AU4194499A - Global network computers - Google Patents

Global network computers Download PDF

Info

Publication number
AU4194499A
AU4194499A AU41944/99A AU4194499A AU4194499A AU 4194499 A AU4194499 A AU 4194499A AU 41944/99 A AU41944/99 A AU 41944/99A AU 4194499 A AU4194499 A AU 4194499A AU 4194499 A AU4194499 A AU 4194499A
Authority
AU
Australia
Prior art keywords
network
personal computers
slave
personal
shared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU41944/99A
Inventor
Ellis E. Frampton Iii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/085,755 external-priority patent/US7634529B2/en
Priority claimed from US09/213,875 external-priority patent/US6725250B1/en
Priority claimed from PCT/US1998/027058 external-priority patent/WO1999032972A1/en
Application filed by Individual filed Critical Individual
Publication of AU4194499A publication Critical patent/AU4194499A/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/02Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
    • H04L63/0209Architectural arrangements, e.g. perimeter networks or demilitarized zones
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • G06F9/5072Grid computing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2209/00Indexing scheme relating to G06F9/00
    • G06F2209/50Indexing scheme relating to G06F9/50
    • G06F2209/5017Task decomposition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/02Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/14Multichannel or multilink protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/329Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computer Security & Cryptography (AREA)
  • Computing Systems (AREA)
  • Multi Processors (AREA)
  • Power Sources (AREA)

Description

WO 99/61998 PCT/US99/11206 GLOBAL NETWORK COMPUTERS BACKGROUND OF THE INVENTION This invention generally relates to one or more computer networks having computers like personal computers or network 5 computers such as servers with microprocessors preferably linked by broadband transmission means and having hardware, software, firmware, and other means such that at least two parallel processing operations occur that involve at least two sets of computers in the network or in networks connected 10 together, a form of metacomputing. More particularly, this invention relates to one or more larqe networks composed of smaller networks and large numbers of computers connected, like the Internet, wherein more than one separate parallel or massively parallel processing operation involving more than one 15 different set of computers occurs simultaneously. Even more particularly, this invention relates to one or more such networks wherein more than one (or a very large number of) parallel or massively parallel microprocessing processing operations occur separately or in an interrelated fashion; and 20 wherein ongoing network processing linkages are established between virtually any microprocessors of separate computers connected to the network. Still more particularly, this invention relates generally to a network structure or architecture that enables the shared 25 used of network microprocessors for parallel processing, including massive parallel processing, and other shared processing such as multitasking, wherein personal computer owners provide microprocessor processing power to a network, preferably for parallel or massively parallel processing or 30 multitasking, in exchange for network linkage to other personal 1 WO 99/61998 PCT/US99/11206 and other computers supplied by network providers such as Internet Service Providers (ISP's), including linkage to other microprocessors for parallel or other processing such as multitasking. The financial basis of the shared use between 5 owners and providers being be whatever terms to which the parties agree, subject to governing laws, regulations, or rules, including payment from either party to the other based on periodic measurement of net use or provision of processing power like a deregulated electrical power grid or preferably 10 involving no payment, with the network system (software, hardware, etc) providing an essentially equivalent usage of computing resources by both users and providers (since any network computer operated by either entity is potentially both a user and provider of computing resources alternately (or even 15 simultaneously, assuming multitasking) , with potentially an override option by a user (exercised on the basis, for example, of user profile or user's credit line or through relatively instant payment). Finally, this invention relates to a network system 20 architecture including hardware and software that provides use of the Internet or its future equivalents or successors (and most other networks) without cost to most users of personal computers or most other computers, while also providing those users (and all other users, including of supercomputers) with 25 computer processing performance that at least doubles every 18 months through metacomputing means. This metacomputing performance increase provided by the new MetaInternet (or Metanet for short) is in addition to all other performance increases, such as those already anticipated by Moore's Law. 30 By way of background, the computer industry has been governed over the last 30 years by Moore's Law, which holds that the circuitry of computer chips has been shrunk 2 WO 99/61998 PCTIUS99/11206 substantially each year, yielding a new generation of chips every 18 months with twice as many transistors, so that microprocessor computing power is effectively doubled every year and a half. 5 The long term trend in computer chip miniaturization is projected to continue unabated over the next few decades. For example, slightly more than a decade ago a 16 kilobit DRAM memory chip (storing 16,000 data bits) was typical; the standard in 1996 was the 16 megabit chip (16,000,000 data 10 bits), which was introduced in 1993; and industry projections are for 16 gigabit memory chips (16,000,000,000 data bits) to be introduced in 2008 and 64 gigabit chips in 2011, with 16 terabit chips (16,000,000,000,000 data bits) conceivable by the mid-to-late 2020's. This is a thousand-fold increase regularly 15 every fifteen years. Hard drive speed and capacity are also growing at a spectacular rate, even higher than that of semiconductor microchips in recent years. Similarly regular and enormous improvements are anticipated to continue in microprocessor computing speeds, 20 whether measured in simple clock speed or MIPS (millions of instructions for second) or numbers of transistors per chip. For example, performance has improved by four or five times every three years since Intel launched its X86 family of microprocessors used in the currently dominant "Wintel" 25 standard personal computers. The initial Intel Pentium Pro microprocessor was introduced in 1995 and is a thousand times faster than the first IBM standard PC microprocessor, the Intel 8088, which was introduced in 1979. By 1996 the fastest of microprocessors, like Digital Equipment Corp.'s Alpha chip, is 30 faster than the processor in the original Cray Y-MP supercomputer, as is even the Nintendo 64 video game system. Both microprocessors and software (and firmware and other 3 WO 99/61998 PCT/US99/11206 components) are also evolving from 8 bit and 16 bit systems into 32 bit systems that are becoming the standard today, with some 64 bit systems like the DEC Alpha already introduced and more coming, such as Intel's Merced microprocessor in 2000, 5 with future increases to 128 bit likely some later. A second major development trend in the past decade or so has been the rise of parallel processing, a computer architecture utilizing more than one CPU microprocessor (often many more, even thousands of relatively simple microprocessors, 10 for massively parallel processing) linked together into a single computer with new operating systems having modifications that allow such an approach. The field of supercomputing has been taken over by this approach, including designs utilizing many identical standard personal computer microprocessors. 15 Hardware, firmware, software and other components specific to parallel processing are in a relatively early stage of development compared to that for single processor computing, and therefore much further design and development is expected in the future to better maximize the computing capacity made 20 possible by parallel processing. Continued improvement is anticipated in system hardware, software, and architecture for parallel processing so that reliance is reduced on the multiple microprocessors having to share a common central memory, thereby allowing more independent operation of those 25 microprocessors, each with their own discrete memory, like current personal computers, workstations and most other computer systems architecture; for unconstrained operation, each individual microprocessor must have rapid access to sufficient memory. 30 Several models of personal computers are now available with more than one microprocessor. It seems inevitable that in the future personal computers, broadly defined to include 4 WO 99/61998 PCT/US99/11206 versions not currently in use, will also employ parallel computing utilizing multiple microprocessors or massively parallel computing with very large numbers of microprocessors. Future designs, such Intel's Merced chip, are expected to have 5 a significant number of parallel processors on a single microprocessor chip. A form of parallel processing called superscalar processing is also being employed within microprocessor design itself. The current generation of microprocessors such at the 10 Intel Pentium have more than one data path within the microprocessor in which data is processed, with two to three paths being typical now and as many as eight in 1998 in IBM's new Power 3 microprocessor chip. The third major development trend is the increasing size 15 of bandwidth, which is a measure of communications power or transmission speed (in terms of units of data per second) between computers connected by a network. Before now, the local area networks and telephone lines typically linking computers including personal computers have operated at speeds 20 much lower than the processing speeds of a personal computer. For example, a typical 1997 Intel Pentium operates at 100 MIPS (millions of instructions per second) , whereas the most common current Ethernet connecting PC's is roughly 10 times slower at 10 megabits per second (Mbps), although some Ethernet 25 connections are now 100 Mbps) and telephone lines are very much slower, the highest typical speed in 1998 being about 56 kilobits (reached only during downloads, however). Now, however, the situation is expected to change dramatically, with bandwidth or transmission speed being 30 anticipated to expand from 5 to 100 times as fast as the rise of microprocessor speeds, due to the use of coaxial cable, wireless, and especially fiber optic cable, instead of old 5 WO 99/61998 PCTUS99/11206 telephone twisted pair lines. Telecommunication providers are now making available fiber connections supporting bandwidth of 40 gigabits and higher. Technical improvements are expected in the near term which 5 will make it possible to carry over 2 gigahertz (billions of cycles per second) on each of 700 wavelength streams, adding up to more than 1,400 gigahertz on every single fiber thread. Experts currently estimate that the bandwidth of optical fiber has been utilized one million times less fully than the 10 bandwidth of coaxial or twisted pair copper lines. Within a decade, 10,000 wavelength streams per fiber are expected and 20-80 wavelengths on a single fiber is already commercially available. And the use of thin mirrored hollow wires or tubes called omniguides should provide very substantial additional 15 increases. Other network connection developments such as asynchronous transfer mode (ATM) and digital signal processors, which are improving their price/performance tenfold every two years, are also supporting the rapid increase in bandwidth. The increase 20 in bandwidth reduces the need for switching and switching speed will be greatly enhanced when practical optical switches are introduced in the fairly near future, potentially reducing costs substantially. The result of this huge bandwidth increase is 25 extraordinary: already it is technically possible to connect virtually any computer to a network with a bandwidth that equals or exceeds the computer's own internal system bus speed, even as that bus speed itself is increasing significantly. The principal constraint is the infrastructure, consisting mostly 30 of connecting the "last mile" to personal computers with optical fiber or other broad bandwidth connection, still needs to be built. The system bus of a computer is its internal 6 WO 99/61998 PCTIUS99/11206 network connecting many or most of its internal components such as microprocessor, random access memory (RAM) , hard-drive, modem, floppy drive, and CD-ROM; for recent personal computers it has been only about 40 megabits per second, but is up to 133 5 megabits per second on Intel's Pentium PCI bus in 1995. IBM's 1998 Power3 microprocessor chip has a system bus of 1.6 gigabits per second and is now up to a gigabit per second on Intel's Pentium PCI bus. Despite these tremendous improvements anticipated in the 10 future, the unfortunate present reality is that a typical personal computer (PC) is already so fast that its microprocessor is essentially idle during most of the time the PC is in actual use and that operating time itself is but a small fraction of those days the PC is even in any use at all. 15 The reality is that nearly all PC's are essentially idle during roughly all of their useful life. A realistic estimate is that its microprocessor is in an idle state 99.9% of the time (disregarding current unnecessary microprocessor busywork like executing screen saver programs, which have been made 20 essentially obsolete by power-saving CRT monitor technology, which is now standard in the PC industry). Given the fact that the reliability of PC's is so exceptionally high now, with the mean time to failure of all components typically several hundred thousand hours or more, 25 the huge idle time of PC's represents a total loss; given the high capital and operating costs of PC's, the economic loss is very high. PC idle time does not in effect store a PC, saving it for future use, since the principle limiting factor to continued use of today's PC's is obsolescence, not equipment 30 failure from use. Moreover, there is growing concern that Moore's Law, which as noted above holds that the constant miniaturization of 7 WO 99/61998 PCT/US99/11206 circuits results in a doubling of computing power every 18 months, cannot continue to hold true much longer. Indeed, Moore's Law may now be nearing its limits for silicon-based devices, perhaps by as early as 2004, and no new technologies 5 have yet emerged that currently seem with reasonable certainty to have the potential for development to a practical level by then, although many recent advances have the potential to maintain Moore's Law. SUMMARY OF THE INVENTION 10 However, the confluence of all three of the established major trends summarized above -- supercomputer-like personal computers, the spread of parallel processing using personal computer microprocessors (particularly massively parallel processing), and the enormous increase in network 15 communications bandwidth -- has made possible a surprising solution to the hugely excessive idleness problem of personal computers (and to the problematic possible end of Moore's Law) , with very high potential economic savings once the basic infrastructure connecting personal computers with optical fiber 20 is in place in the relatively near future. The solution is use those mostly idle PC's (or their equivalents or successors) to build a parallel or massively parallel processing computer utilizing a very large network like the Internet or, more specifically, like the World Wide 25 Web (WWW), or their equivalents or eventual successors like the MetaInternet (and including Internet II and the Next Generation Internet, which are under development now and which will utilize much broader bandwidth and will coexist with the Internet, the structure of which is in ever constant hardware 30 and software upgrade and including the SuperInternet based on essentially all optical fiber transmission) with extremely broad bandwidth connections and virtually unlimited data 8 WO 99/61998 PCT/US99/11206 transmission speed. The prime characteristic of the Internet is of course the very large number of computers of all sorts already linked to it, with the future potential for effectively universal 5 connection; it is a network of networks of computers that provides nearly unrestricted access (other than cost) worldwide. The soon-to-be widely available very broad bandwidth of network communications is used to link personal computers externally in a manner at least equivalent, and 10 probably much faster, to the faster internal system buses of the personal computers, so that no external processing constraint will be imposed on linked personal computers by data input or output, or throughput; the speed of the microprocessor itself is the only processing constraint of the system. 15 This makes efficient external parallel processing possible, including massively parallel processing, in a manner paralleling more conventional internal parallel processing, call superscalar processing. In one preferred embodiment, the World Wide Web (or its 20 equivalents or successors) is transformed into a huge virtual massively parallel processing computer or computers, with potential through its established hyperlinks connections to operate in a manner at least somewhat like a neural network or neural networks, since the speed of transmission in the 25 broadband linkages is so great that any linkage between two microprocessors is virtually equivalent to direct, physically close connections between those microprocessors. With further development, digital signal processor-type microprocessors and/or analogue microprocessors may be 30 particularly advantageous for this approach, either alone or in conjunction with conventional microprocessors and/or those new microprocessors described in this application. Networks with 9 WO 99/61998 PCTIUS99/11206 WWW-type hyperlinks incorporating digital signal processor-type microprocessor (or successors or equivalents) could operate separately from networks of conventional microprocessors (or successors or equivalents) or with one or more connections 5 between such differing networks or with relatively complete integration between such differing networks. Simultaneous operation across the same network connection structure should be possible, employing non-interfering transmission links. Such extremely broad bandwidth networks of computers 10 enable every PC within the network to be fully utilized or nearly so. Because of the extraordinary extent to which existing PC's are currently idle, at optimal performance this new system potentially results in a thousand-fold increase in computer power available to each and every PC user (and any 15 other user) ; and, on demand, almost any desired level of increased power, limited mostly by the increased cost, which however is relatively far less than possible from any other conceivable computer network configuration. This revolutionary increase is on top of the extremely rapid, but evolutionary 20 increases already occurring in the computer/network industry discussed above. The metacomputing hardware and software means of the MetaInternet provides performance increases that is likely to at least double every eighteen months based on the doubling of 25 personal computers shared in a typical parallel processing operation by a standard PC user, starting first with at least 2 PC's, then about 4, about 8, about 16, about 32, about 64, about 128, about 256, and about 512, for example. After about fifteen years, for example, it is anticipated that each 30 standard PC user will likely be able to use about 1024 personal computers for parallel processing or any other shared computing use, while generally using the Internet or its successors like 10 WO 99/61998 PCT/US99/11206 the MetaInternet for free. At the other end of the performance spectrum, supercomputers experience a similar performance increase generally, but ultimately the performance increase is limited primarily by cost of adding temporary network linkages 5 to available PC's, so there is definite potential for a quantum leap in supercomputer performance. Network computer systems as described above offer almost limitless flexibility due to the abundant supply of heretofore idle connected microprocessors. This advantage allows "tightly 10 coupled" computing problems (which normally are difficult to process in parallel) to be solved without knowing in advance (as is now necessary in relatively massively parallel processing) how many processors are available, what they are and their connection characteristics. A minimum number of 15 equivalent processors (with equivalent other specs) are easily found nearby in a massive network like the Internet and assigned within the network from those multitudes available nearby. Moreover, the number of microprocessors used are almost completely flexible, depending on the complexity of the 20 problem, and limited only by cost. The existing problem of time delay is solved largely by the widespread introduction of broad bandwidth connections between computers processing in parallel. The state of the known art relating to this application is 25 summarized in The Grid: Blueprint for a New Computing Infrastructure, edited by Ian Foster and Carl Kesselman, and published by Morgan Kaufman Publishers, Inc. in July 1998. Additional information may be obtained from the World Wide Web at "http://www.mkp.com/grids". 30 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a simplified diagram of a section of a computer network, such as the Internet, showing an embodiment 11 WO 99/61998 PCT/US99/11206 of a meter means which measures flow of computing during a shared operation such as parallel processing between a typical PC user and a network provider. Figure 2 is a simplified diagram of a section of a 5 computer network, such as the Internet, showing an embodiment of another meter means which measures the flow of network resources, including shared processing, being provided to a typical PC user and a network provider. Figure 3 is a simplified diagram of a section of a 10 computer network, such as the Internet, showing an embodiment of another meter means which, prior to execution, estimates the level of network resources, and their cost, of a shared processing operation requested by a typical PC user from a network provider. 15 Figure 4A-4C are simplified diagrams of a section of a computer network, such as the Internet, showing in a sequence of steps an embodiment of a selection means whereby a shared processing request by a PC is matched with a standard preset number of other PC's to execute shared operation. 20 Figure 5 is a simplified diagram of a section of a computer network, such as the Internet, showing an embodiment of a control means whereby the PC, when idled by its user, is made available to the network for shared processing operations. Figure 6 is a simplified diagram of a section of a 25 computer network, such as the Internet, showing an embodiment of a signal means whereby the PC, when idled by its user, signals its availability to the network for shared processing operations. Figure 7 is a simplified diagram of a section of a 30 computer network, such as the Internet, showing an embodiment of a receiver and/or interrogator means whereby the network receives and/or queries the availability for shared processing 12 WO 99/61998 PCT/US99/11206 status of a PC within the network. Figure 8 is a simplified diagram of a section of a computer network, such as the Internet, showing an embodiment of a selection and/or utilization means whereby the network 5 locates available PC's in the network that are located closest to each other for shared processing. Figure 9 is a simplified diagram of a section of a computer network, such as the Internet, showing an embodiment of a system architecture for conducting a request imitated by 10 a PC for a search using parallel processing means that utilizes a number of networked PC's. Figures 1OA-10I are simplified diagrams of a section of a computer network, such as the Internet, showing an embodiment of a system architecture utilizing a firewall to separate that 15 part of a networked PC (including a system reduced in size to a microchip) that is accessible to the network for shared processing from a part that is kept accessible only to the PC user; also showing the alternating role that preferably each PC in the network plays as either a master or slave in a shared 20 processing operation involving one or more slave PC's in the network; and showing a home or business network system, which can be configured as an Intranet; in addition, showing PC and PC microchips controlled by a controller (including remote) with limited or no processing capability; and showing PC and PC 25 microchips in which a firewall 50 is can be reconfigured by a PC user. Figure 11 is a simplified diagram of a section of a computer network, such as the Internet, showing an embodiment of a system architecture for connecting clusters of PC's to 30 each other by wireless means, to create the closest possible (and therefore fastest) connections. Figure 12 is a simplified diagram of a section of a 13 WO 99/61998 PCT/US99/11206 computer network, such as the Internet, showing an embodiment of a system architecture for connecting PC's to a satellite by wireless means. Figure 13 is a simplified diagram of a section of a 5 computer network, such as the Internet, showing an embodiment of a system architecture providing a cluster of networked PC's with complete interconnectivity by wireless means. Figure 14A is a simplified diagram of a section of a computer network, such as the Internet, showing an embodiment 10 of a transponder means whereby a PC can identify one or more of the closest available PC's in a network cluster to designate for shared processing by wireless means. Figure 14B shows clusters connected wirelessly; Figure 14C shows a wireless cluster with transponders and with a network wired connection 15 to Internet; Figure 14D shows a network client/server wired system with transponders. Figure 15 is a simplified diagram of a section of a computer network, such as the Internet, showing an embodiment of a routing means whereby a PC request for shared processing 20 is routed within a network using preferably broad bandwidth connection means to another area in a network with one or more idle PC's available. Figures 16A-16Z and 16AA show a new hierarchical network architecture for personal computers and/or microprocessors 25 based on subdivision of parallel processing or multi-tasking operations through a number of levels down to a processing level. Figures 17A-17D show a firewall 50 with a dual function, including that of protecting Internet users (and/or other 30 network users sharing use) of one or more slave personal computers PC 1 or microprocessors 40 from unauthorized surveillance or intervention by an owner/operator of those 14 WO 99/61998 PCT/US99/11206 slave processors. Figures 18A-18D show designs for one or more virtual quantum computers integrated into one or more digital computers. 5 Figure 19 shows special adaptations to allow the use of idle automobile computers to be powered and connected to the Internet (or other net) for parallel or multi-tasking processing. Figures 20A and 20B show separate broad bandwidth outputs 10 such as an optical connection like glass fiber from each microprocessor 40 or 94. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The new network computer utilizes PC's as providers of computing power to the network, not just users of network 15 services. These connections between network and personal computer are enabled by a new form of computer/network financial structure that is rooted on the fact that economic resources being provided the network by PC owners (or leaser) are similar in value to those being provided by the network 20 provider providing connectivity. Unlike existing one way functional relationships between network providers such as internet service providers (often currently utilizing telecommunications networks for connectivity) and PC users, wherein the network provider 25 provides access to a network like the Internet for a fee (much like cable TV services), this new relationship recognizes that the PC user is also providing the network access to the user's PC for parallel computing use, which has a similar value. The PC thus both provides and uses services on the network, 30 alternatively or potentially even virtually simultaneously, in a multitasking mode. This new network operates with a structural relationship 15 WO 99/61998 PCT/US99/11206 that is roughly like that which presently exists between an electrical power utility and a small independent power generator connected to a deregulated utility's electrical power grid, wherein electrical power can flow in either direction 5 between utility and independent generator depending on the operating decisions of both parties and at any particular point in time each party is in either a debt or credit position relative to the other based on the net direction of that flow for a given period, and is billed accordingly. In the 10 increasingly deregulated electrical power industry, electrical power (both its creation and transmission) is becoming a commodity bought and sold in a competitive marketplace that crosses traditional borders. With the structural relationship proposed here for the new network, parallel free market 15 structures can develop over time in a new computer power industry dominated by networks of personal computers in all their forms providing shared processing in a grid scaling almost seamlessly from local to national (and international) like an open market electrical power grid. 20 For this new network and its structural relationships, a network provider or Internet service provider (ISP) is defined in the broadest possible way as any entity (corporation or other business, government, not-for-profit, cooperative, consortium, committee, association, community, or other 25 organization or individual) that provides personal computer users (very broadly defined below) with initial and continuing connection hardware and/or software and/or firmware and/or other components and/or services to any network, such as the Internet and WWW or Internet II or Next Generation Internet or 30 their present or future equivalents, coexistors or successors, like the herein proposed MetaInternet,including any of the current types of Internet access providers (ISP's) including 16 WO 99/61998 PCT/US99/11206 telecommunication companies, television cable or broadcast companies, electrical power utilities or other related companies, satellite communications companies, or their present or future equivalents, coexistors or successors. 5 The connection means used in the networks of the network providers, including between personal computers or equivalents or successors, is preferably very broad bandwidth, including electromagnetic connections such as optical connection, including fiber optic cable or wireless for example, but not 10 excluding any other electromagnetic or other means, including television coaxial cable and telephone twisted pair, as well as associated gateways, bridges, routers, and switches with all associated hardware and/or software and/or firmware and/or other components and their present or future equivalents or 15 successors. The computers used by the providers include any current or future computers, including such current examples as mainframes, minicomputers, servers, and personal computers, and associated their associated hardware and/or software and/or firmware and/or other components, and their present or future 20 equivalents or successors. Other levels of network control beyond the network provider also exist to control any aspect of the network structure and function, any one of which levels may or may not control and interact directly with the PC user. For example, 25 at least one level of network control like the World Wide Web Consortium (W3C) or Internet Society (ISOC) or other ad hoc industry consortia establish and ensure compliance with any prescribed network standards and/or protocols and/or industry standard agreements for any hardware and/or software and/or 30 firmware and/or other component connected to the network. Under the consensus control of these consortia/societies, other levels of network control can deal with administration and 17 WO 99/61998 PCT/US99/11206 operation of the network. These other levels of network control can potentially be constituted by any network entity, including those defined immediately above for network providers. 5 The principal defining characteristic of the network herein described being communication connections (including hardware and/or software and/or firmware and/or other component) of any form, including electromagnetic (such as light and radio or microwaves) and electrochemical (and not 10 excluding biochemical or biological), between PC users and their computers, with connection (either directly or indirectly) to the largest number of users and their computers possible being highly advantageous, such as networks like the Internet (and Internet II and the Next Generation Internet) and 15 WWW and equivalents and successors, like the MetaInternet. Multiple levels of such networks will likely coexist with different technical capabilities, like Internet and Internet II, but would certainly have interconnection and therefore would certainly communicate freely between levels, for such 20 standard network functions as electronic mail, for example. And a personal computer (PC) user is defined in the broadest possible way as any individual or other entity routinely using a personal computer, which is defined as any computer, digital or analog or neural or quantum, particularly 25 including personal use microprocessor-based personal computers having one or more microprocessors (each including one or more parallel processors) in their general current form (hardware and/or software and/or firmware and/or any other component) and their present and future equivalents or successors, such as 30 application-specific (or several application) computers, network computers, handheld personal digital assistants, personal communicators such as telephones and pagers, wearable 18 WO 99/61998 PCTIUS99/11206 computers, digital signal processors, neural-based computers (including PC's) , entertainment devices such as televisions and associated cable digital set-top control boxes, video tape recorders, video games, videocams, compact or digital video 5 disk (CD or DVD) player/recorders, radios and cameras, other household electronic devices, business electronic devices such as printers, copiers, fax machines, automobile or other transportation equipment devices, robots, and other current or successor devices incorporating one or more microprocessors (or 10 functional or structural equivalents), especially those owned (or leased directly or indirectly) and used directly by individuals, utilizing one or more microprocessors, made of inorganic compounds such as silicon and/or other inorganic or organic compounds. While not personal computers (due generally 15 to high cost) , current and future forms of mainframe computers, minicomputers, workstations, and even supercomputers are also be included with PCs in a parallel processing network, since they can be used functionally in the same general way in the network as a PC. Such personal computers as defined above have 20 owners or leasers, which may or may not be the same as the computer users. Continuous connection of computers to the network, such as the Internet, WWW, or equivalents or successors, is preferred, but clearly not required, since connection can also be made at the initiation of a shared 25 processing operation. Parallel processing is defined as one form of shared processing involving two or more microprocessors used in solving the same computational problem or other task. Massively parallel microprocessor processing involves large 30 numbers of microprocessors. In today's technology, massive parallel processing is probably to be considered to be about 64 microprocessors (referred to in this context as nodes) and over 19 WO 99/61998 PCT/US99/11206 7,000 nodes have been successfully tested in an Intel supercomputer design using PC microprocessors (Pentium Pros). It is anticipated that continued software improvements will make possible effective use of a much larger number of nodes, 5 very possibly limited only by the number of microprocessors available for use on a given network, even an extraordinarily large one like the Internet or its equivalents and/or successors, like the MetaInternet. Broadband wavelength or broad bandwidth network 10 transmission is defined here to mean a transmission speed (usually measured in bits per second) that is at least high enough (or roughly at least equivalent to the internal clock speed of the microprocessor or microprocessors times the number of microprocessor channels equaling instructions per second or 15 operations per second or calculations per second) so that the processing input and output of the microprocessor is substantially unrestricted, particularly including at peak processing levels, by the bandwidth of the network connections between microprocessors that are performing some form of 20 parallel processing, particularly including massive parallel processing. Since this definition is dependent on microprocessor speed, it increases as microprocessor speeds increase. A rough example might be a 1996 era 100 MIPS (millions instructions per second) microprocessor, for which a 25 broad bandwidth connection is greater than 100 megabytes per second (MBps); this is a rough approximation. However, a preferred connection means referenced above is a light wave or optical connection such as fiber optic cable, which in 1996 already provided multiple gigabit bandwidth on 30 single fiber thread and is rapidly improving significantly on a continuing basis, so the currently preferred general use of optical fiber connections between PCs virtually assures broad 20 WO 99/61998 PCT/US99/11206 bandwidth for data transmission that is far greater than microprocessor speed to provide data to be transmitted. In addition, new wired optical connections in the form of thin, mirrored hollow wires or tubes called omniguides offer even 5 much greater bandwidth than optical fiber and without need of amplification when transmitting over distances, unlike optical fiber. The connection means to provide broad bandwidth transmission is either wired or wireless, with wireless generally preferred for mobile personal computers (or 10 equivalents or successors) and as otherwise indicated below. Wireless connection bandwidth is also increasing rapidly and is considered to offer essentially the same benefit as fiber optic cable: data transmission speed that far exceeds data processing speed. 15 The financial basis of the shared use between owners/ leasers and providers is whatever terms to which the parties agree, subject to governing laws, regulations, or rules, including payment from either party to the other based on periodic measurement of net use or provision of processing 20 power, in a manner like an deregulated or open market electrical power grid. In one embodiment, as shown in Figure 1, in order for this network structure to function effectively, there is a meter device 5 (comprised of hardware and/or software and/or firmware 25 and/or other component) to measure the flow of computing power between PC 1 user and network 2 provider, which might provide connection to the Internet and/or World Wide Web and/or Internet II and/or any present or future equivalent or successor 3, like the MetaInternet. In one embodiment, the PC 30 user should be measured by some net rating of the processing power being made available to the network, such as net score on one or more standard tests measuring speed or other performance 21 WO 99/61998 PCT/US99/11206 characteristics of the overall system speed, such as PC Magazine's benchmark test program, ZD Winstone (potentially including hardware and/or software and/or firmware and/or other component testing) or specific individual scores for 5 particularly important components like the microprocessor (such as MIPS or millions of instructions per second) that may be of application-specific importance, and by the elapsed time such resources were used by the network. In the simplest case, for example, such a meter need measure only the time the PC was 10 made available to the network for processing 4, which can be used to compare with time the PC used the network (which is already normally measured by the provider, as discussed below) to arrive at a net cost; potential locations of such a meter include at a network computer such as a server, at the PC, and 15 at some point on the connection between the two. Throughput of data in any standard terms is another potential measure. In another embodiment, as shown in Figure 2, there also is a meter device 7 (comprised of hardware and/or software and/or firmware and/or other component) that measures the amount of 20 network resources 6 that are being used by each individual PC 1 user and their associated cost. This includes, for example, time spent doing conventional downloading of data from sites in the network or broadcast from the network 6. Such metering devices currently exist to support billing by the hour of 25 service or type of service is common in the public industry, by providers such as America Online, Compuserve, and Prodigy. The capability of such existing devices is enhanced to include a measure of parallel processing resources that are allocated by the Internet Service Provider or equivalent to an individual 30 PC user from other PC users 6, also measuring simply in time. The net difference in time 4 between the results of meter 5 and meter 7 for a given period provides a reasonable billing basis. 22 WO 99/61998 PCT/US99/11206 Alternately, as shown in Figure 3, a meter 10 also estimates to the individual PC user prospectively the amount of network resources needed to fulfill a processing request from the PC user to the network (provider or other level of network 5 control) and associated projected cost, provide a means of approving the estimate by executing the request, and a realtime readout of the cost as it occurs (alternatively, this meter might be done only to alert 9 the PC user that a given processing request 8 falls outside normal, previously accepted 10 parameters, such as level of cost). To take the example of an unusually deep search request, a priority or time limit and depth of search should optimally be criteria or limiting parameters that the user can determine or set with the device. Preferably, the network involves no payment between users 15 and providers, with the network system (software, hardware, etc) providing an essentially equivalent usage of computing resources by both users and providers (since any network computer operated by either entity can potentially be both a user and provider of computing resources (even simultaneously, 20 assuming multitasking), with potentially an override option by a user (exercised on the basis, for example, of user profile or user's credit line or through relatively instant payment). Preferably, as shown in Figures 4A-4C, the priority and extent of use of PC and other users can be controlled on a 25 default-to-standard-of-class-usage basis by the network (provider or other) and overridden by the user decision on a basis prescribed by the specific network provider (or by another level of network control). One example of a default basis is to expend up to a PC's or other user's total credit 30 balance with the provider described above and the network provider then to provide further prescribed service on an debt basis up to some set limit for the user; different users might 23 WO 99/61998 PCT/US99/11206 have different limits based on resources and/or credit history. A specific category of PC user based, for example, on specific microprocessor hardware owned or leased, might have access to a set maximum number of parallel PC's or 5 microprocessors, with smaller or basic users generally having less access and vice versa. Specific categories of users might also have different priorities for the execution of their processing by the network. A very wide range of specific structural forms between user and provider are possible, both 10 conventional and new, based on unique features of the new network computer system of shared processing resources. For example, in the simplest case, in an initial system embodiment, as shown in Fig. 4A, a standard PC 1 user request 11 for a use involving parallel processing might be defaulted 15 by system software 13, as shown in Fig. 4B, to the use of only one other essentially identical PC 12 microprocessor for parallel processing or multitasking, as shown in Figure 4C; larger standard numbers of PC microprocessors, such as about three PC's at the next level, as shown in later Figure 1OG 20 (which could also illustrate a PC 1 user exercising an override option to use a level of services above the default standard of one PC microprocessor, presumably at extra cost), for a total of about four, then about 8, about 16, about 32, about 64 and so on, or virtually any number in between, is made available as 25 the network system is upgraded in simple phases over time, as well as the addition of sophisticated override options. As the phase-in process continues, many more PC microprocessors can be made available to the standard PC user (virtually any number), preferably starting at about 128, then about 256, then about 30 512, then about 1024 and so on over time, as the network and all of its components are gradually upgraded to handle the increasing numbers. System scalability at even the standard 24 WO 99/61998 PCT/US99/11206 user level is essentially unlimited over time. Preferably, for most standard PC users (including present and future equivalents and successors) , connection to the Internet (or present or future equivalents or successors like 5 the MetaInternet) can be at no cost to PC users, since in exchange for such Internet access the PC users can generally make their PC, when idle, available to the network for shared processing. Preferably, then, competition between Internet Service Providers (including present and future equivalents and 10 successors) for PC user customers can be over such factors as the convenience and quality of the access service provided and of shared processing provided at no addition cost to standard PC users, or on such factors as the level of shared processing in terms, for example of number of slave PC's assigned on a 15 standard basis to a master PC. The ISP's can also compete for parallel processing operations, from inside or outside the ISP Networks, to conduct over their networks. In addition, as shown in Figures 5A-5B, in another embodiment there is a (hardware and/or software and/or firmware 20 and/or other) controlling device to control access to the user's PC by the network. In its simplest form, such as a manually activated electromechanical switch, the PC user could set this controller device to make the PC available to the network when not in use by the PC user. Alternatively, the PC 25 user could set the controller device to make the PC available to the network whenever in an idle state, however momentary, by making use of multitasking hardware and/or software and/or firmware and/or other component (broadcast or "push" applications from the Internet or other network could still run 30 in the desktop background). Or, more simply, as shown in Figure 5A, whenever the state that all user applications are closed and the PC 1 is available 25 WO 99/61998 PCT/US99/11206 to the network 14 (perhaps after a time delay set by the user, like that conventionally used on screensaver software) is detected by a software controller device 12 installed in the PC, the device 12 signals 15 the network computer such as a 5 server 2 that the PC available to the network, which could then control the PC 1 for parallel processing or multitasking by another PC. Such shared processing can continue until the device 12 detects the an application being opened 16 in the first PC (or at first use of keyboard, for quicker response, in 10 a multitasking environment), when the device 12 signals 17 the network computer such as a server 2 that the PC is no longer available to the network, as shown in Figure 5B, so the network can then terminate its use of the first PC. In a preferred embodiment, as shown in Figure 6, there is 15 a (hardware and/or software and/or firmware and/or other component) signaling device 18 for the PC 1 to indicate or signal 15 to the network the user PC's availability 14 for network use (and whether full use or multitasking only) as well as its specific (hardware/software/firmware/other components) 20 configuration 20 (from a status 19 provided by the PC) in sufficient detail for the network or network computer such as a server 2 to utilize its capability effectively. In one embodiment, the transponder device is resident in the user PC and broadcast its idle state or other status (upon change or 25 periodically, for example) or respond to a query signal from a network device. Also, in another embodiment, as shown in Figure 7, there is a (hardware/software and/or firmware and/or other component) transponder device 21 resident in a part of the network (such 30 as network computer, switch, router, or another PC, for examples) that receives 22 the PC device status broadcast and/or queries 26 the PC for its status, as shown in Figure 7. 26 WO 99/61998 PCT/US99/11206 In one embodiment, as shown in Figure 8, the network also has resident in a part of its hardware and/or software (and/or firmware and/or other components) a capacity such as to allow it to most effectively select and utilize the available user 5 PC's to perform parallel processing initiated by PC users or the network providers or others. To do so, the network should have the (hardware and/or software and/or firmware and/or other component) capability of locating each PC accurately at the PC's position on the geographic grid lines/connection means 23 10 so that parallel processing occurs between PC's (PC 1 and PC 12) as close together as possible, which should not be difficult for PC's at fixed sites with a geographic location, customarily grouped together into cells 24, as shown in Figure 8, but which requires an active system for any wireless 15 microprocessor to measure its distance from its network relay site, as discussed below in Figure 14. One of the primary capabilities of the Internet (or Internet II or successor, like the MetaInternet) or WWW network computer is to facilitate searches by the PC user or other 20 user. As shown in Figure 9, searches are particularly suitable to multiple processing, since, for example, a typical search is to find a specific Internet or WWW site with specific information. Such site searches can be broken up geographically, with a different PC processor 1' allocated by 25 the network communicating through a wired means 99 as shown (or wireless connections) to search each area, the overall area being divided into eight separate parts, as shown, which are preferably about equal, so that the total search would be about 1/8 as long as if one processor did it alone (assuming the PC 30 1 microprocessor provides control only and not parallel processing, which may be preferable in some case). As a typical example, a single PC user might need 1,000 27 WO 99/61998 PCT/US99/11206 minutes of search time to find what is requested, whereas the network computer, using multiple PC processors, might be able to complete the search in 100 minutes using 10 processors, or 10 minutes using 100 processors or 1 minute using 1,000 5 processors (or even 1 second using 60,000 processors) ; assuming performance transparency, which should be achievable, at least over time. The network's external parallel processing is optimally completely scalable, with virtually no theoretical limit. 10 The above examples also illustrates a tremendous potential benefit of network parallel processing. The same amount of network resources, 60,000 processor seconds, was expended in each of the equivalent examples. But by using relatively large multiples of processors, the network can provide the user with 15 relatively immediate response with no difference in cost (or relatively little difference) -- a major benefit. In effect, each PC user linked to the network providing external parallel processing becomes, in effect, a virtual supercomputer! As discussed below, supercomputers can experience a similar 20 quantum leap in performance by employing a thousand-fold (or more) increase in microprocessors above current levels. Such power will likely be required for any effective searches in the World Wide Web (WWW). WWW is currently growing at a rate such that it is doubling every year, so that 25 searching for information within the WWW will become geometrically more difficult in future years, particularly a decade hence, and it is already a very significant difficulty to find WWW sites of relevance to any given search and then to review and analyze the contents of the site. 30 So the capability to search with massive parallel processing will be required to be effective and can dramatically enhance the capabilities of scientific, 28 WO 99/61998 PCTUS99/11206 technological and medical researchers. Such enhanced capabilities for searching (and analysis) can also fundamentally alter the relationship of buyers and sellers of any items and/or services. For the buyer, massive 5 parallel network processing can make it possible to find the best price, worldwide, for any product or the most highly rated product or service (for performance, reliability, etc.) within a category or the best combination of price/performance or the highest rated product for a given price point and so on. 10 The best price for the product can include best price for shipping within specific delivery time parameters acceptable to the buyer. For the seller, such parallel processing can drastically enhance the search, worldwide, for customers potentially 15 interested in a given product or service, providing very specific targets for advertisement. Sellers, even producers, can know their customers directly and interact with them directly for feedback on specific products and services to better assess customer satisfaction and survey for new product 20 development. Similarly, the vastly increased capability provided by the system's shared parallel processing can produce major improvements in complex simulations like modeling worldwide and local weather systems over time, as well as design and testing 25 of any structure or product, from airliners and skyscrapers, to new drugs and to the use of much more sophisticated artificial intelligence (AI) in medical treatment and in sorting through and organizing the PC users voluminous input of electronic data from "push" technologies. Improvements in games also result, 30 especially in terms of realistic simulation and realtime interactivity. As is clear from the examples, the Internet or WWW network 29 WO 99/61998 PCTIUS99/11206 computer system like the MetaInternet can potentially put into the hands of the PC user an extraordinary new level of computer power vastly greater than the most powerful supercomputer existing today. The world's total of microchips is already 5 about 350 billion, of which about 15 billion are microprocessors of some kind (most are fairly simple "appliance" type running wrist watches, televisions, cameras, cars, telephones, etc). Assuming growth at its current rates, in a decade the Internet/Internet II/WWW could easily have a 10 billion individual PC users, each providing a average total of at least 10 highly sophisticated microprocessors (assuming PC's with at least 4 microprocessors (or more, such as 16 microprocessors or 32, for example) and associated other handheld, home entertainment, and business devices with 15 microprocessors or digital processing capability, like a digital signal processor or successor devices). That results in a global computer a decade from now made of at least 10 billion microprocessors, interconnected by electromagnetic wave means at speeds approaching the speed of light. 20 In addition, if as is preferred the exceptionally numerous special purpose "appliance" microprocessors noted above, especially those that operate now intermittently like personal computers, are designed as is preferred to the same basic consensus industry standard as parallel microprocessors for 25 PC's (or equivalents or successors) or for PC "systems on a chip" discussed later in Figure 10A-H (so that all PCs function homogeneously or are homogeneous in the parallel processing Internet, as preferred) , and if such PCs are also connected by any broad bandwidth means including fiber optic cable or 30 equivalent wireless, then the number of parallel processors potentially available can increase roughly about 10 times, for a net potential "standard" computing performance of up to 30 WO 99/61998 PCT/US99/11206 10,000 times current performance within fifteen years, exclusive of Moore's Law routine increases. Moreover, in a environment where all current intermittently operating microprocessors followed the same basic design standards as 5 preferred so that all were homogeneous parallel processors, then although the cost per microprocessor increases somewhat, especially initially, the net cost of computing for all users falls drastically due to the general performance increase due to the use of otherwise idle "appliance" microprocessors. 10 Therefore, the overall system cost reduction compels a transformation of virtually all such microprocessors, which are currently specialty devices known as application-specific integrated circuits (ASICs) , into general microprocessors (like PC's), with software and firmware providing most of their 15 distinguishing functionality. As noted above, homogeneity of parallel (and multi-tasking) processing design standards for microprocessors and network, including local and Internet, is preferred, but heterogeneity is also a well established parallel processing alternative providing significant benefits 20 compared to non-parallel processing. To put this in context, a typical supercomputer today utilizing the latest PC microprocessors has less than a hundred. Using network linkage to all external parallel processing, a peak maximum of perhaps 1 billion microprocessors 25 can be made available for a network supercomputer user, providing it with the power 10,000,000 times greater than is available using current conventional internal parallel processing supercomputers (assuming the same microprocessor technology). Because of it's virtually limitless scalability 30 mentioned above, resources made available by the network to the supercomputer user or PC user can be capable of varying significantly during any computing function, so that peak 31 WO 99/61998 PCT/US99/11206 computing loads can be met with effectively whatever level of resources are necessary. In summary, regarding monitoring the net provision of power between PC and network, Figures 1-9 show embodiments of 5 a system for a network of computers, including personal computers, comprising: means for network services including browsing functions, as well as shared computer processing such as parallel processing, to be provided to the personal computers within the network; at least two personal computers; 10 means for at least one of the personal computers, when idled by a personal user, to be made available temporarily to provide the shared computer processing services to the network; and means for monitoring on a net basis the provision of the services to each the personal computer or to the personal 15 computer user. In addition, Figures 1-9 show embodiments including where the system is scalar in that the system imposes no limit to the number of the personal computers, including at least 1024 personal computers; the system is scalar in that the system imposes no limit to the number of personal computers 20 participating in a single shared computer processing operation, including at least 256 personal computers; the network is connected to the Internet and its equivalents and successors, so that the personal computers include at least a million personal computers; the network is connected to the World Wide 25 Web and its successors; the network includes at least one network server that participates in the shared computer processing.; the monitoring means includes a meter device to measure the flow of computing power between the personal computers and the network; the monitoring means includes a 30 means by which the personal user of the personal computer is provided with a prospective estimate of cost for the network to execute an operation requested by the personal user prior to 32 WO 99/61998 PCT/US99/11206 execution of the operation by the network; the system has a control means by which to permit and to deny access to the personal computers by the network for shared computer processing; access to the personal computers by the network is 5 limited to those times when the personal computers are idle; and the personal computers having at least one microprocessor and communicating with the network through a connection means having a speed of data transmission that is at least greater than a peak data processing speed of the microprocessor. 10 Also, relative to maintaining a standard cost, Figures 1-9 show embodiments of a system for a network of computers, including personal computers, comprising: means for network services including browsing functions, as well as shared computer processing such as parallel processing, to be provided 15 to the personal computers within the network; at least two personal computers; means for at least one of the personal computers, when idled by a personal user, to be made available temporarily to provide the shared computer processing services to the network; and means for maintaining a standard cost basis 20 for the provision of the services to each personal computer or to the personal computer user. In addition, Figures 1-9 show embodiments including where the system is scalar in that the system imposes no limit to the number of personal computers, including at least 1,024 personal computers; the system is 25 scalar in that the system imposes no limit to the number of the personal computers participating in a single shared computer processing operation, including at least 256 personal computers; the network is connected to the Internet and its equivalents and successors, so that the personal computers 30 include at least a million personal computers; the standard cost is fixed; the fixed standard cost is zero; the means for maintaining a standard cost basis includes the use of making 33 WO 99/61998 PCT/US99/11206 available a standard number of personal computers for shared processing by personal computers;the network is connected to the World Wide Web and its successors; the personal user can override the means for maintaining a standard cost basis so 5 that the personal user can obtain additional network services; the system has a control means by which to permit and to deny access to the personal computers by the network for shared computer processing; the personal computers having at least one microprocessor and communicating with the network through a 10 connection means having a speed of data transmission that is at least greater than a peak data processing speed of the microprocessor. Browsing functions generally include functions like those standard functions provided by current Internet browsers, such 15 as Microsoft Explorer 3.0 or 4.0 and Netscape Navigator 3.0 or 4.0, including at least access to searching World Wide Web or Internet sites, exchanging E-Mail worldwide, and worldwide conferencing; an intranet network uses the same browser software, but might not include access to the Internet or WWW. 20 Shared processing includes parallel processing and multitasking processing involving more than two personal computers, as defined above. The network system is entirely scalar, with any number of PC microprocessors potentially possible. As shown in Figures 10A-10F, to deal with operational and 25 security issues, it may be beneficial for individual users to have one microprocessor or equivalent device that is designated, permanently or temporarily, to be a master 30 controlling device (comprised of hardware and/or software and/of firmware and/or other component) that remains 30 unaccessible (preferably using a hardware and/or software and/or firmware and/or other component firewall 50) directly by the network but which controls the functions of the other, 34 WO 99/61998 PCT/US99/11206 slave microprocessors 40 when the network is not utilizing them. For example, as shown in Figures 10A, a typical PC 1 might have four or five microprocessors (even on a single 5 microprocessor chip) , with one master 30 and three or four slaves 40, depending on whether the master 30 is a controller exclusively (through different design of any component part), requiring four slave microprocessors 40 preferably; or the master microprocessor 30 has the same or equivalent 10 microprocessing capability as a slave 40 and multiprocesses in parallel with the slave microprocessors 40, thereby requiring only three slave microprocessors 40, preferably. The number of PC slave microprocessors 40 can be increased to virtually any other number, such as at least about eight, about 16, about 32, 15 about 64, about 128, about 256, about 512, about 1024, and so on (these multiples are preferred as conventional in the art, but not clearly required; the PC master microprocessors 30 can also be increased. Also included is the preferred firewall 50 between master 30 and slave 40 microprocessors. As shown in 20 preceding Figures 1-9, the PC 1 in Figure 10A is preferably connected to a network computer 2 and to the Internet or WWW or present or future equivalent or successor 3, like the MetaInternet. Other typical PC hardware components such as hard drive 25 61, floppy diskette 62, compact disk-read only memory (CD-ROM) 63, digital video disk (DVD) 64, Flash memory 65, random access memory (RAM) 66, video or other display 67, graphics card 68, and sound card 69, as well as digital signal processor or processors, together with the software and/or firmware stored 30 on or for them, can be located on either side of the preferred firewall 50, but such devices as the display 67, graphics card 68 and sound card 69 and those devices that both read and write 35 WO 99/61998 PCTIUS99/11206 and have non-volatile memory (retain data without power and generally have to written over to erase) , such as hard drive 62, Flash memory 65, floppy drive 62, read/write CD-ROM 63 or DVD 64 are preferred to be located on the PC user side of the 5 firewall 50, where the master microprocessor is also located, as shown in Figure 10A, for security reasons primarily; their location can be flexible, with that capability controlled such as by password-authorized access. Alternately, any or these devices that are duplicative (or 10 for other exceptional needs) like a second hard drive 61' can be located on the network side of the firewall 50. RAM 66 or equivalent or successor memory, which typically is volatile (data is lost when power is interrupted), should generally be located on the network side of the firewall 50, however some 15 can be located with the master microprocessor to facilitate its independent use. However, read-only memory (ROM) devices including most current CD drives (CD-ROM's) 63' or DVD's (DVD-ROM) 64' or can be safely located on the network side of the firewall 50, since 20 the data on those drives cannot be altered by network users; preemptive control of use preferably remains with the PC user. However, at least a portion of RAM is can be kept on the Master 30 microprocessor side of the firewall 50, so that the PC user can use retain the ability to use a core of user PC 1 25 processing capability entirely separate from any network processing. If this capability is not desired, then the master 30 microprocessor can be moved to the network side of the firewall 50 and replaced with a simpler controller on the PC 1 user side, like the master remote controller 31 discussed below 30 and shown in Figure 10I. And the master microprocessor 30 might also control the use of several or all other processors 60 owned or leased by 36 WO 99/61998 PCT/US99/11206 the PC user, such as home entertainment digital signal processors 70, especially if the design standards of such microprocessors in the future conforms to the requirements of network parallel processing as described above. In this 5 general approach, the PC master processor uses the slave microprocessors or, if idle (or working on low priority, deferable processing) , make them available to the network provider or others to use. Preferably, wireless connections 100 are expected to be extensively used in home or business 10 network systems, including use of a master remote controller 31 without (or with) microprocessing capability, with preferably broad bandwidth connections such as fiber optic cable connecting directly to at least one component such as a PC 1, shown in a slave configuration, of the home or business 15 personal network system; that preferred connection links the home system to the network 2 such as the Internet 3, as shown in Figure 10I. A business system includes preferably fiber optic links to most or all personal computers PC 1 and other devices with microprocessors, such as printers, copiers, 20 scanners, fax machines, telephone and video conferencing equipment; wireless links can be used also. A PC 1 user can remotely access his networked PC 1 by using another networked master microprocessor 30 on another PC 1 and using a password or other access control means for entry 25 to his own PC 1 master microprocessor 30 and files, as is common now in Internet and other access. Alternately, a remote user can simply carry his own files and his own master microprocessor or use another networked master microprocessor temporarily has his own. 30 In the simplest configuration, as shown in Figure 10B, the PC 1 has a single master microprocessor 30 and a single slave microprocessor 40, preferably separated by a firewall 50, with 37 WO 99/61998 PCT/US99/11206 both processors used in parallel or multitasking processing or with only the slave 40 so used, and preferably connected to a network computer 2 and Internet 3 (and successors like the MetaInternet) . Virtually any number of slave microprocessors 5 40 is possible. The other non-microprocessor components shown in Figure 10A above might also be included in this simple Figure 10B configuration. Preferably, as shown in Figure 10C, microprocessors 90 are expected to integrate most or all of the other necessary 10 computer components (or their present or future equivalents or successors) , like a PC's memory (RAM 66, graphics 82, sound 83, power management 84, network communications 85, and video processing 86, possibly including modem 87, flash bios 88, digital signal processor or processors 89, and other components 15 or present or future equivalents or successors) and internal bus, on a single chip 90 (silicon, plastic, or other), known in the industry as "system on a chip". Such a PC micro chip 90 preferably has the same architecture as that of the PC 1 shown above in Figure 10A: namely, a master control and/or processing 20 unit 93 and one or more slave processing units 94 (for parallel or multitasking processing by either the PC 1 or the Network 2), preferably separated by a firewall 50 and preferably connected to a network computer 3 and the Internet 3 and successors like the MetaInternet. 25 Existing PC components with mechanical components like hard drive 61, floppy or other removable diskette 62, CD-ROM 63 and DVD 64, which are mass storage devices with mechanical features that will likely not become an integral part of a PC "system of a chip" would preferably, of course, still be 30 capable of connection to a single PC micro chip 90 and control by a single PC master unit 93. In the simplest multi-processor case, as shown in Figure 38 WO 99/61998 PCT/US99/11206 10D, the chip 90 has a single master unit 93 and at least one slave unit 94 (with the master having a controlling function only or a processing function also) , preferably separated by a firewall 50 and preferably connected to a network computer 3 5 and the Internet 3 (and successors like the MetaInternet) . The other non-microprocessor components shown in Figure 10A above might also be included in this simple Figure 10D configuration. As noted in the second paragraph of the introduction to the background of the invention, in the preferred network 10 invention, any computer can potentially be both a user and provider, alternatively -- a dual mode operating capability. Consequently, any PC 1 within the network 2, preferably connected to the Internet 3 (and successors like the MetaInternet) , can be temporarily a master PC 30 at one time 15 initiating a parallel or multitasking processing request to the network 2 for execution by at least one slave PC 40, as shown in Figure 10E. At another time the same PC 1 can become a slave PC 40 that executes a parallel or multitasking processing request by another PC 1' that has temporarily assumed the 20 function of master 30, as shown in Figure 10F. The simplest approach to achieving this alternation is for both master and slave versions of the parallel processing software to be loaded in each or every PC 1 that is to share in the parallel processing, so each PC 1 has the necessary software means, 25 together with minor operational modifications, such as adding a switching means by which a signaled request for parallel processing initiated by one PC 1 user using master software is transmitted to at least a second PC 1, triggering its slave software to respond by initiating parallel processing. 30 As shown in Figures 1OG and 10H, which are parallel to Figures 10E and 10F, the number of PC slave processors 40 can be increased to any virtually other number, such as at least 39 WO 99/61998 PCT/US99/11206 about 4; as shown, the processing system is completely scalar, so that further increases can occur to about eight, about 16, about 32, about 64, about 128, about 256, about 512, about 1024, and so on (these multiples indicated are preferred as 5 conventional in the art, but not mandatory); the PC master microprocessors 30 can also be increased. In summary, as noted above relative to Figure 10I, a PC 1 can function as a slave PC 40 and be controlled by a master controller 31, which can be remote and which preferably can 10 have limited or no microprocessing capability, but can as well have similar or greater capability. As shown in Figures 1OJ and 10K, such a master controller 31 is located on the PC user side of the firewall 50, under the control of the PC user, while the microprocessors 40 reside on the network side of the 15 firewall 50. The master controller 31 preferably receives input from the PC user by local means such as keyboard, microphone, videocam or future hardware and/or software and/or firmware or other equivalent or successor interface means (as does a master processor 40) that provides input to a PC 1 or 20 microprocessor 30 originating from a user's hand, voice, eye, nerve or nerves, or other body part; in addition, remote access by telephone, cable, wireless or other connection might also be enabled by a hardware and/or software and/or firmware and/or other means with suitable security such as password controlled 25 access. Similarly, as shown in Figure 10L and 10M, relative to a PC "system on a chip" a master controller unit 93' (which could be capable of being accessed by the PC user through a remote controller 31) with only a controlling capability is be located on the PC user side of the firewall 50, under the 30 control of the PC user, while the slave processor units 94 would reside on the network side of the firewall 50. Figures 1ON and 100 show PC 1 with a firewall 50 that is 40 WO 99/61998 PCT/US99/11206 configurable through either hardware and/or software and/or firmware and/or other means; software configuration are easiest and most typical, but active motherboard hardware configuration is possible and may present some security advantages, including 5 as use of manual or electromechanical or other switches or locks. Figure 1ON shows a CD-ROM 63' that has been placed by a PC user on the network side of a firewall 50 from a previous position on the PC user side of a firewall 50, which was shown in Figure 10A. Preferably, the settings of a firewall 50 can 10 default to those that safely protect the PC 1 from uncontrolled access by network users, but with capability for the relatively sophisticated PC user to override such default settings and yet with proper safeguards to protect the unso-phisticated user from inadvertently doing so; configuration of a firewall 50 might 15 also be actively controlled by a network administrator in a local network like that of a business, where a PC user may not be owner or leaser of the PC being used, either by remote access on the network or with a remote controller 31. Similarly, Figures 10P and 10Q show a PC "system of a 20 chip" 90 with a firewall 50 that is configurable through either hardware and/or software and/or firmware and/or other means; software configuration is easiest and most typical. Active configuration of the integrated circuits of the PC microchip 90 is also possible and may present some speed and security 25 advantages. Such direct configuration of the circuits of the microchip 90 to establish or change in its firewall 50 could be provided by the use of field-programmable gate arrays (or FPGA' s) or their future equivalents or successors; microcircuit electromechanical or other switches or locks can also be used 30 potentially. In Figure 10P, for example, slave processing unit 94' has been moved to the PC user side of a firewall 50 from a network side position shown in Figure 10C and 10L. Similarly, 41 WO 99/61998 PCT/US99/11206 Figure 10Q shows the same active configuration of chip circuit using FPGA's for the simplest form of multiprocessing microchip 90 with a single slave unit 94', transferring its position to the PC user's side of a firewall 50 from a network side shown 5 in Figure 10M and 10D. In summary, relative to the use of master/slave computers, Figures 10A-10I show embodiments of a system for a network of computers, including personal computers, comprising: at least two personal computers; means for at least one personal 10 computer, when directed by its personal user, to function temporarily as a master personal computer to initiate and control the execution of a computer processing operation shared with at least one other personal computer in the network; means for at least one other personal computer, when idled by its 15 personal user, to be made available to function temporarily as at least one slave personal computer to participate in the execution of a shared computer processing operation controlled by the master personal computer; and means for the personal computers to alternate as directed between functioning as a 20 master and functioning as a slave in the shared computer processing operations. In addition, Figures 10A-10H show embodiments including wherein the system is scalar in that the system imposes no limit to the number of personal computers; for example, the system can include at least 256 said personal 25 computers; the system is scalar in that the system imposes no limit to the number of personal computers participating in a single shared computer processing operation, including at least 256 said personal computers, for example; the network is connected to the Internet and its equivalents and successors, 30 so that personal computers include at least a million personal computers, for example; the shared computer processing is parallel processing; the network is connected to the World Wide 42 WO 99/61998 PCTIUS99/11206 Web and its successors; a means for network services, including browsing and broadcast functions, as well as shared computer processing such as parallel processing, are provided to said personal computers within said network; the network includes at 5 least one network server that participates in the shared computer processing; the personal computers include a transponder or equivalent or successor means so that a master personal computer can determine the closest available slave personal computers; the closest available slave personal 10 computer is compatible with the master personal computer to execute said shared computer processing operation; the personal computers having at least one microprocessor and communicating with the network through a connection means having a speed of data transmission that is at least greater than a peak data 15 processing speed of the microprocessor; and a local network PC 1 being controlled remotely by a microprocessor controller 31. The preferred use of the firewall 50, as described above in Figures 10A-10I, provides a solution to an important security problem by preferably completely isolating host PC's 20 1 that are providing slave microprocessors to the network for parallel or other shared processing functions from any capability to access or retain information about any element about that shared processing. In addition, of course, the firewall 50 provides security for the host PC against intrusion 25 by outside hackers; by reducing the need for encryption and authentication, the use of firewalls 50 can provide a relative increase in computing speed and efficiency. In addition to computers such as personal computers, the firewall 50 described above could be used in any computing device included in this 30 application's above definition of personal computers, including those with "appliance"-type microprocessors, such as telephones, televisions or cars, as discussed above. 43 WO 99/61998 PCTIUS99/11206 In summary, regarding the use of firewalls, Figures 10A 10I show embodiments of a system architecture for computers, including personal computers, to function within a network of computers, comprising: a computer with at least two 5 microprocessors and having a connection means with a network of computers; the architecture for the computers including a firewall means for personal computers to limit access by the network to only a portion of the hardware, software, firmware, and other components of the personal computers; the firewall 10 means will not permit access by the network to at least a one microprocessor having a means to function as a master microprocessor to initiate and control the execution of a computer processing operation shared with at least one other microprocessor having a means to function as a slave 15 microprocessor; and the firewall means permitting access by the network to the slave microprocessor. In addition, the system architecture explicitly includes embodiments of, for example, the computer is a personal computer; the personal computer is a microchip; the computer have a control means by which to 20 permit and to deny access to the computer by the network for shared computer processing; the system is scalar in that the system imposes no limit to the number of personal computers, including at least 256 said personal computers, for example; the network is connected to the Internet and its equivalents 25 and successors, so that the personal computers include at least a million personal computers, for example; the system is scalar in that the system imposes no limit to the number of personal computers participating in a single shared computer processing operation, including at least 256 said personal computers, for 30 example; the personal computers having at least one microprocessor and communicating with the network through a connection means having a speed of data transmission that is at 44 WO 99/61998 PCT/US99/11206 least greater than a peak data processing speed of the microprocessor. In summary, regarding the use of controllers with firewalls, Figures 10J-10M show embodiments of a system 5 architecture for computers, including personal computers, to function within a network of computers, comprising for example: a computer with at least a controller and a microprocessor and having a connection means with a network of computers; the architecture for the computers including a firewall means for 10 personal computers to limit access by the network to only a portion of the hardware, software, firmware, and other components of the personal computers; the firewall means will not permit access by the network to at least a one controller having a means to initiate and control the execution of a 15 computer processing operation shared with at least one microprocessor having a means to function as a slave microprocessor; and the firewall means permitting access by the network to the slave microprocessor. In addition, the system architecture explicitly includes embodiments of, for example, 20 the computer is a personal computer; the personal computer is a microchip; the computer have a control means by which to permit and to deny access to the computer by the network for shared computer processing; the system is scalar in that the system imposes no limit to the number of personal computers, 25 including at least 256 said personal computers, for example; the network is connected to the Internet and its equivalents and successors, so that the personal computers include at least a million personal computers, for example; the system is scalar in that the system imposes no limit to the number of personal 30 computers participating in a single shared computer processing operation, including at least 256 said personal computers, for example; the personal computers having at least one 45 WO 99/61998 PCT/US99/11206 microprocessor and communicating with the network through a connection means having a speed of data transmission that is at least greater than a peak data processing speed of the microprocessor; and the controller being capable of remote use. 5 In summary, regarding the use of firewalls that can be actively configured, Figures 1ON-10Q show embodiments of a system architecture for computers, including personal computers, to function within a network of computers, comprising for example: a computer with at least two 10 microprocessors and having a connection means with a network of computers; the architecture for the computers including a firewall means for personal computers to limit access by the network to only a portion of the hardware, software, firmware, and other components of the personal computers; the firewall 15 means will not permit access by the network to at least a one microprocessor having a means to function as a master microprocessor to initiate and control the execution of a computer processing operation shared with at least one other microprocessor having a means to function as a slave 20 microprocessor; the firewall means permitting access by the network to the slave microprocessor; the configuration of the firewall being capable of change by a user or authorized local network administrator; the change in firewall configuration of a microchip PC is made at least in part using field 25 programmable gate arrays or equivalents or successors. In addition, the system architecture explicitly includes embodiments of, for example, the computer is a personal computer; the personal computer is a microchip; the computer have a control means by which to permit and to deny access to 30 the computer by the network for shared computer processing; the system is scalar in that the system imposes no limit to the number of personal computers, including at least 256 said 46 WO 99/61998 PCTIUS99/11206 personal computers; the network is connected to the Internet and its equivalents and successors, so that the personal computers include at least a million personal computers; the system is scalar in that the system imposes no limit to the 5 number of personal computers participating in a single shared computer processing operation, including at least 256 said personal computers; the personal computers having at least one microprocessor and communicating with the network through a connection means having a speed of data transmission that is 10 preferably at least greater than a peak data processing speed of the microprocessor. It is presently contemplated that PC 1 microprocessors noted above be designed to the same basic consensus industry standard as parallel microprocessors for PC's (or equivalents 15 or successors) as in Figures 10A-10B or for PC "systems on a chip" discussed in Figures 1OC-10D. Although the cost per microprocessor might rise somewhat initially, the net cost of computing for all users is expected to fall drastically almost instantly due to the significant general performance increase 20 created by the new capability to use of heretofore idle "appliance" microprocessors. The high potential for very substantial benefit to all users should provide a powerful force to reach consensus on important industry hardware, software, and other standards on a continuing basis for such 25 basic parallel network processing designs utilizing the Internet 3 and successor. It is preferred but not required that such basic industry standards be adopted at the outset of system design and for use of only the least number of shared microprocessors initially. If such basic industry standards 30 are adopted at the outset and for the least number of shared microprocessors initially, and if design improvements incorporating greater complexity and more shared 47 WO 99/61998 PCTIUS99/11206 microprocessors are phased in gradually overtime on a step by step basis, then conversion to a MetaInternet architecture at all component levels should be relatively easy and inexpensive (whereas an attempt at sudden, massive conversion is hugely 5 difficult and prohibitively expensive) . The scalability of the MetaInternet system architecture (both vertically and horizontally) as described herein makes this sensible approach possible. By 1998, manufacturing technology improvements allow 20 10 million transistors to fit on a single chip (with circuits as thin as .25 microns) and, in the next cycle, 50 million transistors using .18 micron circuits. Preferably, that entire computer on a chip is linked, preferably directly, by fiber optic or other broad bandwidth connection means to the network 15 so that the limiting factor on data throughput in the network system, or any part, is only the speed of the linked microprocessors themselves, not the transmission speed of the linkage. Such direct fiber optic linkage will obviate the need for an increasingly unweldy number of microchip connection 20 prongs, which is currently in the one to two hundred range in the Intel Pentium series and will reach over a thousand prongs in the 1998 IBM Power3 microprocessor. One or more digital signal processors 89 and one or more all optical switches 92 located on a microprocessor 90 (or 30 or 40) , together with 25 numerous channels and/or signal multiplexing (such as wave division) of the fiber optic signal can substitute for a vast multitude of microchip connection prongs. For computers that are not reduced to a single chip, it is also preferred that the internal system bus or buses of any 30 such PC's have a transmission speed that is at least high enough that the all processing operations of the PC microprocessor or microprocessors is unrestricted (and other PC 48 WO 99/61998 PCT/US99/11206 components like RAM) and that the microprocessor chip or chips are directly linked by fiber optic or other broad bandwidth connection, as with the system chip described above, so that the limiting factor on data throughput in the network system, 5 or any part, is only the speed of the linked microprocessors themselves, not the transmission speed of the linkage. The individual user PC's can be connected to the Internet (via an Intranet) /Internet II/WWW or successor, like the MetaInternet (or other) network by any electromagnetic means, 10 with the very high transmission speed provided by the broad bandwidth of fiber optic cable being preferred, but hybrid systems using fiber optic cable for trunk lines and coaxial cable to individual users may be more cost effective initially, but less preferred unless cable can be made (through hardware 15 and/or software and/or firmware and/or other component means) to provide sufficiently broad bandwidth connections to provide unrestricted throughput by connected microprocessors. Given the speed and bandwidth of transmission of fiber optic or equivalent or successor connections, conventional network 20 architecture and structures should be acceptable for good system performance, making possible a virtual complete interconnection network between users. However, the best speed for any parallel processing operation should be obtained, all other things being equal, by 25 utilizing the available microprocessors that are physically the closest together. Consequently, as shown previously in Figure 8, the network needs have the means (through hardware and/or software and/or firmware and/or other component) to provide on a continually ongoing basis the capability for each PC to know 30 the addresses of the nearest available PC's, perhaps sequentially, from closest to farthest, for the area or cell immediately proximate to that PC and then those cells of 49 WO 99/61998 PCT/US99/11206 adjacent areas. Network architecture that clusters PC's together should therefore be preferred, but not mandatory for substantial benefit, and can be constructed by wired means. However, as 5 shown in Figure 11, it would probably be very beneficial to construct local network clusters 101 (or cells) of personal computers 1' by wireless 100 means, since physical proximity of any PC 1 to its closest other PC 1' should be easier to access directly that way, as discussed further below. Besides, it is 10 economically preferable for at least several network providers to serve any given geographic area to provide competitive service and prices. It would be advantageous, then, for those wireless PC connections to be PC resident and capable of communicating by 15 wireless or wired (or mixed) means with all available PC's in the cluster or cell geographic area, both proximal and potentially out to the practical limits of the wireless transmission. As shown in Figure 12, wireless PC connections 100 can be 20 made to existing non-PC network components, such as one or more satellites 110, or present or future equivalent or successor components and the wireless transmissions can be conventional radio waves, such as infrared or microwave, or can utilize any other part of the electromagnetic wave spectrum.. 25 Moreover, as shown in Figure 13, such a wireless or wired approach also make it easily possible in the future to develop network clusters 101 of available PC's 1' with complete interconnectivity; i.e., each available PC 1 in the cluster 101 is connected (preferably wirelessly 100) to every other 30 available PC 1 in the cluster 101, constantly adjusting to individual PC's becoming available or unavailable. Given the speed of some wired broad bandwidth connections, like fiber 50 WO 99/61998 PCT/US99/11206 optic cable, such clusters 101 with complete interconnectivity is certainly a possible embodiment. As shown in Figure 14A-14D, it would be advantageous for such wireless systems to include a wireless device 120 5 comprised of hardware and/or software and/or firmware and/or other component, like the PC 1 availability device described above preferably resident in the PC, but also with a network like capability of measuring the distance from each PC 1 in its cluster 101 by that PC's signal transmission by transponder or 10 its functional equivalent and/or other means to the nearest other PC's 1' in the cluster 101. As shown in Figure 14A, this distance measurement could be accomplished in a conventional manner between transponder devices 120 connected to each PC in the cluster 101; for example, by measuring in effect the time 15 delay from wireless transmission by the transponder device 120 of an interrogating signal 105 to request initiation of shared processing by a master PC 1 to the reception of a wireless transmission response 106 signaling availability to function as a slave PC from each of the idle PC's 1' in the cluster 101 20 that has received the interrogation signal 105. The first response signal 106' received by the master PC 1 is from the closest available slave PC 1" (assuming the simplest shared processing case of one slave PC and one master PC), which is selected for the shared processing operation by the requesting 25 master PC 1, since the closer the shared microprocessor, the faster the speed of the wireless connections 100 is between sharing PC's (assuming equivalence of the connection means and other components among each of the PC's 1'). The interrogation signal 105 might specify other selection criteria also, for 30 example, for the closest compatible (initially perhaps defined by a functional requirement of the system to be an identical microprocessor) slave PC 1, with the first response signal 51 WO 99/61998 PCT/US99/11206 106' being selected as above. This same transponder approach also can be used between PC's 1" connected by a wired 99 (or mixed wired/wireless) means, despite the fact that connection distances would 5 generally be greater (since not line of sight, as is wireless) , as shown in Figure 14A, since the speed of transmission by the preferred broad bandwidth transmission means such as fiber optic cable is so high as to offset that greater distance. From a cost basis, this wired approach might be preferable for 10 such PC's already connected by broad bandwidth transmission means, since additional wireless components like hardware and software are not necessary. In that case, a functionally equivalent transponder device 120 can be operated in wired clusters 101 in generally the same manner as described above 15 for PC's connected in wireless clusters 101. Networks incorporating PC's 1 connected by both wireless and wired (or mixed) means are anticipated, like the home or business network mentioned in Figure 10I, with mobile PC's or other computing devices preferably using wireless connections. Depending on 20 distances between PC's and other factors, a local cluster 101 of a network 2 might connect wirelessly between PC's and with the network 2 through transponding means linked to wired broad bandwidth transmission means, as shown in Figure 14C. As shown in Figure 14D, the same general transponder 25 device means 120 can also be used in a wired 100 network system 2 employing network servers 98 operated, for example, by an ISP, or in any other network system architectures (including client/server or peer to peer) or any other topologies (including ring, bus, and star) either well known now in the 30 art or their future equivalents or successors. The Figure 14 approach to establishing local PC clusters 101 for parallel or other shared processing has major advantage 52 WO 99/61998 PCT/US99/11206 in that it avoids using network computers such as servers (and, if wireless, other network components including even connection means) , so that the entire local system of PC's within a cluster 101 operates independently of network servers, routers, 5 etc. Moreover, particularly if connected by wireless means, the size of the cluster 101 could be quite large, being limited generally by PC wireless transmission power, PC wireless reception sensitivity, and local and/or other conditions affecting transmission and reception. Additionally, one 10 cluster 101 could communicate by wireless 100 means with an adjacent or other clusters 101, as shown in Figure 14B, which could thereby include those beyond its own direct transmission range. To improve response speed in shared processing involving 15 a significant number of slave PC's 1, a virtual potential parallel processing network for PC's 1 in a cluster 101 preferably is established before a processing request begins. This is accomplished by the transponder device 120 in each idle PC 1, a potential slave, broadcasting by transponder 120 its 20 available state when it becomes idle and/or periodically afterwards, so that each potential master PC 1 in the local cluster 101 is able to maintain relatively constantly its own directory 121 of the idle PC's 1 closest to it that are available to function as slaves. The directory 121 contains, 25 for example, a list of about the standard use number of slave PC's 1 for the master PC (which initially probably is just one other PC 1") or a higher number, preferably listed sequentially from the closest available PC to the farthest. The directory of available slave PC's 1 is preferably updated on a relatively 30 up to date basis, either when a change occurs in the idle state of a potential slave PC in the directory 121 or periodically. Such ad hoc clusters 101 should be more effective by being 53 WO 99/61998 PCTIUS99/11206 less arbitrary geographically, since each individual PC is effectively in the center of its own ad hoc cluster. Scaling up or down the number of microprocessors required by each PC at any given time is also more seamless. 5 The complete interconnection potentially provided optimally by such ad hoc wireless clusters is also remarkable because such clusters mimics the neural network structure of the animal brain, wherein each nerve cell, called a neuron, interconnects in a very complicated way with the neurons around 10 it. By way of comparison, the global network computer described above that is expected in a decade can have at least about 10 times as many PC 's as a human brain has neurons and they can be connected by electromagnetic waves traveling at close to the speed of light, which is about 300,000 times 15 faster than the transmission speed of human neurons (which, however, are much closer together). An added note: as individual PC's continue becoming much more sophisticated and more network oriented, compatibility issues may decrease in importance, since all major types of 20 PC's will be able to emulate each other and most software, particularly relative to parallel processing, may no longer be hardware specific. However, to achieve maximum speed and efficiency, it is beneficial to set compatible hardware, software, firmware, and other component standards to realize 25 potential performance advantages attainable with homogeneous parallel processing components of the global network computer. Until that compatibility or homogeneity is designed into the essential components of network system, the existing incompatibility or heterogeneity of current components increase 30 the difficulty involved in parallel processing across large networks. Even so, the use of message passing interfaces, for example, has made massively parallel processing between 54 WO 99/61998 PCT/US99/11206 heterogeneous personal computers fairly easy for uncoupled operations, as shown for example in the Beowulf system. Programming languages like Java is one approach that will provide a partial means for dealing with the heterogeneity 5 problem, whereas Linux provides greater speed and efficiency. In addition, using similar configurations of existing standards, like using PC's available on the Internet (with its vast resources) with a specific Intel Pentium chip with other identical or nearly identical PC components is probably the 10 best way in the current technology to eliminate many of the serious existing problems that can easily be designed around using available technologies by adopting reasonable consensus standards for specification of all system components. The potential gains to all parties with an interest far outweigh 15 the potential costs. The above described global network computer system has an added benefit of reducing the serious and growing problem of the nearly immediate obsolescence of computer hardware, software, firmware, and other components. Since the preferred 20 system above is the sum of its constituent parts used in parallel processing, each specific PC component becomes less critical. As long as access to the network utilizing sufficient bandwidth is possible, then all other technical inadequacies of the user' s own PC can be completely compensated 25 for by the network's access to a multitude of technically able PC's of which the user will have temporary use. Although the global network computer will clearly cross the geographical boundaries of nations, its operation is not likely to be unduly bounded by inconsistent or arbitrary laws 30 within those individual states. There will be considerable pressure on all nations to conform to reasonable system architecture and operational standards generally agreed upon, 55 WO 99/61998 PCT/US99/11206 since the penalty of not participating in the global network computer is potentially so high as to not be politically possible anywhere. As shown in Figure 15, because the largest number of user 5 PC's are completely idle, or nearly so, during the night, it can be useful for the most complicated large scale parallel processing, involving the largest numbers of processors with uninterrupted availability as close together as possible, to be routed by the network to geographic areas of the globe 10 undergoing night and to keep them there even as the Earth rotates by shifting computing resources as the world turns. As shown in the simplest case in Figure 15, during the day, at least one parallel processing request by at least one PC 1 in a network 2 in the Earth's western hemisphere 131 are 15 transmitted by very broad bandwidth connection wired 99 means such as fiber optic cable to the Earth's eastern hemisphere 132 for execution by at least one PC 1' of a network 2', which is idle during the night and the results are transmitted back by the same means to network 2 and the requesting at least one PC 20 1. Any number of individual PC's within local networks like that operated by an ISP can be grouped into clusters or cells, as is typical in the practice of the network industry. As is common in operating electrical power grids and 25 telecommunications and computer networks, many such processing requests from many PC's and many networks could be so routed for remote processing, with the complexity of the system growing substantially over time in a natural progression. Alternatively, for greater security or simplicity, 30 nighttime parallel processing can remain within a relatively local area and emphasize relatively massively parallel processing by larger entities such as business, government, or 56 WO 99/61998 PCT/US99/11206 universities for relatively complicated applications that benefit from comparatively long nightly periods of largely uninterrupted use of significant numbers of slave personal computers PC 1. 5 While the conventional approach to configuring a network of personal computers PC 1 for parallel processing is simply to string them together in a simple bus-type architecture, as shown previously in Figure 9, new Figures 16A-16Z and 16AA show a new hierarchial network topology. 10 Although the Figure 9 network structure is simple and produces reasonable results in loosely coupled problems like geographic searches described earlier, as a general approach it has at least three important problems. First, as the number of personal computers PC 1 being used 15 in the network grows, an increasingly greater deal of complex pre-operation planning and custom tailoring-type programming at the master PC 1 level is required to establish a means for allocating portions of the operation among the large number of available personal computers PC 1'. 20 Second, operations results coming back to PC 1 from personal computers PC 1' are not synchronized, so that PC 1 frequently alternates between being idle and being overwhelmed. When the number of personal computers PC 1' is very large, both problems can be significant; when the number is massive, the 25 problems can be overwhelming and seriously degrade the operation of the network. Third, generally there is no means established for personal computers PC 1' to communicate or cooperate with each other during such network operations, so sharing operational 30 results during processing between personal computers PC 1' is usually not feasible, especially when large numbers of PC 1 are involved. Consequently, closely coupled problems are generally 57 WO 99/61998 PCT/US99/11206 not amenable to solution by conventional parallel processing by computers using a simple bus-type network like Figure 9. The new hierarchical network topology shown in Figure 16A is a simple subdivision step whereby a personal computer PC 1 5 (or equivalent PC on a microprocessor chip 90) or microprocessor 30 acting as a master M, divides a given operation into two parts (for example, two halfs) , then sends by an optical or electrical connection such as optical fiber or wire 99 the one half parts to each to two connected available 10 slave personal computers PC 1 (or PC microprocessor 90) or microprocessor 30, as shown one processing level down as S21 and
S
22 . The Figure 16A (and subsequent Figures 16) can be connected to the Internet 3 and World Wide Web, as preferred, or may not be so connected but still with benefit. 15 Figure 16B shows that slave personal computer PC 1 (or PC microprocessor 90) or microprocessor 40 located at S2, has temporarily adopted the same functional role as a master to repeat the same subdivision of the given operation. Therefore, having already been divided in half once in Figure 16A, the 20 given operation is again subdivided in Figure 16B, this time in half into quarters of the original operation (for example) by
S
21 , which then sends one quarter to each of two additional available slave personal computers PC 1 (or PC microprocessors 90) or microprocessors 40 located at S,1 and S 32 . 25 Figure 16C shows personal computers PC 1 (or PC microprocessor 90) or microprocessors 40 at S 31 and S 32 sending operation results back to S 21 after performing the processing required by the given operation, instead of repeating again the subdivision process. That processing action by S 3 , and S32 can 30 be dictated by pre-established program criteria, for example by automatically defaulting to operational processing at the S 3 level after two subdivision processes as shown above, so that 58 WO 99/61998 PCT/US99/11206 the operation can be processed in parallel by four available slave personal computers PC 1 (or PC microprocessors 90) or microprocessors 40. Alternately, as another example, the criteria can be a user preference command over-riding an 5 otherwise automatic default to level three processing in order to specify some other level of processing involving more or less slave PC 1 (or PC microprocessors 90) or microprocessors 40. Similarly, in Figure 16A above, the personal computer PC 10 1 (or PC microprocessor 90) or microprocessor 40 acting as master M, also can initiate the parallel processing operation (or, alternatively, a multi-tasking operation) on the basis of a preset program parameters through software, hardware, or firmware or other means; parameter examples again being pre-set 15 automatic default or user preference over-ride. Like Figure 16C, Figure 16D shows operation results being passed back to the next higher level, this time from slave personal computers PC 1 (or PC microprocessors 90) or microprocessors 40, S 2 j and S,,, to master personal computer PC 20 1 (or PC microprocessor 90) or microprocessor 30, M,, where the operation is completed after the S21 and S 22 results are consolidated. Figure 16G shows master personal computer PC 1 (or PC microprocessor 90) or microprocessor 30, M 1 , offloading by 25 wireless connection 100, for example, the entire parallel processing operation to an available slave personal computer PC 1 (or PC microprocessor 90) or microprocessor 40 that temporarily functions as Si in the place of M, on the first processing level for the duration of the given parallel 30 processing (or multi-tasking) operation, the first step of which operation is shown in Figure 16H, which is like Figure 16A except as shown. 59 WO 99/61998 PCT/US99/11206 Figure 161 shows a personal computer PC 1 (or PC microprocessor 90) or microprocessor 40 that is executing a command to function in the slave role of S2. for a given operation but has become unavailable, or was unavailable 5 initially, (due, for example, to interruption for other higher priority command by its user or to malfunction) when results of the given operation from a lower parallel processing level are passed to S 21 . In that situation, S21 (or S 31 or S 32 ) can simply of fload those results to another personal computer PC 1 (or PC 10 microprocessor 90) or microprocessor 30 (or 40) that is then available and it can become S 21 and take over the role of S21 in the given operation for the duration of that operation. Similarly, the role of any unavailable or malfunctioning master or slave PC 1 or microprocessor 90, 30, or 40 can be 15 transferred to an available functioning one. As shown in Figure 16J, S 21 then completes the parallel processing operation and passes its portion of the operation results to Mi. The offloading capability of functional roles of master 20 and slave personal computers PC 1 (and PC microprocessors 90) and microprocessors 30 (and 40) from unavailable to available PC 1, 30 and 40 as shown in Figures 16G-16J can also. be used in previous figures in this application. In the simplest case initially, all processing roles of personal computers PC1 (and 25 PC microprocessors 90) and microprocessors (30 or 40) , like S 21 , above can be determined at the beginning of an operation based on availability (based on non-use and lack of malfunctioning component) and remain unaltered until the end of the operation. But, with more sophisticated system software and hardware and 30 firmware, during an operation any number of the processing roles can be offloaded from personal computers PC 1 (or PC microprocessors 90) or microprocessors 30 (or 40) to others as 60 WO 99/61998 PCT/US99/11206 required, even multiple times and many simultaneously. Figure 16E shows the multi-processing network topology of Figures 16A-16J in a larger scale embodiment, including all personal computers PC 1 (or PC microprocessors 90) or 5 microprocessors 30 (or 40) that are participating in a typical operation, including in this example one personal computer PC 1 (or PC microprocessor 90) or microprocessor 30 (or 40) at level one; two at level two; four at level three; and eight at level four. The network topology is completely scalar in that 10 any practical number of additional processing levels or personal computers PC 1 (or PC microprocessors 90) or microprocessors 30 (or 40) can be added to those shown (and topologies limited to just two (or three) levels are also possible, which is the simplest case of operation processing 15 subdivision that distinguishes over the conventional Figure 9 single level "string-together" architecture). Note that the number of processing personal computers PC 1 (or PC microprocessors 90) or microprocessors 40 doubles at each additional processing level and therefore can be 20 represented by 2 N, where N is the last or final processing level, for the simplest case, as shown above, which is splitting one given operation into two parts such as halfs between each level. Note also that instead of subdividing one operation as 25 above, two separate parallel processing operations can be multi-tasked on separate branches, such as S 21 and S 22 as shown, using the same network architecture described above. As is clear from this example, any practical mix of multi-tasking and/or parallel processing is possible using the above network 30 architecture. Figure 16E shows the distribution of a given parallel processing (or multi-tasking) operation as routed through a 61 WO 99/61998 PCT/US99/11206 four level virtual network, beginning at M 1 . "Virtual" as used here means temporary, since in the next parallel operation originating at M 1 it might be the case that many of the personal computers PC 1 (or microprocessors 90) or 5 microprocessors 30 (or 40) that had been available for a previous operation would not still be available for the next operation. As Figure 16E shows a binary tree network architecture for the initial distribution of an operation from Mi down through 10 four slave processing levels, while Figure 16 F shows the subsequent processing and accumulation of results back from there to Mi Figure 16F shows an inverted view of Figure 16E to show the sequence of the operation, from operation distribution in Figure 16E to result accumulation in Figure 15 16F. More specifically, Figure 16F shows the processing slave personal computers PC 1 (or PC microprocessors 90) or microprocessors 40 at the fourth level, S41 through S,, where they process the operation to produce results which are then 20 routed back through two other levels of the virtual network to
M
1 . In the routing of operation results shown in Figure 16F, each slave personal computer PC 1 (or PC microprocessor 90) or microprocessor 40) has the capability to either simply pass 25 through those results operation only as a direct communication link or connection; or, alternatively, for example, to consolidate those results sent from the personal computers PC 1 (or PC microprocessor 90) or microprocessors 40) at a lower level; or, to provide additional other processing based on 30 those lower processing level results. Such consolidation or additional processing can reduce or eliminate duplicative data from a search or other operation 62 WO 99/61998 PCT/US99/11206 producing duplicative results and can also serve to buffer the originating master M 1 from overloading caused by many sets of results arriving at M, in the Figure 9 single processing level architecture in an uncoordinated fashion from what might be a 5 large number of slave personal computers PC 1 (or PC microprocessor 90) or microprocessors 40. Such a consolidation role for personal computers PC 1 (or PC microprocessor 90) microprocessors 40 substantially reduces or eliminates the excessive custom pre-planning and synchronization problems of 10 the conventional Figure 9 network topology discussed above. Figure 16K shows a simple example indicative of the extremely complicated network structure that can result from subdividing a given operation in which the complexity of the operation involved is not uniform, due to, for example, 15 variations in the data. In this example, pre-set program splitting criteria can be employed that balances the processing load of each slave personal computer PC 1 (or PC microprocessor 90) or microprocessor 40. With this approach, the complex portions of a given operation can automatically draw greater 20 resources in the form of additional splitting of that more difficult portion of the problem, so that additional levels of parallel processing slave personal computers PC 1 (or PC microprocessors 90) or microprocessors 40 can be brought into the virtual network to process the operation, as shown in the 25 left branch of Figure 16K. Figure 16K is a fairly simple example, but when the same kind of dynamic network structure is applied to a virtual network using many more personal computers PC 1 (or PC microprocessor 90) or microprocessors 30 or 40 and many 30 processing levels, involving both micro levels in PC microprocessor chips 90 and macro levels in personal computers PC 1 networks (such as shown later in Figure 20B) then the 63 WO 99/61998 PCTIUS99/11206 potential complexity of the virtual network increases significantly. For example, each PC microprocessor chip 90 might have 64 slave microprocessors 94 on the final processing level; each personal computer PC 1 might have 64 slave PC 5 microprocessor chips 90 at the final processing level, and the virtual network might include 64 personal computers PC 1 at the final processing level. With this large number of physical resources available (which can of course be very substantially greater) to the virtual network created by processing a given 10 operation or operations, like that shown in Figure 16K, it is clear that the operation itself can sculpt an incredibly complex virtual network that is custom tailored to the specific operation. All that is required is a operation subdivision process as described earlier that can be resident in each PC 1 15 (or PC microprocessor 90) or microprocessor 30 or 40, or that can be passed along with data (as can be operation application software) as the operation is executed. Thus, Figure 16K shows an example of a highly flexible virtual network architecture that is capable of being 20 dynamically configured in real time by the processing requirements imposed on the components of the network by a specific given operation and its associated data, as allowed by the network hardware/software/firmware architecture. Figures 16L and 16M show examples of other possible 25 subdivision parallel processing methods, such as subdivision routing to three slave personal computers PC 1 (or PC microprocessors 90) or microprocessors 40 at the next level down, as shown in Figure 16L, or subdivision routing to four slave personal computers PC 1 (or PC microprocessors 90) or 30 microprocessors 40, as shown in Figure 16M. Subdivision routing to any practical number of slave personal computers PC 1 (or PC microprocessors 90) or microprocessors 40 between 64 WO 99/61998 PCT/US99/11206 processing levels can be done. Such routing subdivision can also vary between processing levels or even within the same processing level, as shown in Figure 16N; these variations examples can result from pre-set 5 program criteria such as those that balance operation loads, like those shown previously in Figure 16K. The means for subdividing problems for parallel or multi-tasking processing can also vary, within at least a range of methods known in the computer and mathematical arts. 10 Figure 160 shows slave personal computer PC 1 (or PC microprocessor 90) or microprocessor 40, S,,, sending operation results to a higher processing level, S,, which can then function as a router or as one or more high speed switch 42 (which can be located as 92 on a PC microprocessor 90 also, 15 including as an all optical switch), passing through unaltered the results back down to the original level to personal computer PC 1 (or PC microprocessor 90) or microprocessor 40,
S
42 , as shown in Figure 16P. Figure 16Q demonstrates the capability for any two pair of slave personal computers PC 1 20 (or PC microprocessors 90) or microprocessors 40 like S 41 and
S
42 to communicate directly between each other, including wired or wirelessly 100 as shown. Figures 160-16Q shown the same subsection of the network topology shown in Figure 16F (the left uppermost portion) , as are the next Figures, 16V-16W 25 below. A personal computer PC 1 (or PC microprocessor 90) or microprocessor 30 (or 40) located on a higher processing level in the network architecture such as S3 1 can process results as well as route them, as shown in Figure 16V, in which S 31 30 receives results from S 4 . and S42 at a lower processing level and then processes that data before sending its processing results to a higher level to S 21 , as shown in Figure 16W. 65 WO 99/61998 PCT/US99/11206 Together, Figures 16V-16W and 160-16Q show the capability of any personal computer PC 1 (or PC microprocessor 90) or microprocessor 30 (or 40) of the Figure 16F (and 16E) network structural and functional invention to communicate with any 5 other personal computer PC 1 (or PC microprocessor 90) or microprocessor 30 (or 40) participating in a given parallel processing (or multi-tasking) operation. That communication can take the form of simple pass-through of unmodified results or of modification of those results by processing at any level. 10 Figures 16X-16Z show the applicant's new hierarchical network structure and function applied to the design of a personal computer PC 1, as discussed previously in Figures 10A and 10B. Figure 16X shows the simplest general design, with a master M, microprocessor 30 and two slave S 21 and S,, 15 microprocessors 40. Figure 16Y shows the same network structure with an additional level of slave microprocessors 40, S, through S,, while Figure 16Z shows the same network structure as Figure 16Y with an additional level of slave microprocessors 40, S 41 through S 4 1. As shown in these examples, this network 20 structure is completely scalar, including any practical number of slave microprocessors 40 on any practical number of processing levels. Figure 16AA shows a useful embodiment in which each microprocessor 30 and 40 has, in addition to internal cache 25 memory, its own random access memory (RAM) 66 or equivalent memory (volatile or non-volatile, like Flash or magnetic memory), integrated on chip or separate off chip. A significant amount of such RAM or other memory, significantly greater than "cache" memory and other on chip memory used on 30 microprocessor chips today, can be beneficial in improving the efficient operation of the microprocessor; if located off microprocessor chip, the size of such memory can substantially 66 WO 99/61998 PCT/US99/11206 exceed the size of the associated microprocessor, but on microprocessor chip location like cache memory offers the best potential for improving microprocessor speed and efficiency. The design can also incorporate (or substitute) conventional 5 shared memory or RAM 66' (i.e. memory used by all, or some, of the microprocessors 30 or 40 (or 90) of the personal computer PC 1). Figures 16R-16T are parallel to Figures 16X-16Z above, but show PC microprocessor 90 architecture rather than macro PC 1 10 architecture; a PC microprocessor 90 is, of course, as earlier described in Figure 10C, a personal computer on a microchip. Figure 16U is like Figure 16AA, also except for showing PC microprocessor 90 architecture instead of PC 1 architecture. Figure 16U shows a useful embodiment in which each PC 15 microprocessor 93 or 94 has its own integrated on chip (or separate off chip) random access memory (RAM) 66 or equivalent memory (volatile or non-volatile, like Flash or magnetic memory) . A significant amount of such RAM or other memory, significantly greater than "cache" memory or other on chip 20 memory used on microprocessor chips today, can be beneficial in improving the efficient operation of the microprocessor; if located off microprocessor chip, the size of such memory can substantially exceed the size of the associated microprocessor, but on microprocessor chip location like cache memory offers 25 the best potential for improving microprocessor speed and efficiency. The microchip design can also incorporate (or substitute) conventional shared memory or RAM 66' (i.e. memory used by all, or some, of the PC microprocessors 93 or 94 of the personal computer PC microprocessor 90). 30 Figures 16R-16U show a different and improved basic chip architecture which can exclude or reduce the currently used superscalar approach in microprocessors to execute multiple 67 WO 99/61998 PCT/US99/11206 instructions during each clock cycle. The Figures 16R-16U architecture is much simpler and, by integrating memory with microprocessor, reduces memory bottlenecks. The simplicity of the Figures 16R-16U microchip design, which might have little 5 or no superscalar components, compared to conventional superscalar designs (the inherent extreme complexity of which creates a very substantial memory overhead) can result in the use of a much greater proportion of independent, non superscalar processors per microchip, exclusive of integrating 10 memory or RAM 66 onto the microprocessor chip 90, as discussed in Figure 16U. Figures 16X-16Z and 16AA, by using the same architecture for PC 1 networks as Figures 16R-16U, import the same advantage of microchip parallel processing performance to parallel 15 processing in PC 1 networks. All Figures 16A-16Z and 16AA, like the preceding figures of this application, show sections of a network of personal computers PC 1 (or PC microprocessors 90) or microprocessors 30 or 40 which can be parts of the WWW or Internet or Internet II 20 or the Next Generation Internet (meaning connected to it) or Intranets or Extranets or other networks. Also, except for Figures 16R-16T and 16X-16Z, all of the Figure 16 series show personal computers PC 1 and microprocessors 30 or 40 as occupying the same location. This 25 dual representation was done for economy of presentation and to show the parallel functionality and interchangability in conceptual terms of personal computer PC 1 and microprocessors 30 or 40 in the structure of the new network. So, taking Figure 16A as an example, M,, S21 and S22 show three personal 30 computers PC 1 or, alternatively, one microprocessor 30 and two microprocessors 40. And, as noted initially in Figure 10C, a personal computer 68 WO 99/61998 PCT/US99/11206 PC 1 can be reduced in size to a PC microprocessor chip 90, so preceding Figures showing personal computer PC 1 also generally represent PC microprocessor chip 90. Finally, the Figurez 16A-16Z and 16AA show a mix of 5 electrical and optical connections, including wired 99, especially connections such as optical glass fiber and wireless 100 (and mixtures of both in a single figure). Generally, either 99 or 100 or a mix can be used relatively interchangeably in the network inventions shown (as well as in 10 prior figures), though in some embodiments either highest transmission speed (ie broadest bandwidth) or mobility (or some other factor) may dictate a preferred use of wired or wireless. Generally, fiber optic wire 99 provides the most advantageous transmission means because it has the greatest bandwidth or 15 data transmission speed, so it is generally preferred for connections between personal computers and microchips, including direct connections, whereas wireless 100 is generally preferred where mobility is a paramount design criteria. Any of the embodiments shown in Figures 16A-16Z and 16AA 20 can be combined with any one or more of the preceding or subsequent figures of this application. The parallel processing network architecture shown in the preceding Figures 16A-16Z and 16AA and in earlier figures has several features unique to its basic design that provide for 25 the security of personal computers PC 1 (or PC microprocessor 90) or microprocessor 40 that share other computers for parallel and multi-tasking processing. First, the slave personal computers PC 1 (or microprocessors 40) each have only part of the operation (for large operations, only a very small 30 part) and therefore unauthorized surveillance of a single PC 1 can provide only very limited knowledge of the entire operation, especially in only a relatively local area switching 69 WO 99/61998 PCTIUS99/11206 or routing was employed. Second, the addresses of the slave personal computers PC 1 (or microprocessors 40) are known or traceable, therefore not protected by anonymity (like hackers usually are) in case of unauthorized intervention. In 5 addition, cryptography can be employed, with on microprocessor chip 30, 40, or 90 hardware 55 preferred due to efficiency, although software and firmware can also be used, or a separate PC 1 hardware-based component 56 like an encryption microchip can be used; with either encryption component 55 or 56, micro 10 mechanical locks can be used to prevent access other than the direct physical user. Nonetheless, these inherent strengths can be substantially reinforced, as indicated in Figures 17B 17D. Figure 17A shows at least one firewall 50 performing its 15 conventional function of keeping out intruders such as hackers from the Internet 3 from unauthorized access for either surveillance or intervention of a user's personal computer PC 1 (or PC microprocessor 90) or master microprocessor 30. Figure 17B shows that, since Internet users can, as 20 enabled by the applicant's network structure invention, use one or more of the slave microprocessors 40 of another's personal computer PC 1 (or PC microprocessor 90) for parallel (or multi tasking) processing, the at least one firewall 50 has a dual function in also protecting Internet 3 use (or other shared use 25 on a network) from unauthorized surveillance or intervention by a PC 1 owner/user who is providing the shared resources. To maintain the privacy necessary to operate such a cooperatively shared network arrangement, unauthorized surveillance or intervention must be carefully prevented by hardware/software 30 /firmware or other means. Figure 17C therefore shows master M personal computer PC 1 (or PC microprocessor 90) using the slave S2 microprocessor 70 WO 99/61998 PCT/US99/11206 40 of a different personal computer, PC 1', which is available for Internet 3 (or other net) shared use, while firewall 50' blocks unauthorized access into PC 1' by PC 1 (although PC 1' owner/user can always interrupt a shared operation and take 5 back control and use of slave S' microprocessor 40, which then triggers off-loading action to compensate, as discussed above in Figures 16I-16J). Figure 17D shows a figure similar to Figure 17C, but showing a PC microprocessor 90 with a slave microprocessor 94 10 being used by Internet 3 users (or other net) , so that at least one firewall 50 serves both to deny access such as surveillance by master M microprocessor 93 to an Internet 3 parallel processing (or multi-tasking) operation on slave S microprocessor 94 and to deny access to master M microprocessor 15 93 by Internet 3 (or other net) users of slave S microprocessor 94. It is presently contemplated that at least one firewall 50 is implemented by non-configurable hardware at the microchip level to provide the best protection against tampering with the firewall 50 by a PC 1 user, who has easier access to software 20 or macro hardware such as PC motherboards to alter. The flexible network architecture shown earlier in Figure 16K and other Figure 16 series (and other figures) have many applications, including their use to design improvements and alternatives to the network itself. In addition, the flexible 25 network can be used to simulate and design personal computers PC 1 and particularly PC microprocessor chips 90 (and other microchips), which may be static or configurable (in response to the requirements of a given operation, like the Figure 16K network architecture) or a mix. 30 The Figure 16K network architecture has capabilities that substantially exceed simulating the fairly simple binary circuit structure of a typical PC microprocessor 90 or other 71 WO 99/61998 PCT/US99/11206 microchip, since any personal computer PC 1 or PC microprocessor chip 90 in the Figure 16K network can simulate much more than a simple binary circuit on/off state or other simple microchip circuit . Any PC 1 or 90 in a Figure 16K 5 network can represent virtually any number of states or conditions simulating any kind of circuit, however complex it might be, the only limit being the processing time required for what can be a very large number - thousands or millions - of personal computers PC 1 or PC microprocessors 90 to process the 10 simulation; that is to say, there are only practical constraints, not theoretical ones, although increasingly larger numbers of processors are expected to be phased in, as discussed before. One potential related application of prior described 15 network inventions is to simulating the unique "qubit" component necessary to construct a quantum computer, as well as a virtual quantum computer itself. Figures 18A-18D show designs for a virtual quantum computer or computers. Figure 18A shows personal computer PC 20 1 (or microprocessor 90) with the addition of a software program 151 simulating a "qubit" for a quantum computer or computers and thereby becoming a virtual qubit (VQ) 150, a key component of a quantum computer 153. Figure 18B shows a personal computer PC 1 (or microprocessor 90) with a digital 25 signal processor (DSP) 89 connected to a hardware analog device 152 simulating a qubit, with the PC 1 monitoring the qubit through the DSP 89, thereby simulating a virtual qubit (VQ) 150 for a quantum computer 153; this arrangement allows the option of simultaneous use of the PC 1 through multi-tasking for both 30 digital and quantum computing. Figure 18C is like Figure 16A, but incorporating a virtual qubit in PC 1, so that a virtual quantum computer 153 can have 72 WO 99/61998 PCTUS99/11206 any network architecture like those shown in Figures 16A-16Z and 16AA, as well as other figures of this application. As shown in Figure 18D, for example, a virtual qubits (VC) 150 network can provide complete interconnectivity, like Figure 5 13. Virtual qubits VC 150 like those described in Figures 18A & 18B can be added to or substituted for microprocessors 30 and 40 in prior Figures 16B-16Q and 16V-16AA of this application, as well as earlier figures. As shown in those prior applications, the number of virtual qubits 150 is limited only 10 to whatever is practical at any given time; in terms of development that means as few as a single qubit 150 in one or more networked personal computers PC 1 to begin, but the number of qubits 150 can become potentially extremely large, as indicated in previous figures. Figure 18D shows a mix of wired 15 99 and wireless 100 connections. Like personal computers located in the home or office, personal computers PC 1 in automobiles 170 (including other transportation vehicles or other conveyances) are in actual use only a very small percentage of the time, with the average 20 dormant period of non-use totaling as much as 90 percent or more. Personal computers PC 1 are now being added to some automobiles and will likely become standard equipment over the next decade or so. In addition, automobiles already have a very large number of microcomputers onboard in the form of 25 specialized microprocessors 35 which are likely to become general parallel processors in future designs, as discussed earlier in this application. Automobiles therefore form a potentially large and otherwise unused resource for massive parallel processing 30 through the Internet 3 and other networks, as described in earlier figures. However, when idle and thus generally available for network use, automobiles lack their usual power 73 WO 99/61998 PCT/US99/11206 source, the engine, which of course is then off, since it is too large to efficiently provide electrical power to onboard computers except occasionally. As shown in Figure 19, the car engine can have a controller (hardware, software or firmware or 5 combination in the PC 1 (or other microprocessor 35) , for example, connected to an automobile computer network 178 to automatically start the automobile engine in order to recharge the car battery 171 when the battery is low (and well before the battery is too low to start the engine), but the engine 10 additionally needs to be controlled as above not to expend all available fuel automatically. Alternately, the automobile 170 can be fitted with a very small auxiliary engine-power electrical power generator 177 to provide power to the automobile's computer network; the engine 15 of the generator 177 can be fed by the main engine fuel tank and controlled as above. Two solutions, not mutually exclusive, to alleviate (but not solve) the lack of power problem noted above are, first, adding an additional car battery 171' for network use (at least 20 primarily) or, second, using a single battery but adding a controller in the PC 1, for example, that prevents the existing battery 171 from being discharged to a level near or below that which is needed to start the automobile 170. In addition, as shown in Figure 19, one or more solar 25 power generating cells or cell arrays 172 can be incorporated in an automobile's outer surface, with generally the most effective placement being on a portion of the upper horizontal surface, such as a portion of the roof, hood, or trunk. For charging the automobile battery 171 when sunlight is not 30 available, such as at night or in a garage, a focused or focusable light source 173 can provide external power to the solar panel. 74 WO 99/61998 PCTIUS99/11206 Alternately, a connection device 174 such as a plug for an external electrical power source can be installed on or near the outer surface of the automobile. In addition, or independently, a connection device 175 for an optical fiber (or 5 other wired) external connection to the Internet 3 or other net; an intermediate high transmission speed can also exist between the automobile network and a fiber optic connection to the Internet 3. Alternately, a wireless receiver 176 located near where the automobile is parked, such as in a garage, can 10 provide connection from the automobile's personal computer or computers PC 1 directly to the Internet 3 or to a network in a home or business like that shown in Figure 10I. Figure 20A is like Figure 16Y, but in addition shows a slave microprocessor 40 functioning as S,, the function of 15 master having been temporarily or permanently offloaded to it by M, microprocessor 30. Also in addition, Figure 20A shows the processing level of slave microprocessors 40, S31 through S34, each with a separate output link to a digital signal processor (DSP) 89 or other transmission component; the 20 transmission linkages are shown as 111, 112, 113, and 114, respectively. The DSP 89 is connected to a wired 99 means such as optical fiber to the Internet (or other net), although non optical fiber wire can be used (and probably does not require a DSP 89). 25 Figure 20B is like Figure 16S, but with the same new additions described above in Figure 20A. Like Figure 16S, Figure 20B shows a detailed view of personal computer PC microprocessor 901, which is a personal computer on a microchip, including two more levels of parallel processing 30 within the microprocessor 90. In addition, the two new levels of PC microprocessor 90 shown in Figure 20B are a second processing level consisting of PC microprocessors 9021 through 75 WO 99/61998 PCT/US99/11206 902 and a third processing level consisting of PC microprocessors 9031 through 90316 (a third level total of 16 microprocessors 90) . Each of the three processing levels shown in the Figure 20B example is separated between levels by an 5 intermediate direct connection to the Internet 3 (or other network) and by four output lines from the higher processing level. For example, microprocessors 9021 through 9024 are shown receiving respectively from the outputs 111 through 114 from four slave microprocessors 94, S 31 through
S
34 of PC 10 microprocessor 901. Note that PC microprocessor 90, is shown in detail including all slave microprocessors 94, while other PC microprocessors 90 at the second and third processing levels do not, for simplicity and conciseness of presentation. Note also 15 that an additional processing level can be present, but is not shown for the sake of simplicity: personal computers PC 1 like Figure 20A can be used interchangeably with PC microprocessors 90. Figure 20B shows that between each processing level the 20 output links from every PC microprocessor 90 can be transmitted from slave microprocessors 94 directly to PC microprocessors 90 at the next processing level below, such as from PC microprocessor 9021 down to PC microprocessors 9031 through 9034, via the Internet 3 or other net. Each of the transmission 25 links from those slave processing microprocessors 94 (S 3 , through S,,), shown as 111, 112, 113, and 114 for PC microprocessor 90,, can be transmitted on a different channel (and can use multiplexing such as wave or dense wave division) on an optical fiber line (because of its huge capacity, one 30 optical fiber line is expected to be sufficient generally, but additional lines can be used) that connects preferably directly to PC microprocessor chip 90,, which can incorporate a digital 76 WO 99/61998 PCT/US99/11206 signal processor 89 (of which there can be one or more) for connecting to the wired connection like fiber optic line, as shown, or wireless connection. Any of the embodiments shown in Figures 20A and 20B can be 5 combined with one or more of any of the preceding figures of this application. This application encompasses all new apparatus and methods required to operate the above described network computer system or systems, including any associated computer or network 10 hardware, software, or firmware (or other component) , both apparatus and methods. Specifically included, but not limited to, are (in their present or future forms, equivalents, or successors): all enabling PC and network software, hardware, and firmware operating systems, user interfaces and application 15 programs; all enabling PC and network hardware design and system architecture, including all PC and other computers, network computers such as servers, microprocessors, nodes, gateways, bridges, routers, switches, and all other components; all enabling financial and legal transactions, arrangements and 20 entities for network providers, PC users, and/or others, including purchase and sale of any items or services on the network or any other interactions or transactions between any such buyers and sellers; and all services by third parties, including to select, procure, set up, implement, integrate, 25 operate and perform maintenance, for any or all parts of the foregoing for PC users, network providers, and/or others. The combinations of the many elements the applicant's invention introduced in the preceding figures are shown because those embodiments are considered to be at least among the most 30 useful possible, but many other useful combination embodiments exist but are not shown simply because of the impossibility of showing them all while maintaining a reasonable brevity in an 77 WO 99/61998 PCT/US99/11206 unavoidably long description caused by the inherently highly interconnected nature of the inventions shown herein, which generally can operate all as part of one system or independently. 5 Therefore, any combination that is not explicitly described above is definitely implicit in the overall invention of this application and, consequently, any part of any of the preceding Figures and/or associated textual description can be combined with any part of any one or more other of the Figures 10 and/or associated textual description of this application to create new and useful improvements over the existing art. In addition, any unique new part of any of the preceding Figures and/or associated textual description can be considered by itself alone as an individual improvement over the existing 15 art. The forgoing embodiments meet the overall objectives of this invention as summarized above. However, it will be clearly understood by those skilled in the art that the foregoing description has been made in terms only of the most 20 preferred specific embodiments. Therefore, many other changes and modifications clearly and easily can be made that are also useful improvements and definitely outside the existing art without departing from the scope of the present invention, indeed which remain within its very broad overall scope, and 25 which invention is to be defined over the existing art by the appended claims. 78

Claims (40)

1. A system for a network of computers, comprising: at least two personal computers; means for providing network services and shared computer processing, including parallel processing, to be provided to said at least two personal computers within said network; means for at least one of said at least two personal computers, when idled, to be made available temporarily to provide said shared computer processing to said network; means for at least one of said at least two personal computers, when directed by a corresponding personal user, to function temporarily as a master personal computer to initiate and control execution of a computer processing operation shared with at least one other of said at least two personal computers in said network; means for said at least one other of said at least two personal computers, when idled, to be made available to function temporarily as at least one slave personal computer to participate in an execution of a shared computer processing operation controlled by said master personal computer; and means for said at least two personal computers to alternate as directed between functioning as a master and functioning as a slave in said shared computer processing operation, wherein each of said at least one slave personal computer consolidates or passes through results sent from another slave personal computer at a lower processing level.
2. The system according to claim 1, further comprising: means for said master personal computer to subdivide said shared computer processing operation into a plurality of parts 79 WO 99/61998 PCTIUS99/11206 and to send said plurality of parts to slave personal computers.
3. The system according to claim 2, wherein at least one of said at least two personal computers comprises a plurality of microprocessors.
4. The system according to claim 3, wherein said microprocessors are on a single chip.
5. A system for a network of computers, comprising: at least two personal computers; means for providing network services including browsing functions and shared computer processing including parallel processing, to be provided to said at least two personal computers within said network; means for at least one of said at least two personal computers, when idled, to be made available temporarily to provide said shared computer processing to said network; a monitor, constructed and arranged to monitor on a net basis, a provision of said network services to each of said at least two personal computers; means for maintaining a standard cost basis for a provision of said network services to each of said at least two personal computers or to a personal user; means for at least one of said at least two personal computers, when directed by a corresponding personal user, to function temporarily as a master personal computer to initiate and control execution of a computer processing operation shared with at least one other of said at least two personal computers in said network; means for said at least one other of said at least two 80 WO 99/61998 PCT/US99/11206 personal computers, when idled, to be made available to function temporarily as at least one slave personal computer to participate in an execution of a shared computer processing operation controlled by said master personal computer; and means for said at least two personal computers to alternate as directed between functioning as a master and functioning as a slave in said shared computer processing operation; at least one of said computers including at least two microprocessors and having a connection with said network of computers; a firewall for said at least two personal computers to limit access by said network to only a portion of hardware, software, firmware, and other components of said at least two personal computers, wherein: said firewall will not permit access by said network to at least one of said microprocessors, which include means for functioning as a master microprocessor to initiate and control execution of a computer processing operation shared with at least one other microprocessor, including means for functioning as a slave microprocessor, said firewall permitting access by said network to said slave microprocessor, and each of said at least one slave personal computer consolidates or passes through results sent from another slave personal computer at a lower processing level.
6. The system according to claim 5, further comprising: means for said master personal computer to subdivide said shared computer processing operation into a plurality of parts and to send said plurality of parts to slave personal computers. 81 WO 99/61998 PCT/US99/11206
7. The system according to claim 6, wherein at least one of said at least two personal computers comprises a plurality of microprocessors.
8. The system according to claim 7, wherein said microprocessors are on a single chip.
9. A system for a network of at least two processors, comprising: said at least two processors; means for providing network services and shared computer processing, including parallel processing, to be provided to said at least two processors within said network; means for at least one of said at least two processors, when idled, to be made available temporarily to provide said shared computer processing to said network; means for at least one of said at least two processors, when directed, to function temporarily as a master processor to initiate and control execution of a computer processing operation shared with at least one other of said at least two processors in said network; means for said at least one other of said at least two processors, when idled, to be made available to function temporarily as at least one slave processor to participate in an execution of a shared computer processing operation controlled by said master processor; and means for said at least two processors to alternate as directed between functioning as a master and functioning as a slave in said shared computer processing operation, wherein each of said at least one slave processor consolidates or passes through results sent from another slave processor at a lower processing level. 82 WO 99/61998 PCTIUS99/11206
10. The system according to claim 9, further comprising: means for said master processor to subdivide said shared computer processing operation into a plurality of parts and to send said plurality of parts to slave processors.
11. The system according to claim 10, wherein at least one of said at least two processors comprises a plurality of microprocessors.
12. The system according to claim 11, wherein said microprocessors are on a single chip.
13. The system according to claim 9, wherein each of said at least two processors includes a corresponding memory.
14. The system according to claim 13, wherein each of said corresponding memories is one of a volatile memory and a non-volatile memory.
15. A system for a network of computers, comprising: at least two personal computers, wherein at least one of said at least two personal computers comprises a PC microprocessor with a slave microprocessor; means for providing network services including browsing functions and shared computer processing including parallel processing, to be provided to said at least two personal computers within said network; means for at least one of said at least two personal computers, when idled, to be made available temporarily to provide said shared computer processing to said network; a monitor, constructed and arranged to monitor on a net basis, a provision of said network services to each of said at 83 WO 99/61998 PCT/US99/11206 least two personal computers; means for maintaining a standard cost basis for a provision of said network services to each of said at least two personal computers or to a personal user; means for at least one of said at least two personal computers, when directed by a corresponding personal user, to function temporarily as a master personal computer to initiate and control execution of a computer processing operation shared with at least one other of said at least two personal computers in said network; means for said at least one other of said at least two personal computers, when idled, to be made available to function temporarily as at least one slave personal computer to participate in an execution of a shared computer processing operation controlled by said master personal computer; and means for said at least two personal computers to alternate as directed between functioning as a master and functioning as a slave in said shared computer processing operation; a firewall for said at least two personal computers to limit access by said network to only a portion of hardware, software, firmware, and other components of said at least two personal computers, wherein: said firewall will not permit access by said network to at least one of said microprocessors, which include means for functioning as a master microprocessor to initiate and control execution of a computer processing operation shared with at least one other microprocessor, including means for functioning as a slave microprocessor, said firewall permitting access by said network to said slave microprocessor, and each of said at least one slave personal computer 84 WO 99/61998 PCT/US99/11206 consolidates or passes through results sent from another slave personal computer at a lower processing level.
16. The system according to claim 15, further comprising: means for said master personal computer to subdivide said shared computer processing operation into a plurality of parts and to send said plurality of parts to slave personal computers.
17. The system according to claim 16, wherein at least one of said at least two personal computers comprises a plurality of microprocessors.
18. The system according to claim 17, wherein said microprocessors are on a single chip.
19. The system according to claim 15, wherein said firewall is implemented by non-configurable hardware at a microchip level.
20. A system for a network of at least two processors, comprising: said at least two processors; means for providing network services and shared computer processing, including parallel processing, to be provided to said at least two processors within said network; means for at least one of said at least two processors, when idled, to be made available temporarily to provide said shared computer processing to said network; means for at least one of said at least two processors, when directed, to function temporarily as a master processor to initiate and control execution of a computer processing 85 WO 99/61998 PCTIUS99/11206 operation shared with at least one other of said at least two processors in said network; means for said at least one other of said at least two processors, when idled, to be made available to function temporarily as at least one slave processor to participate in an execution of a shared computer processing operation controlled by said master processor; and means for said at least two processors to alternate as directed between functioning as a master and functioning as a slave in said shared computer processing operation, wherein at least one of said at least two processors is located within an automobile and is connected to said network.
21. A method comprising: providing network services and shared computer processing, including parallel processing, to at least two personal computers within a network; making at least one of said at least two personal computers available, when idled, to provide said shared computer processing to said network; making at least one of said at least two personal computers, when directed by a corresponding personal user, function temporarily as a master personal computer to initiate and control execution of a computer processing operation shared with at least one other of said at least two personal computers in said network; making said at least one other of said at least two personal computers available, when idled, to function temporarily as at least one slave personal computer to participate in an execution of a shared computer processing operation controlled by said master personal computer; and alternating said at least two personal computers, as 86 WO 99/61998 PCT/US99/11206 directed, between functioning as a master and functioning as a slave in said shared computer processing operation, wherein each of said at least one slave personal computer consolidates or passes through results sent from another slave personal computer at a lower processing level.
22. The method according to claim 21, further comprising: said master personal computer subdividing said shared computer processing operation into a plurality of parts and sending said plurality of parts to slave personal computers.
23. The method according to claim 22, wherein at least one of said at least two personal computers comprises a plurality of microprocessors.
24. The method according to claim 23, wherein said microprocessors are on a single chip.
25. A method comprising: providing network services including browsing functions and shared computer processing including parallel processing, to at least two personal computers within a network; making at least one of said at least two personal computers available, when idled, to provide said shared computer processing to said network; monitoring, on a net basis, a provision of said network services to each of said at least two personal computers; maintaining a standard cost basis for a provision of said network services to each of said at least two personal computers or to a personal user; making at least one of said at least two personal computers available, when directed by a corresponding personal 87 WO 99/61998 PCTUS99/11206 user, to function temporarily as a master personal computer to initiate and control execution of a computer processing operation shared with at least one other of said at least two personal computers in said network; making said at least one other of said at least two personal computers available, when idled, to function as at least one slave personal computer to participate in an execution of a shared computer processing operation controlled by said master personal computer; and alternating said at least two personal computers, as directed, between functioning as a master and functioning as a slave in said shared computer processing operation; limiting access by said network to only a portion of hardware, software, firmware, and other components of said at least two personal computers, wherein: said limiting will not permit access by said network to at least one of said microprocessors, said limiting permitting access by said network to at least one other of said microprocessors, and each of said at least one slave personal computer consolidates or passes through results sent from another slave personal computer at a lower processing level.
26. The method according to claim 25, further comprising: said master personal computer subdividing said shared computer processing operation into a plurality of parts and sending said plurality of parts to slave personal computers.
27. The method according to claim 26, wherein at least one of said at least two personal computers comprises a plurality of microprocessors. 88 WO 99/61998 PCT/US99/11206
28. The method according to claim 27, wherein said microprocessors are on a single chip.
29. A method comprising: providing network services and shared computer processing, including parallel processing, to at least two processors within a network; making at least one of said at least two processors available, when idled, to provide said shared computer processing to said network; making at least one of said at least two processors available, when directed, to function temporarily as a master processor to initiate and control execution of a computer processing operation shared with at least one other of said at least two processors in said network; making said at least one other of said at least two processors available, when idled, to function temporarily as at least one slave processor to participate in an execution of a shared computer processing operation controlled by said master processor; and alternating said at least two processors, as directed, between functioning as a master and functioning as a slave in said shared computer processing operation, wherein each of said at least one slave processor consolidates or passes through results sent from another slave processor at a lower processing level.
30. The method according to claim 29, further comprising: said master personal computer subdividing said shared computer processing operation into a plurality of parts and sending said plurality of parts to slave personal computers. 89 WO 99/61998 PCT/US99/11206
31. The method according to claim 30, wherein at least one of said at least two personal computers comprises a plrality of microprocessors.
32. The method according to claim 31, wherein said microprocessors are on a single chip.
33. The method according to claim 29, wherein each of said at least two processors includes a corresponding memory.
34. The method according to claim 33, wherein each of said corresponding memories is one of a volatile memory and a non-volatile memory.
35. A method comprising: providing network services including browsing functions and shared computer processing including parallel processing, to at least two personal computers within a network, at least one of said at least two personal computers comprising a PC microprocessor with a slave microprocessor; making at least one of said at least two personal computers available, when idled, to provide said shared computer processing to said network; monitoring, on a net basis, a provision of said network services to each of said at least two personal computers; maintaining a standard cost basis for a provision of said network services to each of said at least two personal computers or to a personal user; making at least one of said at least two personal computers available, when directed by a corresponding personal user, to function temporarily as a master personal computer to initiate and control execution of a computer processing 90 WO 99/61998 PCT/US99/11206 operation shared with at least one other of said at least two personal computers in said network; making said at least one other of said at least two personal computers available, when idled, to function temporarily as at least one slave personal computer to participate in an execution of a shared computer processing operation controlled by said master personal computer; and alternating said at least two personal computers, as directed, between functioning as a master and functioning as a slave in said shared computer processing operation; limiting access to said at least two personal computers by said network to only a portion of hardware, software, firmware, and other components of said at least two personal computers, wherein: said limiting will not permit access by said network to at least one of said microprocessors, said limiting permitting access by said network to said slave microprocessor, and each of said at least one slave personal computer consolidates or passes through results sent from another slave personal computer at a lower processing level.
36. The method according to claim 35, further comprising: said master personal computer subdividing said shared computer processing operation into a plurality of parts and sending said plurality of parts to slave personal computers.
37. The method according to claim 36, wherein at least one of said at least two personal computers comprises a plurality of microprocessors.
38. The method according to claim 37, wherein said 91 WO 99/61998 PCTIUS99/11206 microprocessors are on a single chip.
39. The method according to claim 35, wherein said limiting is performed by non-configurable hardware at a microchip level.
40. A method comprising: providing network services and shared computer processing, including parallel processing, to at least two processors within a network; making at least one of said at least two processors available, when idled, to provide said shared computer processing to said network; making at least one of said at least two processors available, when directed, to function temporarily as a master processor to initiate and control execution of a computer processing operation shared with at least one other of said at least two processors in said network; making said at least one other of said at least two processors available, when idled, to function temporarily as at least one slave processor to participate in an execution of a shared computer processing operation controlled by said master processor; and alternating said at least two processors, as directed, between functioning as a master and functioning as a slave in said shared computer processing operation, wherein at least one of said at least two processors is located within an automobile and is connected to said network. 92
AU41944/99A 1998-05-22 1999-05-21 Global network computers Abandoned AU4194499A (en)

Applications Claiming Priority (19)

Application Number Priority Date Filing Date Title
US8658898P 1998-05-22 1998-05-22
US8651698P 1998-05-22 1998-05-22
US60086516 1998-05-22
US60086588 1998-05-22
US8694898P 1998-05-27 1998-05-27
US60086948 1998-05-27
US09/085,755 US7634529B2 (en) 1996-11-29 1998-05-27 Personal and server computers having microchips with multiple processing units and internal firewalls
US09085755 1998-05-27
US8758798P 1998-06-01 1998-06-01
US60087587 1998-06-01
US8845998P 1998-06-08 1998-06-08
US60088459 1998-06-08
WOUS9827058 1998-12-17
US09/213,875 US6725250B1 (en) 1996-11-29 1998-12-17 Global network computers
PCT/US1998/027058 WO1999032972A1 (en) 1997-12-19 1998-12-17 Firewall security protection of parallel processing in a global computer networking environment
US09213875 1998-12-17
US13455299P 1999-05-17 1999-05-17
US60134552 1999-05-17
PCT/US1999/011206 WO1999061998A2 (en) 1998-05-22 1999-05-21 Distributed execution of a task using the processing power of idle workstations

Publications (1)

Publication Number Publication Date
AU4194499A true AU4194499A (en) 1999-12-13

Family

ID=27578374

Family Applications (1)

Application Number Title Priority Date Filing Date
AU41944/99A Abandoned AU4194499A (en) 1998-05-22 1999-05-21 Global network computers

Country Status (5)

Country Link
EP (1) EP1078320A2 (en)
JP (1) JP2003524808A (en)
AU (1) AU4194499A (en)
CA (1) CA2330952A1 (en)
WO (1) WO1999061998A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294956A (en) * 2004-03-31 2005-10-20 Mitsui Eng & Shipbuild Co Ltd Distributed data collection system and buildup method of the system
US7472079B2 (en) * 2005-01-12 2008-12-30 International Business Machines Corporation Computer implemented method for automatically controlling selection of a grid provider for a grid job
JP4402051B2 (en) * 2006-01-16 2010-01-20 株式会社ソニー・コンピュータエンタテインメント Data processing system and data processing method
JP5747389B2 (en) * 2012-08-31 2015-07-15 日本電信電話株式会社 Computer resource allocation apparatus, method, and program
JP6198175B2 (en) * 2014-02-20 2017-09-20 株式会社デンソー Communication circuit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349682A (en) * 1992-01-31 1994-09-20 Parallel Pcs, Inc. Dynamic fault-tolerant parallel processing system for performing an application function with increased efficiency using heterogeneous processors
FR2711026B1 (en) * 1993-10-04 1995-12-08 France Telecom System for managing the consumption of data consultations on a telecommunications network.
US5615127A (en) * 1994-11-30 1997-03-25 International Business Machines Corporation Parallel execution of a complex task partitioned into a plurality of entities
US6732141B2 (en) * 1996-11-29 2004-05-04 Frampton Erroll Ellis Commercial distributed processing by personal computers over the internet
ATE239249T1 (en) * 1997-12-19 2003-05-15 Frampton E Ellis Iii FIREWALL PARALLEL PROCESSING PROTECTION SYSTEM IN A GLOBAL COMPUTER NETWORK ENVIRONMENT

Also Published As

Publication number Publication date
WO1999061998A9 (en) 2000-06-22
CA2330952A1 (en) 1999-12-02
EP1078320A2 (en) 2001-02-28
JP2003524808A (en) 2003-08-19
WO1999061998A2 (en) 1999-12-02
WO1999061998A3 (en) 2000-02-10

Similar Documents

Publication Publication Date Title
US7606854B2 (en) Internal hardware firewalls for microchips
US9183410B2 (en) Computer or microchip with an internal hardware firewall and a master controlling device
US8732230B2 (en) Computers and microchips with a side protected by an internal hardware firewall and an unprotected side connected to a network
US8677026B2 (en) Computers and microchips with a portion protected by an internal hardware firewalls
US8892627B2 (en) Computers or microchips with a primary internal hardware firewall and with multiple internal harware compartments protected by multiple secondary interior hardware firewalls
US8561164B2 (en) Computers and microchips with a side protected by an internal hardware firewall and an unprotected side connected to a network
US7035906B1 (en) Global network computers
US6167428A (en) Personal computer microprocessor firewalls for internet distributed processing
AU742835B2 (en) Global network computers
EP1040418B1 (en) Firewall security protection of parallel processing in a global computer networking environment
AU4194499A (en) Global network computers
EP1244013A2 (en) Global network computers
EP1192556A2 (en) Multiprocessor with optical connection to a network
WO2000070448A2 (en) Multiprocessor with optical connection to a network
WO2002017595A2 (en) Global network computers