term is used here, if it is administered in a time commencing prior to commencement of a time in which the neuroleptic is administered, or if the neuroleptic and the opiate receptor antagonist are administered at least partly concurrently.
In preferred embodiments the opiate receptor antagonist includes naltrexone; the opiate receptor antagonist includes naloxone; the opiate receptor antagonist is administered to the subject parenterally; the opiate receptor antagonist is administered to the subject orally; administration of the opiate receptor antagonist is the subject commences prior to or at the same time as an administration of the neuroleptic commences. Preferably, where administration of the opiate receptor antagonist precedes .20 administration of the neuroleptic, administration of the neuroleptic commences within the operative time (or active time) of the particular opiate receptor antagonist under the conditions of administration. In treating humans, naloxone is administered (typically parenterally) preferably within an hour prior to administration of the neuroleptic; and naltrexone is administered (typically orally) preferably within two hours prior to administration of the neuroleptic.
In another general aspect, the invention provides a method for preventing a genetic hyperkinetic movement disorder in a subject, the subject having a genetic disorder that leads to the genetic hyperkinetic movement disorder, comprising administering to the subject, prior to appearance of symptoms of hyperkinesia associated 30 with said disorder, an effective dose of an opiate receptor antagonist.
.4 950206,p:\opcr\dab, 14563-92.clms,3 -4- In a further general aspect, the invention provides a method for treating a genetic hyperkinetic movement disorder in a subject, comprising administering to the subject in need thereof an effective dose of an opiate receptor antagonist.
In preferred embodiments the subject has Huntington's Disease or is predisposed to Huntington's Disease; the opiate receptor antagonist includes naltrexone; the opiate receptor antagonist includes naloxone; the opiate receptor antagonist is administered to the subject parenterally; the opiate receptor antagonist is administered to the subject orally.
Thus, the present invention also provides a method for preventing a hyperkinetic movement disorder in a subject who is predisposed to Huntington's disease, comprising administering to said subject a therapeutically effective dose of an opiate receptor antagonist prior to appearance of symptoms of hyperkinesia associated with said disorder.
The present invention further provides a method for treating or preventing choreiform movements in a subject having Huntington's Disease, comprising administering to said subject an effective dose of an opiate receptor antagonist.
In another embodiment the present invention provides a method for preventing the appearance of a psychogenic hyperkinetic movement disorder in a subject, comprising identifying a subject who has a psychogenic disorder that leads to a hyperkinetic movement disorder, and administering an effective dose of an opiate receptor antagonist, said antagonist :selected from the group consisting of naltrexone, naloxone, nalmefene and naltrindole, to said subject prior to appearance of symptoms of hyperkinesia associated with said disorder.
The present invention provides in a further embodiment a method for treating a psychogenic hyperkinetic movement disorder in a subject, comprising identifying a subject having a psychogenic movement disorder, and administering an effective dose of an opiate receptor antagonist, said antagonist 30 selected from the group consisting of naltrexone, naloxone, nalmefene and naltrindole, to said subject having psychogenic movement disorder.
950206,p:\oper\dab,14563-92.clms,4 4a Description of Preferred Embodiments Opiate receptor antagonists can be used according to the invention to treat hyperkinetic movement disorders, as for example to treat tardive dyskinesia or dyskinesia associated with Huntington's Disease. The following examples are presented by way of example.
Method Generally, the method of the invention can be used for treatment of tardive dyskinesia in a subject, that is, for suppression of TD prior to onset of symptoms of TD as well as for reduction of TD in subjects in which symptoms are already manifest.
Examples The examples that follow illustrate the use of the opiate receptor antagonist naloxone to suppress stereotypy in rats. The examples are presented for illustrative purposes only. As will be appreciated, the method according to the invention can be used for treatment of TD in other animals including humans, and other opiate receptor antagonists can be used according to the invention.
Adult male F-344 rats (Charles River, Wilminton, MA) weighing approximately 325-350 grams were used in the examples. Animals were individually housed, provided water and food ad libitum, and were maintained on a 12:12 hour light:dark cycle.
Administrations of neuroleptics and opiate receptor antagonists and observations of 20 behaviour were all carried out during the light portion of the cycle.
Neuroleptics were prepared for administration as follows. Naloxone (Dupont de Nemours), apomorphine (Sigma), d-amphetamine (Sigma), and amfonelic acid (Research Biochemicals Inc.) were dissolved in isotonic saline 950206,p:\oper\dab,14563-92clms,4 WO 92/14364 PCF/US92/01418 to a concentration of 1 mg/ml. Haloperidol (McNeil Laboratories) was dissolved in warm 1N tartaric acid and brought to a concentration of 1 mg/ml with isotonic saline. Naloxone, haloperidol, and saline were administered by intraperitoneal injection; and apomorphine, amphonelic acid, and amphetamine were administered by subcutaneous injection.
Example 1. Concomitant administration of opiate receptor antagonist with neuroleptic in a chronic administration protocol prevents tardive dyskinesia.
The neuroleptic haloperidol (5.0 mg/kg; 13.3 pM) was administered to nine rats once daily for 21 days. Twenty minutes prior to each haloperidol injection (that is, in a concomitant administration), each of four of the rats received the opiate receptor antagonist naloxone (16.0 mg/kg; 48.9 pM), and each of the other five rats received daily injections of saline as a control.
Each day during the five hour interval following the treatment, the rats were observed for presence or absence of oral stereotypy in acrylic observation chambers (15 x 15 x 30 cm) with horizontal steel floor bars.
The rats remained sedated for approximately four hours after each haloperidol injection, and observation over the five hour period permitted approximately one additional hour of observation of the animals in an unsedated condition. None of the nine rats showed any sign of oral stereotypy during any observation period on any of the first 21 days.
After day 21 naloxone-haloperidol and saline-haloperidol administrations were discontinued. On day 22 two rats each from the naloauae-aloperidol and the saline-haloperidol groups received d-amphtamine (2.5 mg/kg, 6.8 as described generally in Weiss et al.
(1988), Pharmacol. Biochem. Behav., Vol. 30, pp. 309-17, and the other five animals received saline (three from the group that had received naloxonehaloperidol, two from the saline-haloperidol group). On day 23 the animals that had received d-amphetamine on day 22 received saline instead, and those that had received saline on day 22 received d-amphetamine instead.
On days 24 and 25 the groups of animals were treated as on days 22 and WO 92/14364 PC/US92/01418 6 23, but using apomorphine (0.1 mg/kg; 0.4 pM), as described generally in Nobrega et al. (1989), Psychopharmacology, Vol. 98, pp. 476-82, in place of amphetamine. Following each of these injection with a dopamine agonist or with saline on days 22-25, the animals were placed in acrylic observation chambers as described above, and observed for a three hour period for oral stereotypic behavior. Here, a three hour observation period was sufficient because animals were not sedated by administration of dopamine agonist or saline.
The observation chambers were arranged in a stacked 2 x 3 arrangement so that the behavior of the animals in all the chambers could readily be observed simultaneously. All observations were made by a trained observer who was unaware of the drugs administered.
Oral stereotypic behavior was defined in these Examples as intense chewing or gnawing over a period of five or more consecutive minutes that was either self-directed or directed at the floor bars of the test chamber.
As Table 1 shows, naloxone administration prior to each haloperidol administration results in failure of d-amphetamine or apomorphine challenge to cause an appearance of oral stereotypy. None of the naloxonehaloperidol treated animala showed any indication of oral stereotypy following injection of the dopamine agonists, whereas all of the animals in the saline-haloperidol group showed significant oral stereotypy. (p 0.008, Fisher's exact test 2-tailed naloxone-haloperidol vs. saline-haloperidol.) As TABLE 1 INCIDENCE OF STEREOTYPY Initial Treatment Challenge Treatment Amphetamine, Apomorphine, Saline mg/kg sc 0.1 mg/kg sc Naloxone-Haloperidol 0 of 4 0 of 4 0 of 4 Saline-Haloperidol 5 of 5 5 of 5 0 of WO 92/14364 PCT/US92/01418 7 expected, saline "challenge" resulted in no stereotypy in either treatment group.
The preselected criterion of five minutes of continuous gnawing or chewing behavior was easily met in the saline-haloperidol rats. This oral stereotypy often occurred in bouts of chewing, in many instances exceeding five minutes duration, preceded by and interspersed with intervals of grooming, sniffing, licking, and rearing. The onset of induced stereotypy was within 30 minutes following apomorphine administration and the bouts persisted for 60 minutes or longer. On the other hand, d-amphetamine induced oral stereotypy commenced about two hours aftei administration of the d-amphetamine, and bouts of chewing continued for all animals for at least 60 minutes, and for some for 2-3 hours after onset. On the amphetamine challenge days both groups of rats showed considerable locomotor activity, marked by head-bobbing and rearing behavior. The amphetamine-induced locomotor activity always preceded the onset of oral stereotypy in the saline-haloperidol group. There did not appear to be a delay in onset of the locomotor activity in the naloxone-haloperidol group.
This locomotor activation was not seen following the apomorphine injections.
Example 2. Opiate receptor antagonist blocks oral stereotypy expressed by dopamine receptor agonist.
Haloperidol was administered to five rats (5.0 mg/kg) daily as described in Example 1 for 17 days. Shorter periods of haloperidol treatment are known to be sufficient for expression of dopamine agonistinduced stereotypy (Tarsy et al. (1974)). Because numerous earlier reports have described the oral stereotypy resulting from apomorphine challenge (see, Muller et al. (1978), for review), the selective dopamine receptor agonist amfonelic acid (described in Shore (1976), Jour. Pharm. Pharmacol., Vol. 28, pp. 855-57) was used to elicit stereotypy. On day 18 haloperidol was discontinued and each animal received amfonelic acid (1.0 mg/kg; 3.2 PM) and all animals exhibited oral stereotypy within 15 minutes WO 92/14364 PCr/US92/01418 8 thereafter, as scored by the above criterion, and once stereotypy was established, three animals received naloxone (16.0 mg/kg) and two received saline. On day 19 amfonelic acid was once again given as on day 18, resulting in similar displays of oral stereotypy; once stereotypy was established the two animals that had received saline on day 18 were given naloxone and the three animals that had received naloxone on day 18 were given saline. On each of days 20-21, the groups of animals were treated as on days 18-19, but using d-amphetamine (2.5 mg/kg) in place of amfonelic acid.
Probability levels were determined by Fisher's exact test, 2 tailed. In Example 1, the statistical analysis compared the incidence of oral stereotypy following amphetamine, apomorphine, or saline challenge in the naloxonehaloperidol group with the incidence of oral stereotypy in the salinehaloperidol group. In Example 2, the analysis compared the antagonism of dopamine agonist-induced oral stereotypy by naloxone to that of saline, as a control.
As shown in Table 2, naloxone reversed the stereotypy in each animal, and this cessation of stereotypy was complete in all animals within minutes after adminisi-ation of naloxone. (p 0.008, Fisher's exact test 2-tailed naloxone-amphetamine vs. saline-amphetamine and naloxoneamphonelic acid vs. saline-amphonelic acid.) This effective antagonism of the oral stereotypy by naloxone was complete and long-lasting, as no TABLE 2 INCIDENCE OF STEREOTYPY Antagonist Challenge Treatment Amphetamine, Amfonelic Acid, mg/kg sc 1.0 mg/kg sc Saline, ip 5 of 5 5 of Nalozone, ip 0 of 5 0 of WO 92/14364 PCT/US92/01418 9 reappearance of the behavior was observed over an interval of at least 2 hours following naloxone injection.
Administration to rats of haloperidol, a dopamine antagonist, daily for seventeen days or for three weeks, as described in Examples 1 and 2, results in an upregulation of the dopamine receptors, making them more sensitive to dopamine agonists. Thus, after extended daily haloperidol treatment (three weeks or less, see, Tarsy, et al. (1974)) administration of a low dose of d-amphetamine or other dopamine agonist results in oral stereotypic behavior. As Tables 1 and 2 show, not only can this behavior be blocked by naloxone but if the naloxone is administered prior to receiving the dopamine antagonist the stereotypic behavior is never expressed.
Examle 3. In the absence of previous haloperidol administration neither d-amphetamine nor spomorphine causes oral stereotypy at the doses used in Examples 1 and 2.
Each of four drug-naive rats was administered d-amphetamine and apomorphine at different times, and observed as described above for the incidence of oral stereotypy. No stereotypy was seen. Knapp et al. (1989), Pharmacol. Biochem. Behav., VoL 32, pp. 977-82, reported that amfonelic acid (1.0 mg/kg) does not induce oral stereotypic behaviors in drug-naive rats.
Daily high doses of morphine provide a useful model for the study of dyakinesias such as that characterizing Huntington's Disease The following example illustrates a morphine dosage regime that can be used to set up-luch a model I have discovered, using such a model system of morphineinduced stereotypy, that re-expression of the stereotypy resulting from chronic morphine administration, whether by a low dose of morphine or by a dopamine agonist, can be blocked by a dopamine antagonist and can be blocked by naloxone.
Example 4.
Briefly, morphine administered in three high doses in a 24 hour period can cause oral stereotypy in the rat. The effect of repeated daily WO 92/14364 PCT/US92/01418 high-dose morphine administration is cumulative; that is, a small percentage of rats may display oral stereotypy after a first high dose, a much greater percentage displays oral stereotypy after a second high dose the following day, and oral stereotypy is established after a third high dose on the third day. Once established, this morphine-induced stereotypic behavior persists with some interruption for a time of two to three hours.
As described above, the behavior consists of repetitive mouthing and biting behavior directed toward the grid floor of the enclosure or toward the ai.,ial's own paws. Subsequently the behavior can be elicited by administration of a low dose of morphine or of a low dose of a dopamine agonist such as, amphetamine, as long as 17 months after the stereotypy was initially established. Such re-expressed behavior persists for the duration of the action of the administered morphine or dopamine agonist.
As the animals in Examples 1 and 2 described above never received an opiate agonist, the ability of naloxone both to prevent and to block neuroleptic-mediated stereotypy strongly suggests a role of an endogenous opioid in this behavior. The large dose of naloxone used in the present study does not preclude the possibility that non-opioid systems are involved (Sawynok et al. (1979), Life Sci, Vol. 25, pp. 1621-32). However, naloxone's high dose effects in blocking the oral stereotypies described in the present study do not appear to be due to an antagonism of central dopaminergic systems. Indeed, high doses of naloxone (10-30 mg/kg) do not antagonize ampsetamine-induced circling behavior in rats with unilateral 6hydroxydopamine lesions, whereas lower doses of the opiate antagonist (0.3mg/kg) do not block the amphetamine effect (Dettmar et al. (1978), Neuropharmacol., Vol. 17, pp. 1041-44). The phenomenological similarity between morphine-induced oral stereotypy (Pollock et al. (1989), Neurosci.
Lett., Vol. 10, pp. 291-96), and neuroleptic-mediated oral stereotypy (described by Tarsy et al. (1974)), and the fact that neuroleptics can block WO 92/14364 PCr/US92/01418 11 morphine-induced stereotypy (Pollock et al. (1989)), favors an hypothesis that an opioid system is involved in the etiology of this dyskinesia.
The dopamine receptor supersensitivity model has been criticized on numerous grounds. There is a lack of concordance in timing between dopamine biochemical changes and incidence of oral stereotypy (Christenson et al. (1976), Psychopharmacclogy, Vol. 48, pp. dopamine receptor agonists do not always exacerbate the symptoms of TD (Haggstrom et al.
(1982), Pharmacopsychiatria, Vol. 15, pp. 161-63); there is no apparent change in the number or binding affinity of ligands to dopamine D1 or D2 receptors in the brains of patients with TD (Crow et al. (1982), Jour. Clin.
Psychopharmacol., Vol. 82, pp. 336-40); and there is no difference in basal prolactin levels between schizophrenics having TD and those not having TD (Tripodianakis et al. (1983), Biol. Psychiatry, VoL 18, pp. 337-45). These problems notwithstanding, the animal model defined by the production of oral stereotypy following chronic neuroleptic treatment (Ellison et al. (1989)) or defined by challenge with a low dose of a dopamine receptor agonist (Tarsy et al. (1974)) remains a valuable tool. The value of the model rests not necessarily on its suggestion that dopaminergic mechanisms are exclusively involved in the behavior; rather, the physical behavior observed in the animal homolog warrants a closer study of the neurochemical/receptor changes associated with chronic haloperidol treatment and how these changes may be influenced by an opiate antagonist.
As the followirg Example shows, opiate antagovists can be used according to the invention to suppress dyskinesia associated with Huntington's Disease.
Example 5. Opiate antagonists can be used in treatment of the dyskinesia associated with Huntington's Disease.
Huntingtoir's Disease results in a chorea in which one of the major manifestations is a repetitive chewing-like movement of the mouth. These manifestations may be a consequence of an upregulation of endogenous WO 92/14364 PCT/US92/01418 12 dopamine in the extrapyramidal motor system (in particular the striatum, caudate nucleus and putamen), the systes lost involved with the control of fine motor movements. The dyskinesia associated with HD can be attenuated by administration of a specific opiate antagonist according to the invention, as shown in the following example.
Thirteen patients diagnosed as having Huntington's Disease ("HD patients") receive naltrexone in a continuing treatment regimen, as follows.
Two of the patients have very advanced HD, three have the rigid form of HD, and eight have choreiform HD. Naltrexone was administered orally to each patient, in doses between 50 mg twice daily and, at maximumn 50 mg five times daily; the optimum dose appeared to be 50 mg 3 to 4 times daily.
No objectionable effects were reported, apart from nausea reported in rare instance followiag administration of the medication on an empty stomach.
CBC and blood chemistry profile with liver function tests remained normal in all patients. No effect of such treatment was distinguishable in the patients with advanced HD, and the naltrexone treatment in these patients was discontinued. The patients having the rigid form of HD show either no distinguishable effect or an aggravation of their symptoms, and the naitrexone treatment in these patients, too, was discontinued. All the patients having choreiform HD reported a decrease in their choreiform movements, confirmable by neurological examination, and an improvement in speech. In most patients the improvement began early in the course of treatment, and the treatment has continued for three to about ten months.
In onso tient no improvement appeared early in treatment; naltrexone administration was discontinued in this patient for a time and then resumed, whereupon a detectable decrease in dyskinesia followed.
Naltrexone is at present approved for use only for blockade of the pharmacological effects of exogenously administered opioids and as an adjunct to the maintenance of the opioid free state in detoxified opioid dependent individuals. Naltrexone has few known intrinsic actions besides its opioid blocking properties. Naltrexone can cause an increase in WO 92/14364 PCr/US92/01418 13 transaminase levels, but no other signs of hepatotoxicity have been observed. Daily treatment of HD patients can result in a decrease in the chorea associated with the disease.
Use The method of the invention can be used to treat any of a variety of hyperkinetic movement disorders, including drug-induced stereotypies (Tardive Dyskinesia) as well dyskinesias of psychogenic, idiopathic, genetic, or infectious origin. Treatment according to the invention can be effective not only in reducing already-manifested stereotypic behaviors, but also in preventive suppression of stereotypies in subjects that are at risk for developing such conditions before such symptoms appear.
Dosage regimes can be adjusted according to the response of the particular subject being treated, according to protocols generally recognized in clinical psychopharmacology. For example, satisfactory results can be obtained in treating choreiform movements of HD by administering about rng in a thrice-daily regime. Repeated opiate receptor antagonist administration may result in up-regulating the patient's opiate receptors, rendering them more active and, possibly, resulting in an undesirable increased sensitivity to the patient's endogenous dopamine. Higher or lower doses may be satisfactory, and less frequent administration (such as, for example, once daily or each three days) may give salutory results and reduce any likelihood of up-regulating the opiate receptor system. For this reason, chronic daily administration may be less preferred than less frequ e administration.
Other Embodiments For some treatment regimes, opiate receptor antagonists are preferred that can be administered orally rather than by injection or infusion, and whose effects in suppressing the hyperkinetic movement disorder (or tardive dyskinesia) persist for longer periods following administration, such as naltrexone. Other opiate receptor antagonists may be used. For example, the relatively receptor-nonspecific opiate antagonist WO 92/14364 PCT/US92/01418 14 nalmefene may be used; or the relatively receptor-specific opiate receptor antagonist naltrindole may be used. Nalmefene and naltrindole can be administered parenterally; most other relatively specific opiate receptor antagonists do not pass the blood/brain barrier, and so may be less preferred because they must be administered intracerebrally rather than parenterally or orally.
A particular opiate receptor antagonist may in an indicated treatment protocol, be administered one or more times daily, or less frequently. Either opiate receptor antagonist or neuroleptic can be administered orally, or by injection, or by infusion, for example. An administration of the opiate receptor antagonist may be complete prior to the beginning of an administration of the neuroleptic, or an administration of the neuroleptic may begin during the time in which the opiate receptor antagonist is administered.
14a Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.
0** 0**0
I
'Is 950206,p:opr\dab, I 4563-92.cus, 14

Claims (6)

1. A method for preventing neuroleptic-induced tardive dyskinesia in a subject, in whom neuroleptic treatment is indicated but who has not received a neuroleptic, comprising commencing administration of an effective dose of an opiate receptor antagonist to the subject concurrently with the commencement of administration of a neuroleptic prior to appearance of symptoms of hyperkinesia.
2. A method for preventing a genetic hyperkinetic movement disorder in a subject, the subject having a genetic disorder that leads to the genetic hyperkinetic movement disorder, comprising administering to the subject, prior to appearance of symptoms of hyperkinesia associated with said disorder, an effective dose of an opiate receptor antagonist.
3. A method for preventing a hyperkinetic movement disorder in a subject who is predisposed to Huntington's disease, comprising administering to said subject a therapeutically effective dose of an opiate receptor antagonist prior to appearance of symptoms of hyperkinesia associated with said disorder. 20 4. A method for treating a genetic hyperkinetic movement disorder in a subject, comprising administering to the subject in need thereof an effective dose of an opiate receptor antagonist. Sopiate receptor antagonist.
6. A method according to any one of the preceding claims wherein said opiate receptor antagonist is selected from the group consisting of naltrexone, naloxone, 30 nalmefene and naltrindole. 950206,p:\oper\db, 14563-92.mc IS
16- 7. The method of any one of the preceding claims wherein said opiate receptor antagonist is administered to the subject parenterally. 8. The method of any one of claims 1 to 6 wherein said opiate receptor antagonist is administered to the subject orally. 9. A method for preventing tie appearance of a psychogenic hyperkinetic movement disorder in a subject, comprising identifying a subject who has a psychogenic disorder that leads to a hyperkinetic movement disorder, and administering an effective dose of an opiate receptor antagonist, said antagonist selected from the group consisting of naltrexone, naloxone, nalmefene and naltrindole, to said subject prior to appearance of symptoms of hyperkinesia associated with said disorder. A method for treating a psychogenic hyperkinetic movement disorder in a subject, comprising identifying a subject having a psychogenic movement disorder, and administering an effective dose of an opiate receptor antagonist, said antagonist 20 selected from the group consisting of naltrexone, naloxone, nalmefene and naltrindole, to said subject having psychogenic movement disorder. 11. A method of claim 9 or claim 10, wherein said opiate receptor antagonist is administered to the subject parenterally. 12. The method of claim 9 or claim 10, wherein said opiate receptor antagonist is :administered to the subject orally. 950206,p:\oprdnb, 14563-92.clms, 16 17 13. Methods of treating or preventing, substantially as hereinbefore described with reference to the Examples. Dated this 6th day of February, 1995 Trustees of Boston University By Its Patent Attorneys DAVIES COLLISON CAVE S S S S S 5555 V I 950206,p:\opcr\dab, 14563-92.clms, 17 INTERNATIONAL SEARCH REPORT international Application No. PCT/US92/01418 I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols aoolv. indicate all) 3 -I According .o International Patent Classification (IPC) or to both National Classification and IPC IPC A01N 43/42 US CL 514/282 II. FIELDS SEARCHED Minimum Documentation Searched 4 Classification Systerr Classification Symbols U.S. 514/282 Documentation Searched other than Minimum Documentation to the extent that such Documents are included in the Fields Searched 6 APS, Medline, Biosis, CAS, Search Terms: Naltrexone or Naloxone, Opiate Receptor, Antagonist, Hyperkinetic III. DOCUMENTS CONSIDERED TO BE RELEVANT 1 4 Category* Citation of Document,'e with indication, where appropriate, of the relevant passages 17 Relevant to Claim No. I s X PSYCHIATRY RESEARCH, Volume 26, Issued 1988, 1-6 Y Lindenmayer et "High-dose Naloxone in Tardive 7-13 Dyskinesia," pages 19-28, See entire document. Y AMERICAN JOURNAL OF PSYCHIATRY, Volume 143, Issued 1-13 1986, Sandyk and S.R. Snider), "Naloxone Treatment of L-Dopa-Induced Dyskinesias in Parkinson's Disease," page 118, See entire document. Y NEUROPEPTIDES, Volume 26, Issued 1986, Cadet and 1-13 T.L. Braun), "Naltrexone Inhibits the Persistent Spasmodic Dyskinesia Induced by Chronic Intraperitoneal Administration of Iminodipropionitrile (IDPN)," pages
87-91, See entire document. SSpecial categories of cited documents: 15 later document published after the international filing document defining the general state of the art which is date or priority date and not in conflict with the not considered to be of particular relevance application but cited to understand the principle or earlier document but published on or after the theory underlying the invention international filing date document of particular relevance; the claimed invention canno' be considered novel or cannot be document which may throw doubts on priority claim(s) considered to inolve an nventive or cannot bestep or which is cited to establish the publication date ofred to involve an inventive step another citation or other special reason (as specified) "Y document of particular relevance; the claimed invention cannot be considered to involve an document referring to an oral disclosure, use, exhibition inventiv step when the document is combined with or other means one or mure other such documents, such combination document published prior to the international filing date being obvious to a person skilled in the art but later than the priority date claimed document member of the same patent family IV. CERT3FICATION Date of the Actual Completion of the International Search 2 Date of Mailing f this International Search Report 2 26 JUNE 1992 UL International Searching Authority' S ature ofA rized Officer 2o ISA/US GREGORY HOOK Form PCT/ISA/210 (second sheet)(May 1986) B
AU14563/92A 1991-02-25 1992-02-25 Opiate receptor antagonist modulates hyperkinetic movement disorder Ceased AU658401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2006201454A AU2006201454A1 (en) 1991-02-25 2006-04-06 Apparatus and method for treatment of skin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US66054391A 1991-02-25 1991-02-25
US660543 1991-02-25
PCT/US1992/001418 WO1992014364A1 (en) 1991-02-25 1992-02-25 Opiate receptor antagonist modulates hyperkinetic movement disorder

Publications (2)

Publication Number Publication Date
AU1456392A AU1456392A (en) 1992-09-15
AU658401B2 true AU658401B2 (en) 1995-04-13

Family

ID=24649948

Family Applications (1)

Application Number Title Priority Date Filing Date
AU14563/92A Ceased AU658401B2 (en) 1991-02-25 1992-02-25 Opiate receptor antagonist modulates hyperkinetic movement disorder

Country Status (9)

Country Link
US (1) US6153620A (en)
EP (1) EP0573565B1 (en)
JP (1) JPH06505747A (en)
AT (1) ATE194753T1 (en)
AU (1) AU658401B2 (en)
CA (1) CA2104229C (en)
DE (1) DE69231274T2 (en)
ES (1) ES2148174T3 (en)
WO (1) WO1992014364A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9815618D0 (en) 1998-07-18 1998-09-16 Univ Manchester Treatment of dyskinesia
EP1615646B2 (en) 2003-04-08 2022-07-27 Progenics Pharmaceuticals, Inc. Pharmaceutical formulations containing methylnaltrexone
US9662325B2 (en) 2005-03-07 2017-05-30 The University Of Chicago Use of opioid antagonists to attenuate endothelial cell proliferation and migration
US8518962B2 (en) 2005-03-07 2013-08-27 The University Of Chicago Use of opioid antagonists
JP5241484B2 (en) 2005-03-07 2013-07-17 ザ ユニヴァーシティー オヴ シカゴ Use of opioid antagonists to attenuate endothelial cell proliferation and endothelial cell migration
US8524731B2 (en) 2005-03-07 2013-09-03 The University Of Chicago Use of opioid antagonists to attenuate endothelial cell proliferation and migration
AR057035A1 (en) 2005-05-25 2007-11-14 Progenics Pharm Inc SYNTHESIS OF (R) -N-METHYLNTREXONE, PHARMACEUTICAL COMPOSITIONS AND USES
AR057325A1 (en) 2005-05-25 2007-11-28 Progenics Pharm Inc SYNTHESIS OF (S) -N-METHYLNTREXONE, PHARMACEUTICAL COMPOSITIONS AND USES
PL2565195T3 (en) 2007-03-29 2015-10-30 Wyeth Llc Peripheral opioid receptor and antagonists and uses thereof
AU2008233133B2 (en) 2007-03-29 2014-03-27 Progenics Pharmaceuticals, Inc. Crystal forms of (R) -N-methylnaltrexone bromide and uses thereof
TWI553009B (en) 2007-03-29 2016-10-11 普吉尼製藥公司 Peripheral opioid receptor antagonists and uses thereof
JP5251870B2 (en) * 2007-04-24 2013-07-31 東レ株式会社 Treatment or prevention agent for dyskinesia
US20100216857A1 (en) * 2007-10-18 2010-08-26 Luhrs Lauren M B Method of treating motor disorders with 4-(1-(2,3-dimethylphenyl)ethyl)-1h-imidazole-2(3h)-thione
KR101581480B1 (en) 2008-02-06 2015-12-30 프로제닉스 파머슈티컬스, 인코포레이티드 Preparation and use of (r),(r)-2,2'-bis-methylnaltrexone
US8685995B2 (en) 2008-03-21 2014-04-01 The University Of Chicago Treatment with opioid antagonists and mTOR inhibitors
CA2676881C (en) 2008-09-30 2017-04-25 Wyeth Peripheral opioid receptor antagonists and uses thereof
GB2543271A (en) * 2015-10-12 2017-04-19 Lars Holger Hermann Dr Products for treating psychogenic pain disorders

Also Published As

Publication number Publication date
ATE194753T1 (en) 2000-08-15
US6153620A (en) 2000-11-28
CA2104229A1 (en) 1992-08-26
DE69231274T2 (en) 2000-11-30
EP0573565B1 (en) 2000-07-19
EP0573565A1 (en) 1993-12-15
DE69231274D1 (en) 2000-08-24
WO1992014364A1 (en) 1992-09-03
JPH06505747A (en) 1994-06-30
AU1456392A (en) 1992-09-15
ES2148174T3 (en) 2000-10-16
CA2104229C (en) 1997-04-15
EP0573565A4 (en) 1994-03-18

Similar Documents

Publication Publication Date Title
AU658401B2 (en) Opiate receptor antagonist modulates hyperkinetic movement disorder
AU613993B2 (en) Pharmaceutical compositions
Hayes et al. Differential sensitivity of models of antinociception in the rat, mouse and guinea-pig to mu-and kappa-opioid receptor agonists.
EP0185472B1 (en) Analgesic compositions
EP0144243B1 (en) Analgesic compositions
Spaulding et al. Antinociceptive activity of clonidine and its potentiation of morphine analgesia
Shavit et al. Effects of a single administration of morphine or footshock stress on natural killer cell cytotoxicity
Azmitia et al. MDMA (ecstasy) effects on cultured serotonergic neurons: evidence for Ca2+-dependent toxicity linked to release
Woods et al. Substitution and primary dependence studies in animals
WO2001052851A1 (en) Methods for the treatment of substance abuse
Leal et al. Ibogaine attenuation of morphine withdrawal in mice: role of glutamate N-methyl-D-aspartate receptors
Colpaert et al. S 14506: A novel, potent, high‐efficacy 5‐HT1A agonist and potential anxiolytic agent
Lutfy et al. Inhibition of clonic seizure-like excitatory effects induced by intrathecal morphine using two NMDA receptor antagonists: MK-801 and ACEA-1011
Dewey Various factors which affect the rate of development of tolerance and physical dependence to abused drugs
Gianutsos et al. Selective interaction of drugs with a discriminable stimulus associated with narcotic actions
Wennemer et al. Fluoxetine blocks expression but not development of sensitization to morphine-induced oral stereotypy in rats
Drust et al. Methionine enkephalin-induced shaking behavior in rats: dissociation from brain serotonin mechanisms
Bhargava Drugs that modify opioid tolerance, physical dependence, and abstinence symptoms: preclinical and clinical studies
Singh et al. Opioid antagonists. I: Pharmacology and rationale for use in treating self-injury
Hynes et al. Effects of cholinergic agonists and antagonists on morphine-withdrawal syndrome
David et al. Antagonism of bremazocine‐induced urination as a test for kappa‐opioid receptor antagonists within the phenylpiperidine series
Janiri et al. Zipeprol is a newly abused antitussive with an opioid spectrum and hallucinogenic effects
Malick et al. A comparison of naloxone and naltrexone in laboratory tests predictive of antipsychotic potential
Wikler Methadone maintenance and narcotic blocking drugs. Appendix
Macenski et al. Effects on opioid-induced rate reductions by doxepin and bupropion

Legal Events

Date Code Title Description
MK14 Patent ceased section 143(a) (annual fees not paid) or expired