AU654699B2 - Influenza virus vaccine composition having a synergistic effect and containing influenza virus core as an additive - Google Patents

Influenza virus vaccine composition having a synergistic effect and containing influenza virus core as an additive Download PDF

Info

Publication number
AU654699B2
AU654699B2 AU12487/92A AU1248792A AU654699B2 AU 654699 B2 AU654699 B2 AU 654699B2 AU 12487/92 A AU12487/92 A AU 12487/92A AU 1248792 A AU1248792 A AU 1248792A AU 654699 B2 AU654699 B2 AU 654699B2
Authority
AU
Australia
Prior art keywords
core
vaccine
protein
additive
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
AU12487/92A
Other versions
AU1248792A (en
Inventor
Bernard Meignier
Catherine Moste-Deshairs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanofi Pasteur SA
Original Assignee
Pasteur Merieux Serum et Vaccines SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9409015&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=AU654699(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pasteur Merieux Serum et Vaccines SA filed Critical Pasteur Merieux Serum et Vaccines SA
Publication of AU1248792A publication Critical patent/AU1248792A/en
Application granted granted Critical
Publication of AU654699B2 publication Critical patent/AU654699B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5252Virus inactivated (killed)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Mycology (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Pulmonology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The use, when preparing a vaccine composition containing a standard influenza virus vaccine, of an additive which consists of a core or core fraction of at least one influenza virus, especially a fraction containing protein M; and a vaccine composition thereby obtained. The use of said additive improves the vaccine's effectiveness.

Description

OBJI DATE 27/09/9? AOJP DATE 01/10/9' APPLN. ID 3.2487 q2 DP PCT NUMBER PCT/FRq2/l0l66 DEMANDE IN -DE BREVETS (PCT) (51) Classification internationale des brevets 5 (11) Numno de publication Internationale: WO 92/13002 C07K 15/04, A61IK 39/145, 39/39 Al (43) Date de publication internationale: 6 aoat 1992 (06,08.92) (21) Num~ro de In demnande Internationale: PCT/FR92/00066 (74) Mandataire: TONN ELL]IER, Jean-Claude; Cabinet Nony (22) Date de d~p6t international: 24 janvier 1992 (24.01.92) &Ce 9 u abcrs -50 ai F) (81) Etats d&sign~s: AT (brevet europ~en), AU, BE (brevet euro- Donn~es relatives i In prioritk- p~en), CA, CH- (brevet europ~en), DE (brevet europ~en), 91/00806 24janvier 1991 (24.01.91) FR DK (brevet europ~en), ES (brevet europ~en), FR (brevet europ~en), GB3 (brevet europ~en), GR (brevet europ~en), IT (brevet europ~en), LU (brevet europ~en), MC (brevet (71) D6posant (pour tous les Etats dbsigt:~s sazuf US): PASTEUR europ~en), NL (brevet euror~en), SE (brevet europ~en), MERIEUX SERUMS ET VACCINS 58, aye- US.
nue du G~n&ral-Lecler F-69007 Lyon (FR).
(72) Inventeurs; et Publi~e Inventeurs/D~posants (US setilement) MOS'E-D ES- Avec rapport de rechierche internationak', HAIRS, Catherine 10, route de Paris, F-69 160 Tassin-la-Demi-Lune MEIGNIER, Bernard [FR/ FR]; Rue du 8-Mai-1945, F-69510 Thurins (FR1), 469V9 (54)Title: INFLUENZA VIRUS VACCINE COMPOSITION HAVING A SYNERGISTIC EFFECT AND CONTAINING INFLUENZA VIRUS CORE AS AN ADDITIVE (54) Titre: COMPOSITION VACCINALE CONTRE LA GRIPPE, A EFFET SYNERGIQUE, CONTENANT COMME AD- DITIF DU CORE DE VIRUS GRIPPAL (57) Abstract The use, when preparing a vaccine composition containing a standard influenza virus vaccine, of an additive which consists of a core or core fraction of at least one influenza virus, especially a fraction containing protein M; and a vaccine composition thereby obtained, The use of said additive improves the vaccine's effectiveness, (57) Abr~g6 Utilisation, dans In preparation d'une composition vaccinale comprenant un vaccin anti-grippal classique, d'un additif constitu6 par du core, ou une fraction de core, d'au moins un virus grippal, notamnment une fraction contenant la prot~ine M, et composition vaccinale ainsi obtenue. L'utilisation de cet additif permet d'am~Iiorer 1'efficacit6 du vaccin, I S -1- "Vaccine compyosition again.t influenza, with synergic effects, containing influenza virus core as an additive".
The object of the present invention is a vaccine composition against influenza, with synergic effects, containing influenza virus core, or a fraction thereof, as an additive to the influenza vaccine.
The influenza virus comprises a lipoprotein envelope surrounding a nucleoprotein "core". The envelope more particularly includes two glycoproteins, hemagglutinin (HA) and neuraminidase The core is a complex arrangement of viral ribonucleic acid and of several so-called "internal" proteins (polymerases, membrane protein and nucleoprotein At present it is nown that the influenza vaccine, even when correctly applied, does not completely protect all the subjects vaccinated see for example Murphy Webster, in 'Virology, 2nd edition (Fields et al. Ed.) 1091-1152 (1990), in particular p. 1128.
It was therefore desirable to improve the existing vaccines.
The influenza vaccines currently used are inactivated vaccines they may be constituted of entire virions, or of virions subjected to treatment with agents which dissolve lipids ("'split" vaccines), or else of purified glycoproteins ("sub-unit vaccines").
These inactivated vaccines mainly protect by causing synthesis of the receiver's antibodies directed against the hemagglutinin. It is known that antigenic evolution of the influenza virus by mutation results basically in modifications in HA and NA, while the internal proteins are only slighty modified. The result is that inactivated vaccines used at present only protect effectively as regards the strains the surface glycoprotejns of which are identical or antigenically very close to those of the vaccine strains. To obtain a sufficient antigenic spectrum, the vaccines are obtained from several viral strains they generally contain two type A strains and one tipe B strain. To adapt the composition of the vaccines to the antigenic evelution of the influenza viruses, the choice of strains for use in the vaccines is reviewed annually depending on -2the WHO or the American Food and Drug Administration recommendations, these recommendations being based on the results of international epidemiological observations.
It is known that the recommended viral strains may be obtained notably from the following organisations: NIBSC (National Institute for Biological Standards and Control, London, UK) WIC (World Influenza Centre, London, UK) CDC (Centre for Disease Control, Atlanta, U.S.A.) CBER (Comity of Biological Evolution and Research, Washington, U.S.A.) It has now been discovered that it is possible to obtain a vaccine composition with synergic effect by associating influenza virus core, or an active fraction of core, with the conventional influenza vaccine.
More particularly, there is provided a vaccine composition against influenza containing the components of a conventional anti-influenza vaccine as hereinbefore defined, and further containing, as an additive, core particles as hereinbefore defined from at least one influenza virus strain or a fraction thereof containing M protein or an immunologically active fragment of said M protein.
An active core fraction is one which, when used as an additive to a conventional vaccine, improves the effect of the vaccine.
Moreover, a protection against virus subtypes not used in the preparation of the components of the vaccine (conventional and added core or core fraction) may be obtained.
The object of the present invention, then, is a vaccine composition against influenza containing the constituents of a conventional influenza vaccine, and further containing core of at least one influenza virus strain, or a fraction of the said core, as an additive.
The conventional vaccine forming the main constituent of the vaccine composition of the S invention may be a vaccine with complete virions, a sub-unit vaccine or a split vaccine.
940909,popcr\jh,12487-92.25 1,2 -2a It may be obtained from viruses cultivated in chick embryonated eggs, or on cells.
The conventional vaccines may be prepared according to known methods, which are described by Murphy Webster, op. cit., for example. Other details are given below.
Complete Virion Vaccine this may be prepared as follows the influenza virus, obtained by culture on chick embryonated eggs, or by culture on cells, is concentrated by
S
SS
Ott: *•co o• *o* 940914,pAopcrjh, 124 87-92,231,2 I -3ultrafiltration and then purified by zonal centrjfugation or by choomatography. It is inactivated before or after purification, using formol or beta-propiolactone, for instance.
Subunit Vaccine such a vaccine may be prepared as follows using viral suspensions fragmented by treatment with detergent, the surface antigens (hemagglutinin, neuraminidase) are purified, by ultracentrifugation for example. The sub-unit vaccines thus contain mainly HA protein, and possibly NA.
The detergent used may be cationic detergent for example, such as hexadecyl trimethyl anmionium bromide (Bachmeyer, Intervirology, 5,260-272 (1975)), an anionic detergent such as ammonium deoxycholate (Laver Webster, Virology 69, 511-522, 1976 Webster et al., The Journal of Immunology, Vol. 119, 2073-2077,1977) or a nonionic detergent such as that commercialized under the name TRITON X100.
The hemagglutinin may also be isolated after treatment of the virions with a protease such as bromelain, then purified by a method such as that described by Trand and Skehel, Nature, New Biology, Vol. 238, 145-147, 1972.
Split Vaccine It can be prepared as follows an aqueous ouspension of the purified virus obtained as above, inactivated or not, is treated, under stirring, by lipid solvents such as ethyl ether or chloroform, associated with detergents. The dissolution of the viral envelope lipids results in fragmentation of the viral particles. The aqueous phase is recuperated containing the split vaccine, constituted mainly of hemagglutinin and neuraminidase with their original lipid environment removed, and the core or its degradation products. Then the residual infectious particles are inactivated if this has not already been done. A similar method to that described in French patent 2 201 079 (see more particularly example 1) can be used.
Conventional vaccines generally contain 10 to 15 pg of henagglutinin from each of the strains entering into their composition.
The conventional influenza vaccine forming the main constituent of the vaccine composition of the invention may originate from a virus of type A, B or C, or from at least two of these three types. The same applies to the core or fraction of core.
The core or fraction of core may be prepared from viruses from the same strain as the main constituent of the composition, or from a different strain or strains, which may either be of a different type (or, for type A, a different sub-type), or, within the same type or sub-type, consist of different isolate(s) or reassortant(s).
The nomenclature of the influenza viruses and their classjfication into types and sub-types are descibed for example in WHO Bull. 58, 585-591 (1980), and in Murphy Webster, op.
cit. It is known, in particular, that human influenza virus type A includes H1N1, H2N2 and H3N2 subtypes.
In the composition of the invention, the first and second constituents, that is the conventional vaccine and the additive, may be put together in the same container. They may also be present in separate containers placed in the same wrapping, with a view to mixing them on use or administering then. separately.
The composition of the invention may contain the first and second constituents, combined or separate, suspended in a suitable liquid vehicle.
The two constituents of the vacci. conposition of the invention, whether together or separate, may also be presented in freeze-dried form. The liquid composition is then reconstituted by mixing with a usual liquid vehicle, at the time of using.
The composition of the invention is generally presented in the form of individual vaccine doses (unit doses), constituted either by a vaccinating-unit dose of the two constituents mixed, or by a unit dose of conventional vaccine and a unit dose of core or fraction of core.
The second contitutent of the conposition of the invention (core) may be obtained according to known methods, particularly by treatment of tihe fiflueitu vlius using a poteOse such as bromelain. This treatment allows the envelope proteins to be separated from the core particles sec for example Brand Skehel, article op. cit.
I,
Other enzymes with analogous action to that of bromelain may be used.
The second constituent of the vaccine composition of the invention may also be composed of an active fraction of influenza virus core, this fraction being a protein or lipoprotein fraction, containing at least one active core protein (particularly M protein), or else an active fragment of this protein. The expressions "active protein" or "active fragment", or "active fraction", designate a protein or fragment of protein or core fraction capable of participating in the protection induced by the vaccine, like the core particles themselbes. The active fragments may be determined by simple routine experiments, retaining those fragments which, associated with the first constituent of the vaccine composition, give better protection than that obtained with the first constituent (conventional vaccine) alone.
The core fractions, including core protein or the fragments of the said protein, may be prepared either by virus culture and extraction, or by genetic engineering methods, or by peptidic synthesis, according to methods known per se. it should be noted that the NP protein is not an active core fraction, as defined above. The combination M NP constitutes an active fraction which is about as active as the M protein contained therein.
The second constituent (additive) of the vaccine of the invention is praticularly M protein, or membrane protein, sometimes called matrix protein. Two matrix- proteins play a role in the assembly of the virus when it replicates M1 protein, which belongs to the virus structure, and M2 protein, which has been detected in the complete virus but a considerable proportion of which is not integrated into the mature virus. In the present patent application, the expression "M protein" design,i s the matrix protein found major in the compni3te virus, that is to say Ml protein, which may or may not be mixed with other proteins or core fractions.
M protein, which may constitute the additive to the i vaccine according to the invention, ray be prepared according to v known techniques of protein separation and putificatic for N I:
I
-6example, a method similar to that described by RUIGROK et al., Virology, 173, 311-316 (1989).
This process mainly consists in treating a core suspension with a surfactant, for example a nonionic surfactant, at a sufficiently high concentration and at a sufficiently acid pH to favour separation of proteins M and NP in the following stage, subjecting the resultant solution to centrJfugation at a speed sufficient for protein Np and any residual core particles to accumulate in the centrifugation pellet while M protein remains in the supernatant, separating the centrifugation pellet and collecting the supernatant, and concentrating the supernatant if desired, in order to obtain a core fraction solution constituting an additive for a vaccine composition according to the invention.
The nonionic surfactant used is for example a polyoxyethylenated alkyl-phenol- such as Triton X 100 (Rohm Haas), a polyoxyethylenated fatty alcohol such as Brij 36 T (Sigma) or an alkyl-oside such as octyl beta-D glucopyranoside (or octylglucoside, commercialized by Sigma).
The acid pH favouring separation of proteins M and NP during centrifugation is fo- example a pH of about 4.8.
Centriguation takes place at 85,000g for 90 minutes, for example.
The final concentration stage of the supernatant may be by ultrafiltration, using for example a membrane having a cut-off threshold of 10,000 Dalton. The ci.icentration factor, for example around 10-20, is obviously chosen in order for the additive to be present in effective amount in a volume compatible with its administration PS a vaccine. If necessary, the detergent may be eliminated, for example by dialysis.
The resulting, possibly concentrated supernatant nay be used as an additive, in sufficiert quantity to obtain an improvement in the vaccination. The quantity of this additive way be assessed for example by reference to the quantity of M protein contained therein.
Detection and dosage of M protein may be carried out for example using specific antibodies, according to classical immunology techniques, such as an ELISA test, as will be detailed below.
The core fractions may also be lipid-free core fractions which may be obtained by gentle treatment of the virus by at least one surfactant, generally used at weak concentration, for example nonionic surfactants such as those commercialized under the name NONIDET P40 or TRITON X100, or certain cationic surfactants such as hexadecyl trimethyl ammonium bromide. Suitable concentrations may be determined in each case by routine experiments they are concentrations which allow the core to subsist in particle form see for example Bachmayer, article op. cit. and Rigg et al., J. Gen. Virol, 70, 2097-2109 (1989).
The lipid-free cores are then purified accoiding to usual methods, notably by centrifugation.
When the vaccine additive according to the invention is in the form of core particles, these may be core particles obtained through the action of bromeadn (or analogous), and/or lipid-free core pirticles. In both cases, they are particles virtually free of hemagglutinin and of neuraminidase.
The vaccine composition of the invention may be administered to humans or animals likely to suffer from influenza, notably equine, swine and avian species. The doses of the composition to be administered are the usual ones for this type of vaccine, and may if necessary be determined for animals in each case by routine experiments.
For example, in humans, the unit doses for the first constituent (conventional vaccine) are generally defined by their content of hemagglutinin. For each of the three types of vaccine (vaccine with complete virion, sub-unit vaccine and split vaccine) they generally correspond to 1-20 pg, and particularly 5-20 pg, for example 10-15 pg of hemagglutinin of each of the strains of which they are composed.
These quantities of henagglutinin may be reasured according to the radial inmunodiffusion method described by Wool (0 oll., Journal of Biological Standardization, 5, 237-247 (1977).
,,I
.J
I,
-8- The quantity of additive, in the vaccine composition of the invention, is a predetermined quantity sufficient to cause a statistically significant improvement in the efficiency of the vaccination in the animal species concerned.
The quantity of additive to be used with a unit dose of vaccine is for example a quantity sufficient to cause a statistical improvement of at least particularly at least 10%, in vaccination efficiency, assessed over at least one recognised ctiterion of vaccination efficiency. The efficiency of the vaccination may be determined for example by epidemiological studies of a population vaccinated with a conventional vaccine, a population vaccinated with the conventional vaccine and the additive, and possibly a ncn-vaccinated population. The criteria chosen for assessment of vaccination efficiency are those conmmoily used by those specialized in this field and particularly the proportion of vaccinated individuals suffering from an influenza affection, compared to the total number of individuals vaccinated, in a region where an influenza epidemic has indeed develope or the severity or duration of the influenza illness, or the number, severity or duration of the illness complications, or protection against a virus subtype other than the subtype(s) used in the preparation of the components (Lonventional vaccine and additive) of the vaccine, or else the improvement of the effectiveness of the vaccine may be evaluated through a statistically significant enhancement of the immune response, as assessed by the pourcentage of sero-converted subjects, by the amount of antibodies directed against the influenza virus or components thereof, or by tests measuring the immunocompetent cell response to the influenza virus infection.
With certain animals species, particularly laboratory animals or with volunteers, it is also possible to determine the efficiency of a vaccination by using experimental infection.
Unit doses for the second constituent (additive) may Sgenerally cortain (particularly for humans) 1-100 pg (particularly 2-100 pg, or 5-100 pg) and notably 2-50 pg, for example 5-30 pg; of core particles, or an equivalent quantity of the core fraction used is to say, a quantity corresponding to the quantity of the saia fraction contained in the said quantity of core particles, or else a quantity of the said fraction having the same activity in the vaccine composition as the said quantity of core particles).
The quantities of core indicated are expressed in quantities of complete proteins measured for example according to the Bradford method mentioned in the experimental section below.
Measurement of the core quantitie may be iade by separation of the particles according to their density and comparison with a standard core solution.
An analogous nethod may be used for lipid-free core particles which, contrary to core particles obtained by bromelain treatment, have a higher density than that of the virion.
When the additive is at least one M protein, or a core fraction containing V protein, the unit dose of vaccine composition preferably contains at least 3-5 pg, and particularly at least 7-10 pg of added N protein (that is to say in addition to the free M protein possibly already present in the conventional vaccine, notably when it is a split vaccine). The quantities of V protein indicated are assessed notably by an immunological test according to the ELISA technique. The amounts of M protein as obtained by ELISA are determined by comparison with a purified M protein standard, which is itself quantified, e.g. with bicinchonic acid.
One may also proceed by comparison with the M protein content of a purified influenza virus, subjected to a detergent treatment, by assuming that the M protein represents 50% by weight of the total proteins in the virus. The EITSA tests are carried out on tested preparations or on control preparations of M protein of virus, in s solution containing for example 0.1% sodium dodecy] sulfate (SDS).
The total proteins are dosed for example by any suitable method, such as the Bradford method mentioned in the experimental section.
It is known that vaccines with complete virions, and sub-unit vaccines ate virtually free from free M protein (that is to say, outside the core or virus particles). Conventional split vaccines contain certain quoatities of r protein, these quantit tt.
0S i r" 7~~t being variable and depending mainly on the preparation technique used.
Thus, it is easy to determine the quantities of M protein which have been added to a given vaccine composition, by knowledge of the preparation technique used, and thus of the quantities of free M protein normally present in the vaccine composition obtained by the said technique.
Furthermore, experiments have shown that the added M protein has a density (as measured e.g. in saccharose gradient) which is generally different from that of the N protein already present in the split vaccine composition.
The composition of the invention may be administered subcutaneously, intramuscularly, nasally, orally, or as an aerosol.
It may be administered in association with other vaccines and/or additives.
The composition may also be used for booster injections, for example 1 to 3 months after the first vaccination.
Another object of the invention is the use of an additive constituted by core of at least one influenza virus or by a fraction of core of at least one influenza virus, in the preparation of a vaccine composition against influenza comprising a conventional influenza vaccine.
The invention particularly concerns use of a second constituent (additive) containing core, or a purified core fraction, of at least one influenza virus, in the preparation of a vaccine composition against influenza containing a first constituent corresponding to a conventional influenza vaccine, it being possible for the said first and second constituents to be present in one and the same container, or in separate containers, as aforementioned.
The following examples illustrate the invention but do not limit it.
-11- EXAMPLE 1 Obtaining Purified Viral Core The reassortant strain of influenza virus NIBI6 (A/HIN1) was used :said strain originates from mating wild strain A/Taiwan/1/86 (A/H1N1) and reassortant X31 (A/H3N2), the latter being obtained by mating strain A/Alchi/2/68 with the A/Porto-Rico/8/34 (A/H1N1) virus.
Strain NIB16 may bo obtained from the NIBSC.
The viral suspensions were prepared by multiplication on chick embryonated eggs, concentration by ultrafiltration and purification on saccharose gradient as described in French patent application no 2 201 079.
To extract the core, the purified virus, suspended in phosphate buffer pH 7.4 (PBS buffer), is subjected to two or three successive treatments with bromelain (Sigma) at 370 C in 0.1 M tris buffer pH 7.5, 1 mM EDTA, beta-mercaotoethanol. For the first treatment with the protease, the viral suspension, adjusted to contain 2 mg of proteins per ml of buffer solution, is used, and 1 mg/ml of bromelain is added. After 2 hours' incubation at 370 C and dilution with an aqueous solution of 0.1 M NaCI, the preparation is subjected to separation by ultra-centrifugation at 120,000 g, for 90 min, at C. For the second and if necessary the third treatment, incubation is carried out by using bromelain at 2 mg/ml (final concentration) for 16 hours. The centrifugation treatments are the same as for the first treatment and the pellets are re-suspended in PBS buffer.
The core solution obtained is subjected to purification by isopycnic ultra-centrifugation on a 20-60% linear saccharose gradient in PBS buffer at 100,000 y, for 16 hours, at 40 C. The fractions containing viral core are diluted by one third with PBS buffer, then subjected to ultra-centrifugation at 120,000 g for 90 minutes, at 40 C. The centrifugation pellet is recovered by PBS buffer pH 7.4, to which 0.01% sodium azide has been added. The solution may be preserved by freezing at minus 200 C.
The purified core preparation thus obtained presents the following characteristics: the proportion of hemagglutinin is a maximum of 4% compared to the total protein, this proportion being measured by polyacrylamide gel electrophoresis (Laemmli, Nature, 227, 680-685, 1970) or by the ELISA technique: -12hemagglutinating activity is less than 0.01% that of the original virus (measurement by hemagglutination according to the method described by Palmer et al., Advanced Laboratory Technicals for Immunological Diagnostic, U.S. Dept. Hith Ed. Welfare, PHS. Atlanta, Immunology ser. no 6, Procedural Guide Part 2, hemagglutination inhibition Test, 1975, 25-62).
The final vaccine is prepared by diluting in PBS buffer, as indicated in example 2 below.
EXAMPLE 2: Preparation of the Vaccine and Pharmacological Study As first constituent of the vaccine composition an inactivated monovalent split vaccine, obtained with the NIB16 strain, was used.
The hemagglutinin of NIB16 is analogous to that of the A/Singapore /6/86 (A/H1N1) strain.
This split vaccine was obtained by treating the virus with a mixture of Polysorbate 80 and ether, according to the method described in French patent 2 201 079 (example 1).
The second constituent (core) was obtained according to the procedure described in example 1 above.
The monovalent vaccine and the core were diluted and mixed in PBS buffer to provide the combinations and doses indicated in tables 1 and 2 below, in a total volume of 0.5 ml. The composition thus obtaincd was injected subcutaneously into six-week-old OF1 mice(IFFA-CREDO France).
The doses of split vaccine and core used are expressed in pg of total proteins determined by colorimetry, by comparison with a standard solution of bovine serum albumine, according to the method described by Bradford (Anal. Biochem, 1976, 72, 248-354), using the Bio-rad Kit.
One month after vaccination, the mice were infected with the A/Wilson Smith/33 (A/H1N1) strain, obtained from the World Influenza Centre in London. This strain was chosen for the infection challenge since it is lethal for non-immunized mice. It was administered nasally, at the rate of 20 doses .in 30pl per mouse under anaesthetic. The mice were then observed daily for three weeks.
The results concerning survival for the different experimental groups were recorded in tables 1 and 2. In the experiments in table 1, no control mouse (unvaccinated) survived. The viral core administered alone had at best a limited protective effect and the split vaccine injected alone only protected 30 to 50% of the mice. It may be seen that several of the split and core vaccine combinations gave synergic protection at concentrations higher than 3pg of split vaccine associated with 90pg of core, or else, 10pg of split vaccine associated with 10pg of core.
u
V
-13- The increased survival obtained by associating split vaccine and core is statistically significant. The results were subjected to variance analysis (FISCHER-SNEDECOR test which showed that the addition of core had a statistically significant synergic effect (p 0.027) on survival of the vaccinated mice.
The experiment was repeated, reducing the range of core quantities tested in association with the split vaccine. The results are presented in table 2. From the results in table 2, it may be seen that the addition of 3pg of core or more to the vaccine systematically increases the percentage of mice surviving 1 0 the test (highly significant protection synergy: p test F 0.009).
TABLE 1 Surviving mice/Tested mice 1 5 after immunisation, with, per mouse: Split Vaccine (iua with added core (ua): 0 (only PBS) 0/10 1/10 2/10 2/10 3 3/10 2/10 3/10 8/10 4/10 7/9 10/10 7/10 5/10 10/10 7/10 8/10 TABLE 2 Surviving mice/Tested mice after immunisation, with, per mouse: Split with added core (ug): Vaccine (uo) 0 3 0 (only PBS) 0/10 0/10 1/10 3 2/10 8/10 10/10 6/10 10/10 10/10
I
-14- Example 3: Detection and quantification of the influenza virus core.
The influenza vaccines of the invention are likely to contain lipid-free or complete influenza core particles and complete virions or protein sub-units in variable proportions depending on their method of preparation.
The method chosen to dose the core uses the difference in density of these elements, shown by isopycnic centrifugation in linear SUCROSE gradient (Brand Skehel, article op. cit.).
1 0 With this aim, the samples to be analysed were placed in ultracentrifugation tubes on the surface of a preformed saccharose gradient. In the present case, 14 ml tubes with a 12 ml 20-60% gradient (wlw in PBS) were used. The vaccine dose placed in the tubes was 1 ml in volume.
The samples were then subjected to ultracentrifugation for 16 hours at 1 5 100,000 g (at then the contents of the tubes were fractioned from the surface to the bottom in 14 aliquotes. During fractioning, optical density was measured continuously at 254 mm.
A diagram in which each peak corresponded to a population of particles of determined density was obtained. The apparatus makes it 2 0 possible to pinpoint the correspondence between the position of a peak on the graph and the fraction in which it may be found. Measurement with the Abbe refractometer shows the saccharose percentage for each fraction, from which conversion tables (Handbook of Chemistry and Physics, 68th. Edition, Ed. R.C. Weast, GRC Press Inc.) give the apparent density of the particles.
Characteristically, the density of the viral core (obtained according to the procedure of example 1) is 1.15-1.16 g/cm 3 and that of the virus is 1.19-1.20 g/cm 3 this corresponds to saccharose concentrations of 35-37% and 42-44% respectively.
The results of the density analysis of a standard core solution are 3 0 shown in figure 1.
In the graphs of figure 1 the numbers of the fractions are shown in absciss (and the corresponding saccharose concentrations) and the optical density (DO) in arbitrary units in ordinate. The recording conditions (ISCO material) were the following: detection wavelength 254 nm, sensitivity 0.2 of 3 5 DO (full scale), rate of collection: 3 ml/cm.
The graphs shown in figure 1 were obtained by testing increasing quantities of core in solution in the PBS buffer. It was noticed that the surface I delimitated by the peaks was proportional to the quantity of core. A correlation may be established which enables the method to be used for dosage.
In order to confirm that the peak observed for a saccharose concentration of 35-37% is viral core, polyacrylamide gel electrophoresis (Laemmli, see above) may be used, after denaturing treatment of the sample by SDS at at 900 C for 3 minutes, which shows the presence of core proteins NP and M after coloration with silver.
In figure 2, the diagrams obtained with 3 different vaccines are shown: a vaccine with complete virions, commercialized under the trade name Vaccin Grippal Ronchese (VGR), and two split vaccines obtained with different techniques and commercialized under the trade names VAXIGRIP and MUTAGRIP, these diagrams being established according to the same principles and in the same recording conditions as those described concerning figure 1. Figure 2 allows comparison of influenza vaccine profiles (one dose) before and after addition of 10pg of viral core. In figure 2, graph 1 corresponds to the vaccine with complete virions, and graphs 2 and 3 to the split vaccines (Vaxigrip and Mutagrip respectively). The profiles vary from one vaccine to another but none of them have a content of core.
The addition of core (10 pg /dose) (graphs 1b, 2b, 3b) is clearly identifiable by the appearance of a new peak in the fractions containing saccharose at 36-37%.
Example 4 Preparation of a Core Fraction Containing a Matrix Protein (M Protein): Vaccination and Dosage Tests.
'The bibliographical references in this example are to be found at the end of the example.
This fraction is extracted from purified viral core according to a technique adapted from Ruigrok and coll. (1989). The core is suspended in PBS buffer adjusted to pH 4.8 with a 0.25 M solution of citric acid. At this stage, a protease inhibitor such as TLCK (Sigma, solution at 1 mg/ml in mM pH5 acetate buffer) may be added, to avoid later degradation of the M protein. The core is then subjected to a detergent treatment by a 10% solution of lubrol (Brij 36T, Sigma) the final concentrations of core, lubrol and where necessary TLCK being respectively brought to 0.1 mg/ml, 0.5% and 50 pg/ml, oy addition of PBS buffer adjusted to pH 4.8 with 1.24 N hydrochioric acid.
The mixture is homogenised by gentle stirring at room temperature for one f -16minute, then subjected to ultra-centrifugation at 85,000 g for 90 min, at +40 C.
The centrifugation pellets, containing nucleoprotein (NP) are once more suspended in PBS Buffer pH 7.4, while the supernatant containing the M protein, is concentrated 10-20 times by ultrafiltration (Amicon cell, membrane with cut-off threshold of 10,000 Daltons). The proteins are stocked at -200 C.
They are dosed with bicinchonic acid (Smith, Krohn et al., 1985) using the Pierce Micro BCA Kit.
Their purity is routinely checked by 12.5% polyacrylamide gel electrophoresis followed by coloration with Coomassie blue (Phast System, Pharmacia). No contamination was visible as regarded the matrix protein, which indicates a purity of at least Dosage of M protein by ELISA Principle: The technique used was a non-competitive ELISA sandwich test adapted from Bucher, Kharitonenkov et al., (1987), Donofrio, Coonrod et al., (1986), and Hjerten, Sparrman et al., (1988). It consisted in capturing the M protein in the samples to be dosed (for example: influenza virus, vaccine, core, purified proteins) using specific anti-M immunoglobulins adsorbed on microtitration plates; the presence of the M protein was then assessed using a succession of stages which led to a colorimetrical reaction proportional to the quantity of antigen present.
Immunological reagents used: Total anti-influenza virus M protein immunoglobulins: these specific immunoglobulins were obtained from serum from rabbits hyperimmunized by 0 injections respectively of 100, 75 and 75 pg of M protein prepared as previously described; these injections were made intra-muscularly at monthly intervals in presence of Freund's adjuvant (complete adjuvant for the first injection and incomplete for the subsequent ones). The total immunoglobulins were then precipitated with ammonium sulphate at 35% saturation.
Commercial Monoclonal murine anti-M antibody (Serotec) Anti (mouse immunoglobulin) goat immunoglobulins, labelled with peroxidase (Jackson ImmunoResearch).
Solutions:
SI
-17- Dilution buffer constituted of PBS pH 7.2 with 0.05% tween 20 and of skimmed powdered milk (R6gilait) added.
Washing solution for wells constituted of PBS buffer plus 0.05 0 b of tween Method: It is carried out in microtitration plates (Nunc). Each reagent is added under a volume of 100pl per well: after the saturation stage and up to that of revelation, the plates systematically undergo 4 successive rincings with the washing solution.
The total anti-M protein rabbit immunoglobulins are deposited at a concentration of 1 pg ml in sodium carbonate 50 mM pH 9.6 buffer and are adsorbed for one night at 40 C.
A well saturation stage is then carried out for 1h at 370 C with the help of the dilution buffer.
The samples to be dosed are then placed in the form of rate 2 dilutions in the dilution buffer to which 0.1% of SDS has been added.
After 2 hours' contact at 370 C, the mouse monoclonal antibody specific to the M protein, diluted at 1/1,000 in the dilution buffer containing 0.1% SDS, is added and incubated for 1h at 370 C.
Binding of the monoclonal anti-M antibody on the protein is evidenced by addition of the anti-mouse immunoglobulin antibodies labelled with peroxidase and diluted at 1/1,000 in the dilution buffer.
After 1h at 370 C and after a final series of plate washing, the reaction is revealed by addition of the 20 mM citrate buffer, pH 5.6, containing sodium perborate, substrate of the peroxidase (Sigma), with added oPD (orthophenylenediamine dihydrochloride, Sigma) used at a concentration of 0.4 mg/ml, The reaction is halted after incubation for 20 min at room temperature by adding 50 pl of 4N sulphuric acid.
The result is read by using an ELISA plate reader (MR 5,000 Dynatech) which measures absorbency of the reactional medium in the wells at a wavelength of 490 nm.
Protection Tests on Mice Groups of six-week-old BALB/c mice (from IFFA-Credo, France) were immunized with preparations of Vaxigrip (monovalent A/H1N1 NIB16), with -18viral protein N, or by associations of Vaxigrip and t protein (see doses used in the result tables). The various preparations were administered subcutaneously under 0.5 ml without adjuvant and in a single injection. The mice were tested 4 to 5 weeks after immunization with 5 50% lethal doses (LD50) of the A/H1N1 A/WS/33 strain inoculated under 30 pl intranasally, under deep anaesthesia of the animals by a mixture of ketamine-Xylazine. The results are presented as the survival table of the mice three weeks after infection challenge.
The two tables presented correspond to two series of experiments carried out with the same M and NIB16 virus core protein preparations. They show that the association of Vaxigrip (monovalent NTB16) and matrix protein preparation improves the protection.
The doses of vaccine, core and protein are expressed in pg of total proteins determined for the vaccine and the core by Bradford's technique (1976, op. cit. in and for M protein by dosage with bicinchonic acid (Smith, Khron et al, 1985, op.
cit.).
TABLE 3 N° of surviving mice/N 0 of tested mice unless otherwise stated) Vaccine NIB16 M protein ,g) NIB16 (pg) 0 5 0 0 1/9 1 0 7 7/9 ~I -19- TABLE 4 N° of surviving mice /10 tested mice NIB16 vaccine NB16 M protein (pg) 0 5 ug 0 1 0 2 9 The mice may also be immunized using vaccine preparations with complete virions. The table below presents survival of BALB/c mice immunized at age 6 weeks with trivalent VGR vaccine preparations with complete vir'jns (Vaccin Grippal Roncise from the 1990-91 season). The trivalent vaccine dose used was about 5 pg hemagglutinine of NIB16 virus per mouse it was quartified by radial imtrunodiffusion according to the technique of Wood coll., op. cit., and corresponds to the quantity present in 10 pg of total proteins of monovalent Vaxigrip NIB16 previously used.
The results show that the improvemerit effect ji protection by addition of M protein preparation way also be observed with a complete virus vaccine TABLE 5 N° of surviving mice/10 mice tested Complete virion M Protein NIB16 (pg) VGR vaccine (pg HA NIB16) 0 5 0 0 0 0 2 4 7 In the same way as before, the BALB/c mice were immunized using sub-unit vaccine preparations, such as the DUPHAR vaccine (Influvac sub-unit) this is obtained after treatment of the virus by hexadecyl trimethyl ammonium bromide (Jennings, Smith et al, 1984 Bachmayer, 1975) and purification of the HA and NA glycoproteins by ultracentrifugation on saccharose gradient.
Thi s sub-unit vaccine may be associated with core articles or a core fraction containing M protein using equivalent doses to those in the previous tests, i.e. for the monovalent or trivalent vaccine :the equivalent of 5 jig of HA of virus NIB16 assess;ed by radial imnunodiffusion for the M protein 15 or jig of protein dosed by the bicinchonic acid method, and for the core, 30 jig of total protein closed by Bradford's method.
-21- Bibliographical References Bachmayer, H. (1975). "Selective solubilization of hemagglutinin and neuraminidase from influenza viruses," lnfervirology. 5, 260-272.
Bradford, M. M. (1976). "A rapid and sensitive method for the quantitation of microgam quantities of proteins utilizing the principle of protein--dye binding," Anal Biochem. 72, 248-254.
Bucher, D. Kharitonenikov, 1. G, Wajeed-Khan, W. Palo. Holloway, D. and Mikhail, A, (1987). 'Detection of influenza viruses through selective adsorption and detection of the M protein antig9en." J. of Immunol. Methods. 96, 77-85, Donofrio, J, Coonrod, J. Karathahasis, V. and Coelingh, K. WV, W. (1986).
"Eleclroelution for purification of Influenza A matrix protein for use In immunoassay" J.
of Immunol. Methods, 13, 107-120.
Hierten, Sparrman, M, and Liao, J. (1988). "Purification sfmembr'ane proteins in SDS and subsequen~t renaturation." Blochim, Biophyp, Actsa93, 476-484.
Jennings, Smith, T. Spencer, R. Mellerh, A. Edey, Fenton, et al (1984). OinactIvated influenza virus vaccines in man :a comparative study of subunit and split vaccines using two methods for assessment of antibody, responses," .cn 2, 7r-W80.
Ruigrok. R. W. Calder, L. J. and Wharton, S. T. A. (1 989). "Electron Microscopy of the Influenza Virus Submembranal Structure," YitrgiQ~y, 173, 311-316, Smith. P. Krohn. R. Hermanson, G, Maths., A, Gartner, F. Provenzano, M. el at (1935). -Measurement ot protein using bicinchonic acid." Ana, iochemri, 150, 76-85.
-22- Example 5 -22- Improvement of protection against a sub type of the influenza virus by use of a different sub-type vaccine containing core Groups of OF1 male mice aged 6 weeks were treated with preparations of monovalent Vaxigrip A/H3N2 X 97, AIH3N2 X 97 virus core, or with associations of Vaxigrip and core. The different preparations were administered subcutaneously under a volume of 0.5 ml, without adjuvants and in a single injection. The mice were tested 5 weeks after immunization with a dose corresponding to 20 50% lethal doses (LD50) of the A/H1N1 A/WS/33 strain inoculated intra-nasally under a volume of 30 pl, under deep anaesthesia of the animals by a mixture of ketamine-Xylazine.
The results were summed up in the following table: TABLE 6 N° surviving mice/no tested mice (10 unless otherwise stated) __core X97 added aqg).
Vaccine X97 (ua) 0 3 .101 As expected, vaccine A/H3N2 X97 does not afford protection against an infection challenge with virus A/H1N1. A surprising effect of protection synergy is observed however when the vaccine is associated with core.
4.

Claims (23)

1. Vaccine composition against influenza containing the components of a conventional anti-influenza vaccine as hereinbefore defined, and further containing, as an additive, core particles as hereinbefore defined from at least one influenza virus strain or a fraction thereof containing M protein or an immunologically active fragment of said M protein.
2. Composition according to claim 1, wherein said conventional anti-influenza vaccine is a complete virion vaccine.
3. Composition according to claim 1, wherein said conventional anti-influenza vaccine is a sub-unit vaccine,
4. Composition according to claim 1, wherein said conventional anti-influenza vaccine is a split vaccine.
5. Composition according to any one of the preceding claims, characterized by the fact that said additive comprises core obtained after elimination of envelope proteins by treating an influenza virus with a protease.
6. Composition according to claim 5, characterized by the fact that said protease is 9 Sbromelain.
7. Composition according to any one of claim 1 to 6, characterized by the fact that said additive comprises an active fraction of influenza virus core,
8. Composition according to claim 7, characterized by the fact that said additive comprises lipid free core particles.
9. Composition according to any one of claims 1 to 7, characterized by the fact that ~said additive comprises core obtained by gentle treatment of influenza virus with at least 94 09 09,p \pcr\jbI.248R7.92 25 12 -24- one surfactant, followed by separation of said core according to usual methods. Composition according to claim 7, characterized by the fact that said additive comprises a core fraction containing M protein.
11. Composition according to the preceding claims, characterized by the fact that said core fraction can be obtained by a process consisting of: treating a core suspension with a surfactant, e.g. a nonionic surfactant, at a sufficiently high concentration and at a sufficiently acid pH to favour separation of proteins M and NP in the following stage, subjecting the resultant solution to centrifugation at a speed sufficient for protein NP and any residual core particles to accumulate in the centrifugation pellet while M protein remains in the supernatant, separating the centrifugation pellet and collecting the supernatant, and concentrating the supernatant if desired, in order to obtain a core fraction solution. .9 9 12, Composition according to claim 7, characterized by the fact that said core fraction is M protein or an active fragment thereof,
13. Composition according to any one of the preceding claims, characterized by the fact that the conventional vaccine and the additive are present in the same container.
14. Composition according to any one of claims 1 to 12, characterized by the fact that the conventional vaccine and the additive are present in separate containers, placed in the I same wrapping but arranged for simultaneous or sequential administration. Composition according to any one of the preceding clairs, characterized by the fact that it is presented in the form of a unit dose containing an efficient amount of said additive.
16. Composition according to the preceding claim, characterized by the fact that it 940909,poper\cjk 124 879251,24 contains as additive from 1 to 100 uLg of core, or an equivalent amount of said core fraction.
17. Composition according to the preceding claim, characterized by the fact that it contains as additive from 2 to 100 jig of core, or an equivalent amount of core fraction.
18. Composition according to the preceding claim, characterized by the fact that it contains as additive from 5 to 100 pg of core, or an equivalent amount of core fraction.
19. Composition according to claim 15 or 16, characterized by the fact that it contains as additive at least 3-5 jg of M protein. Composition according to the preceding claim, characterized by the fact that it contains as additive at least 7-10 p.g of M protein.
21. Composition according to any one of claims 15 to 19, characterized by the fact i' that its conventional vaccine component contains from to 20 jig of hemagglutinin of each of the strains of which it is composed.
22. A method for preparing a vaccine composition, said method comprising admixing a conventional anti-influenza vaccine and an additive consisting of a core of at least one influenza virus or a fraction thereof containing M protein or an immunologically active fragment of said M protein.
23. A method according to claim 22, wherein said conventional vaccine and/or said core and/or said core fraction are as defined in any one of claims 2 to 12.
24. A method according to claim 22 or 23 wherein the vaccine preparation is in a unit dose form containing additive amounts as defined in any one of claims 15 to A method for preparing an anti-influenza vaccine composition, said method comprising admixing a first component comprising at least one conventional anti- 940909,popcr\ejh,12487-925 1,25 -26- influenza vaccine, and of a second component (additive) comprising core, or an active fraction thereof, of at least one influenza virus.
26. A method according to claim 25, wherein said core or said core fraction is as defined in any one of claims 5 to 12.
27. A method for vaccinating a human subject or an animal subject likely to suffer from influenza, said method comprising administering to said subject a conventional anti- influenza vaccine as hereinbefore defined and an additive consisting of core particles, as hereinbefore defined from at least one influenza virus strain or a fraction thereof containing M protein or an immunologically active fragment of said M protein.
28. A vaccine composition according to claim 1 or a method according to claim 22 or 25 or 27 substantially as hereinbefore described with reference to the Examples. i DATED this 13th day of September, 1994. Pasteur Mericux Serums et Vaccins by its Patent Attorneys DAVIES COLLISON CAVE 94* 0913 op 24 92 1.26 o a .X.3 9.10913,p.\opci\jh.12487.92 251,26
AU12487/92A 1991-01-24 1992-01-24 Influenza virus vaccine composition having a synergistic effect and containing influenza virus core as an additive Expired AU654699B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9100806 1991-01-24
FR9100806A FR2671974A1 (en) 1991-01-24 1991-01-24 INFLUENZA VACCINE COMPOSITION WITH SYNERGISTIC EFFECT, CONTAINING AS AN ADDITIVE TO INFLUENZA VIRUS CORE.
PCT/FR1992/000066 WO1992013002A1 (en) 1991-01-24 1992-01-24 Influenza virus vaccine composition having a synergistic effect and containing influenza virus core as an additive

Publications (2)

Publication Number Publication Date
AU1248792A AU1248792A (en) 1992-08-27
AU654699B2 true AU654699B2 (en) 1994-11-17

Family

ID=9409015

Family Applications (1)

Application Number Title Priority Date Filing Date
AU12487/92A Expired AU654699B2 (en) 1991-01-24 1992-01-24 Influenza virus vaccine composition having a synergistic effect and containing influenza virus core as an additive

Country Status (10)

Country Link
EP (1) EP0522138B2 (en)
AT (1) ATE234861T1 (en)
AU (1) AU654699B2 (en)
CA (1) CA2078985C (en)
DE (1) DE69232962T3 (en)
FR (1) FR2671974A1 (en)
IL (1) IL100765A (en)
NZ (1) NZ241398A (en)
WO (1) WO1992013002A1 (en)
ZA (1) ZA92510B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6141094A (en) * 1993-02-19 1994-09-14 Smithkline Beecham Biologicals (Sa) Influenza vaccine compositions containing 3-o-deacylated monophosphoryl lipid a
FR2723740B1 (en) * 1994-08-16 1996-11-08 Pasteur Merieux Serums Vacc PROCESS FOR THE PREPARATION OF INFLUENZA VIRUS ANTIGENS, ANTIGENS OBTAINED AND THEIR APPLICATIONS
WO1998046262A1 (en) * 1997-04-16 1998-10-22 Connaught Laboratories, Inc. Anti-influenza compositions supplemented with neuraminidase

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0041880A1 (en) * 1980-06-05 1981-12-16 Synthelabo Process for isolating viral glycoproteic antigens, and its use in the preparation of vaccines
WO1986004242A1 (en) * 1985-01-28 1986-07-31 Medical Research Council Improvements relating to influenza vaccine
WO1990014361A1 (en) * 1989-05-24 1990-11-29 Sri International Synthetic peptides for diagnosis and prevention of influenza virus infection and their use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0041880A1 (en) * 1980-06-05 1981-12-16 Synthelabo Process for isolating viral glycoproteic antigens, and its use in the preparation of vaccines
WO1986004242A1 (en) * 1985-01-28 1986-07-31 Medical Research Council Improvements relating to influenza vaccine
WO1990014361A1 (en) * 1989-05-24 1990-11-29 Sri International Synthetic peptides for diagnosis and prevention of influenza virus infection and their use

Also Published As

Publication number Publication date
EP0522138B2 (en) 2007-02-14
ZA92510B (en) 1992-11-25
CA2078985A1 (en) 1992-07-25
EP0522138A1 (en) 1993-01-13
EP0522138B1 (en) 2003-03-19
IL100765A (en) 1996-06-18
DE69232962T3 (en) 2007-11-08
AU1248792A (en) 1992-08-27
FR2671974B1 (en) 1995-03-03
IL100765A0 (en) 1992-09-06
NZ241398A (en) 1994-08-26
WO1992013002A1 (en) 1992-08-06
DE69232962D1 (en) 2003-04-24
DE69232962T2 (en) 2005-06-23
CA2078985C (en) 2004-11-09
FR2671974A1 (en) 1992-07-31
ATE234861T1 (en) 2003-04-15

Similar Documents

Publication Publication Date Title
Tamura et al. Cross‐protection against influenza A virus infection by passively transferred respiratory tract IgA antibodies to different hemagglutinin molecules
Eliasson et al. CTA1-M2e-DD: a novel mucosal adjuvant targeted influenza vaccine
JP4240237B2 (en) Vaccine composition
US6743900B2 (en) Proteosome influenza vaccine
US7192595B2 (en) Peptide-based vaccine for influenza
Bungener et al. Alum boosts TH2-type antibody responses to whole-inactivated virus influenza vaccine in mice but does not confer superior protection
US6485729B1 (en) Neuraminidase-supplemented compositions
US6372223B1 (en) Influenza virus vaccine composition
US4009258A (en) Influenza vaccine containing a recombinant, antigenically hybridized virus and method of using the same
Tamura et al. Enhancement of protective antibody responses by cholera toxin B subunit inoculated intranasally with influenza vaccine
WO1998046262A1 (en) Anti-influenza compositions supplemented with neuraminidase
US4029763A (en) Influenza vaccine containing purified neuraminidase antigen and method of using the same
Ben Ahmeida et al. The IgA and subclass IgG responses and protection in mice immunised with influenza antigens administered as ISCOMS, with FCA, ALH or as infectious virus
Virelizier et al. The role of humoral immunity in host defence against influenza A infection in mice
US5741493A (en) Vaccine composition against influenza, with synergic effects, containing influenza virus core as an additive
AU654699B2 (en) Influenza virus vaccine composition having a synergistic effect and containing influenza virus core as an additive
Klockmann et al. Preclinical investigations of the safety, immunogenicity and efficacy of a purified, inactivated tick-borne encephalitis vaccine
Potter et al. A new surface-antigen-adsorbed influenza virus vaccine II. Studies in a volunteer group
US20100196495A1 (en) Delivery of flu antibodies to surfaces in contact with air
US6921543B2 (en) Immunomodulatory preparation
Zhou et al. Long-lasting protective immunity against H7N9 infection is induced by intramuscular or CpG-adjuvanted intranasal immunization with the split H7N9 vaccine
Webster et al. Efficacy of equine influenza vaccines for protection against A/Equine/Jilin/89 (H3N8)—a new equine influenza virus
Chang et al. Single immunization with MF59-adjuvanted inactivated whole-virion H7N9 influenza vaccine provides early protection against H7N9 virus challenge in mice
Morein et al. Immunity against parainfluenza-3 virus in cattle: anti-neuraminidase activity in serum and nasal secretion
Vinson et al. Delivery of a thermo-enzymatically treated influenza vaccine using pulmonary surfactant in pigs