AU2018200064A1 - Human immunodeficiency virus (HIV)-neutralizing antibodies - Google Patents

Human immunodeficiency virus (HIV)-neutralizing antibodies Download PDF

Info

Publication number
AU2018200064A1
AU2018200064A1 AU2018200064A AU2018200064A AU2018200064A1 AU 2018200064 A1 AU2018200064 A1 AU 2018200064A1 AU 2018200064 A AU2018200064 A AU 2018200064A AU 2018200064 A AU2018200064 A AU 2018200064A AU 2018200064 A1 AU2018200064 A1 AU 2018200064A1
Authority
AU
Australia
Prior art keywords
mgrm
seq
amino acid
aest
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2018200064A
Other versions
AU2018200064B2 (en
Inventor
Dennis R. Burton
Po-Ying Chan-Hui
Katherine Doores
Melissa Danielle De Jean De St. Marcel Simek-Lemos
Steven Frey
Michael Huber
Stephen KAMINSKY
Wayne Koff
Jennifer Mitcham
Matthew Moyle
Ole Olsen
Sanjay K. Phogat
Pascal Raymond Georges Poignard
Laura Marjorie Walker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scripps Research Institute
International AIDS Vaccine Initiative Inc
Theraclone Sciences Inc
Original Assignee
Scripps Research Institute
International AIDS Vaccine Initiative Inc
Theraclone Sciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2011/049880 external-priority patent/WO2012030904A2/en
Application filed by Scripps Research Institute, International AIDS Vaccine Initiative Inc, Theraclone Sciences Inc filed Critical Scripps Research Institute
Priority to AU2018200064A priority Critical patent/AU2018200064B2/en
Publication of AU2018200064A1 publication Critical patent/AU2018200064A1/en
Application granted granted Critical
Publication of AU2018200064B2 publication Critical patent/AU2018200064B2/en
Priority to AU2020203853A priority patent/AU2020203853C1/en
Priority to AU2023237056A priority patent/AU2023237056A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention provides a method for obtaining a broadly neutralizing antibody (bNab), including screening memory B cell cultures from a donor PBMC sample for neutralization activity against a plurality of HIV-1 species, cloning a memory B cell that exhibits broad neutralization activity; and rescuing a monoclonal antibody from that memory B cell culture. The resultant monoclonal antibodies may be characterized by their ability to selectively bind epitopes from the Env proteins in native or monomeric form, as well as to inhibit infection of HIV-1 species from a plurality of clades. Compositions containing human monoclonal anti-HIVI antibodies used for prophylaxis, diagnosis and treatment of HIV infection are provided. Methods for generating such antibodies by immunization using epitopes from conserved regions within the variable loops of glp20 are provided. Immunogens for generating anti-HVIl bNabs are also provided. Furthermore, method for vaccination using suitable epitopes are provided.

Description

HUMAN IMMUNODEFICIENCY VIRUS (HIV)-NEUTRALIZING ANTIBODIES RELATED APPLICATIONS AND INCORPORATION BY REFERENCE
[0001] This is a divisional of Australian Patent Application No. 2016202543 filed 21 April 2016, which is a divisional application of Australian Patent Application No. 2011296065, which is the Australian National Phase of PCT/US2011/049880 filed 31 August 2011, which claims priority from U.S. Provisional Patent Application Serial Nos. 61/378,604 filed August 31, 2010, 61/386,940 filed September 27, 2010, 61/476,978 filed April 19, 2011 and 61/515,548 filed August 5, 2011. The contents of each application listed in this paragraph are fully incorporated by reference herein.
[0002] The foregoing applications, and all documents cited therein or during their prosecution ("appln cited documents") and all documents cited or referenced in the appln cited documents, and all documents cited or referenced herein ("herein cited documents"), and all documents cited or referenced in herein cited documents, together with any manufacturer's instructions, descriptions, product specifications, and product sheets for any products mentioned herein or in any document incorporated by reference herein, are hereby incorporated herein by reference, and may be employed in the practice of the invention. More specifically, all referenced documents are incorporated by reference to the same extent as if each individual document was specifically and individually indicated to be incorporated by reference. FIELD OF THE INVENTION
[0003] The present invention relates generally to therapy, diagnosis and monitoring of human immunodeficiency virus (HIV) infection. The invention is more specifically related to human neutralizing monoclonal antibodies specific for HIV- 1, such as broad and potent neutralizing monoclonal antibodies specific for HIV- 1 and their manufacture and use. Broad neutralization suggests that the antibodies can neutralize HIV- 1 isolates from different individuals. Such antibodies are useful in pharmaceutical compositions for the prevention and treatment of HIV, and for the diagnosis and monitoring of HIV infection and for design of HIV vaccine immunogens. GOVERNMENT SUPPORT
[0004] This invention was made with Government support under Grant No. A133292 awarded by the National Institutes of Health. This invention was also made in part with Government Support under Grant No. GPH G 00 06 00006 00 awarded by the U.S. Agency for International Development ("US AID"). The Government has certain rights in the invention.
BACKGROUND OF THE INVENTION
[0005] AIDS was first reported in the United States in 1981 and has since become a major worldwide epidemic. AIDS is caused by the human immunodeficiency virus, or HIV. By killing or damaging cells of the body's immune system, HIV progressively destroys the body's ability to fight infections and certain cancers. People diagnosed with AIDS may get life-threatening diseases called opportunistic infections. These infections are caused by microbes such as viruses or bacteria that usually do not make healthy people sick. HIV is spread most often through unprotected sex with an infected partner. HIV also is spread through contact with infected blood. The human immunodeficiency virus (HIV) is the cause of acquired immune deficiency syndrome (AIDS) (Barre-Sinoussi, F., et al., 1983, Science 220:868-870; Gallo, R., et al., 1984, Science 224:500-503). There are currently 1.25 million people in the US infected with HIV-induced acquired immunodeficiency syndrome according to a Center for Disease Control report. The epidemic is growing most rapidly among minority populations and is a leading killer of African American males ages 25 to 44. According, AIDS affects nearly seven times more African Americans and three times more Hispanics than whites. In recent years, an increasing number of African-American women and children are being affected by HIV/AIDS. With over 40 million people infected worldwide, the current global HIV pandemic ranks among the greatest infectious disease scourges in human history.
[0006] There is therefore a need for the efficient identification and production of neutralizing antibodies effective against multiple clades and strains of HIV as well as the elucidation of the target and antigenic determinants to which such antibodies bind.
[0007] Citation or identification of any document in this application is not an admission that such document is available as prior art to the present invention.
SUMMARY OF THE INVENTION
[0008] The present invention provides a novel method for isolating potent, broadly neutralizing monoclonal antibodies against HIV. Peripheral Blood Mononuclear Cells (PBMCs) are obtained from an HIV-infected donor selected for HIV- 1 neutralizing activity in the plasma, and memory B cells are isolated for culture in vitro. The B cell culture supernatants may then be screened by a primary neutralization assay in a high throughput format, and B cell cultures exhibiting neutralizing activity may be selected for rescue of monoclonal antibodies. It is surprisingly observed that neutralizing antibodies obtained by this method do not always exhibit gp120 or gp41 binding at levels that correlate with neutralization activity. The method of the invention therefore allows identification of novel antibodies with cross-clade neutralization properties.
[0009] The present invention provides human monoclonal antibodies specifically directed against HIV. In certain embodiments, the invention provides human anti-HIV monoclonal antibodies including, but not limited to, 1443_C16 (PG16) (TCN- 116), 1503 H05 (PG16) (TCN 119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 _13 (PG16) (TCN 120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_D15 (PGT-122), 4858P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HO1 (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970K22 (PGT-144), 4995_P16 (PGT-145), 4835F12 (PGT-124), 4869-KI5 (PGT-133), 4876M06 (PGT-134), 5131_A17 (PGT-132), 5138G07 (PGT-138), 5120_NI (PGT-139), 6831_A21 (PGT-151), 6889_117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881_NO5 (PGT-158) and sister clones thereof. For instance, an exemplary sister clone of the 1443C16 (PG16) (TCN 116) antibody is the 1503 H05 (PG16) (TCN-119) antibody, the 1456 A12 (PG16) (TCN-117) antibody, the 1469 M23 (PG16) (TCN-118) antibody, the 1489_113 (PG16) (TCN-120) antibody, or the 1480_108 (PG16) antibody.
[0010] Specifically, the invention provides an isolated anti-HIV antibody, wherein said antibody may have heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of KYGMH (SEQ ID NO: 88), LISDDGMRKYHSDSMWG (SEQ ID NO: 89), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSSDVGGFDSVS (SEQ ID NO: 97), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
[0011] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of GFTFHK (SEQ ID NO: 266), LISDDGMRKY (SEQ ID NO: 267), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSSDVGGFDSVS (SEQ ID NO: 97), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
[0012] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of KYGMH (SEQ ID NO: 88), LISDDGMRKYHSDSMWG (SEQ ID NO: 89), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTRSDVGGFDSVS (SEQ ID NO: 92), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
[0013] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of GFTFHK (SEQ ID NO: 266), LISDDGMRKY (SEQ ID NO: 267), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTRSDVGGFDSVS (SEQ ID NO: 92), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
[0014] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of KYGMH (SEQ ID NO: 88), LISDDGMRKYHSDSMWG (SEQ ID NO: 89), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSRDVGGFDSVS (SEQ ID NO: 93), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
[0015] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of GFTFHK (SEQ ID NO: 266), LISDDGMRKY (SEQ ID NO: 267), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSRDVGGFDSVS (SEQ ID NO: 93), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
[0016] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs cwhich may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of KYGMH (SEQ ID NO: 88), LISDDGMRKYHSNSMWG (SEQ ID NO: 98), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSSDVGGFDSVS (SEQ ID NO: 97), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
[0017] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of SYAFT (SEQ ID NO: 104), MVTPIFGEAKYSQRFEG (SEQ ID NO: 105), and DRRAVPIATDNWLDP (SEQ ID NO: 9), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQTINNYLN (SEQ ID NO: 107), GASNLQN (SEQ ID NO: 108), and QQSFSTPRT (SEQ ID NO: 42).
[0018] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of GGTFSS (SEQ ID NO: 268), MVTPIFGEAK (SEQ ID NO: 269), and DRRAVPIATDNWLDP (SEQ ID NO: 9), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQTINNYLN (SEQ ID NO: 107), GASNLQN (SEQ ID NO: 108), and QQSFSTPRT (SEQ ID NO: 42).
[0019] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of SYAFS (SEQ ID NO: 110), MITPVFGETKYAPRFQG (SEQ ID NO: 111), and DRRVVPMATDNWLDP (SEQ ID NO: 8), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQTIHTYLN (SEQ ID NO: 113), GASTLQS (SEQ ID NO: 114), and QQSYSTPRT (SEQ ID NO: 43).
[0020] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of GGAFSS (SEQ ID NO: 270), MITPVFGETK (SEQ ID NO: 271), DRRVVPMATDNWLDP (SEQ ID NO: 8), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQTIHTYLN (SEQ ID NO: 113), GASTLQS (SEQ ID NO: 114), and QQSYSTPRT (SEQ ID NO: 43).
[0021] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of DYYLH (SEQ ID NO: 116), LIDPENGEARYAEKFQG (SEQ ID NO: 117), GAVGADSGSWFDP (SEQ ID NO: 10), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SGSKLGDKYVS (SEQ ID NO: 120), ENDRRPS (SEQ ID NO: 121), QAWETTTTTFVF (SEQ ID NO: 44).
[0022] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of GYSFID (SEQ ID NO: 102), LIDPENGEAR (SEQ ID NO: 103), GAVGADSGSWFDP (SEQ ID NO: 10), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SGSKLGDKYVS (SEQ ID NO: 120), ENDRRPS (SEQ ID NO: 121), QAWETTTTTFVF (SEQ ID NO: 44).
[0023] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of RQGMH (SEQ ID NO: 123), FIKYDGSEKYHADSVWG (SEQ ID NO: 124), and EAGGPDYRNGYNYYDFYDGYYNYHYMDV (SEQ ID NO: 7), and a light chain with three
CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSNDVGGYESVS (SEQ ID NO: 126), DVSKRPS (SEQ ID NO: 127), and KSLTSTRRRV (SEQ ID NO: 45).
[0024] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of GFDFSR (SEQ ID NO: 118), FIKYDGSEKY (SEQ ID NO: 272), and EAGGPDYRNGYNYYDFYDGYYNYHYMDV (SEQ ID NO: 7), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSNDVGGYESVS (SEQ ID NO: 126), DVSKRPS (SEQ ID NO: 127), and KSLTSTRRRV (SEQ ID NO: 45).
[0025] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs including an amino acid sequence selected from the group consisting of the amino acid sequences of DSYWS (SEQ ID NO: 90), YVHKSGDTNYSPSLKS (SEQ ID NO: 265), TLHGRRIYGIVAFNEWFTYFYMDV (SEQ ID NO: 143), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of GEKSLGSRAVQ (SEQ ID NO: 150), NNQDRPS (SEQ ID NO: 151), HIWDSRVPTKWV (SEQ ID NO: 152).
[0026] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs including an amino acid sequence selected from the group consisting of the amino acid sequences of GASISD (SEQ ID NO: 144), YVHKSGDTN (SEQ ID NO: 145), TLHGRRIYGIVAFNEWFTYFYMDV (SEQ ID NO: 143), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of GEKSLGSRAVQ (SEQ ID NO: 150), NNQDRPS (SEQ ID NO: 151), HIWDSRVPTKWV (SEQ ID NO: 152).
[0027] The invention provides an isolated anti-HIV antibody, wherein said antibody may havea heavy chain with three CDRs including an amino acid sequence selected from the group consisting of the amino acid sequences of DNYWS (SEQ ID NO: 261), YVHDSGDTNYNPSLKS (SEQ ID NO: 157), and TKHGRRIYGVVAFKEWFTYFYMDV (SEQ ID NO: 262), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of GEESLGSRSVI (SEQ ID NO: 162), NNNDRPS (SEQ ID NO: 163), and HIWDSRRPTNWV (SEQ ID NO: 164).
[0028] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs including an amino acid sequence selected from the group consisting of the amino acid sequences of GTLVRD (SEQ ID NO: 263), YVHDSGDTN (SEQ ID NO: 264), and TKHGRRIYGVVAFKEWFTYFYMDV (SEQ ID NO: 262), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of GEESLGSRSVI (SEQ ID NO: 162), NNNDRPS (SEQ ID NO: 163), and HIWDSRRPTNWV (SEQ ID NO: 164).
[0029] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs including an amino acid sequence selected from the group consisting of the amino acid sequences of DAYWS (SEQ ID NO: 169), YVHHSGDTNYNPSLKR (SEQ ID NO: 170), and ALHGKRIYGIVALGELFTYFYMDV (SEQ ID NO: 171), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of GKESIGSRAVQ (SEQ ID NO: 178), NNQDRPA (SEQ ID NO: 179), and HIYDARGGTNWV (SEQ ID NO: 180).
[0030] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs including an amino acid sequence selected from the group consisting of the amino acid sequences of GASIND (SEQ ID NO: 172), YVHHSGDTN (SEQ ID NO: 173), and ALHGKRIYGIVALGELFTYFYMDV (SEQ ID NO: 171), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of GKESIGSRAVQ (SEQ ID NO: 178), NNQDRPA (SEQ ID NO: 179), and HIYDARGGTNWV (SEQ ID NO: 180).
[0031] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs including an amino acid sequence selected from the group consisting of the amino acid sequences of ACTYFWG (SEQ ID NO: 185), SLSHCQSFWGSGWTFHNPSLKS (SEQ ID NO: 186), and FDGEVLVYNHWPKPAWVDL (SEQ ID NO: 187), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTATNFVS (SEQ ID NO: 194), GVDKRPP (SEQ ID NO: 195), and GSLVGNWDVI (SEQ ID NO: 196).
[0032] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs including an amino acid sequence selected from the group consisting of the amino acid sequences of GESTGACT (SEQ ID NO: 188),
SLSHCQSFWGSGWTF (SEQ ID NO: 189), and FDGEVLVYNHWPKPAWVDL (SEQ ID NO: 187), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTATNFVS (SEQ ID NO: 194), GVDKRPP (SEQ ID NO: 195), and GSLVGNWDVI (SEQ ID NO: 196).
[0033] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs including an amino acid sequence selected from the group consisting of the amino acid sequences of ACDYFWG (SEQ ID NO: 201), GLSHCAGYYNTGWTYHNPSLKS (SEQ ID NO: 202), and FDGEVLVYHDWPKPAWVDL (SEQ ID NO: 203), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TGTSNRFVS (SEQ ID NO: 210), GVNKRPS (SEQ ID NO: 211), and SSLVGNWDVI (SEQ ID NO: 212).
[00341 The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs including an amino acid sequence selected from the group consisting of the amino acid sequences of GDSTAACD (SEQ ID NO: 204), GLSHCAGYYNTGWTY (SEQ ID NO: 205), and FDGEVLVYHDWPKPAWVDL (SEQ ID NO: 203), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TGTSNRFVS (SEQ ID NO: 210), GVNKRPS (SEQ ID NO: 211), and SSLVGNWDVI (SEQ ID NO: 212).
[0035] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs including an amino acid sequence selected from the group consisting of the amino acid sequences of TGHYYWG (SEQ ID NO: 217), HIHYTTAVLHNPSLKS (SEQ ID NO: 218), and SGGDILYYYEWQKPHWFSP (SEQ ID NO: 219), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSSDIGGWNFVS (SEQ ID NO: 226), EVNKRPS (SEQ ID NO: 227), and SSLFGRWDVV (SEQ ID NO: 228).
[0036] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs including an amino acid sequence selected from the group consisting of the amino acid sequences of GESINTGH (SEQ ID NO: 220), HIHYTTAVL (SEQ ID NO: 221), and SGGDILYYYEWQKPHWFSP (SEQ ID NO: 219), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSSDIGGWNFVS (SEQ ID NO: 226), EVNKRPS (SEQ ID NO: 227), and SSLFGRWDVV (SEQ ID NO: 228).
[0037] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs including an amino acid sequence selected from the group consisting of the amino acid sequences of GGEWGDKDYHWG (SEQ ID NO: 233), SIHWRGTTHYKESLRR (SEQ ID NO: 234), and HRHHDVFMLVPIAGWFDV (SEQ ID NO: 235), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQNINKNLA (SEQ ID NO: 243), ETYSKIA (SEQ ID NO: 244), and QQYEEWPRT (SEQ ID NO: 245).
[0038] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs including an amino acid sequence selected from the group consisting of the amino acid sequences of GDSIRGGEWGDKD (SEQ ID NO: 236), SIHWRGTTH (SEQ ID NO: 237), and HRHHDVFMLVPIAGWFDV (SEQ ID NO: 235), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQNINKNLA (SEQ ID NO: 243), ETYSKIA (SEQ ID NO: 244), and QQYEEWPRT (SEQ ID NO: 245).
[0039] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs including an amino acid sequence selected from the group consisting of the amino acid sequences of GTDWGENDFHYG (SEQ ID NO: 250), SIHWRGRTTHYKTSFRS (SEQ ID NO: 251), HKYHDIFRVVPVAGWFDP (SEQ ID NO: 252), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQNVKNNLA (SEQ ID NO: 259), DASSRAG (SEQ ID NO: 260), QQYEEWPRT (SEQ ID NO: 245).
[0040] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs including an amino acid sequence selected from the group consisting of the amino acid sequences of GGSMRGTDWGEND (SEQ ID NO: 253), SIHWRGRTTH (SEQ ID NO: 254), HKYHDIFRVVPVAGWFDP (SEQ ID NO: 252), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQNVKNNLA (SEQ ID NO: 259), DASSRAG (SEQ ID NO: 260), QQYEEWPRT (SEQ ID NO: 245).
[0041] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of KYDVH (SEQ ID NO: 277), WMSHEGDKTESAQRFKG (SEQ ID NO: 278), and GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
[0042] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of GNTFSK (SEQ ID NO: 280), WMSHEGDKTE (SEQ ID NO: 281), GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
[0043] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of KYDVH (SEQ ID NO: 277), WISHERDKTESAQRFKG (SEQ ID NO: 293), GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
[0044] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of GNTFSK (SEQ ID NO: 280), WISHERDKTE (SEQ ID NO: 294), GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
[0045] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of KYDVH (SEQ ID NO: 277), WMSHEGDKTESAQRFKG (SEQ ID NO: 278), and GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TSTQSLRHSNGANYLA (SEQ ID NO: 303), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
[0046] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of GNTFSK (SEQ ID NO: 280), WMSHEGDKTE (SEQ ID NO: 281), GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TSTQSLRHSNGANYLA (SEQ ID NO: 303), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
[0047] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of KYDVH (SEQ ID NO: 277), WMSHEGDKTESAQRFKG (SEQ ID NO: 278), GSKHRLRDYVLYDDYGLINQQEWNDYLEFLDV (SEQ ID NO: 308), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TSTQSLRHSNGANYLA (SEQ ID NO: 303), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
[0048] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of GNTFRK (SEQ ID NO: 309), WMSHEGDKTE (SEQ ID NO: 281), and GSKHRLRDYVLYDDYGLINQQEWNDYLEFLDV (SEQ ID NO: 308), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TSTQSLRHSNGANYLA (SEQ ID NO: 303), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
[0049] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of RCNYFWG (SEQ ID NO: 320), SLSHCRSYYNTDWTYHNPSLKS (SEQ ID NO: 321), and FGGEVLVYRDWPKPAWVDL (SEQ ID NO: 322), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TGTSNNFVS (SEQ ID NO: 325), EVNKRPS (SEQ ID NO: 227), and SSLVGNWDVI (SEQ ID NO: 212).
[0050] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of GDSTGRCN (SEQ ID NO: 323), SLSHCRSYYNTDWTY (SEQ ID NO: 324), and FGGEVLVYRDWPKPAWVDL (SEQ ID NO: 322), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TGTSNNFVS (SEQ ID NO: 325), EVNKRPS (SEQ ID NO: 227), and SSLVGNWDVI (SEQ ID NO: 212).
[0051] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of ACNSFWG (SEQ ID NO: 326), SLSHCASYWNRGWTYHNPSLKS (SEQ ID NO: 335), and FGGEVLRYTDWPKPAWVDL (SEQ ID NO: 336), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TGTSNNFVS (SEQ ID NO: 325), (SEQ ID NO: 343), and (SEQ ID NO: 196).
[0052] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of GDSTAACN (SEQ ID NO: 337), SLSHCASYWNRGWTY (SEQ ID NO: 338), and FGGEVLRYTDWPKPAWVDL (SEQ ID NO: 336), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TGTSNNFVS (SEQ ID NO: 325), DVNKRPS (SEQ ID NO: 343), and GSLVGNWDVI (SEQ ID NO: 196).
[0053] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of TGHHYWG (SEQ ID NO: 348),
HIHYNTAVLHNPALKS (SEQ ID NO: 349), and SGGDILYYIEWQKPHWFYP (SEQ ID NO: 350), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SGTGSDIGSWNFVS (SEQ ID NO: 357), EVNRRRS (SEQ ID NO: 358), and SSLSGRWDIV (SEQ ID NO: 359).
[0054] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of GDSINTGH (SEQ ID NO: 351), HIHYNTAVL (SEQ ID NO: 352), and SGGDILYYIEWQKPHWFYP (SEQ ID NO: 350), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SGTGSDIGSWNFVS (SEQ ID NO: 357), EVNRRRS (SEQ ID NO: 358), and SSLSGRWDIV (SEQ ID NO: 359).
[00551 The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of GGEWGDSDYHWG (SEQ ID NO: 364), SIHWRGTTHYNAPFRG (SEQ ID NO: 365), and HKYHDIVMVVPIAGWFDP (SEQ ID NO: 366), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQSVKNNLA (SEQ ID NO: 372), DTSSRAS (SEQ ID NO: 373), and QQYEEWPRT (SEQ ID NO: 245).
[0056] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of GGSIRGGEWGDSD (SEQ ID NO: 367), SIHWRGTTH (SEQ ID NO: 237), and HKYHDIVMVVPIAGWFDP (SEQ ID NO: 366), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQSVKNNLA (SEQ ID NO: 372), DTSSRAS (SEQ ID NO: 373), and QQYEEWPRT (SEQ ID NO: 245).
[0057] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of NHDVH (SEQ ID NO: 378), WMSHEGDKTGLAQKFQG (SEQ ID NO: 379), and GSKHRLRDYFLYNEYGPNYEEWGDYLATLDV (SEQ ID NO: 380), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of KCSHSLQHSTGANYLA (SEQ ID NO: 387), LATHRAS (SEQ ID NO: 388), and MQGLHSPWT (SEQ ID NO: 389).
[0058] The invention provides an isolated anti-HIV antibody, wherein said antibody may have a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of GNSFSN (SEQ ID NO: 381), WMSHEGDKTG (SEQ ID NO: 382), and GSKHRLRDYFLYNEYGPNYEEWGDYLATLDV (SEQ ID NO: 380), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of KCSHSLQHSTGANYLA (SEQ ID NO: 387), LATHRAS (SEQ ID NO: 388), and MQGLHSPWT (SEQ ID NO: 389).
[0059] The invention provides an isolated anti-HIV antibody, wherein said antibody may comprise a VH CDR1 region which may comprise the amino acid sequence of NYYWT (SEQ ID NO: 406); a VH CDR2 region which may comprise the amino acid sequence of YISDRETTTYNPSLNS (SEQ ID NO: 407); a VH CDR3 region which may comprise the amino acid sequence of ARRGQRIYGVVSFGEFFYYYYMDV (SEQ ID NO: 408); a VL CDR1 region which may comprise the amino acid sequence of GRQALGSRAVQ (SEQ ID NO: 415); a VL CDR2 region which may comprise the amino acid sequence of NNQDRPS (SEQ ID NO: 151); and a VL CDR3 region which may comprise the amino acid sequence of HMWDSRSGFSWS (SEQ ID NO: 416).
[0060] The invention provides an isolated anti-HIV antibody, wherein said antibody may comprise a VH CDR1 region which may comprise the amino acid sequence of GRFWS (SEQ ID NO: 421); a VH CDR2 region which may comprise the amino acid sequence of YFSDTDRSEYNPSLRS (SEQ ID NO: 422); a VH CDR3 region which may comprise the amino acid sequence of AQQGKRIYGIVSFGEFFYYYYMDA (SEQ ID NO: 423); a VL CDR1 region which may comprise the amino acid sequence of GERSRGSRAVQ (SEQ ID NO: 430); a VL CDR2 region which may comprise the amino acid sequence of NNQDRPA (SEQ ID NO: 179); and a VL CDR3 region which may comprise the amino acid sequence of HYWDSRSPISWI (SEQ ID NO: 431).
[0061] The invention provides an isolated anti-HIV antibody, wherein said antibody may comprise a VH CDR1 region which may comprise the amino acid sequence of GRFWS (SEQ ID NO: 421); a VH CDR2 region which may comprise the amino acid sequence of YFSDTDRSEYNPSLRS (SEQ ID NO: 422); a VH CDR3 region which may comprise the amino acid sequence of AQQGKRIYGIVSFGELFYYYYMDA (SEQ ID NO: 436); a VL CDR1 region which may comprise the amino acid sequence of GERSRGSRAVQ (SEQ ID NO: 430); a VL CDR2 region which may comprise the amino acid sequence of NNQDRPA (SEQ ID NO: 179); and a VL CDR3 region which may comprise the amino acid sequence of HYWDSRSPISWI (SEQ ID NO: 431).
[0062] The invention provides an isolated anti-HIV antibody, wherein said antibody may comprise a VH CDR1 region which may comprise the amino acid sequence of TGHHYWG (SEQ ID NO: 348); a VH CDR2 region which may comprise the amino acid sequence of HIHYNTAVLHNPALKS (SEQ ID NO: 349); a VH CDR3 region which may comprise the amino acid sequence of SGGDILYYNEWQKPHWFYP (SEQ ID NO: 445); a VL CDR1 region which may comprise the amino acid sequence of SGTASDIGSWNFVS (SEQ ID NO: 450); a VL CDR2 region which may comprise the amino acid sequence of EVNRRRS (SEQ ID NO: 358); and a VL CDR3 region which may comprise the amino acid sequence of SSLSGRWDIV (SEQ ID NO: 359).
[0063] The invention provides an isolated anti-HIV antibody, wherein said antibody may comprise a VH CDR1 region which may comprise the amino acid sequence of ACDYFWG (SEQ ID NO: 201); a VH CDR2 region which may comprise the amino acid sequence of SLSHCAGYYNSGWTYHNPSLKS (SEQ ID NO: 455); a VH CDR3 region which may comprise the amino acid sequence of FGGDVLVYHDWPKPAWVDL (SEQ ID NO: 456); a VL CDR1 region which may comprise the amino acid sequence of TGNINNFVS (SEQ ID NO: 458); a VL CDR2 region which may comprise the amino acid sequence of GVNKRPS (SEQ ID NO: 211); and a VL CDR3 region which may comprise the amino acid sequence of GSLAGNWDVV (SEQ ID NO: 459).
[0064] The invention provides an isolated anti-HIV antibody, wherein said antibody may comprise a VH CDR1 region which may comprise the amino acid sequence of GCDYFWG (SEQ ID NO: 464); a VH CDR2 region which may comprise the amino acid sequence of GLSHCAGYYNTGWTYHNPSLKS (SEQ ID NO: 202); a VH CDR3 region which may comprise the amino acid sequence of FDGEVLVYNDWPKPAWVDL (SEQ ID NO: 465); a VL CDR1 region which may comprise the amino acid sequence of TGTSNNFVS (SEQ ID NO: 325); a VL CDR2 region which may comprise the amino acid sequence of GVNKRPS (SEQ ID
NO: 211); and a VL CDR3 region which may comprise the amino acid sequence of GSLVGNWDVI (SEQ ID NO: 196).
[0065] The invention provides an isolated anti-HIV antibody, wherein said antibody may comprise a VH CDR1 region which may comprise the amino acid sequence of KYPMY (SEQ ID NO: 475); a VH CDR2 region which may comprise the amino acid sequence of AISGDAWHVVYSNSVQG (SEQ ID NO: 476); a VH CDR3 region which may comprise the amino acid sequence of MFQESGPPRLDRWSGRNYYYYSGMDV (SEQ ID NO: 477); a VL CDR1 region which may comprise the amino acid sequence of KSSESLRQSNGKTSLY (SEQ ID NO: 484); a VL CDR2 region which may comprise the amino acid sequence of EVSNRFS (SEQ ID NO: 485); and a VL CDR3 region which may comprise the amino acid sequence of MQSKDFPLT (SEQ ID NO: 486).
[00661 The invention provides an isolated anti-HIV antibody, wherein said antibody may comprise a VH CDR1 region which may comprise the amino acid sequence of KYPMY (SEQ ID NO: 475); a VH CDR2 region which may comprise the amino acid sequence of AISADAWHVVYSGSVQG (SEQ ID NO: 491); a VH CDR3 region which may comprise the amino acid sequence of MFQESGPPRFDSWSGRNYYYYSGMDV (SEQ ID NO: 492); a VL CDR1 region which may comprise the amino acid sequence of KSSQSLRQSNGKTSLY (SEQ ID NO: 498); a VL CDR2 region which may comprise the amino acid sequence of EVSNRFS (SEQ ID NO: 485); and a VL CDR3 region which may comprise the amino acid sequence of (MQSKDFPLT (SEQ ID NO: 486).
[0067] The invention provides an isolated anti-HIV antibody, wherein said antibody may comprise a VH CDR1 region which may comprise the amino acid sequence of KRHMH (SEQ ID NO: 503); a VH CDR2 region which may comprise the amino acid sequence of VISSDAIHVDYASSVRG (SEQ ID NO: 504); a VH CDR3 region which may comprise the amino acid sequence of DRDGYGPPQIQTWSGRYLHLYSGIDA (SEQ ID NO: 505); a VL CDR1 region which may comprise the amino acid sequence of KSSQSLRQSNGKTYLY (SEQ ID NO: 512); a VL CDR2 region which may comprise the amino acid sequence of EVSIRFS (SEQ ID NO: 513); and a VL CDR3 region which may comprise the amino acid sequence of MQSKDFPLT (SEQ ID NO: 486).
[0068] The invention provides an isolated anti-HIV antibody, wherein said antibody may comprise a VH CDRl region which may comprise the amino acid sequence of KYPMY (SEQ ID
NO: 475); a VH CDR2 region which may comprise the amino acid sequence of AISADAWHVDYAASVKD (SEQ ID NO: 518); a VH CDR3 region which may comprise the amino acid sequence of NIEEFSVPQFDSWSGRSYYHYFGMDV (SEQ ID NO: 519); a VL CDR1 region which may comprise the amino acid sequence of SSSESLGRGDGRTYLH (SEQ ID NO: 526); a VL CDR2 region which may comprise the amino acid sequence of EVSTRFS (SEQ ID NO: 527); and a VL CDR3 region which may comprise the amino acid sequence of MQSRDFPIT (SEQ ID NO: 528).
[0069] The invention provides an isolated anti-HIV antibody, wherein said antibody may comprise a VH CDR1 region which may comprise the amino acid sequence of EYPMY (SEQ ID NO: 533); a VH CDR2 region which may comprise the amino acid sequence of AISADAWHVDYAGSVRG (SEQ ID NO: 534); a VH CDR3 region which may comprise the amino acid sequence of DGEEHKVPQLHSWSGRNLYHYTGFDV (SEQ ID NO: 535); a VL CDR1 region which may comprise the amino acid sequence of KSSQSVRQSDGKTFLY (SEQ ID NO: 541); a VL CDR2 region which may comprise the amino acid sequence of EGSSRFS (SEQ ID NO: 542); and a VL CDR3 region which may comprise the amino acid sequence of LQTKDFPLT (SEQ ID NO: 543).
[0070] The invention provides an isolated anti-HIV antibody, wherein said antibody may comprise a VH CDR1 region which may comprise the amino acid sequence of QYPMY (SEQ ID NO: 548); a VH CDR2 region which may comprise the amino acid sequence of AISADAWHVDYPGSVRG (SEQ ID NO: 549); a VH CDR3 region which may comprise the amino acid sequence of DGEEHKVPQLHSWSGRNLYHYTGFDV (SEQ ID NO: 535); a VL CDR1 region which may comprise the amino acid sequence of KSSQTVRQSDGKTFLY (SEQ ID NO: 555); a VL CDR2 region which may comprise the amino acid sequence of EGSNRFS (SEQ ID NO: 556); and a VL CDR3 region which may comprise the amino acid sequence of LQTKDFPLT (SEQ ID NO: 543).
[0071] The invention provides an isolated anti-HIV antibody, wherein said antibody may comprise a VH CDR1 region which may comprise the amino acid sequence of QYPMY (SEQ ID NO: 548); a VH CDR2 region which may comprise the amino acid sequence of AISADAWHVDYAGSVRG (SEQ ID NO: 534); a VH CDR3 region which may comprise the amino acid sequence of DGEEHEVPQLHSWSGRNLYHYTGVDI (SEQ ID NO: 561); a VL CDR1 region which may comprise the amino acid sequence of KSSQSLRQSDGKTFLY (SEQ
ID NO: 567); a VL CDR2 region which may comprise the amino acid sequence of EASNRFS (SEQ ID NO: 568); and a VL CDR3 region which may comprise the amino acid sequence of MQTKDFPLT (SEQ ID NO: 569).
[0072] The invention provides an isolated anti-HIV antibody, wherein said antibody may comprise a VH CDR1 region which may comprise the amino acid sequence of KYPMY (SEQ ID NO: 475); a VH CDR2 region which may comprise the amino acid sequence of AISADAWHVDYPGSVRG (SEQ ID NO: 549); a VH CDR3 region which may comprise the amino acid sequence of DGEEHEVPQLHSWSGRNLYHYTGVDV (SEQ ID NO: 574); a VL CDR1 region which may comprise the amino acid sequence of KSSQSVRQSDGKTFLY (SEQ ID NO: 541); a VL CDR2 region which may comprise the amino acid sequence of EASKRFS (SEQ ID NO: 580); and a VL CDR3 region which may comprise the amino acid sequence of MQTKDFPLT (SEQ ID NO: 569).
[0073] The invention also provides an isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs including an amino acid sequence selected from the group consisting of the amino acid sequences of KYGMH (SEQ ID NO: 88), LISDDGMRKYHSDSMWG (SEQ ID NO: 89), EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6), SYAFT (SEQ ID NO: 104), MVTPIFGEAKYSQRFEG (SEQ ID NO: 105), DRRAVPIATDNWLDP (SEQ ID NO: 9), SYAFS (SEQ ID NO: 110), MITPVFGETKYAPRFQG (SEQ ID NO: 111), DRRVVPMATDNWLDP (SEQ ID NO: 8), DYYLH (SEQ ID NO: 116), LIDPENGEARYAEKFQG (SEQ ID NO: 117), GAVGADSGSWFDP (SEQ ID NO: 10), RQGMH (SEQ ID NO: 123), FIKYDGSEKYHADSVWG (SEQ ID NO: 124), EAGGPDYRNGYNYYDFYDGYYNYHYMDV (SEQ ID NO: 7), LISDDGMRKYHSNSMWG (SEQ ID NO: 98), DSYWS (SEQ ID NO: 90), YVHKSGDTNYSPSLKS (SEQ ID NO: 265), TLHGRRIYGIVAFNEWFTYFYMDV (SEQ ID NO: 143), DNYWS (SEQ ID NO: 261), YVHDSGDTNYNPSLKS (SEQ ID NO: 157), TKHGRRIYGVVAFKEWFTYFYMDV (SEQ ID NO: 262), DAYWS (SEQ ID NO: 169), YVHHSGDTNYNPSLKR (SEQ ID NO: 170), ALHGKRIYGIVALGELFTYFYMDV (SEQ ID NO: 171), ACTYFWG (SEQ ID NO: 185), SLSHCQSFWGSGWTFHNPSLKS (SEQ ID NO: 186), FDGEVLVYNHWPKPAWVDL (SEQ ID NO: 187), ACDYFWG (SEQ ID NO: 201), GLSHCAGYYNTGWTYHNPSLKS (SEQ ID NO: 202), FDGEVLVYHDWPKPAWVDL
(SEQ ID NO: 203), TGHYYWG (SEQ ID NO: 217), HIHYTTAVLHNPSLKS (SEQ ID NO: 218), SGGDILYYYEWQKPHWFSP (SEQ ID NO: 219), GGEWGDKDYHWG (SEQ ID NO: 233), SIHWRGTTHYKESLRR (SEQ ID NO: 234), HRHHDVFMLVPIAGWFDV (SEQ ID NO: 235), GTDWGENDFHYG (SEQ ID NO: 250), SIHWRGRTTHYKTSFRS (SEQ ID NO: 251), HKYHDIFRVVPVAGWFDP (SEQ ID NO: 252), KYDVH (SEQ ID NO: 277), WMSHEGDKTESAQRFKG (SEQ ID NO: 278), GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279), WISHERDKTESAQRFKG (SEQ ID NO: 293), and GSKHRLRDYVLYDDYGLINQQEWNDYLEFLDV (SEQ ID NO: 308), wherein said antibody binds to and neutralizes HIV-1. Optionally, this antibody has a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSSDVGGFDSVS (SEQ ID NO: 97), DVSHRPS (SEQ ID NO: 95), SSLTDRSHRI (SEQ ID NO: 41), RASQTINNYLN (SEQ ID NO: 107), GASNLQN (SEQ ID NO: 108), QQSFSTPRT (SEQ ID NO: 42), RASQTIHTYLN (SEQ ID NO: 113), GASTLQS (SEQ ID NO: 114), QQSYSTPRT (SEQ ID NO: 43), SGSKLGDKYVS (SEQ ID NO: 120), ENDRRPS (SEQ ID NO: 121), QAWETTTTTFVF (SEQ ID NO: 44), NGTSNDVGGYESVS (SEQ ID NO: 126), DVSKRPS (SEQ ID NO: 127), KSLTSTRRRV (SEQ ID NO: 45), NGTRSDVGGFDSVS (SEQ ID NO: 92), NGTSRDVGGFDSVS (SEQ ID NO: 93), GEKSLGSRAVQ (SEQ ID NO: 150), NNQDRPS (SEQ ID NO: 151), HIWDSRVPTKWV (SEQ ID NO: 152), GEESLGSRSVI (SEQ ID NO: 162), NNNDRPS (SEQ ID NO: 163), HIWDSRRPTNWV (SEQ ID NO: 164), GKESIGSRAVQ (SEQ ID NO: 178), NNQDRPA (SEQ ID NO: 179), HIYDARGGTNWV (SEQ ID NO: 180), NGTATNFVS (SEQ ID NO: 194), GVDKRPP (SEQ ID NO: 195), GSLVGNWDVI (SEQ ID NO: 196), TGTSNRFVS (SEQ ID NO: 210), GVNKRPS (SEQ ID NO: 211), SSLVGNWDVI (SEQ ID NO: 212), NGTSSDIGGWNFVS (SEQ ID NO: 226), EVNKRPS (SEQ ID NO: 227), SSLFGRWDVV (SEQ ID NO: 228), RASQNINKNLA (SEQ ID NO: 243), ETYSKIA (SEQ ID NO: 244), QQYEEWPRT (SEQ ID NO: 245), RASQNVKNNLA (SEQ ID NO: 259), DASSRAG (SEQ ID NO: 260), SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288), and TSTQSLRHSNGANYLA (SEQ ID NO: 303).
[0074] The invention provides an isolated anti-HIV antibody, wherein said antibody has a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSSDVGGFDSVS (SEQ ID NO: 97), DVSHRPS (SEQ ID NO: 95), SSLTDRSHRI (SEQ ID NO: 41), RASQTINNYLN (SEQ ID NO: 107), GASNLQN (SEQ ID NO: 108), QQSFSTPRT (SEQ ID NO: 42), RASQTIHTYLN (SEQ ID NO: 113), GASTLQS (SEQ ID NO: 114), QQSYSTPRT (SEQ ID NO: 43), SGSKLGDKYVS (SEQ ID NO: 120), ENDRRPS (SEQ ID NO: 121), QAWETTTTTFVF (SEQ ID NO: 44), NGTSNDVGGYESVS (SEQ ID NO: 126), DVSKRPS (SEQ ID NO: 127), KSLTSTRRRV (SEQ ID NO: 45), NGTRSDVGGFDSVS (SEQ ID NO: 92), NGTSRDVGGFDSVS (SEQ ID NO: 93), GEKSLGSRAVQ (SEQ ID NO: 150), NNQDRPS (SEQ ID NO: 151), HIWDSRVPTKWV (SEQ ID NO: 152), GEESLGSRSVI (SEQ ID NO: 162), NNNDRPS (SEQ ID NO: 163), HIWDSRRPTNWV (SEQ ID NO: 164), GKESIGSRAVQ (SEQ ID NO: 178), NNQDRPA (SEQ ID NO: 179), HIYDARGGTNWV (SEQ ID NO: 180), NGTATNFVS (SEQ ID NO: 194), GVDKRPP (SEQ ID NO: 195), GSLVGNWDVI (SEQ ID NO: 196), TGTSNRFVS (SEQ ID NO: 210), GVNKRPS (SEQ ID NO: 211), SSLVGNWDVI (SEQ ID NO: 212), NGTSSDIGGWNFVS (SEQ ID NO: 226), EVNKRPS (SEQ ID NO: 227), SSLFGRWDVV (SEQ ID NO: 228), RASQNINKNLA (SEQ ID NO: 243), ETYSKIA (SEQ ID NO: 244), QQYEEWPRT (SEQ ID NO: 245), RASQNVKNNLA (SEQ ID NO: 259), DASSRAG (SEQ ID NO: 260), SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288), and TSTQSLRHSNGANYLA (SEQ ID NO: 303), wherein said antibody binds to and neutralizes HIV-1.
[0075] The invention provides an isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs which may comprise an amino acid sequence selected from the group consisting of the amino acid sequences of GFTFHK (SEQ ID NO: 266), LISDDGMRKY (SEQ ID NO: 267), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6), GGTFSS (SEQ ID NO: 268), MVTPIFGEAK (SEQ ID NO: 269), and DRRAVPIATDNWLDP (SEQ ID NO: 9), GGAFSS (SEQ ID NO: 270), MITPVFGETK (SEQ ID NO: 271), DRRVVPMATDNWLDP (SEQ ID NO: 8), GYSFID (SEQ ID NO: 102), LIDPENGEAR (SEQ ID NO: 103), GAVGADSGSWFDP (SEQ ID NO: 10), GFDFSR (SEQ ID NO: 118), FIKYDGSEKY (SEQ ID NO: 272), and EAGGPDYRNGYNYYDFYDGYYNYHYMDV (SEQ ID NO: 7), GASISD (SEQ ID NO: 144), YVHKSGDTN (SEQ ID NO: 145), TLHGRRIYGIVAFNEWFTYFYMDV (SEQ ID NO: 143), GTLVRD (SEQ ID NO: 263), YVHDSGDTN (SEQ ID NO: 264), TKHGRRIYGVVAFKEWFTYFYMDV (SEQ ID NO:
262), GASIND (SEQ ID NO: 172), YVHHSGDTN (SEQ ID NO: 173), ALHGKRIYGIVALGELFTYFYMDV (SEQ ID NO: 171), GESTGACT (SEQ ID NO: 188), SLSHCQSFWGSGWTF (SEQ ID NO: 189), FDGEVLVYNHWPKPAWVDL (SEQ ID NO: 187), GDSTAACD (SEQ ID NO: 204), GLSHCAGYYNTGWTY (SEQ ID NO: 205), FDGEVLVYHDWPKPAWVDL (SEQ ID NO: 203), GESINTGH (SEQ ID NO: 220), HIHYTTAVL (SEQ ID NO: 221), SGGDILYYYEWQKPHWFSP (SEQ ID NO: 219), GDSIRGGEWGDKD (SEQ ID NO: 236), SIHWRGTTH (SEQ ID NO: 237), HRHHDVFMLVPIAGWFDV (SEQ ID NO: 235), GGSMRGTDWGEND (SEQ ID NO: 253), SIHWRGRTTH (SEQ ID NO: 254), HKYHDIFRVVPVAGWFDP (SEQ ID NO: 252), GNTFSK (SEQ ID NO: 280), WMSHEGDKTE (SEQ ID NO: 281), GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279), WISHERDKTE (SEQ ID NO: 294), GNTFRK (SEQ ID NO: 309), and GSKHRLRDYVLYDDYGLINQQEWNDYLEFLDV (SEQ ID NO: 308), wherein said antibody binds to and neutralizes HIV-1. Optionally, this antibody has a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSSDVGGFDSVS (SEQ ID NO: 97), DVSHRPS (SEQ ID NO: 95), SSLTDRSHRI (SEQ ID NO: 41), RASQTINNYLN (SEQ ID NO: 107), GASNLQN (SEQ ID NO: 108), QQSFSTPRT (SEQ ID NO: 42), RASQTIHTYLN (SEQ ID NO: 113), GASTLQS (SEQ ID NO: 114), QQSYSTPRT (SEQ ID NO: 43), SGSKLGDKYVS (SEQ ID NO: 120), ENDRRPS (SEQ ID NO: 121), QAWETTTTTFVF (SEQ ID NO: 44), NGTSNDVGGYESVS (SEQ ID NO: 126), DVSKRPS (SEQ ID NO: 127), KSLTSTRRRV (SEQ ID NO: 45), NGTRSDVGGFDSVS (SEQ ID NO: 92), NGTSRDVGGFDSVS (SEQ ID NO: 93), GEKSLGSRAVQ (SEQ ID NO: 150), NNQDRPS (SEQ ID NO: 151), HIWDSRVPTKWV (SEQ ID NO: 152), GEESLGSRSVI (SEQ ID NO: 162), NNNDRPS (SEQ ID NO: 163), HIWDSRRPTNWV (SEQ ID NO: 164), GKESIGSRAVQ (SEQ ID NO: 178), NNQDRPA (SEQ ID NO: 179), HIYDARGGTNWV (SEQ ID NO: 180), NGTATNFVS (SEQ ID NO: 194), GVDKRPP (SEQ ID NO: 195), GSLVGNWDVI (SEQ ID NO: 196), TGTSNRFVS (SEQ ID NO: 210), GVNKRPS (SEQ ID NO: 211), SSLVGNWDVI (SEQ ID NO: 212), NGTSSDIGGWNFVS (SEQ ID NO: 226), EVNKRPS (SEQ ID NO: 227), SSLFGRWDVV (SEQ ID NO: 228), RASQNINKNLA (SEQ ID NO: 243), ETYSKIA (SEQ ID NO: 244), QQYEEWPRT (SEQ ID NO: 245), RASQNVKNNLA (SEQ ID NO: 259), DASSRAG (SEQ ID NO: 260),
SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288), and TSTQSLRHSNGANYLA (SEQ ID NO: 303).
[0076] Moreover, the invention provides an isolated anti-HIV antibody or fragment thereof, wherein said antibody includes: (a) a VH CDR1 region including the amino acid sequence of SEQ ID NO: 88, 104, 110, 116, 123, 90, 261, 169, 185, 201, 217, 233, 250, or 277; (b) a VH CDR2 region including the amino acid sequence of SEQ ID NO: 98, 89, 105, 111, 117, 124, 265, 157, 170, 186, 202, 218, 234, 251, 278, or 293; and (c) a VH CDR3 region including the amino acid sequence of SEQ ID NO: 6, 9, 8, 10, 7, 143, 262, 171, 187, 203, 219, 235, 252, 279, or 308; wherein said antibody binds to and neutralizes HIV-1. This antibody may further includes: (a) a VL CDR1 region including the amino acid sequence of SEQ ID NO: 93, 92, 97, 94, 107, 113, 120, 126, 150, 162, 178, 194, 210, 226, 243, 259, 286 or 303; (b) a VL CDR2 region including the amino acid sequence of SEQ ID NO: 95, 108, 114, 121, 127, 151, 163, 179, 195, 211, 227, 244, 260, or 287; and (c) a VL CDR3 region including the amino acid sequence of SEQ ID NO: 41,42,43,44,45,152,164,180,196,212,228,245,or288.
[0077] Alternatively, the invention provides an isolated anti-HIV antibody or fragment thereof, wherein said antibody includes: (a) a VH CDR1 region including the amino acid sequence of SEQ ID NO: 266, 268, 270, 201, 118, 144, 263, 172, 188, 204, 220, 236, 253, 280 or 309; (b) a VH CDR2 region including the amino acid sequence of SEQ ID NO: 267, 269, 271, 103, 272, 145, 264, 173, 189, 205, 221, 237, 254, 281, or 294; and (c) a VH CDR3 region including the amino acid sequence of SEQ ID NO: 6, 9, 8, 10, 7, 143, 262, 171, 187, 203, 219, 235, 252, 279, or 308; wherein said antibody binds to and neutralizes HIV-1. This antibody may further include: (a) a VL CDR1 region including the amino acid sequence of SEQ ID NO: 93, 92, 97, 94, 107, 113, 120, 126, 150, 162, 178, 194, 210, 226, 243, 259, 286 or 303; (b) a VL CDR2 region including the amino acid sequence of SEQ ID NO: 95, 108, 114, 121, 127, 151, 163, 179, 195, 211, 227, 244, 260, or 287; and (c) a VL CDR3 region including the amino acid sequence of SEQ ID NO: 41, 42, 43, 44, 45, 152, 164, 180, 196, 212, 228, 245, or 288.
[0078] The invention provides an isolated fully human monoclonal anti-HIV antibody including: a) a heavy chain sequence including the amino acid sequence of SEQ ID NO: 31 and a light chain sequence including amino acid sequence SEQ ID NO: 32, or b) a heavy chain sequence including the amino acid sequence of SEQ ID NO: 33 and a light chain sequence including amino acid sequence SEQ ID NO: 34, or c) a heavy chain sequence including the amino acid sequence of SEQ ID NO: 35 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 36, or d) a heavy chain sequence including the amino acid sequence of SEQ ID NO: 37 and a light chain sequence including amino acid sequence SEQ ID NO: 38, or e) a heavy chain sequence including the amino acid sequence of SEQ ID NO: 39 and a light chain sequence including amino acid sequence SEQ ID NO: 40, or f) a heavy chain sequence including the amino acid sequence of SEQ ID NO: 140 and a light chain sequence including amino acid sequence SEQ ID NO: 96, or g) a heavy chain sequence including the amino acid sequence of SEQ ID NO: 48 and a light chain sequence including amino acid sequence SEQ ID NO: 51, or h) a heavy chain sequence including the amino acid sequence of SEQ ID NO: 54 and a light chain sequence including amino acid sequence SEQ ID NO: 57, or i) a heavy chain sequence including the amino acid sequence of SEQ ID NO: 60 and a light chain sequence including amino acid sequence SEQ ID NO: 32, or j) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 79 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 149, or k) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 156 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 161, or 1) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 168 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 177, or m) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 184 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 193, or n) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 200 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 209, or o) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 216 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 225, or p) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 232 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 242 or q) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 249 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 258 or r) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 276 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 285 or s) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 292 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 285 or t) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 298 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 302 or u) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 307 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 313 or v) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 319 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 330 or w) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 334 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 393 or x) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 347 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 356 or y) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 363 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 397 or z) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 401 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 386, or aa) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 405 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 414, or ab) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 420 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 429, or ac) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 435 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 440, or ad) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 444 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 449, or ae) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 454 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 584, or af) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 463 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 470, or ag) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 474 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 483, or ah) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 490 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 497, or ai) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 502 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 511, or aj) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 517 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 525, or ak) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 532 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 540, or al) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 547 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 554, or am) a heavy chain sequence which may comprise the amino acid sequence of SEQ ID NO: 560 and a light chain sequence which may comprise amino acid sequence SEQ ID NO: 566.
[0079] The invention provides a composition including any one of the isolated anti-HIV antibodies described herein.
[0080] Optionally, an anti-HIV human monoclonal antibody of the invention is isolated from a B-cell from an HIV- 1-infected human donor. In some embodiments, the antibody is effective in neutralizing a plurality of different clades of HIV. In some embodiments, the antibody is effective in neutralizing a plurality of different strain within the same clade of HIV-1. In some embodiments, the neutralizing antibody binds to the HIV envelope proteins gp120, or gp4 l or envelope protein on HIV- 1 pseudovirions or expressed on transfected or infected cell surfaces. In some embodiments, the neutralizing antibody does not bind to recombinant or monomeric envelope proteins gpl20, or gp4 l or envelope protein on HIV-1 pseudovirions or expressed on transfected or infected cell surfaces but binds to natural trimeric forms of the HIV-1 Env proteins.
[00811 The present invention provides human monoclonal antibodies wherein the antibodies are potent, broadly neutralizing antibody (bNAb). In some embodiments, a broadly neutralizing antibody is defined as a bNAb that neutralizes HIV- 1 species belonging to two or more different clades. In some embodiments the different clades are selected from the group consisting of clades A, B, C, D, E, AE, AG, G or F. In some embodiments the HIV-1 strains from two or more clades comprise virus from non-B clades.
[0082] In some embodiments, a broadly neutralizing antibody is defined as a bNAb that neutralizes at least 60% of the HIV-1 strains listed in Tables 18A-18F. In some embodiments, at least 70%, or at least 80%, or at least 90% of the HIV-1 strains listed in Tables 18A-18F are neutralized.
[0083] In some embodiments, a potent, broadly neutralizing antibody is defined as a bNAb that displays a potency of neutralization of at least a plurality of HIV-1 species with an IC50 value of less than 0.2 pg/mL. In some embodiments the potency of neutralization of the HIV-1 species has an IC50 value of less than 0.15 Vg/mL, or less than 0.10 Vg/mL, or less than 0.05 ig/mL. A potent, broadly neutralizing antibody is also defined as a bNAb that displays a potency of neutralization of at least a plurality of HIV-1 species with an IC90 value of less than 2.0 Vg/mL. In some embodiments the potency of neutralization of the HIV-1 species has an IC90 value of less than 1.0 pg/mL, or less than 0.5 pg/mL.
[0084] Exemplary monoclonal antibodies that neutralize HIV-1 include 1443_C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_Di5 (PGT-122), 4858P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114A19 (PGT-128), 5147_N06 (PGT-130), 5136_HO1 (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-K15 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N1O (PGT-139), 6831_A21 (PGT-151), 6889117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881_NO5 (PGT-158) described herein. Alternatively, the monoclonal antibody is an antibody that binds to the same epitope as 1443_C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 _13 (PG16) (TCN-120), 1480_108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_D15 (PGT 122), 4858_P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT 127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HOl (PGT-131), 5343_B08 (PGT 135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT 141), 5345101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT
143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-K15 (PGT 133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N1O (PGT 139), 6831 A21 (PGT-151), 6889117 (PGT-152), 6891 F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892C23 (PGT-157), or 6881N05 (PGT-158). Specifically, monoclonal antibodies PG9 and PG16 are broad and potent neutralizing antibodies. The antibodies are respectively referred to herein as HIV antibodies.
[0085] The invention provides a number of isolated human monoclonal antibodies, wherein each said monoclonal antibody binds to HIV-1 infected or transfected cells; and binds to HIV-1 virus. A neutralizing antibody having potency in neutralizing HIV-1, or a fragment thereof is provided. In some embodiments a neutralizing antibody of the invention exhibits higher neutralization index and/or a higher affinity for binding to the envelope proteins gp120, or gp41 than anti-HIV mAbs known in the art, such as the mAb b12. (Burton DR et al., Science Vol. 266. no. 5187, pp. 1024 - 1027). Exemplary monoclonal antibodies 1496_C09 (PG9), 1443_C16 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), and 1495_C14 (PGC14) exhibit binding to the envelope glycoprotein gp120, but not gp41, in an ELISA assay, however gp120 binding does not always correlate with neutralization activity against specific strains of HIV-1. In some embodiments, monoclonal antibodies, for example 1443_C16 (PG16) and 1496_C09 (PG9), display none or weak gp120 binding activity against a particular strain but bind to HIV-1 trimer on transfected or infected cell surface and/or virion and exhibit broad and potent neutralization activity against that strain of HIV-1.
[0086] In one aspect the antibody is a monoclonal antibody which may comprise one or more polypeptides selected from the group consisting of 1443_C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838L06 (PGT-121), 4873_E03 (PGT-121), 4877_D15 (PGT-122), 4858_P08 (PGT-123), 6123A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147N06 (PGT-130), 5136_HO1 (PGT-131), 5343_BOS (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345_101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-K15 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N1O
(PGT-139), 6831_A21 (PGT-151), 688917 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881_NO5 (PGT-158); which may comprise a heavy chain selected from the group consisting of the heavy chain of 1443_C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN 117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480_108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_D15 (PGT-122), 4858_P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HOl (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345_01 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-KI5 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N1O (PGT-139), 6831_A21 (PGT-151), 6889117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 688 1NO5 (PGT-158); which may comprise a heavy chain which may comprise a CDR selected from the group consisting of the CDRs of the heavy chain of 1443_C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_D15 (PGT-122), 4858_P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HOl (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-KI5 (PGT-133), 4876M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N10 (PGT-139), 6831A21 (PGT-151), 6889_117 (PGT-152), 6891_F06 (PGT-153), 6843G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 688 1NO5 (PGT-158); which may comprise a light chain selected from the group consisting of the light chain of 1443C16 (PG16) (TCN 116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN 118), 1489 113 (PG16) (TCN-120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14),
1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_D15 (PGT-122), 4858_P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_ HO (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964G22 (PGT-141), 5345_101 (PGT-137), 4993K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-K15 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138 G07 (PGT-138), 5120_N10 (PGT-139), 6831_A21 (PGT-151), 6889117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881N05 (PGT-158); which may comprise a light chain which may comprise a CDR selected from the group consisting of the CDRs of the light chain of 1443C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_DJ5 (PGT-122), 4858_P08 (PGT-123), 6123A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147N06 (PGT-130), 5136_HO1 (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345_101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-K15 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N1O (PGT-139), 6831_A21 (PGT-151), 6889117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881_NO5 (PGT- 158).
[0087] The invention relates to an antibody or a fragment thereof, such as Fab, Fab', F(ab')2 and Fv fragments that binds to an epitope or immunogenic polypeptide capable of binding to an antibody selected from 1443_C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480_108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496C09 (PG9) (TCN 109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_D15 (PGT-122), 4858P08 (PGT 123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT 128), 5147_N06 (PGT-130), 5136_HOl (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT
135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-K15 (PGT-133), 4876M06 (PGT-134), 5131_A17 (PGT-132), 5138_GO7 (PGT-138), 5120_N10 (PGT-139), 6831_A21 (PGT-151), 6889_117 (PGT-152), 6891_F06 (PGT-153), 6843G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881 N05 (PGT-158).
[0088] The invention also relates to immunogenic polypeptides encoding such epitopes.
[0089] Nucleic acid molecules encoding such antibodies, and vectors and cells carrying such nucleic acids are also provided.
[0090] The invention relates to a pharmaceutical composition which may comprise at least one antibody or fragment as recited herein, together with a pharmaceutically acceptable carrier.
[0091] The invention relates to a method of immunizing, preventing or inhibiting HIV infection or an HIV-related disease which may comprise the steps of identifying a patient in need of such treatment and administering to said patient a therapeutically effective amount of at least one monoclonal antibody as recited herein.
[0092] In a further aspect the HIV antibodies according to the invention are linked to a therapeutic agent or a detectable label.
[0093] Additionally, the invention provides methods for stimulating an immune response, treating, preventing or alleviating a symptom of an HIV viral infection by administering an HIV antibody to a subject
[0094] In another aspect, the invention provides methods of administering the HIV antibody of the invention to a subject prior to, and/or after exposure to an HIV virus. For example, the HIV antibody of the invention is used to treat or prevent HIV infection. The HIV antibody is administered at a dose sufficient to promote viral clearance or eliminate HIV infected cells.
[0095] Also included in the invention is a method for determining the presence of an HIV virus infection in a patient, by contacting a biological sample obtained from the patient with an HIV antibody; detecting an amount of the antibody that binds to the biological sample; and comparing the amount of antibody that binds to the biological sample to a control value.
[0096] The invention further provides a diagnostic kit which may comprise an HIV monoclonal antibody.
[00971 The invention relates to a broadly neutralizing antibody (bNAb) wherein the antibody neutralizes at least one member of each clade with a potency greater than that of the bNAbs b12, 2G12, 2F5 and 4E10 respectively.
[0098] The invention relates to a broadly neutralizing antibody (bNAb) wherein the antibody binds or does not bind monomeric gp120 or gp41 proteins of the HIV-1 env gene. The antibody binds with higher affinity to trimeric forms of the HIV- 1 Env expressed on a cell surface than to the monomeric gpl20 or artificially trimerized gpl40. In some aspects, the antibody binds with high affinity to uncleaved HIV-1 gp160 trimers on a cell surface.
[0099] The invention relates to a broadly neutralizing antibody (bNAb) wherein the antibody binds an epitope within the variable loop of gp120, wherein the epitope may comprise the conserved regions of V2 and V3 loops of gp120, wherein the epitope may comprise N glycosylation site at residue Asn-160 within the V2 loop of gp120, wherein the antibody binds an epitope presented by a trimeric spike of gp120 on a cell surface, wherein the epitope is not presented when gp120 is artificially trimerized. In some embodiments, the antibody does not neutralize the HIV-1 in the absence of N-glycosylation site at residue Asn-160 within the V2 loop of gp120.
[00100] The invention relates to a broadly neutralizing antibody (bNAb) selected from the group consisting of PG16 and PG9. Moreover, the invention relates to a broadly neutralizing antibody (bNAb) selected from the group consisting of 1443_C16 (PG16) (TCN- 116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_Di5 (PGT-122), 4858_P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HOl (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345_101 (PGT-137), 4993K13 (PGT-141), 4995E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), 4995P16 (PGT-145), 4835_F12 (PGT-124), 4869-KI5 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N1O (PGT-139), 6831_A21 (PGT-151), 6889117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881_N05 (PGT-158).
[00101] The invention relates to an antigen or an immunogenic polypeptide, or a vaccine which may comprise such antigen or immunogenic polypeptide, for producing a broadly neutralizing antibody (bNAb) by an immune response, the antigen which may comprise an epitope within the variable loop of gp120 according to the invention.
[00102] The invention relates to method for passive or active immunization of an individual against a plurality of HIV- 1 species across one or more clades, the method which may comprise: providing a broadly neutralizing antibody (bNAb) wherein the bNAb neutralizes HIV-1 species belonging to two or more clades, and further wherein the potency of neutralization of at least one member of each clade is determined by an IC50 value of less than 0.005 Pg/mL. In some embodiments, the antibody is selected from the group consisting of PG9 and PG16. Alternatively, or in addition, the antibody is selected from the group consisting of 1443_C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873E03 (PGT-121), 4877_D15 (PGT-122), 4858P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114A19 (PGT-128), 5147_N06 (PGT-130), 5136_HO1 (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-K15 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N1O (PGT-139), 6831_A21 (PGT-151), 6889117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881_NO5 (PGT-158).
[0100] In some embodiments, the antibody is produced by active immunization with an antigen which may comprise an epitope within the variable loop of gp120, wherein the epitope may comprise the conserved regions of V2 and V3 loops of gp120 or, wherein the epitope may comprise an N-glycosylation site at residue Asn-160 within the V2 loop of gp120. In some aspects, the epitope is presented by a trimeric spike of gpl20 on a cell surface, and the epitope is not presented when gp 120 is monomeric or artificially trimerized.
[0101] The invention provides a method for obtaining a broadly neutralizing human monoclonal antibody, the method including: (a) screening memory B cell cultures from a donor
PBMC sample for a broad neutralization activity against a plurality of HIV- 1 species; (b) cloning a memory B cell that exhibits broad neutralization activity; and then (c) rescuing the monoclonal antibody from the clonal memory B cell culture that exhibits broad neutralization activity. In one embodiment the method, the screening step includes screening polyclonal transfectants for neutralization activity prior to the cloning step of monoclonal transfection. In this embodiment, the screening step is optionally repeated following monoclonal transfection. Finally, in this embodiment, the DNA sequence of the monoclonal antibody is determined as part of the rescue step. Exemplary antibodies that are generated using this embodiment include, but are not limited to, 1443_C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480_108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_D15 (PGT-122), 4858_P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HOJ (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964G22 (PGT-141), 5345101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980N08 (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-K15 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N10 (PGT-139), 6831_A21 (PGT-151), 6889_117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881_N05 (PGT-158).
[0102] Alternatively, or in addition, the screening step includes determining variable gene sequences from selected B cell wells by deep sequencing, which is optionally followed by sequence alignment to cluster related antibodies. In this alternative embodiment, following the screening step, a monoclonal transfection is performed as part of the cloning step. Subsequently, in this alternative embodiment, monoclonal transfectants are screened for neutralization activity against an HIV virus from one or more clades. Exemplary antibodies that are generated using this embodiment include, but are not limited to, 1443C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_Di5 (PGT-122), 4858_P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14
(PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HOl (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345_101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-K15 (PGT-133), 4876_M06 (PGT-134), 5131A17 (PGT-132), 5138_G07 (PGT-138), 5120_N1O (PGT-139), 6831_A21 (PGT-151), 6889117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881_N05 (PGT- 158).
[00103] Accordingly, it is an object of the invention to not encompass within the invention any previously known product, process of making the product, or method of using the product such that Applicants reserve the right and hereby disclose a disclaimer of any previously known product, process, or method. It is further noted that the invention does not intend to encompass within the scope of the invention any product, process, or making of the product or method of using the product, which does not meet the written description and enablement requirements of the USPTO (35 U.S.C. §112, first paragraph) or the EPO (Article 83 of the EPC), such that Applicants reserve the right and hereby disclose a disclaimer of any previously described product, process of making the product, or method of using the product.
[00104] It is noted that in this disclosure and particularly in the claims and/or paragraphs, terms such as "comprises", "comprised", "comprising" and the like can have the meaning attributed to it in U.S. Patent law; e.g., they can mean "includes", "included", "including", and the like; and that terms such as "consisting essentially of' and "consists essentially of' have the meaning ascribed to them in U.S. Patent law, e.g., they allow for elements not explicitly recited, but exclude elements that are found in the prior art or that affect a basic or novel characteristic of the invention.
[00105] These and other embodiments are disclosed or are obvious from and encompassed by, the following Detailed Description.
BRIEF DESCRIPTION OF THE DRAWINGS
[0100] Figure 1A is a schematic tree diagram of Clustal W-aligned variable region sequences of heavy chains of the monoclonal antibodies.
[0101] Figure 1B is a schematic tree diagram of Clustal W-aligned variable region sequences of light chains of the monoclonal antibodies.
[01021 Figure 2 is a flow chart of the process for isolation of monoclonal antibodies according to the invention.
[0103] Figure 3A is a schematic diagram that summarizes the screening results for neutralization and HIV-env protein (gpl20 and gp4l) binding assays from which B cell cultures were selected for antibody rescue and the monoclonal antibodies 1496_C09 (PG9), 1443_C16 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), and 1495_C14 (PGC14) were derived. A neutralization index value Of 1.5 was used as a cut-off.
[0104] Figure 3B is a schematic diagram that summaries the neutralizing activity and HIV env protein (gpl20 and gp4l) binding activities of the monoclonal antibodies 1496_C09 (PG9), 1443_C16 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), and 1495_C14 (PGC14) as determined by ELISA assays among the B cell supernatants using a neutralization index cut-off value of 2.0. The neutralization index was expressed as the ratio of normalized relative luminescence units (RLU) of SIVmac239 to that of test viral strain derived from the same test B cell culture supernatant. The cut-off values used to distinguish neutralizing hits were determined by the neutralization index of a large number of negative control wells containing B cell culture supernatants derived from healthy donors.
[0105] Figure 4 is a series of graphs depicting the neutralization activity of monoclonal antibodies 1443C16 (PG16) and 1496_C09 (PG9) to additional pseudoviruses not included in Tables 17A and 17B.
[0106] Figure 5 is a graph depicting the dose response curves of 1456_P20 (PG20), 1495_C14 (PGC14) and 1460_G14 (PGG14) binding to recombinant gpl20 in ELISA as compared to control anti-gp120 (bl2). Data is presented as average OD values of triplicate ELISA wells obtained on the same plate.
[0107] Figure 6 is a series of graphs depicting the results from ELISA binding assays of monoclonal antibodies 1443_C16 (PG16) and 1496C09 (PG9) to HIV-1 YU2 gpl40, JR CSFgp120, membrane-proximal external regions (MPER) peptide of gp4l and V3 polypeptide.
[0108] Figure 7 is a graph depicting the results of a binding assay using monoclonal antibodies 1443C16 (PG16) and 1496_C09 (PG9) to HIV-1 YU2 gpl60 expressed on the cell surface in the presence and absence of soluble CD4 (sCD4).
[0109] Figure 8 is a graph depicting the results of a binding assay using monoclonal antibodies 1443C16 (PG16) and 1496_C09 (PG9) to HIV-1 gpl60 transfected cells.
[0110] Figure 9 is a series of graphs depicting the results of a capture assay. The data describe capturing of entry-competent JRCSF pseudovirus by neutralizing monoclonal antibodies 1443C16 (PG16) and 1496_C09 (PG9) in a dose-dependent manner.
[0111] Figure TOA is a graph depicting the results of a competitive binding assay using monoclonal antibodies sCD4, PG16 and PG9, wherein the claimed antibodies compete for the binding of monoclonal antibody 1443_C16 (PG16) to pseudovirus but control antibodies b12, 2G12, 2F5 and 4E10 do not competitively bind to the pseudovirus.
[0112] Figure lOB is a graph depicting the results of a competitive binding assay using monoclonal antibodies sCD4, PG16 and PG9, wherein the claimed antibodies compete for the binding of monoclonal antibody 1496_C09 (PG9) to pseudovirus but control antibodies b12, 2G12, 2F5 and 4E10 do not competitively bind to the pseudovirus.
[0113] Figure 11A is a series of graphs depicting the results of a binding assay using PG9 and PG16. The data show that PG9 and PG16 bind to monomeric gpl20 and artificially trimerized gp140 constructs as determined by ELISA. IgG b12 was used as a control for ELISA assays.
[0114] Figure 11B is a series of graphs depicting the results of a binding assay using PG9 and PG16. The data show that PG9 and PG16 bind to Env expressed on the surface of 293T cells as determined by flow cytometry. The bNAb b12 and the non-neutralizing antibody b6 are included in the cell surface binding assays to show the expected percentages of cleaved and uncleaved Env expressed on the cell surface.
[0115] Figure 12 is a series of graphs depicting the results of a binding assay using PG9 and PG16 and cleavage-defective HIV-1YU2 trimers. PG9 and PG16 bind with high affinity to cleavage-defective HIV-1YU2 trimers as determined by flow cytometry. Binding curves were generated by plotting the MFI of antigen binding as a function of antibody concentration.
[0116] Figure 13A-E is a series of graphs depicting the mapping the PG9 and PG16 epitopes. Competitor antibody is indicated at the top of each graph. 2G12 is included to control for cell surface Env expression. A: PG9 and PG16 compete with each other for cell surface Env binding and neither antibody competes with the CD4bs antibody b12 for Env binding. B: Ligation of cell surface Env with sCD4 diminishes binding of PG9 and PG16. 2G12 is included to control for CD4-induced shedding of gp120. C: sCD4 inhibits binding of PG9 to artificially trimerized gpl40YU-2 as determined by ELISA. D: PG9 competes with 10/76b (anti-V2), F425/b4e8 (anti
V3) and X5 (CD4i) for gpl20 binding in competition ELISA assays. E: PG9 and PG16 fail to bind variable loop deleted HIV- 1JR-CSF variants expressed on the surface of 293T cells.
[0117] Figure 14 is a series of graphs depicting the results of competition ELISA assays using the monoclonal antibody PG9.
[0118] Figure 15 is a graph depicting monoclonal antibody binding, PG9 or PG16, to HIV 1JR-FLACT E168K Env expressed on the surface of 293T cells as determined by flow cytometry.
[0119] Figure 16 is a graph depicting monoclonal antibody PG9 binding to deglycosylated gp120.
[0120] Figure 17 is a series of graphs depicting the neutralization activity of PG9 and PG16 against HIV-1SF162 and HIV-1SF162 K160N, which was determined using a single-round replication luciferase reporter assay of pseudotyped virus.
[0121] Figure 18 is a series of graphs depicting the binding of PG9 and PG16 to mixed trimers. Alanine substitutions at positions 160 and 299 were introduced into HIV- 1YU2 Env to abolish binding of PG9 and PG16. An alanine substitution at position 295 was also introduced into the same construct to abrogate binding of 2G12. Co-transfection of 293T cells with WT and mutant plasmids in a 1:2 ratio resulted in the expression of 29% mutant homotrimers, 44% heterotrimers with two mutant subunits, 23% heterotrimers with one mutant subunit, and 4% wild-type homotrimers.
[0122] Figure 19 is a series of graphical depictions of the number of nucleotide or amino acid differences in the heavy chain sequences of sister clones of 1443 C16 (PG16) among each other. Note that the single nucleotide difference of 1408 I08 translates into an identical protein sequence of 1443 C16. The nucleotide sequence of the 1408 I08 light chain is identical to the nucleotide sequence of the light chain of 1443 C16.
[0123] Figure 20A is a tree diagram illustrating the correlation of the heavy chain of 1443 C16 sister clones to the heavy chain of 1496 C09 at the nucleotide level.
[0124] Figure 20B is a tree diagram illustrating the correlation of the light chain of 1443 C16 sister clones to the light chain of 1496 C09 at the nucleotide level.
[0125] Figure 21A is a tree diagram illustrating the correlation of the heavy chain of 1443 C16 sister clones to the heavy chain of 1496 C09 at the protein level.
[01261 Figure 21B is a tree diagram illustrating the correlation of the light chain of 1443 C16 sister clones to the light chain of 1496 C09 at the protein level.
[0127] Figure 22 is a Venn diagram depicting the viruses used in primary HIV-neutralization screening (JR-CSF, MGRM-C-26, 92BR020, 94UG103, 931N905, 92TH021) and the number of neutralizing antibodies identified using these viruses alone, or in the demonstrated combinations. The results of screening antibodies isolated from B-cell cultures established from four human donors (#517, 039, 196, and 584) are shown.
[0128] Figure 23 is a tree diagram illustrating the relationships between the heavy chain variable gene sequences of antibodies PGT-121, PGT-122, PGT-123, PGT-125, PGT-126, PGT 130, PGT-135, and PGT-136. Scale bar = 0.03. A value of zero demonstrates that an identical antibody was produced by two separate B-cell clones. Antibodies are less closely-related as the provided values increase.
[0129] Figure 24 is a tree diagram illustrating the relationships between the light chain variable gene sequences of antibodies PGT-121, PGT-122, PGT-123, PGT-125, PGT-126, PGT 130, PGT-135, and PGT-136. Scale bar = 0.04. A value of zero demonstrates that an identical antibody was produced by two separate B-cell clones. Antibodies are less closely-related as the provided values increase.
[0130] Figure 25 is a tree diagram illustrating the relationships between the heavy chain variable gene sequences of antibodies PGT-141, PGT-142, and PGT-143. Scale bar = 0.04. A value of zero demonstrates that an identical antibody was produced by two separate B-cell clones. Antibodies are less closely-related as the provided values increase.
[0131] Figure 26 is a tree diagram illustrating the relationships between the light chain variable gene sequences of antibodies PGT-141, PGT-142, and PGT-143. Scale bar = 0.04. A value of zero demonstrates that an identical antibody was produced by two separate B-cell clones. Antibodies are less closely-related as the provided values increase.
[0132] Figure 27 is a pie chart showing that a limited number of antibody specificities mediate broad and potent serum neutralization in elite neutralizers (Walker LM, et al. PLOS Pathogen, 2010).
[0133] Figure 28 is a schematic diagram depicting the I-StarTM Human bNAb (broadly Neutralizing Antibody) Discovery Platform developed by Theraclone Sciences.
[01341 Figure 29 is a schematic diagram depicting the method of bNMab (broadly Neutralizing Monoclonal Antibody) isolation form IgG-positive (jgG*) Memory B Cells developed by Theraclone Sciences.
[0135] Figure 30 is a computer-generated three-dimensional depiction of trimer-specific PG9 and PG16 antibodies in close proximity of conserved regions of V2 and V3, where they bind.
[0136] Figure 31 is a computer-generated three-dimensional depiction of highly conserved epitopes on the HIV spike, including the V1/V2 and V3 loops to which PG9 and PG16 bind and the epitopes to which PGT-121, PGT-122, PGT-123, PGT-125, PGT-126, PGT-130, PGT-135, PGT-136, PGT-141, PGT-142, PGT-143, and PGT- 144.
[0137] Figure 32 is a graph depicting the potency of monoclonal anti-HIV antibodies PGT 121, PGT-122, PGT-123, PGT-125, PGT-126, PGT-127, PGT-128, PGT-130, PGT-131, PGT 135, PGT-136, PGT-137, PGT-141, PGT-142, PGT-143, PGT-144, PGT-145, and PG9, expressed as the half-maximal inhibitory concentration, or IC5 o (ptg/ml). The bar for each antibody represents the median IC5 o value.
[0138] Figure 33A-D is a series of graphs depicting the newly identified PGT antibodies redefine broad and potent neutralisation of HIV. A, Key MAbs fully recapitulate serum neutralization by the corresponding donor serum. Serum breadth was corelated with the breadth of the broadest MAb for each donor (% viruses neutralized at NT 50 > 100 or IC50 < 50 [lg/ml, respectively). Of note, MAbs isolated from donor 39 could not completely recapitulate the serum neutralization breadth. B-D. Certain antibodies or antibody combinations are able to cover a broad range of HIV isolates at low, vaccine achievable, concentrations. B, Cumulative frequency distribution of IC50 values of broadly neutralizing MAbs tested against a 162-virus panel. The y axis shows the cumulative frequency of IC50 values up to the concentration shown on the x-axis and can therefore also be interpreted as the breadth at a specific IC 5 o cut-off. C-D, Percent viruses covered by single MAbs (solid lines) or by at least one of the MAbs in dual combinations (dashed black lines) dependent on individual concentrations. The grey area in both panels is the coverage of 26 MAbs tested on the 162-virus panel (PGT121-123, PGT125-128, PGT130-131, PGT135-137, PGT141-145, PG9, PG16, PGC14, VRCO1, PGV04, b12, 2G12, 4E10, 2F5) and depicts the theoretical maximal achievable coverage known to date.
[0139] Figure 34A is a table depicting the competition of PGT MAbs with sCD4 (soluble CD4), b12 (anti-CD4bs), 2G12 (anti-glycan), F425/b4e8 (anti-V3), X5 (CD4i), PG9 (anti-V1/V2 and V3, quaternary) and each other. Competition assays were performed by ELISA using gpl20Bal or gp120 JR-FL, except for the PG9 competition assay, which was performed on the surface of JR-FLE168K or JR-CSF transfected cells. Boxes are color coded as follows: red, 75 100% competition; orange, 50-75% competition; yellow, 25-50% competition; gray, <25% competition. Experiments were performed in duplicate, and data represent an average of at least two independent experiments.
[0140] Figure 34B-D is a series of graphs depicting the epitope mapping of PGT antibodies. b, Glycan microarray analysis (Consortium for Functional Glycomics, CFG, v 5.0) reveals that PGT MAbs 125, 126, 127, 128, and 130 contact Man8 (313), Man8 GlcNAc 2 (193), Man9 (314) and Man9 GlcNAc 2 (194) glycans directly. Only glycans structures with RFU (relative fluorescent units) > 3000 are shown. PGT-131 showed no detectable binding to the CFG glycan array but bound to Mang-oligodendrons3 0 (data not shown). Error bars represent standard deviation. c, d, Binding of PGT MAbs 125, 126, 127, 128 and 130 to gp120 is competed by Man9 oligodendrons but not Man 4 oligodendrons. Binding of 131 to immobilized gp120 was too low to measure any competition.
[0141] Figure 35 is a series of graphs depicting the lack of polyreactivity of PGT monoclonal antibodies (mAbs) in ELISA assay. PGT mAbs were tested for ELISA reactivity against a panel of antigens. The bNAbs b12 and 4E10 were also included for comparison. d.s, double-stranded; s.s, single-stranded.
[0142] Figure 36 is a series of graphs depicting the results of an analysis of neutralization activity by virus clades. Cumulative frequency distribution of IC50 values of broadly
neutralizing Mabs tested against a 162 virus panel separated by clades A, B, C, D, F, G, AE and AG. VRCO1 was tested on a different virus panel (n = 190, ref 6).
[0143] Figure 37A-D is a series of graphs showing that MAb neutralization correlates strongly with serum neutralization. Correlation of IC5 0s of the MAbs and serum NT5 os of the
corresponding donors 17 (a), 36 (b), 39 (c) and 84 (d) is shown. Spearman correlation was used for statistical analyses. Only viruses neutralized by either the MAb (IC 5 o < 50 pLg/ml) or the serum (NT 5 o > 100) were included.
[0144] Figure 38A-B is a series of graphs showing that PGT 141-145 bind preferentially to cell-surface expressed trimers. A) Binding of PGTs 141-145 to monomeric gp120 and artificially trimerized gp140 constructs as determined by ELISA. The bNAbs b12 and PG9 are included for comparison. OD, optical density (absorbance at 450 nm). B) Binding of PGTs 141-145 to Env expressed on the surface of 293T cells as determined by flow cytometry. The bNAbs 2G12 and PG9 are included for comparison.
[0145] Figure 39A-B is a series of graphs showing that PGT mAbs 141-145 bind to epitopes overlapping those of PG9 and PG16. A) PGTs 141-145 are sensitive to the N160K mutation and PGTs 141-144 fail to neutralize pseudoviruses produced in the presence of kifunensine. The bNAb 2G12 was also included for comparison. B) PG9 competes with PGTs 141-145 for binding to cell-surface trimers. The bNAb 2G12 was included as a negative control.
[0146] Figure 40A-B is a series of graphs showing PGTs 121, 122 and 123 in competition with oligodendrons. Unlike PGTs 125, 126, 127, 128 and 130, the binding of PGTs 121, 122 and 123 to gp120 could not be competed by A) Man4 or B) Man9 dendrons.
[01471 Figure 41 is a series of graphs showing the neutralization activity of Fab fragments. Fab fragments of PGTs-125, 126, 127, 128, 130 and 131 were generated by Lys-C digestion and the neutralizing activity tested against HIV- 1 JR-CSF using a single round of replication pseudovirus assay.
[0148] Figure 42A-B is a series of graphs showing that the combination of two or three antibody specificities is sufficient to cover a broad range of HIV isolates at vaccine achievable concentration. Cumulative frequency distribution of IC50 values of double (a) and triple (b) combinations of neutralization activities (overall lowest IC50 against each isolate). The grey area depicts the theoretical maximal achievable neutralization activity known to date.
[0149] Figure 43A-C is a series of graphs showing that combinations of two or three antibody specificities are sufficient to cover a broad range of HIV isolates at vaccine achievable concentrations. A-C Cumulative frequency distribution of IC50 values of single MAbs (solid lines) and combined neutralisation activity (overall lowest IC50 against each isolate) of two or three MAbs (dashed lines). The grey area is the combined neutralisation activity of 25 MAbs tested on the 162-virus panel (b12, 2G12, 4E10, 2F5, PG9, PG16, PGC14, PGV04, PGTs 121 123, PGTs 125-128, PGTs 130-131, PGTs 135-137, PGTs 141-145) and depicts the theoretical maximal achievable neutralisation activity known to date. VRCO1 and PGV04 in panel c are measured on a different virus panel (n = 97).
[0150] Figure 44A-M is a series of graphs depicting the percent of viruses covered by single MAbs (solid lines) or by at least one of the MAbs in dual combinations (dashed black lines) dependent on individual concentrations. The grey area in all panels is the coverage of 26 MAbs tested on the 162-virus panel (PGT121-123, PGT125-128, PGT130-131, PGT135-137, PGT141 145, PG9, PG16, PGC14, VRC01, PGV04, b12, 2G12, 4E10, 2F5) and depicts the theoretical maximal achievable coverage known to date.
DETAILED DESCRIPTION OF THE INVENTION
[0151] In the sera of human immunodeficiency virus type 1 (HIV-1) infected patients, anti virus antibodies can be detected over a certain period after infection without any clinical manifestations of the acquired immunodeficiency syndrome (AIDS). At this state of active immune response, high numbers of antigen-specific B-cells are expected in the circulation. These B-cells are used as fusion partners for the generation of human monoclonal anti-HIV antibodies. One major drawback to finding a vaccine composition suitable for more reliable prevention of human individuals from HIV-1 infection and/or for more successful therapeutic treatment of infected patients is the ability of the HIV-1 virus to escape antibody capture by genetic variation, which very often renders the remarkable efforts of the researchers almost useless. Such escape mutants may be characterized by a change of only one or several of the amino acids within one of the targeted antigenic determinants and may occur, for example, as a result of spontaneous or induced mutation. In addition to genetic variation, certain other properties of the HIV- 1 envelope glycoprotein makes it difficult to elicit neutralizing antibodies making generation of undesirable non-neutralizing antibodies a major concern (see, Phogat SK and Wyatt RT, Curr Pharm Design 2007;13(2):213-227).
[0152] HIV- 1 is among the most genetically diverse viral pathogens. Of the three main branches of the HIV-1 phylogenetic tree, the M (main), N (new), and 0 (outlier) groups, group M viruses are the most widespread, accounting for over 99% of global infections. This group is presently divided into nine distinct genetic subtypes, or clades (A through K), based on full length sequences. Env is the most variable HIV-1 gene, with up to 35% sequence diversity between clades, 20% sequence diversity within clades, and up to 10% sequence diversity in a single infected person (Shankarappa, R. et al. 1999. J. Virol. 73:10489-10502). Clade B is dominant in Europe, the Americas, and Australia. Clade C is common in southern Africa, China, and India and presently infects more people worldwide than any other clade (McCutchan, FE. 2000. Understanding the genetic diversity of HIV-1. AIDS 14(Suppl. 3):S31-S44). Clades A and D are prominent in central and eastern Africa.
[01531 Neutralizing antibodies (NAbs) against viral envelope proteins (Env) provide adaptive immune defense against human immunodeficiency virus type 1 (HIV-1) exposure by blocking the infection of susceptible cells (Kwong PD et al., 2002. Nature 420: 678-682). The efficacy of vaccines against several viruses has been attributed to their ability to elicit NAbs. However, despite enormous efforts, there has been limited progress toward an effective immunogen for HIV-1. (Burton, D. R. 2002. Nat. Rev. Immunol. 2:706-713).
[0154] HIV-1 has evolved with an extensive array of strategies to evade antibody-mediated neutralization. (Barouch, D.H. Nature 455, 613-619 (2008); Kwong, P.D. & Wilson, I.A. Nat Immunol 10, 573-578 (2009); Karlsson Hedestam, G.B., et al. Nat Rev Microbiol 6, 143-155 (2008)). However, broadly neutralizing antibodies (bNAbs) develop over time in a proportion of HIV-1 infected individuals. (Leonidas Stamatatos, L.M., Dennis R Burton, and John Mascola. Nature Medicine (E-Pub: Jun. 14, 2009); PMID: 19525964.) A handful of broadly neutralizing monoclonal antibodies have been isolated from clade B infected donors. (Burton, D.R., et al. Science 266, 1024-1027 (1994); Trkola, A., et al. J Virol 69, 6609-6617 (1995); Stiegler, G., et al. AIDS Res Hum Retroviruses 17, 1757-1765 (2001)). These antibodies tend to display less breadth and potency against non-clade B viruses, and they recognize epitopes on the virus that have so far failed to elicit broadly neutralizing responses when incorporated into a diverse range of immunogens. (Phogat, S. & Wyatt, R. Curf Pharm Design 13, 213-227 (2007); Montero, M., van Houten, N.E., Wang, X. & Scott, J.K. Microbiol Mol Biol Rev 72, 54-84, table of contents (2008); Scanlan, C.N., Offer, J., Zitzmann, N. & Dwek, R.A. Nature 446, 1038-1045 (2007)). Despite the enormous diversity of the human immunodeficiency virus (HIV), all HIV viruses known to date interact with the same cellular receptors (CD4 and/or a co-receptor, CCR5 or CXCR4). Most neutralizing antibodies bind to functional regions involved in receptor interactions and cell membrane fusion. However, the vast majority of neutralizing antibodies isolated to date do not recognize more than one clade, therefore exhibiting limited protective efficacy in vitro or in vivo. (See Binley JM et al., 2004. J. Virol. 78(23):13232-13252). The rare broadly neutralizing human monoclonal antibodies (mAbs) that have been isolated from HIV+ clade B-infected human donors bind to products of the env gene of HIV-1, gp120 and the transmembrane protein gp4 l. (Parren, PW et al. 1999. AIDS 13:S137-S162). However, a well known characteristic of the HIV-1 envelope glycoprotein is its extreme variability. It has been recognized that even relatively conserved epitopes on HIV-1, such as the CD4 binding site, show some variability between different isolates (Poignard, P., et al., Ann. Rev. Immunol. (2001) 19:253-274). Even an antibody targeted to one of these conserved sites can be expected to suffer from a reduced breadth of reactivity across multiple different isolates.
[0155] The few cross-clade reactive monoclonal antibodies known to date have been isolated by processes involving generation of panels of specific viral antibodies from peripheral blood lymphocytes (PBLs) of HIV-infected individuals, either via phage display, or via conventional immortalization techniques such as hybridoma or Epstein Barr virus transformation, electrofusion and the like. These are selected based on reactivity in vitro to HIV- 1 proteins, followed by testing for HIV neutralization activity.
[0156] An antibody phage surface expression system was used to isolate the cross-clade neutralizing Fab (fragment, antigen binding) b12 occurring in a combinatorial library. The Fab b 12 was screened by panning for envelope glycoprotein gp 120 binding activity and neutralizing activity against the HIV-1 (HXBc2) isolate was observed. (Roben P et al., J. Virol. 68(8): 4821 4828(1994); Barbas CF et al., Proc. Natl. Acad. Sci. USA Vol. 89, pp. 9339-9343, (1992); Burton DP et al., Proc. Natl. Acad. Sci. USA Vol. 88, pp. 10 134-10137 (1991)).
[0157] Human B cell immortalization was used to isolate the cross-clade neutralizing monoclonal antibodies 2G12, 2F5, and 4E10 from HIV-infected individuals. The monoclonal antibody 2G12 binds to a glycotope on the gp120 surface glycoprotein of HIV-1 and had been shown to display broad neutralizing patterns. (Trkola A., et al., J. Virol. 70(2):1100-1108 (1996), Buchacher, A., et al., 1994. AIDS Res. Hum. Retroviruses 10:359-369). The monoclonal antibody 2F5 which had been shown to bind a sequence within the external domain of the gp4l envelope glycoprotein of HIV-1 was found to have broad neutralization properties. (Conley AJ Proc. Natl. Acad. Sci. USA Vol. 91, pp. 3348-3352 (1994); Muster T et al., J. Virol. 67(11):6642-6647 (1993); Buchacher A et al., 1992, Vaccines 92:191-195). The monoclonal antibody 4E10, which binds to a novel epitope C terminal of the ELDKWA sequence in gp4l recognized by 2F5, has also been found to have potent cross-clade neutralization activity. (Buchacher, A., et al., 1994. AIDS Res. Hum. Retroviruses 10:359-369; Stiegler, G., et al., 2001. AIDS Res. Hum. Retroviruses 17(18):1757-1765)).
[0158] Other studies on antibody neutralization of HIV-1 (Nara, P. L., et al. (1991) FASEB J. 5:2437-2455.) focused on a single linear epitope in the third hypervariable region of the viral envelope glycoprotein gp120 known as the V3 loop. Antibodies to this loop are suggested to neutralize by inhibiting fusion of viral and cell membranes. However there is sequence variability within the loop and neutralizing antibodies are sensitive to sequence variations outside the loop (Albert J. et al., (1990) AIDS 4, 107-112). Hence anti-V3 loop antibodies are often strain-specific and mutations in the loop in vivo may provide a mechanism for viral escape from antibody neutralization. There is some indication that not all neutralizing antibodies act by blocking the attachment of virus, since a number of mouse monoclonal antibodies inhibiting CD4 binding to gpl 2 0 are either non-neutralizing (Lasky LA, et al., (1987) Cell 50:975-985.) or only weakly neutralizing (Sun N., et al., (1989) J. Virol. 63, 3579-3585).
[0159] It is widely accepted that such a vaccine will require both T-cell mediated immunity as well as the elicitation of a broadly neutralizing antibody (bNAb) response. (Barouch, D.H. Nature 455, 613-619 (2008); Walker, B.D. & Burton, D.R. Science 320, 760-764 (2008); Johnston, M.I. & Fauci, A.S. N Engl J Med 356, 2073-2081 (2007)). All of the known bNAbs provide protection in the best available primate models (Veazey, R.S., et al. Nat Med 9, 343-346 (2003); Hessell, A.J., et al. PLoS Pathog 5, e1000433 (2009); Parren, P.W., et al. J Virol 75, 8340-8347 (2001); Mascola, J.R. Vaccine 20, 1922-1925 (2002); Mascola, J.R., et al. Nat Med 6, 207-210 (2000); Mascola, J.R., et al. J Virol 73, 4009-4018 (1999)). Therefore, broadly neutralizing antibodies (bNAbs) are considered to be the types of antibodies that should be elicited by a vaccine. Unfortunately, existing immunogens, often designed based on these bNAbs, have failed to elicit NAb responses of the required breadth and potency. Therefore, it is of high priority to identify new bNAbs that bind to epitopes that may be more amenable to incorporation into immunogens for elicitation of NAb responses.
[0160] The present invention provides a novel method for isolating novel broad and potent neutralizing monoclonal antibodies against HIV. The method involves selection of a PBMC donor with high neutralization titer of antibodies in the plasma. B cells are screened for neutralization activity prior to rescue of antibodies. Novel broadly neutralizing antibodies are obtained by emphasizing neutralization as the initial screen.
[0161] The invention relates to potent, broadly neutralizing antibody (bNAb) wherein the antibody neutralizes HIV-1 species belonging to two or more clades, and further wherein the potency of neutralization of at least one member of each clade is determined by an IC50 value of less than 0.2 pg/mL. In some aspects, the clades are selected from Clade A, Clade B, Clade C, Clade D and Clade AE. In some aspects, the HIV-1 belonging two or more clades are non-Clade
B viruses. In some aspects, the broadly neutralizing antibody neutralizes at least 60% of the HIV-1 strains listed in Tables 18A-18F. In some embodiments, at least 70%, or at least 80%, or at least 90% of the HIV-1 strains listed in Tables 18A-18F are neutralized.
[0162] The invention relates to potent, broadly neutralizing antibody (bNAb) wherein the antibody neutralizes HIV- 1 species with a potency of neutralization of at least a plurality of HIV 1 species with an IC50 value of less than 0.2 ig/mL. In some embodiments the potency of neutralization of the HIV-1 species has an IC50 value of less than 0.15 [Ig/mL, or less than 0.10 ag/mL, or less than 0.05 ig/mL. In some aspects, a potent, broadly neutralizing antibody is defined as a bNAb that displays a potency of neutralization of at least a plurality of HIV-1 species with an IC90 value of less than 2.0 pg/mL. In some embodiments the potency of neutralization of the HIV-1 species has an IC90 value of less than 1.0 pg/mL, or less than 0.5 pg/mL.
[0163] An exemplary method is illustrated in the schematic shown in Figure 4. Peripheral Blood Mononuclear Cells (PBMCs) were obtained from an HIV-infected donor selected for HIV-1 neutralizing activity in the plasma. Memory B cells were isolated and B cell culture supernatants were subjected to a primary screen of neutralization assay in a high throughput format. Optionally, HIV antigen binding assays using ELISA or like methods were also used as a screen. B cell lysates corresponding to supernatants exhibiting neutralizing activity were selected for rescue of monoclonal antibodies by standard recombinant methods.
[0164] In one embodiment, the recombinant rescue of the monoclonal antibodies involves use of a B cell culture system as described in Weitcamp J-H et al., J. Immunol. 171:4680-4688 (2003). Any other method for rescue of single B cells clones known in the art also may be employed such as EBV immortalization of B cells (Traggiai E., et al., Nat. Med. 10(8):871-875 (2004)), electrofusion (Buchacher, A., et al., 1994. AIDS Res. Hum. Retroviruses 10:359-369), and B cell hybridoma (Karpas A. et al., Proc. Natl. Acad. Sci. USA 98:1799-1804 (2001).
[0165] In some embodiments, monoclonal antibodies were rescued from the B cell cultures using variable chain gene-specific RT-PCR, and transfectant with combinations of H and L chain clones were screened again for neutralization and HIV antigen binding activities. mAbs with neutralization properties were selected for further characterization.
[0166] A novel high-throughput strategy was used to screen IgG-containing culture screening supernatants from approximately 30,000 activated memory B cells from a clade A infected donor for recombinant, monomeric gp120JR-CSF and gp41HxB2 (Env) binding as well as neutralization activity against HIV-1JR-CSF and HIV-1SF162 (See Table 1). Table 1: Memory B cell Screening.
Total number of wells screened 23,328 Number of sIgG* memory B cells screened 30,300 gp120 ELISA hits 411 (1.36%) gp41 ELISA hits 167(0.55%) SF162 neutralization hits 401 (1.32%) JR-CSF neutralization hits 401 (1.32%)
[0167] Unexpectedly, a large proportion of the B cell supernatants that neutralized HIV-1JR CSF did not bind monomeric gp120JR-CSF or gp41HxB2, and there were only a limited number of cultures that neutralized both viruses (Fig. 3B). Antibody genes were rescued from five B cell cultures selected for differing functional profiles; one bound to gp120 and only neutralized HIV 1SF162, two bound to gp1 2 0 and weakly neutralized both viruses, and two potently neutralized HIV-1JR-CSF, failed to neutralize HIV-1SF162, and did not bind to monomeric gp1 2 0 or gp 4 l. Five antibodies identified according to these methods are disclosed herein. The antibodies were isolated from a human sample obtained through International AIDS Vaccine Initiative's (IAVI's) Protocol G, and are produced by the B cell cultures referred to as 1443_C16 (PG16) (TCN- 116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480_108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877D15 (PGT-122), 4858_P08 (PGT-123), 6123A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_H01 (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366P21 (PGT-136), 4964_G22 (PGT-141), 5345_101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980N08 (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-K15 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N10 (PGT-139), 6831_A21 (PGT-151), 6889117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881N05 (PGT-158). Antibodies referred to as 1443_C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14
(PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_Di5 (PGT-122), 4858_P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HO1 (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345_101 (PGT-137), 4993K13 (PGT-141), 4995_E20 (PGT-142), 4980_NOS (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-K15 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N1O (PGT-139), 6831_A21 (PGT-151), 6889117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881_N05 (PGT-158), were isolated from the corresponding B cell cultures. These antibodies have been shown to neutralize HIV in vitro.
[0168] Analysis of the antibody variable genes revealed that two antibody pairs were related by somatic hypermutation and that two of the somatic variants contained unusually long CDRH3 loops (Table 2). Long CDRH3 loops have previously been associated with polyreactivity. (Ichiyoshi, Y. & Casali, P. J Exp Med 180, 885-895 (1994)). The antibodies were tested against a panel of antigens and the antibodies were confirmed to be not polyreactive. Table 2: Sequence Analysis of mAb Variable Genes
Clone Germline Germline CDRL SEQ CDRH3b SEQ IGVLa IGVHa 3b ID ID NO: NO: PG16 VL2- VH3- SSLTD 1 EAGGPIWHDDVKY 6 14*01 33*05 RSHR YDFNDGYYNYHY IF MDV PG9 VL2- VH3- KSLT 2 EAGGPDYRNGYNY 7 14*01 33*05 STRR YDFYDGYYNYHY RVF MDV PGG1 VK1- VH1- SYSTP 3 DRRVVPMATDNW 8 4 39*01 69*12 RTF LDP PG20 VK2- VH1- SFSTP 4 DRRAVPIATDNWL 9 14*01 69*12 RTF DP PGC1 VL3-1*01 VH1- AWET 5 GAVGADSGSWFDP 10 4 24*01 TTTTF VFF a Germ line gene sequences were determined using the IMGT database, which is publicly available at imgt.cines.fr. "L" and "K" refer to lambda and kappa chains, respectively, b Bolded amino acids denote differences between somatic variants.
Table 3A. Heavy Chain Gene Usage Summary
mAb mAb V-Gene V-Gene J-Gene J-Gene CDR3 ID Specificity & allele identity & allele identity 1443 ELISA- IGHV3- 85.07% IGHJ6* 85.48% AREAGGPIWHDDVK C16 negative 33*05 (245/288 03 (53/62 nt) YYDFNDGYYNYHYM nt) DV (SEQ ID NO: 46) 1456 gp120 IGHV1- 85.07% IGHJ5* 88.24% ARDRRAVPIATDNWL P20 69*11 or (245/288 02 (45/51 nt) DP (SEQ ID NO: 47) IGHV1- nt) 69*12 1460 gp120 IGHV1- 86.11% IGHJ5* 86.27% TRDRRVVPMATDNW G14 69*11 or (248/288 02 (44/51 nt) LDP (SEQ ID NO: 48) IGHV1- nt) 69*12 1495 gp120 IGHV1- 88.89% IGHJ5* 84.31% AAGAVGADSGSWFD C14 f*01 (256/288 02 (43/51 nt) P (SEQ ID NO: 49) nt) 1496 ELISA- IGHV3- 85.07% IGHJ6* 83.87% VREAGGPDYRNGYN C09 negative 33*05 (245/288 03 (52/62 nt) YYDFYDGYYNYHYM nt) DV (SEQ ID NO: 50)
Table 3B. Light Chain Gene Usage Summary
mAb ID mAb V-Gene V-gene J-GENE J-Gene CDR3 SEQ Specificity and identity and allele identity ID allele NO: 1443_Cl ELISA- IGLV2- 88.19% IGLJ2*01 83.33% SSLTDRSHRI 41 6 negative 14*01 (254/28 .or (30/36 8 nt) IGLJ3*01 nt) or IGLJ3*02 1456_P20 gp120 IGKV1- 92.11% IGKJ5*01 92.11% QQSFSTPRT 42 39*01, or (257/27 (35/38 IGKV1D 9 nt) nt) -39*01 1460_Gi gp120 IGKV1- 92.11% IGKJ5*01 89.47% QQSYSTPRT 43 4 39*01, or (257/27 (34/38 IGKV1D 9 nt) nt) -39*01 1495_Cl gp120 IGLV3- 88.89% IGLJ2*01 86.84% QAWETTTTT 44 4 1*01 (248/27 .or (33/38 FVF 9 nt) IGLJ3*01 nt) 1496_CO ELISA- IGLV2- 91.32% IGLJ3*02 86.11% KSLTSTRRRV 45 9 negative 14*01 (263/28 (31/36 8 nt) nt)
[0169] The broadly neutralizing antibodies from 1443_C16 (PG16) and 1496_C09 (PG9) clones obtained by this method did not exhibit soluble gpl20 or gp4 l binding at levels that correlate with neutralization activity. The method of the invention therefore allows identification of novel antibodies with broad cross-clade neutralization properties regardless of binding activities in an ELISA screen. Further characterization of PG16 and PG9 is disclosed herein.
[0170] All five antibodies were first tested for neutralization activity against a multi-clade 16-pseudovirus panel (Table 4). Two of the antibodies that bound to monomeric gpl20 in the initial screen (PGG14 and PG20) did not show substantial neutralization breadth or potency against any of the viruses tested, and the third antibody that bound to gp120 (PGC 14) neutralized 4/16 viruses with varying degrees of potency. In contrast, the two antibodies that failed to bind recombinant Env in the initial screen (PG9 and PG16) neutralized a large proportion of the viruses at sub-microgram per ml concentrations. PG9 and PG16 neutralized non-clade B viruses with greater breadth than three out of the four existing bNAbs. This is significant considering that the majority of HIV- 1 infected individuals worldwide are infected with non-clade B viruses. Table 4: Neutralization Profiles of Rescued mAbs
Cla A 02RW2C5 mmL
250 250 93UG17 >50 5 50 | CFaO_ B AV4 >54 >50 >5 >500 |
APV7 >50 || || >5 >50 | 'S 1 93 1150 Ch92BRS02C >>||||||| 4M 50 | >5') NJA 5 $|||||||EN ||||||||| >50 >50 | >q ___50 _
0 Ai l >shows >nti| >d 'AVfC22 x5q.N'A g~@ N >'5Q | 50 1AV-C3 NIMIR~ll@E!IMMl@iMI >5 |r, >5G C2G2 D5 I5 aIMkj@ observed ' in at~gau curve.mmg AavP 50 |U >5G 92G0-5 50 -50 >5D | >5D
CRF01_AE CMU02 > 543 >0 5>5 | >0 neaave colrol aML >5 >50 >5'D50 |
11Plateau observe d in curvL4.
[0171] Table 17A shows neutralization profiles (IC50 values) of monoclonal antibodies 1443_C16 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14) and 1496_C09 (PG9) and the known cross-clade neutralizing antibodies b12, 2G12, 2F5 and 4E10 on a diverse panel of 16 HIV pseudoviruses from different clades. 1443_C16 (PG16) and 1496_C09 (PG9) neutralize HIV-1 species from Clades A, B, C, D and CRFO1_AE with better potency for most viral strains tested than known and generally accepted broad and potent neutralizing antibodies. However, neutralization profiles of individual species of HIV-1 belonging to these clades vary between 1443C16 (PG16) and 1496_C09 (PG9) and the known cross-clade neutralizing antibodies b12, 2G12, 2F5 and 4E10. 1495_C14 (PGC14) neutralizes fewer HIV-1 species from Clades A, B and C comparable to other neutralizing antibodies. Table 17B shows IC90 values of the monoclonal antibodies 1443_C16 (PG16) and 1496_C09 (PG9) and the known cross-clade neutralizing antibodies b12, 2G12, 2F5 and 4E10 on the same panel of pseudoviruses. Figure 4 shows neutralization activities of monoclonal antibodies 1443_C16 (PG16) and 1496_C09 (PG9) to six other HIV pseudoviruses (YU2, Bal, ADA, DU172, DU422, and ZM197) for clades B and C not included in Tables 17A and 17B.
[01721 PG9, PG16, and PGC14 were next evaluated on a large multi-clade pseudovirus panel consisting of 162 viruses to further assess the neutralization breadth and potency of these three antibodies (Tables 5A-5B, Tables 18A-18F and Tables 19A-19B). The bNAbs b12, 2G12, 2F5, and 4E10, as well as the donor's serum, were also included in the panel for comparison. Overall, PG9 neutralized 127 out of 162 and PG16 neutralized 119 out of 162 viruses with a potency that frequently considerably exceeded that noted for the four control bNAbs.
[0173] The median IC50 and IC90 values for neutralized viruses across all clades were an order of magnitude lower for PG9 and PG16 than any of the four existing bNAbs (Table 5A, Tables 18A-18F and Tables 19A-19B). Both mAbs showed overall greater neutralization breadth than b12, 2G12, and 2F5 (Table 5B, Tables 18A-18F and Tables 19A-19B). At low antibody concentrations, PG9 and PG16 also demonstrated greater neutralization breadth than 4E10 (Table 5B). Furthermore, both mAbs potently neutralized one virus (IAVI-C18) that exhibits resistance to all four existing bNAbs (Tables 18A-18F). The mAb neutralization curves reveal that, whereas the PG9 neutralization curves usually exhibit sharp slopes, the neutralization curves for PG16 sometimes exhibit gradual slopes or plateaus at less than 100% neutralization. Although neutralization curves with similar profiles have been reported previously ( W. J. Honnen et al., J Virol 81, 1424 (Feb, 2007), A. Pinter et al., J Virol 79, 6909 (Jun, 2005)), the mechanism for this is not well understood.
[0174] Comparison of the neutralization profile of the serum with the neutralization profile of PG9, PG16 and PGC14 revealed that these three antibodies could recapitulate the breadth of the serum neutralization in most cases (Tables 18A-18F). For example, almost all of the viruses that were neutralized by the serum with an IC50 > 1:500 were neutralized by PG9 and/or PG16 at <0.05 pg/mL. The one case where this did not occur was against HIV-1SF162, but this virus was potently neutralized by PGC14. Despite the fact that PG9 and PG16 are somatic variants, they exhibited different degrees of potency against a number of the viruses tested. For instance, PG9 neutralized HIV-16535.30 approximately 185 times more potently than PG16, and PG16 neutralized HIV-1MGRM-AG-001 approximately 440 times more potently than PG9. In some cases, the two antibodies also differed in neutralization breadth; PG9 neutralized nine viruses that were not affected by PG16, and PG16 neutralized two viruses that were not affected by PG9. Based on these results, it is postulated that broad serum neutralization might be mediated by somatic antibody variants that recognize slightly different epitopes and display varying degrees of neutralization breadth and potency against any given virus. In the face of an evolving viral response, it seems reasonable that the immune system might select for these types of antibodies.
[0175] Comparison of the neutralization profile of the serum with the neutralization profile of PG9, PG16 and PGC14 revealed that these three antibodies could recapitulate the breadth of the serum neutralization in most cases. For example, almost all of the viruses that were neutralized by the serum with an IC50 > 1:1000 were neutralized by PG9 and/or PG16 at <0.005 pg/mL. The one case where this did not occur was against HIV-1SF162, but this virus was potently neutralized by PGC14. Tables 5(a) and 5(b) show the neutralization activities-breadth and potency, respectively -- of PG9, PG16, and PGC14 as well as four control bNAbs as measured by IC50 values. Tables 19A-19B show results of the same analysis using IC 90 values. Table 5(A). Neutralization Potency of mAbs
Median IC5o (pg/mL) against viruses neutralized with an ICs0 <50 pg/mL Clade" # viruses b12 2G12 2F5 4E10 PG9 PG16 PGC14 A27 6.98 17.10 .70 6.20 §e I B 31 O0.80. 0.82. 2.41 5.22 XA3 0.7: C 27 6.46 2.93 2.97 O.22 0.25 11.97 D 25 L47 7.71 3.17 4.60 0 :
Median IC50 (pig/mL) against viruses neutralized with an IC50 <50 pg/mL Clade" # viruses b12 2G12 2F5 4E10 PG9 PG16 PGC14 F 15 >50 9.23 L8 2.30 ms i Total 162 2.82 2.43 2.30 3.24 0.22 Q'' Boxes are color coded as follows: white, median potency >50 pg/mL; light grey, median potency between 2 and 20 pg/mL; medium grey, median potency between 0.2 and 2
[g/mL; dark grey, median potency <0.2 ig/mL. CRF_07BC and CRF_08BC viruses are not included in the clade analysis because there was only one virus tested from each of these clades.
Table 5(B). Neutralization Breadth of mAbs
% viruses neutralized with an IC5o <50 pg/mL Clade" # viruses b12 2G12 2F5 4E10 PG9 PG16 PGC14
G27 5 37 .
D 15 0 8.$ ~7 6
C27 03 07 56 48....0 . D 25 48 440 CRF01_ CRF01 AE 100to6 0 7 0 CR F A................ CRFA . Gt5o B3 1 0 . 0...60..33.. .. .... .4 5 4 0 F 15 0........... 79.... 0 .... Total 12 1162 57 e51 57E1: 1 1
viuss euraizd;dak viruses~~~ neutralize re, 0 o 0 dakereu0tor00 viruses aoiues netr a nIs<. neutralized. Ied. .0pg gm waColade wa ol viu terstesro oe virusutese of1 from each of5these10 these clades.GC1 G9a16esC1
[0176] Despite the fact that PG9 and PG16 are somatic variants, they exhibited different degrees of potency against a number of the viruses tested. For instance, PG9 neutralized the virus 6535.30 about 100 times more potently than PG16, and PG16 neutralized the virus MGRM-AG 001 about 3000 times more potently than PG9. In some cases, the two antibodies also differed in neutralization breadth; PG9 neutralized seven viruses that were not neutralized by PG16, and PG16 neutralized three viruses that were not neutralized by PG9. Without being bound by theory, it appears that broad serum neutralization might be mediated by somatic variants that recognize slightly different epitopes and display varying degrees of neutralization breadth and potency against any given virus. In the face of an evolving viral response, the immune system likely selects for these types of antibodies.
[0177] The antibodies were also tested for ability to bind soluble recombinant HIV envelope proteins. Figure 5 shows dose response curves of 1456P20 (PG20), 1495C14 (PGC14) and 1460_G14 (PGG14) binding to recombinant gpl20 in ELISA as compared to control anti-gpl20 (bl2). Figure 6 shows ELISA binding assays of monoclonal antibodies 1443C16 (PG16) and 1496C09 (PG9) to HIV-1 strain YU2 gpl40 and JR-CSF gpl20, the membrane proximal region (MPER) of HIV-1 envelope glycoprotein gp4l, and the V3 polypeptide. PG-9 binds to YU2 gpl40 (IC5 o -20-40 nM), YU2 gpl20 and weakly binds to JR-CSF gp120. However, PG16 weakly binds Yu2 gpl20, but not the soluble form of HIV-1 envelope glycoprotein, gpl20 JR CSF. Neither mAb binds to JR-FL gp120, JR-FL gp140, MPER peptide of gp4l or V3 peptide.
[0178] Figure 7 shows binding of monoclonal antibodies 1443C16 (PG16) and 1496_C09 (PG9) to HIV-1 YU2 gpl60 expressed on the cell surface in the presence and absence of sCD4. Competitive inhibition of the binding by sCD4 indicates that the binding of monoclonal antibody 1496_C09 to HIV-1 envelope protein gp160 expressed on the cell surface is presumably affected due to the conformational changes induced by sCD4. The data further suggest that 1443_C16 (PG16) and 1496_C09 (PG9) exhibit relatively stronger binding to trimeric forms of the HIV-1 Env (gp 160 and gp140) than to the monomeric gp120.
[0179] Figure 8 shows binding of monoclonal antibodies 1443C16 (PG16) and 1496_C09 (PG9) to HIV-1 transfected cells. PG9 and PG16 do not bind untransfected cells. PG9 and PG16 bind JR-CSF, ADA, and YU2 gpl60 transfected cells. PG9 and PG16 do not bind JR-FL gpl60 transfected cells (cleaved or uncleaved). PG9 and PG16 do not bind ADA AV1/AV2 transfected cells. PG9 and PG16 binding to JR-CSF gp160 transfected cells is inhibited by sCD4.
[0180] Figure 9 shows the capturing of entry-competent JR-CSF pseudovirus by neutralizing monoclonal antibodies 1443_C16 (PG16) and 1496_C09 (PG9) in a dose-dependent manner. The ability of both antibodies to capture JR-CSF pseudovirus is higher than IgG b12 but comparable to IgG 2G12. It is postulated that the capture may be mediated by the binding of the mAbs to the HIV-1 Env on the virions.
[0181] Figure 10A shows that sCD4, PG16 and PG9 compete for the binding of monoclonal antibody 1443C16 (PG16) to JR-CSF pseudovirus but b12, 2G12, 2F5 and 4E10 do not. Figure B shows sCD4, PG16 and PG9 compete for the binding of monoclonal antibody 1496_C09 (PG9) to JR-CSF pseudovirus but b12, 2G12, 2F5 and 4E10 do not. This suggests that the PG16 and PG9 mAbs bind gpl20 at a site different from those bound by b12 and 2G12. PG9 and PG16 binding to HIV-1 envelope protein is competitively inhibited by sCD4. Given that the MAbs are not inhibited by the CD4 binding site MAb b12, this suggests that PG9 and PG16 are binding to an epitope that is unavailable for sCD4 binding to gpl20 as a result of conformational changes. The inability of PG9 and PG16 to bind monomeric gpl20JR-CSF or gp4lHxB2 in the initial screen while potently neutralizing HIV-1JR-CSF suggests that the epitope targeted by these antibodies is preferentially expressed on trimeric HIV envelope protein. The ability of PG9 and PG16 to bind monomeric gp120 from several different strains, artificially trimerized gpl40 constructs, and trimeric Env expressed on the surface of transfected cells respectively, was compared. Although both antibodies bound with high affinity to cell surface Env, PG16 did not bind to any of the soluble gp120 or gp140 constructs and PG9 bound only weakly to monomeric gpl20 and trimerized gpl40 from certain strains (Fig. 11). It has been previously shown that a substantial fraction of cell surface Env is comprised of uncleaved gpl60 molecules. (Pancera, M. & Wyatt, R. Virology 332, 145-156 (2005)). That PG9 and PG16 do not exhibit exclusive specificity for native HIV-1 trimers was confirmed by the fact that both antibodies bound with high affinity to cleavage-defective HIV-1YU2 trimers expressed on the surface of transfected cells (Figure 12).
[0182] The epitopes recognized by PG9 and PG16 were investigated. Since the PG9 and PG16 antibodies are somatic variants, they recognize the same or overlapping epitopes. Both antibodies cross-competed for binding to HIV-TJR-CSF transfected cells (Fig. 13A). Ligation of monomeric gpl20 or cell surface Env with soluble CD4 diminished binding of both PG9 and PG16, although neither antibody competed with CD4-binding site antibodies for trimer binding (Fig. 13A-13C). This result suggests that CD4-induced conformational changes cause a loss of the epitope targeted by the antibodies.
[0183] Since PG9 bound well enough to gp120 from certain isolates to generate ELISA binding curves, competition ELISAs were performed with PG9 using a panel of neutralizing and non-neutralizing antibodies. These data revealed that PG9 cross-competed with anti-V2, anti-V3, and to a lesser extent, CD4i antibodies for gp1 2 0. (Figures 13D and 14).
[0184] Neither PG9 nor PG16 bound to VT/V2 or V3 deleted HIV-1JR-CSF variants expressed on the surface of transfected cells, further suggesting contributions of variable loops in forming their epitopes (Fig. 13E).
[01851 To dissect the fine specificity of PG9 and PG16, alanine scanning was performed using a large panel of HIV-1JR-CSF Env alanine mutants that have been described previously (Pantophlet, R., et al. J Virol 77, 642-658 (2003); Pantophlet, R., et al. J Virol 83, 1649-1659 (2009); Darbha, R., et al. Biochemistry 43, 1410-1417 (2004); Scanlan, C.N., et al. J Virol 76, 7306-7321 (2002)) as well as several new alanine mutants. Pseudoviruses incorporating single Env alanine mutations were generated, and PG9 and PG16 were tested for neutralization activity against each mutant pseudovirus. Mutations that resulted in viral escape from PG9 and PG16 neutralization were considered important for formation of the PG9 and PG16 epitopes (Tables 12 and 13).
[0186] Based on these criteria, and consistent with the competition experiments, residues that form the epitopes recognized by PG9 and PG16 appear to be located in conserved regions of the V2 and V3 loops of gp120. Certain co-receptor binding site mutations also had an effect on PG9 and PG16 neutralization, albeit to a lesser extent. Generally, PG9 and PG16 were dependent on the same residues, although PG16 was more sensitive to mutations located in the tip of the V3 loop than PG9. Interestingly, although neither antibody bound to wild-type HIV-1JR-FL transfected cells, a D to K mutation at position 168 in the V2 loop of HIV-1JR-FL generated high-affinity PG9 and PG16 recognition (Tables 18A-18F). N156 and N160, sites of V2 N glycosylation, also appear to be critical in forming the epitope since substitutions at these positions resulted in escape from PG9 and PG16 neutralization. Deglycosylation of gp120 abolished binding of PG9 (Fig. 16), confirming that certain glycans may be important in forming the epitope.
[0187] HIV-1 SF162 contains a rare N to K polymorphism at position 160, and mutation of this residue to an Asn renders this isolate sensitive to PG9 and PG16 (Fig. 17).
[0188] The preferential binding of PG9 and PG16 to native trimers could either be a consequence of gpl20 subunit cross-linking or recognition of a preferred oligomeric gpl20 conformation. To address this question, the binding profiles of PG9 and PG16 to mixed HIV 1YU2 trimers were examined, in which two gp120 subunits containing point mutations abolished binding of the two antibodies. A third substitution that abrogates binding of 2G12, which binds with high affinity to both monomeric gp120 and trimeric Env, was also introduced into the same construct as an internal control. Cell surface binding analysis revealed that all three antibodies bound to the mixed trimers with similar apparent affinity as to wild-type trimers and all saturated at a similar lower level (Fig. 18). This result suggests that the preference of PG9 and PG16 for trimeric Env is due to gp120 subunit presentation in the context of the trimeric spike rather than gp120 cross-linking.
[0189] It has been shown that NAbs that bind to epitopes encompassing parts of the V2 or both the V2 and V3 domains can exhibit potency comparable to that of PG9 and PG 16, although these antibodies have thus far displayed strong strain-specificity. (Honnen, W.J., et al. J Virol 81, 1424-1432 (2007); Gorny, M.K., et al. J Virol 79, 5232-5237 (2005)). Importantly, the epitopes recognized by these antibodies have been shown to differ from that of the clade B consensus sequence only by single amino acid substitutions, which suggested the existence of a relatively conserved structure within the V2 domain. (Honnen, W.J., et al. J Virol 81, 1424-1432 (2007)). The results observed with PG9 and PG16 confirm that this region serves as a potent neutralization target and demonstrates that antibodies that recognize conserved parts of V2 and V3 can possess broad reactivity.
[0190] The invention is based on novel monoclonal antibodies and antibody fragments that broadly and potently neutralize HIV infection. In some embodiments, these monoclonal antibodies and antibody fragments have a particularly high potency in neutralizing HIV infection in vitro across multiple clades or across a large number of different HIV species. Such antibodies are desirable, as only low concentrations are required to neutralize a given amount of virus. This facilitates higher levels of protection while administering lower amounts of antibody. Human monoclonal antibodies and the immortalized B cell clones that secrete such antibodies are included within the scope of the invention.
[0191] The invention provides methods for using high throughput functional screening to select neutralizing antibodies with unprecedented breadth and potency. The invention relates to other potent and broadly neutralizing antibodies that can be developed using the same methods. In particular, the invention relates to potent, broadly neutralizing antibodies against different strains of HIV, wherein the bNAbs bind poorly to recombinant forms of Env. The invention provides two neutralizing antibodies, PG9 and PG16, with broad neutralizing activities particularly against non-clade B isolates. The invention provides vaccine-induced antibodies of high specificity that provide protection against a diverse range of the most prevalent isolates of HIV circulating worldwide. The invention provides antibodies with very high and broad neutralization potency, such as that exhibited by PG9 and PG16 in vitro, which provides protection at relatively modest serum concentrations, and are generated by vaccination unlike the broad NAbs known in the art. The invention provides immunogens that can be designed that focus the immune response on conserved regions of variable loops in the context of the trimeric spike of the gp120 subunit of the Env protein.
[0192] The invention also relates to the characterization of the epitope to which the antibodies bind and the use of that epitope in raising an immune response.
[0193] The invention also relates to various methods and uses involving the antibodies of the invention and the epitopes to which they bind. For example, monoclonal antibodies according to the invention can be used as therapeutics. In some aspects, the monoclonal antibodies are used for adjuvant therapy. Adjuvant therapy refers to treatment with the therapeutic monoclonal antibodies, wherein the adjuvant therapy is administered after the primary treatment to increase the chances of a cure or reduce the statistical risk of relapse.
[0194] The invention provides novel monoclonal or recombinant antibodies having particularly high potency in neutralizing HIV. The invention also provides fragments of these recombinant or monoclonal antibodies, particularly fragments that retain the antigen-binding activity of the antibodies, for example which retain at least one complementarity determining region (CDR) specific for HIV proteins. In this specification, by "high potency in neutralizing HIV" is meant that an antibody molecule of the invention neutralizes HIV in a standard assay at a concentration lower than antibodies known in the art.
[01951 Preferably, the antibody molecule of the present invention can neutralize at a concentration of 0.16 pg/ml or lower (i.e. 0.15, 0.125, 0.1, 0.075, 0.05, 0.025, 0.02, 0.016, 0.015, 0.0125, 0.01, 0.0075, 0.005, 0.004 or lower), preferably 0.016 pg/ml or lower (an antibody concentration of 10-8 or lower, preferably 10-9 M or lower, preferably 1010 M or lower, i.e. 10-11 M, 10-1 M, 10-1 M or lower). This means that only very low concentrations of antibody are required for 50% neutralization of a clinical isolate of HIV in vitro. Potency can be measured using a standard neutralization assay as described in the art.
[0196] The antibodies of the invention are able to neutralize HIV. Monoclonal antibodies can be produced by known procedures, e.g., as described by R. Kennet et al. in "Monoclonal Antibodies and Functional Cell Lines; Progress and Applications". Plenum Press (New York), 1984. Further materials and methods applied are based on known procedures, e.g., such as described in J. Virol. 67:6642-6647, 1993.
[0197] These antibodies can be used as prophylactic or therapeutic agents upon appropriate formulation, or as a diagnostic tool.
[0198] A "neutralizing antibody" is one that can neutralize the ability of that pathogen to initiate and/or perpetuate an infection in a host and/or in target cells in vitro. The invention provides a neutralizing monoclonal human antibody, wherein the antibody recognizes an antigen from HIV.
[0199] Preferably an antibody according to the invention is a novel monoclonal antibody referred to herein as 1443_C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480_108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN 109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_D15 (PGT-122), 4858P08 (PGT 123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT 128), 5147_N06 (PGT-130), 5136_HO1 (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT 135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345_101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980N08 (PGT-143), 4970K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-KI5 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N1O (PGT-139), 6831_A21 (PGT-151), 6889117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881_NO5 (PGT-158). These antibodies were initially isolated from human samples and are produced by the B cell cultures referred to as 1443_C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480_108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_D15 (PGT-122), 4858P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HOJ (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980N08 (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-K15 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N10 (PGT-139), 6831_A21 (PGT-151), 6889_117 (PGT-152), 6891_F06 (PGT-153), 6843G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881_NO5 (PGT-158). These antibodies have been shown to neutralize HIV in vitro. 1443_C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_D15 (PGT-122), 4858P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HO1 (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-K15 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N10 (PGT-139), 6831_A21 (PGT-151), 6889_117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881_N05 (PGT-158) have been shown to have broad, potent HIV neutralizing activity.
[0200] The CDRs of the antibody heavy chains are referred to as CDRH1, CDRH2 and CDRH3, respectively. Similarly, the CDRs of the antibody light chains are referred to as CDRL1, CDRL2 and CDRL3, respectively. The position of the CDR amino acids is defined according to the IMGT numbering system as: CDR1--IMGT positions 27 to 38, CDR2--IMGT positions 56 to 65 and CDR3--IMGT positions 105 to 117. (Lefranc, M P. et al. 2003 IMGT unique numbering for immunoglobulin and T cell receptor variable regions and Ig superfamily V-like domains. Dev Comp Immunol. 27(1):55-77; Lefranc, M P. 1997. Unique database numbering system for immunogenetic analysis. Immunology Today, 18:509; Lefranc, M P. 1999. The IMGT unique numbering for Immunoglobulins, T cell receptors and Ig-like domains. The Immunologist, 7:132-136.)
[0201] The amino acid sequences of the CDR3 regions of the light and heavy chains of the antibodies are shown in Tables 3A and 3B.
[0202] A phylogram is a branching diagram (tree) assumed to be an estimate of phylogeny, branch lengths are proportional to the amount of inferred evolutionary change. Tree diagrams of the five heavy chains and the five light chains were prepared using ClustalW (Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J. and Higgins D.G. Bioinformatics 23(21): 2947-2948 (2007); Higgins DG et al. Nucleic Acids Research 22: 4673-4680. (1994)) and are shown in Figures 1A and lB respectively.
[0203] The sequences of the antibodies were determined, including the sequences of the variable regions of the Gamma heavy and Kappa or Lambda light chains of the antibodies designated 1496_C09 (PG9), 1443_C16 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), and 1495_C14 (PGC14). In addition, the sequence of each of the polynucleotides encoding the antibody sequences was determined. Shown below are the polypeptide and polynucleotide sequences of the gamma heavy chains and kappa light chains, with the signal peptides at the N terminus (or 5' end) and the constant regions at the C-terminus (or 3' end) of the variable regions, which are shown in bolded text.
[02041 1443C16 (PG16) (TCN- 116) gamma heavy chain nucleotide sequence: 1443 C16 y3 coding sequence (variable region in bold) ATGGAGTTTGGGCTGAGCTGGGTTTTCCTCGCAACTCTGTTAAGAGTTGTG AAGTGTCAGGAACAACTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCC GGGGGGGTCCCTGAGACTCTCCTGTTTAGCGTCTGGATTCACGTTTC ACAAATATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGCCTG GAGTGGGTGGCACTCATCTCAGATGACGGAATGAGGAAATATCATTC AGACTCCATGTGGGGCCGAGTCACCATCTCCAGAGACAATTCCAAGA ACACTCTTTATCTGCAATTCAGCAGCCTGAAAGTCGAAGACACGGCT ATGTTCTTCTGTGCGAGAGAGGCTGGTGGGCCAATCTGGCATGACGA CGTCAAATATTACGATTTTAATGACGGCTACTACAACTACCACTACAT GGACGTCTGGGGCAAGGGGACCACGGTCACCGTCTCGAGCGCCTCCA
CCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCT GGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACC GGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCT TCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGA CCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAAT CACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTT GTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGG GGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGAT CTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAG ACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAAT GCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGG TCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTAC AAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCAT CTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCC CCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGT CAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGG CAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACG GCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAG CAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 11)
[0205] 1443_C16 (PG16) (TCN-116) gamma heavy chain variable region nucleotide sequence: CAGGAACAACTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCGGGGGGGT CCCTGAGACTCTCCTGTTTAGCGTCTGGATTCACGTTTCACAAATATGGCA TGCACTGGGTCCGCCAGGCTCCAGGCAAGGGCCTGGAGTGGGTGGCACTC ATCTCAGATGACGGAATGAGGAAATATCATTCAGACTCCATGTGGGGCCG AGTCACCATCTCCAGAGACAATTCCAAGAACACTCTTTATCTGCAATTCA GCAGCCTGAAAGTCGAAGACACGGCTATGTTCTTCTGTGCGAGAGAGGCT GGTGGGCCAATCTGGCATGACGACGTCAAATATTACGATTTTAATGACGG CTACTACAACTACCACTACATGGACGTCTGGGGCAAGGGGACCACGGTCA CCGTCTCGAGC (SEQ ID NO: 99)
[0206] 1443_C16 (PG16) (TCN-116) gamma heavy chain amino acid sequence: expressed protein with variable region in bold. QEQLVESGGGVVQPGGSLRLSCLASGFTFHKYGMHWVRQAPGKGLEW VALISDDGMRKYHSDSMWGRVTISRDNSKNTLYLQFSSLKVEDTAMFFC AREAGGPIWHDDVKYYDFNDGYYNYHYMDVWGKGTTVTVSSASTKGPS VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS GLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCP APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNG
QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY TQKSLSLSPGK (SEQ ID NO: 12)
[0207] 1443_C16 (PG16) (TCN-116) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QEQLVESGGGVVQPGGSLRLSCLASGFTFHKYGMHWVRQAPGKGLEWVAL ISDDGMRKYHSDSMWGRVTISRDNSKNTLYLQFSSLKVEDTAMFFCAREAG GPIWHDDVKYYDFNDGYYNYHYMDVWGKGTTVTVSS (SEQ ID NO: 31)
[0208] 1443_C16 (PG16) (TCN- 116) gamma heavy chain Kabat CDRs: CDR 1: KYGMH (SEQ ID NO: 88) CDR 2: LISDDGMRKYHSDSMWG (SEQ ID NO: 89) CDR 3: EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6)
[0209] 1443C16 (PG16) (TCN- 116) gamma heavy chain Chothia CDRs: CDR 1: GFTFHK (SEQ ID NO: 266) CDR 2: LISDDGMRKY (SEQ ID NO: 267) CDR 3: EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6)
[0210] 1443_C16 (PG16) (TCN- 116) lambda light chain nucleotide sequence: 1443_C16 X2 coding sequence (variable region in bold) ATGGCCTGGGCTCTGCTATTCCTCACCCTCTTCACTCAGGGCACAGGGTCC TGGGGCCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCT GGACAGACGATCACCATCTCCTGCAATGGAACCAGCAGTGACGTTGG TGGATTTGACTCTGTCTCCTGGTACCAACAATCCCCAGGGAAAGCCC CCAAAGTCATGGTTTTTGATGTCAGTCATCGGCCCTCAGGTATCTCTA ATCGCTTCTCTGGCTCCAAGTCCGGCAACACGGCCTCCCTGACCATC TCTGGGCTCCACATTGAGGACGAGGGCGATTATTTCTGCTCTTCACT GACAGACAGAAGCCATCGCATATTCGGCGGCGGGACCAAGGTGACC GTTCTAGGTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTC CTCTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTG ACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCC GTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACA AGTACGCGGCCAGCAGCTACCTGAGCCTGACGCC
TGAGCAGTGGAAGTCCCACAAAAGCTACAGCTGCCAGGTCACGCATGAA GGGAGCACCGTGGAGAAGACAGTGGCCCCTACAGAATGTTCATAG (SEQ ID NO: 13)
[0211] 1443_C16 (PG16) (TCN-116) lambda light chain variable region nucleotide sequence:
CAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGACG ATCACCATCTCCTGCAATGGAACCAGCAGTGACGTTGGTGGATTTGACTC TGTCTCCTGGTACCAACAATCCCCAGGGAAAGCCCCCAAAGTCATGGTTT TTGATGTCAGTCATCGGCCCTCAGGTATCTCTAATCGCTTCTCTGGCTCCA AGTCCGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCACATTGAGGAC GAGGGCGATTATTTCTGCTCTTCACTGACAGACAGAAGCCATCGCATATT CGGCGGCGGGACCAAGGTGACCGTTCTA (SEQ ID NO: 100)
[0212] 1443_C16 (PG16) (TCN-116) lambda light chain amino acid sequence: expressed protein with variable region in bold. QSALTQPASVSGSPGQTITISCNGTSSDVGGFDSVSWYQQSPGKAPKVMV FDVSHRPSGISNRFSGSKSGNTASLTISGLHIEDEGDYFCSSLTDRSHRIFG GGTKVTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWK ADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHKSYSCQVTHEGST VEKTVAPTECS (SEQ ID NO: 14)
[0213] 1443_C16 (PG16) (TCN-116) lambda light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QSALTQPASVSGSPGQTITISCNGTSSDVGGFDSVSWYQQSPGKAPKVMVFD VSHRPSGISNRFSGSKSGNTASLTISGLHIEDEGDYFCSSLTDRSHRIFGGGTK VTVL (SEQ ID NO: 32)
[0214] 1443_C16 (PG16) (TCN- 116) lambda light chain Kabat CDRs: CDR 1: NGTSSDVGGFDSVS (SEQ ID NO: 97) CDR 2: DVSHRPS (SEQ ID NO: 95) CDR 3: SSLTDRSHRI (SEQ ID NO: 41)
[0215] 1443C16 (PG16) (TCN- 116) lambda light chain Chothia CDRs: CDR 1: NGTSSDVGGFDSVS (SEQ ID NO: 97) CDR 2: DVSHRPS (SEQ ID NO: 95) CDR 3: SSLTDRSHRI (SEQ ID NO: 41)
[0216] 1456P20 (PG20) gamma heavy chain nucleotide sequence: 1456_P20 y1 coding sequence (variable region in bold) ATGGACTGGATTTGGAGGTTCCTCTTTGTGGTGGCAGCAGCTACAGGTGT CCAGTCCCAGGTCCGCCTGGTACAGTCTGGGCCTGAGGTGAAGAAGC CTGGGTCCTCGGTGACGGTCTCCTGCCAGGCTTCTGGAGGCACCTTC AGCAGTTATGCTTTCACCTGGGTGCGCCAGGCCCCCGGACAAGGTCT TGAGTGGTTGGGCATGGTCACCCCAATCTTTGGTGAGGCCAAGTACT CACAAAGATTCGAGGGCAGAGTCACCATCACCGCGGACGAATCCACG AGCACAACCTCCATAGAATTGAGAGGCCTGACATCCGAAGACACGGC CATTTATTACTGTGCGCGAGATCGGCGCGCGGTTCCAATTGCCACGG
ACAACTGGTTAGACCCCTGGGGCCAGGGGACCCTGGTCACCGTCTCG AGCGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAA GAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACT TCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGC GTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGC AGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTG CAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAG CCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGA ACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTG AGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGG AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCAC GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATG GCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATC GAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT ACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCT GACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCT GGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGA GCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCT CTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATG A (SEQ ID NO: 15)
[0217] 1456P20 (PG20) gamma heavy chain variable region nucleotide sequence: CAGGTCCGCCTGGTACAGTCTGGGCCTGAGGTGAAGAAGCCTGGGTCCTC GGTGACGGTCTCCTGCCAGGCTTCTGGAGGCACCTTCAGCAGTTATGCTTT CACCTGGGTGCGCCAGGCCCCCGGACAAGGTCTTGAGTGGTTGGGCATGG TCACCCCAATCTTTGGTGAGGCCAAGTACTCACAAAGATTCGAGGGCAGA GTCACCATCACCGCGGACGAATCCACGAGCACAACCTCCATAGAATTGAG AGGCCTGACATCCGAAGACACGGCCATTTATTACTGTGCGCGAGATCGGC GCGCGGTTCCAATTGCCACGGACAACTGGTTAGACCCCTGGGGCCAGGGG ACCCTGGTCACCGTCTCGAGC (SEQ ID NO: 101)
[0218] 1456P20 (PG20) gamma heavy chain amino acid sequence: expressed protein with variable region in bold. QVRLVQSGPEVKKPGSSVTVSCQASGGTFSSYAFTWVRQAPGQGLEWL GMVTPIFGEAKYSQRFEGRVTITADESTSTTSIELRGLTSEDTAIYYCARD RRAVPIATDNWLDPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALG CLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ TYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKD TLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 16)
[02191 1456_P20 (PG20) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QVRLVQSGPEVKKPGSSVTVSCQASGGTFSSYAFTWVRQAPGQGLEWLGMV TPIFGEAKYSORFEGRVTITADESTSTTSIELRGLTSEDTAIYYCARDRRA VPIA TDNWLDPWGQGTLVTVSS (SEQ ID NO: 33)
[0220] 1456P20 (PG20) gamma heavy chain Kabat CDRs: CDR 1: SYAFT (SEQ ID NO: 104) CDR 2: MVTPIFGEAKYSQRFEG (SEQ ID NO: 105) CDR 3: DRRAVPIATDNWLDP (SEQ ID NO: 9)
[0221] 1456P20 (PG20) gamma heavy chain Chothia CDRs: CDR 1: GGTFSS (SEQ ID NO: 268) CDR 2: MVTPIFGEAK (SEQ ID NO: 269) CDR 3: DRRAVPIATDNWLDP (SEQ ID NO: 9)
[0222] 1456P20 (PG20) kappa light chain nucleotide sequence: 1456_P20 1 coding sequence (variable region in bold) ATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTCCTGCTACTCTGGCT CCGAGGTGCCAGATGTGACATCCAGTTGACCCAGTCTCCATCCTCCCT GTCTGCATCTGTTGGCGACAGAGTCTCCATCACTTGCCGGGCGAGTC AGACCATTAACAACTACTTAAATTGGTATCAACAGACACCCGGGAAA GCCCCTAAACTCCTGATCTATGGTGCCTCCAATTTGCAAAATGGGGT CCCATCAAGGTTCAGCGGCAGTGGCTCTGGGACAGACTTCACTCTCA CCATCAGCAGTCTGCAACCTGAGGATTTTGCAACTTACTACTGTCAAC AGAGTTTCAGTACTCCGAGGACCTTCGGCCAAGGGACACGACTGGAT ATTAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGAT GAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTC TATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAAT CGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCAC CTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAA CACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGT CACAAAGAGCTTCAACAGGGGAGAGTGTTAG (SEQ ID NO: 17)
[0223] 1456P20 (PG20) kappa light chain variable region nucleotide sequence: GACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTTGGCGAC AGAGTCTCCATCACTTGCCGGGCGAGTCAGACCATTAACAACTACTTAAA TTGGTATCAACAGACACCCGGGAAAGCCCCTAAACTCCTGATCTATGGTG CCTCCAATTTGCAAAATGGGGTCCCATCAAGGTTCAGCGGCAGTGGCTCT GGGACAGACTTCACTCTCACCATCAGCAGTCTGCAACCTGAGGATTTTGC AACTTACTACTGTCAACAGAGTTTCAGTACTCCGAGGACCTTCGGCCAAG GGACACGACTGGATATTAAA (SEQ ID NO: 106)
[02241 1456_P20 (PG20) kappa light chain amino acid sequence: expressed protein with variable region in bold. DIQLTQSPSSLSASVGDRVSITCRASQTINNYLNWYQQTPGKAPKLLIYGA SNLQNGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSTPRTFGQGT RLDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNAL QSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVT KSFNRGEC (SEQ ID NO: 18)
[0225] 1456P20 (PG20) kappa light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) DIQLTQSPSSLSASVGDRVSITCRASOTINNYLNWYQQTPGKAPKLLIYGASNL QNGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCoQSFSTPRTFGQGTRLDIK (SEQ ID NO: 34)
[0226] 1456P20 (PG20) kappa light chain Kabat CDRs: CDR 1: RASQTINNYLN (SEQ ID NO: 107) CDR 2: GASNLQN (SEQ ID NO: 108) CDR 3: QQSFSTPRT (SEQ ID NO: 42)
[0227] 1456P20 (PG20) kappa light chain Chothia CDRs: CDR 1: RASQTINNYLN (SEQ ID NO: 107) CDR 2: GASNLQN (SEQ ID NO: 108) CDR 3: QQSFSTPRT (SEQ ID NO: 42)
[0228] 1460G14 (PGG14) gamma heavy chain nucleotide sequence: 1460_G14 y1 coding sequence (variable region in bold) ATGGACTGGATTTGGAGGTTCCTCTTGGTGGTGGCAGCAGCTACAGGTGT CCAGTCCCAGGTCCTGCTGGTGCAGTCTGGGACTGAGGTGAAGAAGC CTGGGTCCTCGGTGAAGGTCTCCTGTCAGGCTTCTGGAGGCGCCTTC AGTAGTTATGCTTTCAGCTGGGTGCGACAGGCCCCTGGACAGGGGCT TGAATGGATGGGCATGATCACCCCTGTCTTTGGTGAGACTAAATATG CACCGAGGTTCCAGGGCAGACTCACACTTACCGCGGAAGAATCCTTG AGCACCACCTACATGGAATTGAGAAGCCTGACATCTGATGACACGGC CTTTTATTATTGTACGAGAGATCGGCGCGTAGTTCCAATGGCCACAG ACAACTGGTTAGACCCCTGGGGCCAGGGGACGCTGGTCACCGTCTCG AGCGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAA GAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACT TCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGC GTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGC AGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTG CAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAG CCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGA
ACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTG AGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGG AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCAC GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATG GCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATC GAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT ACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCT GACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCT GGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGA GCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCT CTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATG A (SEQ ID NO: 19)
[0229] 1460G14 (PGG 14) gamma heavy chain variable region nucleotide sequence: CAGGTCCTGCTGGTGCAGTCTGGGACTGAGGTGAAGAAGCCTGGGTCCTC GGTGAAGGTCTCCTGTCAGGCTTCTGGAGGCGCCTTCAGTAGTTATGCTTT CAGCTGGGTGCGACAGGCCCCTGGACAGGGGCTTGAATGGATGGGCATG ATCACCCCTGTCTTTGGTGAGACTAAATATGCACCGAGGTTCCAGGGCAG ACTCACACTTACCGCGGAAGAATCCTTGAGCACCACCTACATGGAATTGA GAAGCCTGACATCTGATGACACGGCCTTTTATTATTGTACGAGAGATCGG CGCGTAGTTCCAATGGCCACAGACAACTGGTTAGACCCCTGGGGCCAGGG GACGCTGGTCACCGTCTCGAGC (SEQ ID NO: 109)
[0230] 1460_G14 gamma heavy chain amino acid sequence: expressed protein with variable region in bold. QVLLVQSGTEVKKPGSSVKVSCQASGGAFSSYAFSWVRQAPGQGLEWM GMITPVFGETKYAPRFQGRLTLTAEESLSTTYMELRSLTSDDTAFYYCTR DRRVVPMATDNWLDPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAA LGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLG TQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKP KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNS TYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG (SEQ ID NO: 20)
[0231] 1460_G14 gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QVLLVQSGTEVKKPGSSVKVSCQASGGAFSSYAFSWVRQAPGQGLEWMGM ITPVFGETKYAPRFQGRLTLTAEESLSTTYMELRSLTSDDTAFYYCTRDRR VV PMATDNWLDPWGQGTLVTVSS (SEQ ID NO: 35)
[02321 1460_G14 gamma heavy chain Kabat CDRs: CDR 1: SYAFS (SEQ ID NO: 110) CDR 2: MITPVFGETKYAPRFQG (SEQ ID NO: 111) CDR 3: DRRVVPMATDNWLDP (SEQ ID NO: 8)
[0233] 1460_G14 gamma heavy chain Chothia CDRs: CDR 1: GGAFSS (SEQ ID NO: 270) CDR 2: MITPVFGETK (SEQ ID NO: 271) CDR 3: DRRVVPMATDNWLDP (SEQ ID NO: 8)
[0234] 1460G14 (PGG14) kappa light chain nucleotide sequence: 1460_G14 1 coding sequence (variable region in bold) ATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTCCTGCTCCTCTGGCTC CGAGGTGCCACATGTGACATCCAGTTGACCCAGTCTCCATCCTCCCTG TCTGCATCTGTAGGAGACAGGGTCACCGTCACTTGCCGGGCGAGTCA GACCATACACACCTATTTAAATTGGTATCAGCAAATTCCAGGAAAAGC CCCTAAGCTCCTGATCTATGGTGCCTCCACCTTGCAAAGTGGGGTCC CGTCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACC ATCAACAGTCTCCAACCTGAGGACTTTGCAACTTACTACTGTCAACAG AGTTACAGTACCCCAAGGACCTTCGGCCAAGGGACACGACTGGATAT TAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGA GCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTA TCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCG GGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCT ACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACA CAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCA CAAAGAGCTTCAACAGGGGAGAGTGTTAG (SEQ ID NO: 21)
[0235] 1460G14 (PGG14) kappa light chain variable region nucleotide sequence: GACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGAC AGGGTCACCGTCACTTGCCGGGCGAGTCAGACCATACACACCTATTTAAA TTGGTATCAGCAAATTCCAGGAAAAGCCCCTAAGCTCCTGATCTATGGTG CCTCCACCTTGCAAAGTGGGGTCCCGTCAAGGTTCAGTGGCAGTGGATCT GGGACAGATTTCACTCTCACCATCAACAGTCTCCAACCTGAGGACTTTGC AACTTACTACTGTCAACAGAGTTACAGTACCCCAAGGACCTTCGGCCAAG GGACACGACTGGATATTAAA (SEQ ID NO: 112)
[0236] 1460_G14 kappa light chain amino acid sequence: expressed protein with variable region in bold.
DIQLTQSPSSLSASVGDRVTVTCRASQTIHTYLNWYQQIPGKAPKLLIYG ASTLQSGVPSRFSGSGSGTDFTLTINSLQPEDFATYYCQQSYSTPRTFGQG
TRLDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNA LQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPV TKSFNRGEC (SEQ ID NO: 22)
[0237] 1460_G14 kappa light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) DIQLTQSPSSLSASVGDRVTVTCRASOTIHTYLNWYQQIPGKAPKLLIYGASTL QSGVPSRFSGSGSGTDFTLTINSLQPEDFATYYCOOSYSTPRTFGQGTRLDIK (SEQ ID NO: 36)
[0238] 1460_G14 kappa light chain Kabat CDRs: CDR 1: RASQTIHTYLN (SEQ ID NO: 113) CDR 2: GASTLQS (SEQ ID NO: 114) CDR 3: QQSYSTPRT (SEQ ID NO: 43)
[0239] 1460_G14 kappa light chain Chothia CDRs: CDR 1: RASQTIHTYLN (SEQ ID NO: 113) CDR 2: GASTLQS (SEQ ID NO: 114) CDR 3: QQSYSTPRT (SEQ ID NO: 43)
[0240] 1495C14 (PGC14) gamma heavy chain nucleotide sequence: 1495_C14 y1 coding sequence (variable region in bold) ATGGACTGGATTTGGAGGATCCTCCTCTTGGTGGCAGCAGCTACAGGCAC CCTCGCCGACGGCCACCTGGTTCAGTCTGGGGTTGAGGTGAAGAAGA CTGGGGCTACAGTCAAAATCTCCTGCAAGGTTTCTGGATACAGCTTC ATCGACTACTACCTTCATTGGGTGCAACGGGCCCCTGGAAAAGGCCT TGAGTGGGTGGGACTTATTGATCCTGAAAATGGTGAGGCTCGATATG CAGAGAAGTTCCAGGGCAGAGTCACCATAATCGCGGACACGTCTATA GATACAGGCTACATGGAAATGAGGAGCCTGAAATCTGAGGACACGGC CGTGTATTTCTGTGCAGCAGGTGCCGTGGGGGCTGATTCCGGGAGCT GGTTCGACCCCTGGGGCCAGGGAACTCTGGTCACCGTCTCGAGCGCC TCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCAC CTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCG AACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCAC ACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTG GTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGT GAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAA TCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCT GGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCA TGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCAC GAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGC ATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCG TGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGG
AGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAA ACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCC TGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGC CTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAA TGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCG ACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGG CAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAA CCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 23)
[0241] 1495C14 (PGC14) gamma heavy chain variable region nucleotide sequence: GACGGCCACCTGGTTCAGTCTGGGGTTGAGGTGAAGAAGACTGGGGCTAC AGTCAAAATCTCCTGCAAGGTTTCTGGATACAGCTTCATCGACTACTACCT TCATTGGGTGCAACGGGCCCCTGGAAAAGGCCTTGAGTGGGTGGGACTTA TTGATCCTGAAAATGGTGAGGCTCGATATGCAGAGAAGTTCCAGGGCAGA GTCACCATAATCGCGGACACGTCTATAGATACAGGCTACATGGAAATGAG GAGCCTGAAATCTGAGGACACGGCCGTGTATTTCTGTGCAGCAGGTGCCG TGGGGGCTGATTCCGGGAGCTGGTTCGACCCCTGGGGCCAGGGAACTCTG GTCACCGTCTCGAGC (SEQ ID NO: 115)
[0242] 1495_C14 (PGC14) gamma heavy chain amino acid sequence: expressed protein with variable region in bold. DGHLVQSGVEVKKTGATVKISCKVSGYSFIDYYLHWVQRAPGKGLEWV GLIDPENGEARYAEKFQGRVTIIADTSIDTGYMEMRSLKSEDTAVYFCAA GAVGADSGSWFDPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGC LVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQT YICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDT LMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF LYS KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 24)
[0243] 1495C14 (PGC14) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) DGHLVQSGVEVKKTGATVKISCKVSGYSFIDYYLHWVQRAPGKGLEWVGLI DPENGEARYAEKFQGRVTIIADTSIDTGYMEMRSLKSEDTAVYFCAAGA VGA DSGSWFDPWGQGTLVTVSS (SEQ ID NO: 37)
[0244] 1495_C14 gamma heavy chain Kabat CDRs: CDR 1: DYYLH (SEQ ID NO: 116) CDR 2: LIDPENGEARYAEKFQG (SEQ ID NO: 117) CDR 3: GAVGADSGSWFDP (SEQ ID NO: 10)
[02451 1495_C14 gamma heavy chain Chothia CDRs: CDR 1: GYSFID (SEQ ID NO: 102) CDR 2: LIDPENGEAR (SEQ ID NO: 103) CDR 3: GAVGADSGSWFDP (SEQ ID NO: 10)
[0246] 1495C14 (PGC14) lambda light chain nucleotide sequence: 1495_C14 3 coding sequence (variable region in bold) ATGGCCTGGATCCCTCTCTTCCTCGGCGTCCTTGCTTACTGCACAGATTCC GTAGTCTCCTATGAACTGACTCAGCCACCCTCAGTGTCCGTGTCCCCA GGACAGACAGCCAGCATCACCTGTTCTGGATCTAAATTGGGGGATAA ATATGTTTCCTGGTATCAACTGAGGCCAGGCCAGTCCCCCATACTGG TCATGTATGAAAATGACAGGCGGCCCTCCGGGATCCCTGAGCGATTC TCCGGTTCCAATTCTGGCGACACTGCCACTCTGACCATCAGCGGGAC CCAGGCTTTGGATGAGGCTGACTTCTACTGTCAGGCGTGGGAGACCA CCACCACCACTTTTGTTTTCTTCGGCGGAGGGACCCAGCTGACCGTT CTAGGTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCT GAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTT CTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGTC AAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACAAGT ACGCGGCCAGCAGCTACCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCAC AAAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGA CAGTGGCCCCTACAGAATGTTCATAG (SEQ ID NO: 25)
[0247] 1495C14 (PGC14) lambda light chain variable region nucleotide sequence: TCCTATGAACTGACTCAGCCACCCTCAGTGTCCGTGTCCCCAGGACAGAC AGCCAGCATCACCTGTTCTGGATCTAAATTGGGGGATAAATATGTTTCCTG GTATCAACTGAGGCCAGGCCAGTCCCCCATACTGGTCATGTATGAAAATG ACAGGCGGCCCTCCGGGATCCCTGAGCGATTCTCCGGTTCCAATTCTGGC GACACTGCCACTCTGACCATCAGCGGGACCCAGGCTTTGGATGAGGCTGA CTTCTACTGTCAGGCGTGGGAGACCACCACCACCACTTTTGTTTTCTTCGG CGGAGGGACCCAGCTGACCGTTCTA (SEQ ID NO: 119)
[0248] 1495C14 (PGC14) lambda light chain amino acid sequence: expressed protein with variable region in bold. SYELTQPPSVSVSPGQTASITCSGSKLGDKYVSWYQLRPGQSPILVMYEN DRRPSGIPERFSGSNSGDTATLTISGTQALDEADFYCQAWETTTTTFVFFG GGTQLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKA DSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHKSYSCQVTHEGSTV EKTVAPTECS (SEQ ID NO: 26)
[0249] 1495C14 (PGC14) lambda light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics)
SYELTQPPSVSVSPGQTASITCSGSKLGDKYVSWYQLRPGQSPILVMYENDRR PSGIPERFSGSNSGDTATLTISGTQALDEADFYCOA WETTTTTFVFFGGGTQL TVL (SEQ ID NO: 38)
[0250] 1495C14 (PGC14) lambda light chain Kabat CDRs: CDR 1: SGSKLGDKYVS (SEQ ID NO: 120) CDR 2: ENDRRPS (SEQ ID NO: 121) CDR 3: QAWETTTTTFVF (SEQ ID NO: 44)
[0251] 1495C14 (PGC14) lambda light chain Chothia CDRs: CDR 1: SGSKLGDKYVS (SEQ ID NO: 120) CDR 2: ENDRRPS (SEQ ID NO: 121) CDR 3: QAWETTTTTFVF (SEQ ID NO: 44)
[0252] 1496C09 (PG9) (TCN-109) gamma heavy chain nucleotide sequence: 1496C09 y3 coding sequence (variable region in bold) ATGGAGTTTGGGCTGAGCTGGGTTTTCCTCGTTGCTTTCTTAAGAGGTGTC CAGTGTCAGCGATTAGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGG GTCGTCCCTGAGACTCTCCTGTGCAGCGTCCGGATTCGACTTCAGTA GACAAGGCATGCACTGGGTCCGCCAGGCTCCAGGCCAGGGGCTGGA GTGGGTGGCATTTATTAAATATGATGGAAGTGAGAAATATCATGCTG ACTCCGTATGGGGCCGACTCAGCATCTCCAGAGACAATTCCAAGGAT ACGCTTTATCTCCAAATGAATAGCCTGAGAGTCGAGGACACGGCTAC ATATTTTTGTGTGAGAGAGGCTGGTGGGCCCGACTACCGTAATGGGT ACAACTATTACGATTTCTATGATGGTTATTATAACTACCACTATATGG ACGTCTGGGGCAAAGGGACCACGGTCACCGTCTCGAGCGCCTCCACC AAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGG GGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGG TGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTC CCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGAC CGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATC ACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTG TGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGG GACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCT CCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGA CCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATG CCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACA AGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATC TCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCC CATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTC AAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGG CTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGC
AGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCAC TACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 27)
[0253] 1496_C09 (PG9) (TCN-109) gamma heavy chain variable region nucleotide sequence: CAGCGATTAGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGTCGTCCCT GAGACTCTCCTGTGCAGCGTCCGGATTCGACTTCAGTAGACAAGGCATGC ACTGGGTCCGCCAGGCTCCAGGCCAGGGGCTGGAGTGGGTGGCATTTATT AAATATGATGGAAGTGAGAAATATCATGCTGACTCCGTATGGGGCCGACT CAGCATCTCCAGAGACAATTCCAAGGATACGCTTTATCTCCAAATGAATA GCCTGAGAGTCGAGGACACGGCTACATATTTTTGTGTGAGAGAGGCTGGT GGGCCCGACTACCGTAATGGGTACAACTATTACGATTTCTATGATGGTTAT TATAACTACCACTATATGGACGTCTGGGGCAAAGGGACCACGGTCACCGT CTCGAGC (SEQ ID NO: 122)
[0254] 1496C09 (PG9) (TCN-109) gamma heavy chain amino acid sequence: expressed protein with variable region in bold. QRLVESGGGVVQPGSSLRLSCAASGFDFSRQGMHWVRQAPGQGLEWVAFIK YDGSEKYHADSVWGRLSISRDNSKDTLYLQMNSLRVEDTATYFCVREAGGP DYRNGYNYYDFYDGYYNYHYMDVWGKGTTVTVSSASTKGPSVFPLAPSSK STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV VTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGP SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKT TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK (SEQ ID NO: 28)
[0255] 1496_C09 (PG9) (TCN-109) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QRLVESGGGVVQPGSSLRLSCAASGFDFSRQGMHWVRQAPGQGLEWVAFI KYDGSEKYHADSVWGRLSISRDNSKDTLYLQMNSLRVEDTATYFCVREAGG PDYRNGYNYYDFYDGYYNYHYMDVWGKGTTVTVSS (SEQ ID NO: 39)
[0256] 1496C09 (PG9) (TCN-109) gamma heavy chain Kabat CDRs: CDR 1: RQGMH (SEQ ID NO: 123) CDR 2: FIKYDGSEKYHADSVWG (SEQ ID NO: 124) CDR 3: EAGGPDYRNGYNYYDFYDGYYNYHYMDV (SEQ ID NO: 7)
[0257] 1496_C09 (PG9) (TCN-109) gamma heavy chain Chothia CDRs: CDR 1: GFDFSR (SEQ ID NO: 118) CDR 2: FIKYDGSEKY (SEQ ID NO: 272)
CDR 3: EAGGPDYRNGYNYYDFYDGYYNYHYMDV (SEQ ID NO: 7)
[0258] 1496C09 (PG9) (TCN-109) lambda light chain nucleotide sequence: 1496_C09 X2 coding sequence (variable region in bold) ATGGCCTGGGCTCTGCTTTTCCTCACCCTCCTCACTCAGGGCACAGGGTCC TGGGCCCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCT GGACAGTCGATCACCATCTCCTGCAATGGAACCAGCAATGATGTTGG TGGCTATGAATCTGTCTCCTGGTACCAACAACATCCCGGCAAAGCCC CCAAAGTCGTGATTTATGATGTCAGTAAACGGCCCTCAGGGGTTTCT AATCGCTTCTCTGGCTCCAAGTCCGGCAACACGGCCTCCCTGACCAT CTCTGGGCTCCAGGCTGAGGACGAGGGTGACTATTACTGCAAGTCTC TGACAAGCACGAGACGTCGGGTTTTCGGCACTGGGACCAAGCTGACC GTTCTAGGTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTC CTCTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTG ACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCC GTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACA AGTACGCGGCCAGCAGCTACCTGAGCCTGACGCCTGAGCAGTGGAAGTCC CACAAAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGA AGACAGTGGCCCCTACAGAATGTTCATAG (SEQ ID NO: 29)
[0259] 1496_C09 (PG9) (TCN-109) lambda light chain variable region nucleotide sequence: CAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCG ATCACCATCTCCTGCAATGGAACCAGCAATGATGTTGGTGGCTATGAATC TGTCTCCTGGTACCAACAACATCCCGGCAAAGCCCCCAAAGTCGTGATTT ATGATGTCAGTAAACGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTCCA AGTCCGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAGGAC GAGGGTGACTATTACTGCAAGTCTCTGACAAGCACGAGACGTCGGGTTTT CGGCACTGGGACCAAGCTGACCGTTCTA (SEQ ID NO: 125)
[02601 1496C09 (PG9) (TCN-109) lambda light chain amino acid sequence: expressed protein with variable region in bold. QSALTQPASVSGSPGQSITISCNGTSNDVGGYESVSWYQQHPGKAPKVVI YDVSKRPSGVSNRFSGSKSGNTASLTISGLQAEDEGDYYCKSLTSTRRRV FGTGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAW KADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHKSYSCQVTHEGS TVEKTVAPTECS (SEQ ID NO: 30)
[0261] 1496C09 (PG9) (TCN-109) lambda light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QSALTQPASVSGSPGQSITISCNGTSNDVGGYESVSWYQQHPGKAPKVVIYDV SKRPSGVSNRFSGSKSGNTASLTISGLQAEDEGDYYCKSLTSTRRRVFGTGTK LTVL (SEQ ID NO: 40)
[0262] 1496_C09 (PG9) (TCN-109) lambda light chain Kabat CDRs:
CDR 1: NGTSNDVGGYESVS (SEQ ID NO: 126) CDR 2: DVSKRPS (SEQ ID NO: 127) CDR 3: KSLTSTRRRV (SEQ ID NO: 45)
[0263] 1496C09 (PG9) (TCN-109) lambda light chain Chothia CDRs: CDR 1: NGTSNDVGGYESVS (SEQ ID NO: 126) CDR 2: DVSKRPS (SEQ ID NO: 127) CDR 3: KSLTSTRRRV (SEQ ID NO: 45)
[0264] The 1443_C16 (PG16) antibody includes a heavy chain variable region (SEQ ID NO: 31), encoded by the nucleic acid sequence shown in SEQ ID NO: 99, and a light chain variable region (SEQ ID NO: 32) encoded by the nucleic acid sequence shown in SEQ ID NO: 100.
[0265] The heavy chain CDRs of the 1443_C16 (PG16) antibody have the following sequences per Kabat definition: KYGMH (SEQ ID NO: 88), LISDDGMRKYHSDSMWG (SEQ ID NO: 89), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6). The light chain CDRs of the 1443_C16 (PG16) antibody have the following sequences per Kabat definition: NGTSSDVGGFDSVS (SEQ ID NO: 97), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
[0266] The heavy chain CDRs of the 1443_C16 (PG16) antibody have the following sequences per Chothia definition: GFTFHK (SEQ ID NO: 266), LISDDGMRKY (SEQ ID NO: 267), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6). The light chain CDRs of the 1443_C16 (PG16) antibody have the following sequences per Chothia definition: NGTSSDVGGFDSVS (SEQ ID NO: 97), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
[02671 The 1456 P20 (PG20) antibody includes a heavy chain variable region (SEQ ID NO: 33), encoded by the nucleic acid sequence shown in SEQ ID NO: 101, and a light chain variable region (SEQ ID NO: 34) encoded by the nucleic acid sequence shown in SEQ ID NO: 106.
[0268] The heavy chain CDRs of the 1456 P20 (PG20) antibody have the following sequences per Kabat definition: SYAFT (SEQ ID NO: 104), MVTPIFGEAKYSQRFEG (SEQ ID NO: 105), and DRRAVPIATDNWLDP (SEQ ID NO: 9). The light chain CDRs of the 1456 P20 (PG20) antibody have the following sequences per Kabat definition: RASQTINNYLN (SEQ ID NO: 107), GASNLQN (SEQ ID NO: 108), and QQSFSTPRT (SEQ ID NO: 42).
[0269] The heavy chain CDRs of the 1456_ P20 (PG20) antibody have the following sequences per Chothia definition: GGTFSS (SEQ ID NO: 268), MVTPIFGEAK (SEQ ID NO: 269), and DRRAVPIATDNWLDP (SEQ ID NO: 9). The light chain CDRs of the 1456 P20 (PG20) antibody have the following sequences per Chothia definition: RASQTINNYLN (SEQ ID NO: 107), GASNLQN (SEQ ID NO: 108), and QQSFSTPRT (SEQ ID NO: 42).
[0270] The 1460_G14 (PGG14) antibody includes a heavy chain variable region (SEQ ID NO: 35), encoded by the nucleic acid sequence shown in SEQ ID NO: 109, and a light chain variable region (SEQ ID NO: 36) encoded by the nucleic acid sequence shown in SEQ ID NO: 112.
[0271] The heavy chain CDRs of the 1460_G14 (PGG14) antibody have the following sequences per Kabat definition: SYAFS (SEQ ID NO: 110), MITPVFGETKYAPRFQG (SEQ ID NO: 111), and DRRVVPMATDNWLDP (SEQ ID NO: 8). The light chain CDRs of the 1460_G14 (PGG14) antibody have the following sequences per Kabat definition: RASQTIHTYLN (SEQ ID NO: 113), GASTLQS (SEQ ID NO: 114), QQSYSTPRT (SEQ ID NO: 43).
[0272] The heavy chain CDRs of the 1460_G14 (PGG14) antibody have the following sequences per Chothia definition: GGAFSS (SEQ ID NO: 270), MITPVFGETK (SEQ ID NO: 271), DRRVVPMATDNWLDP (SEQ ID NO: 8). The light chain CDRs of the 1460_G14 (PGG14) antibody have the following sequences per Chothia definition: RASQTIHTYLN (SEQ ID NO: 113), GASTLQS (SEQ ID NO: 114), QQSYSTPRT (SEQ ID NO: 43).
[0273] The 1495_C14 (PGC14) antibody includes a heavy chain variable region (SEQ ID NO: 37), encoded by the nucleic acid sequence shown in SEQ ID NO: 115, and a light chain variable region (SEQ ID NO: 38) encoded by the nucleic acid sequence shown in SEQ ID NO: 119.
[0274] The heavy chain CDRs of the 1495_C14 (PGC14) antibody have the following sequences per Kabat definition: DYYLH (SEQ ID NO: 116), LIDPENGEARYAEKFQG (SEQ ID NO: 117), GAVGADSGSWFDP (SEQ ID NO: 10). The light chain CDRs of the 1495_C14 (PGC14) antibody have the following sequences per Kabat definition: SGSKLGDKYVS (SEQ ID NO: 120), ENDRRPS (SEQ ID NO: 121), and QAWETTTTTFVF (SEQ ID NO: 44).
[0275] The heavy chain CDRs of the 1495_C14 (PGC14) antibody have the following sequences per Chothia definition: GYSFID (SEQ ID NO: 102), LIDPENGEAR (SEQ ID NO:
103), GAVGADSGSWFDP (SEQ ID NO: 10). The light chain CDRs of the 1495_C14 (PGC14) antibody have the following sequences per Chothia definition: SGSKLGDKYVS (SEQ ID NO: 120), ENDRRPS (SEQ ID NO: 121), and QAWETTTTTFVF (SEQ ID NO: 44).
[0276] The 1496_C09 (PG9) antibody includes a heavy chain variable region (SEQ ID NO: 39), encoded by the nucleic acid sequence shown in SEQ ID NO: 122, and a light chain variable region (SEQ ID NO: 40) encoded by the nucleic acid sequence shown in SEQ ID NO: 125.
[0277] The heavy chain CDRs of the 1496_C09 (PG9) antibody have the following sequences per Kabat definition: RQGMH (SEQ ID NO: 123), FIKYDGSEKYHADSVWG (SEQ ID NO: 124), and EAGGPDYRNGYNYYDFYDGYYNYHYMDV (SEQ ID NO: 7). The light chain CDRs of the 1496C09 (PG9) antibody have the following sequences per Kabat definition: NGTSNDVGGYESVS (SEQ ID NO: 126), DVSKRPS (SEQ ID NO: 127), and KSLTSTRRRV (SEQ ID NO: 45).
[0278] The heavy chain CDRs of the 1496_C09 (PG9) antibody have the following sequences per Chothia definition: GFDFSR (SEQ ID NO: 118), FIKYDGSEKY (SEQ ID NO: 272), and EAGGPDYRNGYNYYDFYDGYYNYHYMDV (SEQ ID NO: 7). The light chain CDRs of the 1496_C09 (PG9) antibody have the following sequences per Chothia definition: NGTSNDVGGYESVS (SEQ ID NO: 126), DVSKRPS (SEQ ID NO: 127), and KSLTSTRRRV (SEQ ID NO: 45). Table 6A. Heavy Chain Variable Region Protein Alignment
1- - ICOHL R V E S O G G V V Q P G A T L R L 3 C KA 3 0 F D F D Y Y L H W VQ RQ A P 0 K 0 L E WVV A FL D E E K YAY H D F 0RIL VAWE
41_, 4. 14 T, E VT KQ A L D E A DJF CQ AWETTTT F F W T Q L T VELL A K
I II TableI I I I6B. LIIIGLY igh Chi l Vaiabl TI V1Y1I A Rio G R R - - -Protei AGLgnmenltFFE0P - - - - -- - k VUA D G V QGTL T IS6T PVVG 41 ' L-T YQ] - P P EV V P G Q T11 A I T C0 A 3 3 K G DY 9V W Y R P P GA I LE V ML N'VG .D RI RM P E R
140 4 L 11OPO I TAD 1 IKI 0T O AII I LL£ 0£ I FV IAIF WE TI T P P Il YHDD 01 LITL I T M VGK0 .4J £14 r..l 1PTA L T p Y Q EWD E L K06P- D YpYoC A LCT TO R V T- 0 LT T K V PR L p p p 0 040001400roO:0IT 0LT OPO OOO 8 O PTA T£AO0T- -9 I7 T FOK A T OOPWG G FL OOO
014 l Iro 2F T I IIII 0 1 LO ED F £0 £j00RJ L P D F VNT 00I!jjj~'j C OT LU Ij N1 R1 P F 140P0 0T lo I A DP £01 00-- FA 1F 0T PU I 3
1001LoF E " ALIT I OOLH" I £ £ 0 - TE OI EDO VVYQOOGKVV V! KRPAIALO111 R'IF
40 £0 A XP01E TjA T L I 1 A A £ AA 0 l E 0 0 0l £ 0 A VVE T TT TT0 F 0 1 0 T Q L I 0 L A
[02791 The sequences of sister clones to human monoclonal antibody 1443C16 (PG16) were determined, including the sequences of the variable regions of the Gamma heavy and Kappa or Lambda light chains. In addition, the sequence of each of the polynucleotides encoding the antibody sequences was determined. Shown below are the polypeptide and polynucleotide sequences of the gamma heavy chains and kappa light chains, with the signal peptides at the N-terminus (or 5' end) and the constant regions at the C-terminus (or 3' end) of the variable regions, which are shown in bolded text.
[0280] 1469_M23 (PG16) (TCN- 118) gamma heavy chain nucleotide sequence: 1469_M23 y3 coding sequence (variable region in bold) ATGGAGTTTGGGCTGAGCTGGGTTTTCCTCGCAACTCTGTTAAGAGTTGTG AAGTGTCAGGAAAAACTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCC GGGGGGGTCCCTGAGACTCTCCTGTTTAGCGTCTGGATTCACCTTTC ACAAATATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGCCTG GAGTGGGTGGCACTCATCTCAGATGACGGAATGAGGAAATATCATTC AGACTCCATGTGGGGCCGAGTCACCATCTCCAGAGACAATTCCAAGA ACACTCTATATCTGCAATTCaGCAGCCTGAAAGTCGAAGACACGGCTA TGTTCTTCTGTGCGAGAGAGGCTGGTGGGCCAATCTGGCATGACGAC GTCAAATATTACGATTTTAATGACGGCTACTACAACTACCACTACATG GACGTCTGGGGCAAGGGGACCACGGTCACCGtCTCCTCAGCGTCGACC AAGGGCCCATCGGTCTTCCCTCTGGCACCATCATCCAAGTCGACCTCTGG GGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGG TGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTC CCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGAC CGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATC ACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTG TGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGG GACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCT CCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGA CCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATG CCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACA AGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATC TCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCC CATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTC AAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGG CTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGC AGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCAC TACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 138)
[0281] 1469_M23 (PG16) (TCN-118) gamma heavy chain variable region nucleotide sequence:
CAGGAAAAACTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCGGGGGGGT CCCTGAGACTCTCCTGTTTAGCGTCTGGATTCACCTTTCACAAATATGGCA TGCACTGGGTCCGCCAGGCTCCAGGCAAGGGCCTGGAGTGGGTGGCACTC ATCTCAGATGACGGAATGAGGAAATATCATTCAGACTCCATGTGGGGCCG AGTCACCATCTCCAGAGACAATTCCAAGAACACTCTATATCTGCAATTCaG CAGCCTGAAAGTCGAAGACACGGCTATGTTCTTCTGTGCGAGAGAGGCTG GTGGGCCAATCTGGCATGACGACGTCAAATATTACGATTTTAATGACGGC TACTACAACTACCACTACATGGACGTCTGGGGCAAGGGGACCACGGTCAC CGtCTCCTCA (SEQ ID NO: 128)
[0282] 1469_M23 (PG16) (TCN-118) gamma heavy chain amino acid sequence: expressed protein with variable region in bold. QEKLVESGGGVVQPGGSLRLSCLASGFTFHKYGMHWVRQAPGKGLEW VALISDDGMRKYHSDSMWGRVTISRDNSKNTLYLQFSSLKVEDTAMFFC AREAGGPIWHDDVKYYDFNDGYYNYHYMDVWGKGTTVTVSSASTKGPS VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS GLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCP APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNG QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY TQKSLSLSPGK (SEQ ID NO: 139)
[0283] 1469_M23 (PG16) (TCN-118) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QEKLVESGGGVVQPGGSLRLSCLASGFTFHKYGMHWVRQAPGKGLEWVAL ISDDGMRKYHSDSMWGRVTISRDNSKNTLYLQFSSLKVEDTAMFFCAREAG GPIWHDDVKYYDFNDGYYNYHYMDVWGKGTTVTVSS (SEQ ID NO: 140)
[0284] 1469M23 (PG16) (TCN-118) gamma heavy chain Kabat CDRs: CDR 1: KYGMH (SEQ ID NO: 88) CDR 2: LISDDGMRKYHSDSMWG (SEQ ID NO: 89) CDR 3: EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6)
[0285] 1469M23 (PG 16) (TCN- 118) gamma heavy chain Chothia CDRs: CDR 1: GFTFHK (SEQ ID NO: 266) CDR 2: LISDDGMRKY (SEQ ID NO: 267) CDR 3: EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6)
[0286] 1469M23(PG16) (TCN-118) lambda light chain nucleotide sequence: 1469_M23 X2 coding sequence (variable region in bold)
ATGGCCTGGGCTCTGCTATTCCTCACCCTCTTCACTCAGGGCACAGGGTCC TGGGGCCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCT GGACAGACGATCACCATCTCCTGCAATGGAACCAGAAGTGACGTTGG TGGATTTGACTCTGTCTCCTGGTACCAACAATCCCCAGGGAGAGCCC CCAAAGTCATGGTTTTTGATGTCAGTCATCGGCCCTCAGGTATCTCTA ATCGCTTCTCTGGCTCCAAGTCCGGCAACACGGCCTCCCTGACCATC TCTGGGCTCCACATTGAGGACGAGGGCGATTATTTCTGCTCTTCACT GACAGACAGAAGCCATCGCATATTCGGCGGCGGGACCAAGCTGACC GTTCTAGGTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTC CTCTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTG ACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCC GTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACA AGTACGCGGCCAGCAGCTACCTGAGCCTGACGCCTGAGCAGTGGAAGTCC CACAAAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGA AGACAGTGGCCCCTACAGAATGTTCATAG (SEQ ID NO: 141)
[0287] 1469_M23 (PG16) (TCN-118) lambda light chain variable region nucleotide sequence: CAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGACG ATCACCATCTCCTGCAATGGAACCAGAAGTGACGTTGGTGGATTTGACTC TGTCTCCTGGTACCAACAATCCCCAGGGAGAGCCCCCAAAGTCATGGTTT TTGATGTCAGTCATCGGCCCTCAGGTATCTCTAATCGCTTCTCTGGCTCCA AGTCCGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCACATTGAGGAC GAGGGCGATTATTTCTGCTCTTCACTGACAGACAGAAGCCATCGCATATT CGGCGGCGGGACCAAGCTGACCGTTCTA (SEQ ID NO: 129)
[0288] 1469_M23 (PG16) (TCN-118) lambda light chain amino acid sequence: expressed protein with variable region in bold. QSALTQPASVSGSPGQTITISCNGTRSDVGGFDSVSWYQQSPGRAPKVMV FDVSHRPSGISNRFSGSKSGNTASLTISGLHIEDEGDYFCSSLTDRSHRIFG GGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKA DSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHKSYSCQVTHEGSTV EKTVAPTECS (SEQ ID NO: 142)
[0289] 1469_M23 (PG16) (TCN-118) lambda light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QSALTQPASVSGSPGQTITISCNGTRSDVGGFDSVSWYQQSPGRAPKVMVFD VSHRPSGISNRFSGSKSGNTASLTISGLHIEDEGDYFCSSLTDRSHRIFGGGTKL TVL (SEQ ID NO: 96)
[0290] 1469M23 (PG 16) (TCN- 118) lambda light chain Kabat CDRs: CDR 1: NGTRSDVGGFDSVS (SEQ ID NO: 92) CDR 2: DVSHRPS (SEQ ID NO: 95)
CDR 3: SSLTDRSHRI (SEQ ID NO: 41)
[0291] 1469_M23(PG16) (TCN-118) lambda light chain Chothia CDRs: CDR 1: NGTRSDVGGFDSVS (SEQ ID NO: 92) CDR 2: DVSHRPS (SEQ ID NO: 95) CDR 3: SSLTDRSHRI (SEQ ID NO: 41)
[0292] 1456A12 (PG16) (TCN-117) gamma heavy chain nucleotide sequence: 1456_A12 y3 coding sequence (variable region in bold) ATGGAGTTTGGGCTGAGCTGGGTTTTCCTCGCAACTCTGTTAAGAGTTGTG AAGTGTCACGAACAACTGGTGGAGGCCGGGGGAGGCGTGGTCCAGC CGGGGGGGTCCCTGAGACTCTCCTGTTTAGCGTCTGGATTCACGTTT CACAAATATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGCCT GGAGTGGGTGGCACTCATCTCAGATGACGGAATGAGGAAATATCATT CAGACTCCATGTGGGGCCGAGTCACCATCTCCAGAGACAATTCCAAG AACACTCTTTATCTGCAATTCAGCAGCCTGAGAGTCGAAGACACGGC TATGTTCTTCTGTGCGAGAGAGGCCGGTGGGCCAATCTGGCATGACG ACGTCAAATATTACGATTTTAATGACGGCTACTACAACTATCACTACA TGGACGTCTGGGGCAAGGGGACCAAGGTCACCGTCTCCTCAGCGTCG ACCAAGGGCCCATCGGTCTTCCCTCTGGCACCATCATCCAAGTCGACCTCT GGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACC GGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCT TCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGA CCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAAT CACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTT GTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGG GGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGAT CTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAG ACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAAT GCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGG TCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTAC AAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCAT CTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCC CCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGT CAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGG CAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACG GCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAG CAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 46)
[0293] 1456_A12 (PG16) (TCN-117) gamma heavy chain variable region nucleotide sequence:
CACGAACAACTGGTGGAGGCCGGGGGAGGCGTGGTCCAGCCGGGGGGGT CCCTGAGACTCTCCTGTTTAGCGTCTGGATTCACGTTTCACAAATATGGCA TGCACTGGGTCCGCCAGGCTCCAGGCAAGGGCCTGGAGTGGGTGGCACTC ATCTCAGATGACGGAATGAGGAAATATCATTCAGACTCCATGTGGGGCCG AGTCACCATCTCCAGAGACAATTCCAAGAACACTCTTTATCTGCAATTCA GCAGCCTGAGAGTCGAAGACACGGCTATGTTCTTCTGTGCGAGAGAGGCC GGTGGGCCAATCTGGCATGACGACGTCAAATATTACGATTTTAATGACGG CTACTACAACTATCACTACATGGACGTCTGGGGCAAGGGGACCAAGGTCA CCGTCTCCTCA (SEQ ID NO: 130)
[0294] 1456A12 (PG16) (TCN-117) gamma heavy chain amino acid sequence: expressed protein with variable region in bold. HEQLVEAGGGVVQPGGSLRLSCLASGFTFHKYGMHWVRQAPGKGLEW VALISDDGMRKYHSDSMWGRVTISRDNSKNTLYLQFSSLRVEDTAMFFC AREAGGPIWHDDVKYYDFNDGYYNYHYMDVWGKGTKVTVSSASTKGPS VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS GLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCP APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNG QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY TQKSLSLSPGK (SEQ ID NO: 47)
[0295] 1456_A12 (PG16) (TCN-117) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) HEQLVEAGGGVVQPGGSLRLSCLASGFTFHKYGMHWVRQAPGKGLEWVAL ISDDGMRKYHSDSMWGRVTISRDNSKNTLYLQFSSLRVEDTAMFFCAREAG GPIWHDDVKYYDFNDGYYNYHYMDVWGKGTKVTVSS (SEQ ID NO: 48)
[0296] 1456A12 (PG16) (TCN- 117) gamma heavy chain Kabat CDRs: CDR 1: KYGMH (SEQ ID NO: 88) CDR 2: LISDDGMRKYHSDSMWG (SEQ ID NO: 89) CDR 3: EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6)
[0297] 1456A12 (PG16) (TCN- 117) gamma heavy chain Chothia CDRs: CDR 1: GFTFHK (SEQ ID NO: 266) CDR 2: LISDDGMRKY (SEQ ID NO: 267) CDR 3: EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6)
[0298] 1456A12 (PG16) (TCN-1 17) lambda light chain nucleotide sequence: 1456_A12 k2 coding sequence (variable region in bold)
ATGGCCTGGGCTTGCTATTCCTCACCCTCTTCACTCAGGGCACAGGGTCCT GGGGCCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCT GGACAGACGATCACCATCTCCTGCAATGGAACCAGCCGTGACGTTGG TGGATTTGACTCTGTCTCCTGGTATCAACAATCCCCAGGGAAAGCCC CCAAAGTCATGGTTTTTGATGTCAGTCATCGGCCCTCAGGTATGTCTA ATCGCTTCTCTGGCTCCAAGTCCGGCAACACGGCCTCCCTGACCATT TCTGGGCTCCACATTGAGGACGAGGGCGATTATTTCTGCTCTTCATT GACAGACAGAAGCCATCGCATATTCGGCGGCGGGACCAAGCTGACC GTTCTAGGTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTC CTCTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTG ACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCC GTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACA AGTACGCGGCCAGCAGCTACCTGAGCCTGACGCCTGAGCAGTGGAAGTCC CACAAAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGA AGACAGTGGCCCCTACAGAATGTTCATAG (SEQ ID NO: 49)
[0299] 1456_A12 (PG16) (TCN-117) lambda light chain variable region nucleotide sequence: CAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGACG ATCACCATCTCCTGCAATGGAACCAGCCGTGACGTTGGTGGATTTGACTCT GTCTCCTGGTATCAACAATCCCCAGGGAAAGCCCCCAAAGTCATGGTTTT TGATGTCAGTCATCGGCCCTCAGGTATGTCTAATCGCTTCTCTGGCTCCAA GTCCGGCAACACGGCCTCCCTGACCATTTCTGGGCTCCACATTGAGGACG AGGGCGATTATTTCTGCTCTTCATTGACAGACAGAAGCCATCGCATATTCG GCGGCGGGACCAAGCTGACCGTTCTA (SEQ ID NO: 131)
[0300] 1456A12 (PG16) (TCN-117) lambda light chain amino acid sequence: expressed protein with variable region in bold. QSALTQPASVSGSPGQTITISCNGTSRDVGGFDSVSWYQQSPGKAPKVMV FDVSHRPSGMSNRFSGSKSGNTASLTISGLHIEDEGDYFCSSLTDRSHRIF GGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAW KADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHKSYSCQVTHEGS TVEKTVAPTECS (SEQ ID NO: 50)
[0301] 1456_A12 (PG16) (TCN-117) lambda light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QSALTQPASVSGSPGQTITISCNGTSRDVGGFDSVSWYQQSPGKAPKVMVFD VSHRPSGMSNRFSGSKSGNTASLTISGLHIEDEGDYFCSSLTDRSHRIFGGGTK LTVL (SEQ ID NO: 51)
[0302] 1456A12 (PG16) (TCN-117) lambda light chain Kabat CDRs: CDR 1: NGTSRDVGGFDSVS (SEQ ID NO: 93) CDR 2: DVSHRPS (SEQ ID NO: 95)
CDR 3: SSLTDRSHRI (SEQ ID NO: 41)
[0303] 1456A12 (PG16) (TCN-117) lambda light chain Chothia CDRs: CDR 1: NGTSRDVGGFDSVS (SEQ ID NO: 93) CDR 2: DVSHRPS (SEQ ID NO: 95) CDR 3: SSLTDRSHRI (SEQ ID NO: 41)
[0304] 1503_H05 (PG 16) (TCN-119) gamma heavy chain nucleotide sequence: 1503_H05 y3 coding sequence (variable region in bold) ATGGAGTTTGGCTGAGCTGGGTTTTCCTCGCAACTCTGTTAAGAGTTGTGA AGTGTCAGGAAAAACTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCG GGGGGGTCCCTGAGACTCTCCTGTTTAGCGTCTGGATTCACCTTTCA CAAATATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGCCTGG AGTGGGTGGCACTCATCTCAGATGACGGAATGAGGAAATATCATTCA GACTCCATGTGGGGCCGAGTCACCATCTCCAGAGACAATTCCAAGAA CACTTTATATCTGCAATTCAGCAGCCTGAAAGTCGAAGACACGGCTA TGTTCTTCTGTGCGAGAGAGGCTGGTGGGCCAATCTGGCATGACGAC GTCAAATATTACGATTTTAATGACGGCTACTACAATTACCACTACATG GACGTCTGGGGCAAGGGGACCATTGTCACCGTCTCCTCAGCGTCGAC CAAGGGCCCATCGGTCTTCCCTCTGGCACCATCATCCAAGTCGACCTCTG GGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCG GTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTT CCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGA CCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAAT CACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTT GTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGG GGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGAT CTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAG ACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAAT GCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGG TCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTAC AAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCAT CTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCC CCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGT CAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGG CAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACG GCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAG CAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 52)
[0305] 1503_HO5 (PG16) (TCN-119) gamma heavy chain variable region nucleotide sequence:
CAGGAAAAACTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCGGGGGGGT CCCTGAGACTCTCCTGTTTAGCGTCTGGATTCACCTTTCACAAATATGGCA TGCACTGGGTCCGCCAGGCTCCAGGCAAGGGCCTGGAGTGGGTGGCACTC ATCTCAGATGACGGAATGAGGAAATATCATTCAGACTCCATGTGGGGCCG AGTCACCATCTCCAGAGACAATTCCAAGAACACTTTATATCTGCAATTCA GCAGCCTGAAAGTCGAAGACACGGCTATGTTCTTCTGTGCGAGAGAGGCT GGTGGGCCAATCTGGCATGACGACGTCAAATATTACGATTTTAATGACGG CTACTACAATTACCACTACATGGACGTCTGGGGCAAGGGGACCATTGTCA CCGTCTCCTCA (SEQ ID NO: 132)
[0306] 1503_H05 (PG 16) (TCN-119) gamma heavy chain amino acid sequence: expressed protein with variable region in bold. QEKLVESGGGVVQPGGSLRLSCLASGFTFHKYGMHWVRQAPGKGLEW VALISDDGMRKYHSDSMWGRVTISRDNSKNTLYLQFSSLKVEDTAMFFC AREAGGPIWHDDVKYYDFNDGYYNYHYMDVWGKGTIVTVSSASTKGPS VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS GLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCP APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNG QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY TQKSLSLSPGK (SEQ ID NO: 53).
[0307] 1503_H05 (PG16) (TCN-119) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QEKLVESGGGVVQPGGSLRLSCLASGFTFHKYGMHWVRQAPGKGLEWVAL ISDDGMRKYHSDSMWGRVTISRDNSKNTLYLQFSSLKVEDTAMFFCAREAG GPIWHDDVKYYDFNDGYYNYHYMDVWGKGTIVTVSS (SEQ ID NO: 54)
[0308] 1503_H05 (PG 16) (TCN- 119) gamma heavy chain Kabat CDRs: CDR 1: KYGMH (SEQ ID NO: 88) CDR 2: LISDDGMRKYHSDSMWG (SEQ ID NO: 89) CDR 3: EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6)
[0309] 1503_H05 (PG 16) (TCN- 119) gamma heavy chain Chothia CDRs: CDR 1: GFTFHK (SEQ ID NO: 266) CDR 2: LISDDGMRKY (SEQ ID NO: 267) CDR 3: EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6)
[0310] 1503_H05 (PG16) (TCN- 119) lambda light chain nucleotide sequence: 1503_H05 k2 coding sequence (variable region in bold)
ATGGCCTGGGCTTGCTATTCCTCACCCTCTTCACTCAGGGCACAGGGTCCT GGGGCCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCT GGACAGACGATCACCATCTCCTGCAATGGAACCAGAAGTGACGTTGG TGGATTTGACTCTGTCTCCTGGTACCAACAATCCCCAGGGAAAGCCC CCAAAGTCATGGTTTTTGATGTCAGTCATCGGCCCTCAGGTATCTCTA ATCGCTTCTCTGGCTCCAAGTCCGGCAACACGGCCTCCCTGACCATC TCTGGGCTCCACATTGAGGACGAGGGCGATTATTTCTGCTCTTCACT GACAGACAGAAGCCATCGCATATTCGGCGGCGGGACCAAGGTGACC GTTCTAGGTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTC CTCTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTG ACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCC GTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACA AGTACGCGGCCAGCAGCTACCTGAGCCTGACGCCTGAGCAGTGGAAGTCC CACAAAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGA AGACAGTGGCCCCTACAGAATGTTCATAG (SEQ ID NO: 55)
[0311] 1503_H05 (PG16) (TCN-119) lambda light chain variable region nucleotide sequence: CAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGACG ATCACCATCTCCTGCAATGGAACCAGAAGTGACGTTGGTGGATTTGACTC TGTCTCCTGGTACCAACAATCCCCAGGGAAAGCCCCCAAAGTCATGGTTT TTGATGTCAGTCATCGGCCCTCAGGTATCTCTAATCGCTTCTCTGGCTCCA AGTCCGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCACATTGAGGAC GAGGGCGATTATTTCTGCTCTTCACTGACAGACAGAAGCCATCGCATATT CGGCGGCGGGACCAAGGTGACCGTTCTA (SEQ ID NO: 133)
[0312] 1503_H05 (PG16) (TCN-119) lambda light chain amino acid sequence: expressed protein with variable region in bold. QSALTQPASVSGSPGQTITISCNGTRSDVGGFDSVSWYQQSPGKAPKVMV FDVSHRPSGISNRFSGSKSGNTASLTISGLHIEDEGDYFCSSLTDRSHRIFG GGTKVTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWK ADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHKSYSCQVTHEGST VEKTVAPTECS (SEQ ID NO: 56)
[0313] 1503_H05 (PG16) (TCN-119) lambda light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QSALTQPASVSGSPGQTITISCNGTRSDVGGFDSVSWYQQSPGKAPKVMVFD VSHRPSGISNRFSGSKSGNTASLTISGLHIEDEGDYFCSSLTDRSHRIFGGGTK VTVL (SEQ ID NO: 57)
[0314] 1503_H05 (PG16) (TCN-119) lambda light chain Kabat CDRs: CDR 1: NGTRSDVGGFDSVS (SEQ ID NO: 92) CDR 2: DVSHRPS (SEQ ID NO: 95)
CDR 3: SSLTDRSHRI (SEQ ID NO: 41)
[0315] 1503_H05 (PG 16) (TCN- 119) lambda light chain Chothia CDRs: CDR 1: NGTRSDVGGFDSVS (SEQ ID NO: 92) CDR 2: DVSHRPS (SEQ ID NO: 95) CDR 3: SSLTDRSHRI (SEQ ID NO: 41)
[0316] 1489_13 (PG16) (TCN-120) gamma heavy chain nucleotide sequence: 1489_13 y3 coding sequence (variable region in bold) ATGGAGTTTGGGCTGAGCTGGGTTTTCCTCGCAACTCTGTTAAGAGTTGTG AAGTGTCAGGAACAACTGTTGGAGTCTGGGGGAGGCGTGGTCCAGCC GGGGGGGTCCCTGAGACTCTCCTGTTTAGCGTCTGGATTCACGTTTC ACAAATATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGCCTG GAGTGGGTGGCACTCATCTCAGATGACGGAATGAGGAAATATCATTC AAACTCCATGTGGGGCCGAGTCACCATCTCCAGAGACAATTCCAAGA ACACTCTTTATCTGCAATTCAGCAGCCTGAAAGTCGAAGACACGGCT ATGTTCTTCTGTGCGAGAGAGGCTGGTGGGCCAATCTGGCATGACGA CGTCAAATATTACGATTTTAATGACGGCTACTACAACTACCACTACAT GGACGTCTGGGGCAAGGGGACCACGGTCACCGTCTCCTCAGCGTCGA CCAAGGGCCCATCGGTCTTCCCTCTGGCACCATCATCCAAGTCGACCTCTG GGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCG GTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTT CCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGA CCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAAT CACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTT GTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGG GGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGAT CTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAG ACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAAT GCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGG TCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTAC AAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCAT CTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCC CCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGT CAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGG CAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACG GCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAG CAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 58)
[0317] 1489_13 (PG16) (TCN-120) gamma heavy chain variable region nucleotide sequence:
CAGGAACAACTGTTGGAGTCTGGGGGAGGCGTGGTCCAGCCGGGGGGGT CCCTGAGACTCTCCTGTTTAGCGTCTGGATTCACGTTTCACAAATATGGCA TGCACTGGGTCCGCCAGGCTCCAGGCAAGGGCCTGGAGTGGGTGGCACTC ATCTCAGATGACGGAATGAGGAAATATCATTCAAACTCCATGTGGGGCCG AGTCACCATCTCCAGAGACAATTCCAAGAACACTCTTTATCTGCAATTCA GCAGCCTGAAAGTCGAAGACACGGCTATGTTCTTCTGTGCGAGAGAGGCT GGTGGGCCAATCTGGCATGACGACGTCAAATATTACGATTTTAATGACGG CTACTACAACTACCACTACATGGACGTCTGGGGCAAGGGGACCACGGTCA CCGTCTCCTCA (SEQ ID NO: 134)
[0318] 1489_13 (PG16) (TCN-120) gamma heavy chain amino acid sequence: expressed protein with variable region in bold. QEQLLESGGGVVQPGGSLRLSCLASGFTFHKYGMHWVRQAPGKGLEW VALISDDGMRKYHSNSMWGRVTISRDNSKNTLYLQFSSLKVEDTAMFFC AREAGGPIWHDDVKYYDFNDGYYNYHYMDVWGKGTTVTVSSASTKGPS VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS GLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCP APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNG QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY TQKSLSLSPGK (SEQ ID NO: 59)
[0319] 1489_13 (PG16) (TCN-120) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QEQLLESGGGVVQPGGSLRLSCLASGFTFHKYGMHWVRQAPGKGLEWVAL ISDDGMRKYHSNSMWGRVTISRDNSKNTLYLQFSSLKVEDTAMFFCAREAG GPIWHDDVKYYDFNDGYYNYHYMDVWGKGTTVTVSS (SEQ ID NO: 60)
[0320] 1489_13 (PG16) (TCN- 120) gamma heavy chain Kabat CDRs: CDR 1: KYGMH (SEQ ID NO: 88) CDR 2: LISDDGMRKYHSNSMWG (SEQ ID NO: 98) CDR 3: EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6)
[0321] 1489_13 (PG16) (TCN- 120) gamma heavy chain Chothia CDRs: CDR 1: GFTFHK (SEQ ID NO: 266) CDR 2: LISDDGMRKY (SEQ ID NO: 267) CDR 3: EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6)
[0322] 1489_13 (PG16) (TCN-120) lambda light chain nucleotide sequence: 1489_113 k2 coding sequence (variable region in bold)
ATGGCCTGGGCTCTGCTATTCCTCACCCTCTTCACTCAGGGCACAGGGTCC CGGGGCCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCT GGACAGACGATCACCATCTCCTGCAATGGAACCAGCAGTGACGTTGG TGGATTTGACTCTGTCTCCTGGTATCAACAATCCCCAGGGAAAGCCC CCAAAGTCATGGTTTTTGATGTCAGTCATCGGCCCTCAGGTATCTCTA ATCGCTTCTCTGGCTCCAAGTCCGGCAACACGGCCTCCCTGACCATC TCTGGGCTCCACATTGAGGACGAGGGCGATTATTTCTGCTCTTCACT GACAGACAGAAGCCATCGCATATTCGGCGGCGGGACCAAGGTGACC GTTCTAGGTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTC CTCTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTG ACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCC GTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACA AGTACGCGGCCAGCAGCTACCTGAGCCTGACGCCTGAGCAGTGGAAGTCC CACAAAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGA AGACAGTGGCCCCTACAGAATGTTCATAG (SEQ ID NO: 61)
[0323] 1489_13 (PG16) (TCN-120) lambda light chain variable region nucleotide sequence: CAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGACG ATCACCATCTCCTGCAATGGAACCAGCAGTGACGTTGGTGGATTTGACTC TGTCTCCTGGTATCAACAATCCCCAGGGAAAGCCCCCAAAGTCATGGTTT TTGATGTCAGTCATCGGCCCTCAGGTATCTCTAATCGCTTCTCTGGCTCCA AGTCCGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCACATTGAGGAC GAGGGCGATTATTTCTGCTCTTCACTGACAGACAGAAGCCATCGCATATT CGGCGGCGGGACCAAGGTGACCGTTCTA (SEQ ID NO: 135)
[0324] 1489_13 (PG16) (TCN-120) lambda light chain amino acid sequence: expressed protein with variable region in bold. QSALTQPASVSGSPGQTITISCNGTSSDVGGFDSVSWYQQSPGKAPKVMV FDVSHRPSGISNRFSGSKSGNTASLTISGLHIEDEGDYFCSSLTDRSHRIFG GGTKVTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWK ADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHKSYSCQVTHEGST VEKTVAPTECS (SEQ ID NO: 14)
[0325] 1489_13 (PG16) (TCN-120) lambda light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics). QSALTQPASVSGSPGQTITISCNGTSSDVGGFDSVSWYQQSPGKAPKVMVFD VSHRPSGISNRFSGSKSGNTASLTISGLHIEDEGDYFCSSLTDRSHRIFGGGTK VTVL (SEQ ID NO: 32)
[0326] 1489_13 (PG16) (TCN-120) lambda light chain Kabat CDRs: CDR 1: NGTSSDVGGFDSVS (SEQ ID NO: 97) CDR 2: DVSHRPS (SEQ ID NO: 95) CDR 3: SSLTDRSHRI (SEQ ID NO: 41)
[0327] 1489113 (PG16) (TCN-120) lambda light chain Chothia CDRs: CDR 1: NGTSSDVGGFDSVS (SEQ ID NO: 97) CDR 2: DVSHRPS (SEQ ID NO: 95) CDR 3: SSLTDRSHRI (SEQ ID NO: 41)
[03281 1480_108 gamma heavy chain nucleotide sequence: 1480_108 y3 coding sequence (variable region in bold) ATGGAGTTTGGCTGAGCTGGGTTTTCCTCGCAACTCTGTTAAGAGTTGTGA AGTGTCAGGAACAACTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCG GGGGGGTCCCTGAGACTCTCCTGTTTAGCGTCTGGATTCACGTTTCA CAAATATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGCCTGG AGTGGGTGGCACTCATCTCAGATGACGGAATGAGGAAATATCATTCA GACTCCATGTGGGGCCGAGTCACCATCTCCAGAGACAATTCCAAGAA CACTCTTTATCTGCAATTCAGCAGCCTGAAAGTCGAAGACACGGCTA TGTTCTTCTGTGCGAGAGAGGCTGGTGGGCCAATCTGGCATGACGAC GTCAAATATTACGATTTTAATGACGGCTACTACAACTACCACTACATG GACGTCTGGGGCAAGGGGACCACGGTCACCGTCTCCTCAGCGTCGAC CAAGGGCCCATCGGTCTTCCCTCTGGCACCATCATCCAAGTCGACCTCTG GGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCG GTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTT CCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGA CCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAAT CACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTT GTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGG GGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGAT CTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAG ACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAAT GCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGG TCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTAC AAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCAT CTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCC CCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGT CAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGG CAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACG GCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAG CAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 64)
[0329] 1480_108 gamma heavy chain variable region nucleotide sequence: CAGGAACAACTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCGGGGGGGT CCCTGAGACTCTCCTGTTTAGCGTCTGGATTCACGTTTCACAAATATGGCA TGCACTGGGTCCGCCAGGCTCCAGGCAAGGGCCTGGAGTGGGTGGCACTC ATCTCAGATGACGGAATGAGGAAATATCATTCAGACTCCATGTGGGGCCG
AGTCACCATCTCCAGAGACAATTCCAAGAACACTCTTTATCTGCAATTCA GCAGCCTGAAAGTCGAAGACACGGCTATGTTCTTCTGTGCGAGAGAGGCT GGTGGGCCAATCTGGCATGACGACGTCAAATATTACGATTTTAATGACGG CTACTACAACTACCACTACATGGACGTCTGGGGCAAGGGGACCACGGTCA CCGTCTCCTCA (SEQ ID NO: 136)
[0330] 1480_108 gamma heavy chain amino acid sequence: expressed protein with variable region in bold. QEQLVESGGGVVQPGGSLRLSCLASGFTFHKYGMHWVRQAPGKGLEW VALISDDGMRKYHSDSMWGRVTISRDNSKNTLYLQFSSLKVEDTAMFFC AREAGGPIWHDDVKYYDFNDGYYNYHYMDVWGKGTTVTVSSASTKGPS VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS GLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCP APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNG QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY TQKSLSLSPGK (SEQ ID NO: 65)
[03311 1480_108 gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QEQLVESGGGVVQPGGSLRLSCLASGFTFHKYGMHWVRQAPGKGLEWVAL ISDDGMRKYHSDSMWGRVTISRDNSKNTLYLQFSSLKVEDTAMFFCAREAG GPIWHDDVKYYDFNDGYYNYHYMDVWGKGTTVTVSS (SEQ ID NO: 31)
[0332] 1480_108 gamma heavy chain Kabat CDRs: CDR 1: KYGMH (SEQ ID NO: 88) CDR 2: LISDDGMRKYHSDSMWG (SEQ ID NO: 89) CDR 3: EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6)
[0333] 1480_108 gamma heavy chain Chothia CDRs: CDR 1: GFTFHK (SEQ ID NO: 266) CDR 2: LISDDGMRKY (SEQ ID NO: 267) CDR 3: EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6)
[0334] 1480_108 lambda light chain nucleotide sequence: 1480_108 2 coding sequence (variable region in bold) ATGGCCTGGGCTCTGCTATTCGTCACCCTCCTCACTCAGGGCACAGGGTCC TGGGGCCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCT GGACAGACGATCACCATCTCCTGCAATGGAACCAGCAGTGACGTTGG TGGATTTGACTCTGTCTCCTGGTATCAACAATCCCCAGGGAAAGCCC CCAAAGTCATGGTTTTTGATGTCAGTCATCGGCCCTCAGGTATCTCTA
ATCGCTTCTCTGGCTCCAAGTCCGGCAACACGGCCTCCCTGACCATC TCTGGGCTCCACATTGAGGACGAGGGCGATTATTTCTGCTCTTCACT GACAGACAGAAGCCATCGCATATTCGGCGGCGGGACCAAGGTGACC GTTCTAGGTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTC CTCTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTG ACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCC GTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACA AGTACGCGGCCAGCAGCTACCTGAGCCTGACGCCTGAGCAGTGGAAGTCC CACAAAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGA AGACAGTGGCCCCTACAGAATGTTCATAG (SEQ ID NO: 67)
[0335] 1480_108 lambda light chain variable region nucleotide sequence: CAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGACG ATCACCATCTCCTGCAATGGAACCAGCAGTGACGTTGGTGGATTTGACTC TGTCTCCTGGTATCAACAATCCCCAGGGAAAGCCCCCAAAGTCATGGTTT TTGATGTCAGTCATCGGCCCTCAGGTATCTCTAATCGCTTCTCTGGCTCCA AGTCCGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCACATTGAGGAC GAGGGCGATTATTTCTGCTCTTCACTGACAGACAGAAGCCATCGCATATT CGGCGGCGGGACCAAGGTGACCGTTCTA (SEQ ID NO: 137)
[0336] 1480_108 lambda light chain amino acid sequence: expressed protein with variable region in bold. QSALTQPASVSGSPGQTITISCNGTSSDVGGFDSVSWYQQSPGKAPKVMV FDVSHRPSGISNRFSGSKSGNTASLTISGLHIEDEGDYFCSSLTDRSHRIFG GGTKVTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWK ADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHKSYSCQVTHEGST VEKTVAPTECS (SEQ ID NO: 14)
[0337] 1480_108 lambda light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QSALTQPASVSGSPGQTITISCNGTSSDVGGFDSVSWYQQSPGKAPKVMVFD VSHRPSGISNRFSGSKSGNTASLTISGLHIEDEGDYFCSSLTDRSHRIFGGGTK VTVL (SEQ ID NO: 32)
[0338] 1480_108 lambda light chain Kabat CDRs: CDR 1: NGTSSDVGGFDSVS (SEQ ID NO: 97) CDR 2: DVSHRPS (SEQ ID NO: 95) CDR 3: SSLTDRSHRI (SEQ ID NO: 41)
[0339] 1480_108 lambda light chain Chothia CDRs: CDR 1: NGTSSDVGGFDSVS (SEQ ID NO: 97) CDR 2: DVSHRPS (SEQ ID NO: 95)
CDR 3: SSLTDRSHRI (SEQ ID NO: 41)
[0340] The 1469_M23 (PG16) antibody includes a heavy chain variable region (SEQ ID NO: 139), encoded by the nucleic acid sequence shown in SEQ ID NO: 128, and a light chain variable region (SEQ ID NO: 142) encoded by the nucleic acid sequence shown in SEQ ID NO: 129.
[0341] The heavy chain CDRs of the 1469_M23 (PG16) antibody have the following sequences per Kabat and Chothia definitions: KYGMH (SEQ ID NO: 88), LISDDGMRKYHSDSMWG (SEQ ID NO: 89), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6). The light chain CDRs of the 1469M23 (PG16) antibody have the following sequences per Kabat and Chothia definitions: NGTRSDVGGFDSVS (SEQ ID NO: 92), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
[0342] The 1456_A12 (PG16) antibody includes a heavy chain variable region (SEQ ID NO: 47), encoded by the nucleic acid sequence shown in SEQ ID NO: 130, and a light chain variable region (SEQ ID NO: 50) encoded by the nucleic acid sequence shown in SEQ ID NO: 131.
[0343] The heavy chain CDRs of the 1456_A12 (PG16) antibody have the following sequences per Kabat and Chothia definitions: KYGMH (SEQ ID NO: 88), LISDDGMRKYHSDSMWG (SEQ ID NO: 89), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6). The light chain CDRs of the 1456A12 (PG16) antibody have the following sequences per Kabat and Chothia definitions: NGTSRDVGGFDSVS (SEQ ID NO: 93), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
[0344] The 1503_H05 (PG16) antibody includes a heavy chain variable region (SEQ ID NO: 53), encoded by the nucleic acid sequence shown in SEQ ID NO: 132, and a light chain variable region (SEQ ID NO: 56) encoded by the nucleic acid sequence shown in SEQ ID NO: 133.
[0345] The heavy chain CDRs of the 1503_HO5 (PG16) antibody have the following sequences per Kabat and Chothia definitions: KYGMH (SEQ ID NO: 88), LISDDGMRKYHSDSMWG (SEQ ID NO: 89), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6). The light chain CDRs of the 1503H05 (PG16) antibody have the following sequences per Kabat and Chothia definitions:
NGTRSDVGGFDSVS (SEQ ID NO: 92), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
[0346] The 1489_113 (PG16) antibody includes a heavy chain variable region (SEQ ID NO: 59), encoded by the nucleic acid sequence shown in SEQ ID NO: 134, and a light chain variable region (SEQ ID NO: 14) encoded by the nucleic acid sequence shown in SEQ ID NO: 135.
[0347] The heavy chain CDRs of the 1489_113 (PG16) antibody have the following sequences per Kabat and Chothia definitions: KYGMH (SEQ ID NO: 88), LISDDGMRKYHSNSMWG (SEQ ID NO: 98), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6). The light chain CDRs of the 1489113 (PG16) antibody have the following sequences per Kabat and Chothia definitions: NGTSSDVGGFDSVS (SEQ ID NO: 97), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
[0348] The 1480_108 (PG16) antibody includes a heavy chain variable region (SEQ ID NO: ), encoded by the nucleic acid sequence shown in SEQ ID NO: 136, and a light chain variable region (SEQ ID NO: 14) encoded by the nucleic acid sequence shown in SEQ ID NO: 137.
[0349] The heavy chain CDRs of the 1480_108 (PG16) antibody have the following sequences per Kabat and Chothia definitions: KYGMH (SEQ ID NO: 88), LISDDGMRKYHSDSMWG (SEQ ID NO: 89), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6). The light chain CDRs of the 1480108 (PG16) antibody have the following sequences per Kabat and Chothia definitions: NGTSSDVGGFDSVS (SEQ ID NO: 97), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
[03501 The sequences of additional human monoclonal antibodies were determined, including the sequences of the variable regions of the Gamma heavy and Kappa or Lambda light chains. In addition, the sequence of each of the polynucleotides encoding the antibody sequences was determined. Shown below are the polypeptide and polynucleotide sequences of the gamma heavy chains and kappa light chains, with the signal peptides at the N-terminus (or 5' end) and the constant regions at the C-terminus (or 3' end) of the variable regions, which are shown in bolded text.
[0351] 4838L06 (PGT-121) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold)
ATGAAACACCTGTGGTTCTTCCTTCTCCTGGTGGCAGCTCCCAGATGGGTC CTGTCACAGATGCAGTTACAGGAGTCGGGCCCCGGACTGGTGAAGCC TTCGGAAACCCTGTCCCTCACGTGCAGTGTGTCTGGTGCCTCCATAA GTGACAGTTACTGGAGCTGGATCCGGCGGTCCCCAGGGAAGGGACTT GAGTGGATTGGGTATGTCCACAAAAGCGGCGACACAAATTACAGCCC CTCCCTCAAGAGTCGAGTCAACTTGTCGTTAGACACGTCCAAAAATC AGGTGTCCCTGAGCCTTGTGGCCGCGACCGCTGCGGACTCGGGCAAA TATTATTGCGCGAGAACACTGCACGGGAGGAGAATTTATGGAATCGT TGCCTTCAATGAGTGGTTCACCTACTTCTACATGGACGTCTGGGGCA ATGGGACTCAGGTCACCGTCTCCTCAGCCTCCACCAAGGGCCCATCGG TCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCC CTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTG GAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTAC AGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC AGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAA CACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCAC ACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTT CCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTG AGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAA GTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAG CCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCAC CGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCT CCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAA GGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGG AGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTAT CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACA ACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCT ATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTT CTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA GCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 62)
[0352] 4838_L06 (PGT-121) gamma heavy chain variable region nucleotide sequence: CAGATGCAGTTACAGGAGTCGGGCCCCGGACTGGTGAAGCCTTCGGAAA CCCTGTCCCTCACGTGCAGTGTGTCTGGTGCCTCCATAAGTGACAGTTACT GGAGCTGGATCCGGCGGTCCCCAGGGAAGGGACTTGAGTGGATTGGGTAT GTCCACAAAAGCGGCGACACAAATTACAGCCCCTCCCTCAAGAGTCGAGT CAACTTGTCGTTAGACACGTCCAAAAATCAGGTGTCCCTGAGCCTTGTGG CCGCGACCGCTGCGGACTCGGGCAAATATTATTGCGCGAGAACACTGCAC GGGAGGAGAATTTATGGAATCGTTGCCTTCAATGAGTGGTTCACCTACTT CTACATGGACGTCTGGGGCAATGGGACTCAGGTCACCGTCTCCTCA (SEQ ID NO: 63)
[0353] 4838_L06 (PGT-121) gamma heavy chain amino acid sequence: expressed protein with variable region in bold.
QMQLQESGPGLVKPSETLSLTCSVSGASISDSYWSWIRRSPGKGLEWIGY VHKSGDTNYSPSLKSRVNLSLDTSKNQVSLSLVAATAADSGKYYCARTLH GRRIYGIVAFNEWFTYFYMDVWGNGTQVTVSSASTKGPSVFPLAPSSKSTS GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTV PSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVF LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPP VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 66)
[0354] 4838L06 (PGT-121) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QMQLQESGPGLVKPSETLSLTCSVSGASISDSYWSWIRRSPGKGLEWIGYVHK SGDTNYSPSLKSRVNLSLDTSKNQVSLSLVAATAADSGKYYCARTLHGRRIY GIVAFNEWFTYFYMDVWGNGTQVTVSS (SEQ ID NO: 79)
[0355] 4838_L06 (PGT-121) gamma heavy chain Kabat CDRs: CDR 1: DSYWS (SEQ ID NO: 90) CDR 2: YVHKSGDTNYSPSLKS (SEQ ID NO: 265) CDR 3: TLHGRRIYGIVAFNEWFTYFYMDV (SEQ ID NO: 143)
[0356] 4838_L06 (PGT-121) gamma heavy chain Chothia CDRs: CDR 1: GASISD (SEQ ID NO: 144) CDR 2: YVHKSGDTN (SEQ ID NO: 145) CDR 3: TLHGRRIYGIVAFNEWFTYFYMDV (SEQ ID NO: 143)
[03571 4838_L06 (PGT-121) lambda light chain nucleotide sequence: coding sequence (variable region in bold) ATGGCCTGGACCTTTCTCCTCCTCGGCCTCCTCTCTCACTGCACAGCCTCT GTGACCTCCGATATATCTGTGGCCCCAGGAGAGACGGCCAGGATTTC CTGTGGGGAAAAGAGCCTTGGAAGTAGAGCTGTACAATGGTATCAAC ACAGGGCCGGCCAGGCCCCCTCTTTAATCATATATAATAATCAGGAC CGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCCCTGACTCCCC TTTTGGGACCACGGCCACCCTGACCATCACCAGTGTCGAAGCCGGGG ATGAGGCCGACTATTACTGTCATATATGGGATAGTAGAGTTCCCACC AAATGGGTCTTCGGCGGAGGGACCACGCTGACCGTGTTAGGTCAGCC CAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTTCA AGCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAG CCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGTCAAGGCGGGAGT GGAGACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGC AGCTACCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAAAAGCTACA
GCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCC TACAGAATGTTCATAG (SEQ ID NO: 146)
[0358] 4838_L06 (PGT-121) lambda light chain variable region nucleotide sequence: TCCGATATATCTGTGGCCCCAGGAGAGACGGCCAGGATTTCCTGTGGGGA AAAGAGCCTTGGAAGTAGAGCTGTACAATGGTATCAACACAGGGCCGGC CAGGCCCCCTCTTTAATCATATATAATAATCAGGACCGGCCCTCAGGGAT CCCTGAGCGATTCTCTGGCTCCCCTGACTCCCCTTTTGGGACCACGGCCAC CCTGACCATCACCAGTGTCGAAGCCGGGGATGAGGCCGACTATTACTGTC ATATATGGGATAGTAGAGTTCCCACCAAATGGGTCTTCGGCGGAGGGACC ACGCTGACCGTGTTA (SEQ ID NO: 147)
[0359] 4838L06 (PGT-121) lambda light chain amino acid sequence: expressed protein with variable region in bold. SDISVAPGETARISCGEKSLGSRAVQWYQHRAGQAPSLIIYNNQDRPSGIP ERFSGSPDSPFGTTATLTITSVEAGDEADYYCHIWDSRVPTKWVFGGGTT LTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSP VKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHKSYSCQVTHEGSTVEKTV APTECS (SEQ ID NO: 148)
[0360] 4838L06 (PGT-121) lambda light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) SDISVAPGETARISCGEKSLGSRA VOWYQHRAGQAPSLIIYNNODRPSGIPERF SGSPDSPFGTTATLTITSVEAGDEADYYCHIWDSRVPTKWVFGGGTTLTVL (SEQ ID NO: 149)
[0361] 4838_L06 (PGT-121) lambda light chain Kabat CDRs: CDR 1: GEKSLGSRAVQ (SEQ ID NO: 150) CDR 2: NNQDRPS (SEQ ID NO: 151) CDR 3: HIWDSRVPTKWV (SEQ ID NO: 152)
[0362] 4838_L06 (PGT-121) lambda light chain Chothia CDRs: CDR 1: GEKSLGSRAVQ (SEQ ID NO: 150) CDR 2: NNQDRPS (SEQ ID NO: 151) CDR 3: HIWDSRVPTKWV (SEQ ID NO: 152)
[0363] 4873E03 (PGT-121) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGAAACACCTGTGGTTCTTCCTTCTCCTGGTGGCAGCTCCCAGATGGGTC CTGTCCAGATGCAGTTACAGGAGTCGGGCCCCGGACTGGTGAAGCCT TCGGAAACCCTGTCCCTCACGTGCAGTGTGTCTGGTGCCTCCATAAG
TGACAGTTACTGGAGCTGGATCCGGCGGTCCCCAGGGAAGGGACTTG AGTGGATTGGGTATGTCCACAAAAGCGGCGACACAAATTACATCCCC TCCCTCAAGAGTCGAGTCAACTTGTCGTTAGACACGTCCAAAAATCA GGTGTCCCTGAGCCTTGTGGCCGCGACCGCTGCGGACTCGGGCAAAT ATTATTGCGCGAGAACACTGCACGGGAGGAGAATTTATGGAATCGTT GCCTTCAATGAGTGGTTCACCTACTTCTACATGGACGTCTGGGGCAA TGGGACTCAGGTCACCGTCTCCTCAGCCTCCACCAAGGGCCCATCGGTC TTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCT GGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGA ACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAG TCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAG CTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACA CCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACAC ATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCC TCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAG GTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTT CAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCG CGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGT CCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCC AACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAG GGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGA GATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATC CCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAA CTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTA TAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTC TCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAG CCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 62)
[0364] 4873E03 (PGT-121) gamma heavy chain variable region nucleotide sequence: CAGATGCAGTTACAGGAGTCGGGCCCCGGACTGGTGAAGCCTTCGGAAA CCCTGTCCCTCACGTGCAGTGTGTCTGGTGCCTCCATAAGTGACAGTTACT GGAGCTGGATCCGGCGGTCCCCAGGGAAGGGACTTGAGTGGATTGGGTAT GTCCACAAAAGCGGCGACACAAATTACAGCCCCTCCCTCAAGAGTCGAGT CAACTTGTCGTTAGACACGTCCAAAAATCAGGTGTCCCTGAGCCTTGTGG CCGCGACCGCTGCGGACTCGGGCAAATATTATTGCGCGAGAACACTGCAC GGGAGGAGAATTTATGGAATCGTTGCCTTCAATGAGTGGTTCACCTACTT CTACATGGACGTCTGGGGCAATGGGACTCAGGTCACCGTCTCCTCA (SEQ ID NO: 63)
[0365] 4873E03 (PGT-121) gamma heavy chain amino acid sequence: expressed protein with variable region in bold. MKHLWFFLLLVAAPRWVLSQMQLQESGPGLVKPSETLSLTCSVSGASIS DSYWSWIRRSPGKGLEWIGYVHKSGDTNYIPSLKSRVNLSLDTSKNQVSL SLVAATAADSGKYYCARTLHGRRIYGIVAFNEWFTYFYMDVWGNGTQV TVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG
VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKS CDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKC KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 66)
[0366] 4873E03 (PGT-121) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QMQLQESGPGLVKPSETLSLTCSVSGASISDSYWSWIRRSPGKGLEWIGYVHK SGDTNYSPSLKSRVNLSLDTSKNQVSLSLVAATAADSGKYYCARTLHGRRIY GIVAFNEWFTYFYMDVWGNGTQVTVSS (SEQ ID NO: 79)
[0367] 4873E03 (PGT-121) gamma heavy chain Kabat CDRs: CDR 1: DSYWS (SEQ ID NO: 90) CDR 2: YVHKSGDTNYSPSLKS (SEQ ID NO: 265) CDR 3: TLHGRRIYGIVAFNEWFTYFYMDV (SEQ ID NO: 143)
[03681 4873E03 (PGT-121) gamma heavy chain Chothia CDRs: CDR 1: GASISD (SEQ ID NO: 144) CDR 2: YVHKSGDTN (SEQ ID NO: 145) CDR 3: TLHGRRIYGIVAFNEWFTYFYMDV (SEQ ID NO: 143)
[0369] 4873E03 (PGT-121) lambda light chain nucleotide sequence: coding sequence (variable region in bold) ATGGCCTGGACCTTTCTCCTCCTCGGCCTCCTCTCTCACTGCACAGCCTCT GTGACCTCCGATATATCTGTGGCCCCAGGAGAGACGGCCAGGATTTC CTGTGGGGAAAAGAGCCTTGGAAGTAGAGCTGTACAATGGTATCAAC ACAGGGCCGGCCAGGCCCCCTCTTTAATCATATATAATAATCAGGAC CGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCCCTGACTCCCC TTTTGGGACCACGGCCACCCTGACCATCACCAGTGTCGAAGCCGGGG ATGAGGCCGACTATTACTGTCATATATGGGATAGTAGAGTTCCCACC AAATGGGTCTTCGGCGGAGGGACCACGCTGACCGTGTTAGGTCAGCC CAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTTCA AGCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAG CCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGTCAAGGCGGGAGT GGAGACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGC AGCTACCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAAAAGCTACA GCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCC TACAGAATGTTCATAG (SEQ ID NO: 146)
[0370] 4873E03 (PGT-121) lambda light chain variable region nucleotide sequence:
TCCGATATATCTGTGGCCCCAGGAGAGACGGCCAGGATTTCCTGTGGGGA AAAGAGCCTTGGAAGTAGAGCTGTACAATGGTATCAACACAGGGCCGGC CAGGCCCCCTCTTTAATCATATATAATAATCAGGACCGGCCCTCAGGGAT CCCTGAGCGATTCTCTGGCTCCCCTGACTCCCCTTTTGGGACCACGGCCAC CCTGACCATCACCAGTGTCGAAGCCGGGGATGAGGCCGACTATTACTGTC ATATATGGGATAGTAGAGTTCCCACCAAATGGGTCTTCGGCGGAGGGACC ACGCTGACCGTGTTA (SEQ ID NO: 147)
[0371] 4873E03 (PGT-121) lambda light chain amino acid sequence: expressed protein with variable region in bold. MAWTFLLLGLLSHCTASVTSDISVAPGETARISCGEKSLGSRAVQWYQH RAGQAPSLIIYNNQDRPSGIPERFSGSPDSPFGTTATLTITSVEAGDEADYY CHIWDSRVPTKWVFGGGTTLTVLGQPKAAPSVTLFPPSSEELQANKATLVC LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWK SHKSYSCQVTHEGSTVEKTVAPTECS (SEQ ID NO: 148)
[0372] 4873E03 (PGT-121) lambda light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) SDISVAPGETARISCGEKSLGSRA VOWYQHRAGQAPSLIIYNNODRPSGIPERF SGSPDSPFGTTATLTITSVEAGDEADYYCHIWDSRVPTKWVFGGGTTLTVL (SEQ ID NO: 149)
[0373] 4873E03 (PGT-121) lambda light chain Kabat CDRs: CDR 1: GEKSLGSRAVQ (SEQ ID NO: 150) CDR 2: NNQDRPS (SEQ ID NO: 151) CDR 3: HIWDSRVPTKWV (SEQ ID NO: 152)
[0374] 4873E03 (PGT-121) lambda light chain Chothia CDRs: CDR 1: GEKSLGSRAVQ (SEQ ID NO: 150) CDR 2: NNQDRPS (SEQ ID NO: 151) CDR 3: HIWDSRVPTKWV (SEQ ID NO: 152)
[0375] 4877D15 (PGT-122) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGAAACACCTGTGGTTCTTCCTTCTCCTGGTGGCAGCTCCCAGATGGGTC CTGTCCCAGGTTCATCTGCAGGAGTCGGGCCCCGGACTGGTGAAGCC TTCGGAGACCCTGTCCCTCACGTGCAATGTGTCTGGGACCCTCGTGC GTGATAACTACTGGAGCTGGATCAGACAACCCCTCGGGAAGCAACCT GAGTGGATTGGCTATGTCCATGACAGCGGGGACACGAATTACAACCC CTCCCTGAAGAGTCGAGTCCACTTATCGTTGGACAAGTCCAAAAACC TGGTGTCCCTGAGGCTGACCGGCGTGACCGCCGCGGACTCGGCCATA TATTATTGCGCGACAACAAAACACGGGAGGAGGATTTATGGCGTCGT
TGCCTTCAAAGAGTGGTTCACCTATTTCTACATGGACGTCTGGGGCA AAGGGACTTCGGTCACCGTCTCCTCAGCCTCCACCAAGGGCCCATCGG TCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCC CTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTG GAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTAC AGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC AGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAA CACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCAC ACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTT CCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTG AGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAA GTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAG CCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCAC CGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCT CCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAA GGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGG AGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTAT CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACA ACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCT ATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTT CTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA GCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 153)
[0376] 4877D15 (PGT-122) gamma heavy chain variable region nucleotide sequence: CAGGTTCATCTGCAGGAGTCGGGCCCCGGACTGGTGAAGCCTTCGGAGAC CCTGTCCCTCACGTGCAATGTGTCTGGGACCCTCGTGCGTGATAACTACTG GAGCTGGATCAGACAACCCCTCGGGAAGCAACCTGAGTGGATTGGCTATG TCCATGACAGCGGGGACACGAATTACAACCCCTCCCTGAAGAGTCGAGTC CACTTATCGTTGGACAAGTCCAAAAACCTGGTGTCCCTGAGGCTGACCGG CGTGACCGCCGCGGACTCGGCCATATATTATTGCGCGACAACAAAACACG GGAGGAGGATTTATGGCGTCGTTGCCTTCAAAGAGTGGTTCACCTATTTCT ACATGGACGTCTGGGGCAAAGGGACTTCGGTCACCGTCTCCTCA (SEQ ID NO: 154)
[0377] 4877D15 (PGT-122) gamma heavy chain amino acid sequence: expressed protein with variable region in bold. MKHLWFFLLLVAAPRWVLSQVHLQESGPGLVKPSETLSLTCNVSGTLVR DNYWSWIRQPLGKQPEWIGYVHDSGDTNYNPSLKSRVHLSLDKSKNLVS LRLTGVTAADSAIYYCATTKHGRRIYGVVAFKEWFTYFYMDVWGKGTS VTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTS GVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPK SCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKC KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP
SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 155)
[0378] 4877D15 (PGT-122) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QVHLQESGPGLVKPSETLSLTCNVSGTLVRDNYWSWIRQPLGKQPEWIGYVH DSGDTNYNPSLKSRVHLSLDKSKNLVSLRLTGVTAADSAIYYCATTKHGRRI YGVVAFKEWFTYFYMDVWGKGTSVTVSS (SEQ ID NO: 156)
[0379] 4877D15 (PGT-122) gamma heavy chain Kabat CDRs: CDR 1: DNYWS (SEQ ID NO: 261) CDR 2: YVHDSGDTNYNPSLKS (SEQ ID NO: 157) CDR 3: TKHGRRIYGVVAFKEWFTYFYMDV (SEQ ID NO: 262)
[0380] 4877D15 (PGT-122) gamma heavy chain Chothia CDRs: CDR 1: GTLVRD (SEQ ID NO: 263) CDR 2: YVHDSGDTN (SEQ ID NO: 264) CDR 3: TKHGRRIYGVVAFKEWFTYFYMDV (SEQ ID NO: 262)
[0381] 4877_D15 (PGT-122) lambda light chain nucleotide sequence: coding sequence (variable region in bold) ATGGCCTGGACCGTTCTCCTCCTCGGCCTCCTCTCTCACTGCACAGGCGCG GTGTCTACCTTTGTGTCAGTGGCCCCAGGACAGACGGCCAGGATTACT TGTGGGGAAGAGAGCCTTGGAAGTAGATCTGTTATTTGGTATCAACA GAGGCCAGGCCAGGCCCCTTCATTAATCATCTATAATAATAATGACC GGCCCTCAGGGATTCCTGACCGATTTTCTGGGTCCCCTGGCTCCACT TTTGGGACCACGGCCACCCTGACCATCACCAGTGTCGAAGCCGGGGA TGAGGCCGACTATTATTGTCATATCTGGGATAGTAGACGACCAACCA ATTGGGTCTTCGGCGAAGGGACCACACTGATCGTGTTAGGTCAGCCCA AGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTTCAAG CCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGCC GTGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGTCAAGGCGGGAGTGG AGACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAG CTACCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAAAAGCTACAGCT GCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTAC AGAATGTTCATAG (SEQ ID NO: 158)
[0382] 4877D15 (PGT-122) lambda light chain variable region nucleotide sequence: ACCTTTGTGTCAGTGGCCCCAGGACAGACGGCCAGGATTACTTGTGGGGA AGAGAGCCTTGGAAGTAGATCTGTTATTTGGTATCAACAGAGGCCAGGCC AGGCCCCTTCATTAATCATCTATAATAATAATGACCGGCCCTCAGGGATTC CTGACCGATTTTCTGGGTCCCCTGGCTCCACTTTTGGGACCACGGCCACCC
TGACCATCACCAGTGTCGAAGCCGGGGATGAGGCCGACTATTATTGTCAT ATCTGGGATAGTAGACGACCAACCAATTGGGTCTTCGGCGAAGGGACCAC ACTGATCGTGTTA (SEQ ID NO: 159)
[0383] 4877D15 (PGT-122) lambda light chain amino acid sequence: expressed protein with variable region in bold. MAWTVLLLGLLSHCTGAVSTFVSVAPGQTARITCGEESLGSRSVIWYQQ RPGQAPSLIIYNNNDRPSGIPDRFSGSPGSTFGTTATLTITSVEAGDEADYY CHIWDSRRPTNWVFGEGTTLIVLGQPKAAPSVTLFPPSSEELQANKATLVC LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWK SHKSYSCQVTHEGSTVEKTVAPTECS (SEQ ID NO: 160)
[0384] 4877_Di5 (PGT-122) lambda light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) TFVSVAPGQTARITCGEESLGSRSVIWYQQRPGQAPSLIIYNNNDRPSGIPDRF SGSPGSTFGTTATLTITSVEAGDEADYYCHIWDSRRPTNWVFGEGTTLIVL (SEQ ID NO: 161)
[0385] 4877D15 (PGT-122) lambda light chain Kabat CDRs: CDR 1: GEESLGSRSVI (SEQ ID NO: 162) CDR 2: NNNDRPS (SEQ ID NO: 163) CDR 3: HIWDSRRPTNWV (SEQ ID NO: 164)
[0386] 4877D15 (PGT-122) lambda light chain Chothia CDRs: CDR 1: GEESLGSRSVI (SEQ ID NO: 162) CDR 2: NNNDRPS (SEQ ID NO: 163) CDR 3: HIWDSRRPTNWV (SEQ ID NO: 164)
[0387] 4858P08 (PGT-123) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGAAACACCTGTGGATCTTCCTTCTCCTGGTGGCAACTCCCAGATGGGTC GAGTCCCAGCTGCACCTGCAGGAGTCGGGCCCAGGGCTGGTGAAGCC TCCGGAGACCCTGTCCCTCACGTGTAGTGTGTCTGGCGCCTCCATCA ATGATGCCTATTGGAGTTGGATTCGGCAGTCCCCAGGGAAGCGGCCT GAGTGGGTTGGATATGTCCATCACAGCGGTGACACAAATTATAATCC CTCACTCAAGAGGCGCGTCACGTTTTCATTAGACACGGCCAAGAATG AAGTGTCCCTGAAATTAGTAGACCTGACCGCTGCGGACTCGGCCACA TATTTTTGTGCGCGAGCACTTCACGGGAAGAGGATTTATGGGATAGT TGCCCTCGGAGAGTTGTTCACCTACTTCTACATGGACGTCTGGGGCA AGGGGACTGCGGTCACCGTCTCCTCAGCCTCCACCAAGGGCCCATCGG TCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCC CTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTG
GAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTAC AGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC AGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAA CACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCAC ACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTT CCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTG AGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAA GTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAG CCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCAC CGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCT CCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAA GGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGG AGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTAT CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACA ACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCT ATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTT CTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA GCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 165)
[0388] 4858_P08 (PGT- 123) gamma heavy chain variable region nucleotide sequence: CAGCTGCACCTGCAGGAGTCGGGCCCAGGGCTGGTGAAGCCTCCGGAGA CCCTGTCCCTCACGTGTAGTGTGTCTGGCGCCTCCATCAATGATGCCTATT GGAGTTGGATTCGGCAGTCCCCAGGGAAGCGGCCTGAGTGGGTTGGATAT GTCCATCACAGCGGTGACACAAATTATAATCCCTCACTCAAGAGGCGCGT CACGTTTTCATTAGACACGGCCAAGAATGAAGTGTCCCTGAAATTAGTAG ACCTGACCGCTGCGGACTCGGCCACATATTTTTGTGCGCGAGCACTTCAC GGGAAGAGGATTTATGGGATAGTTGCCCTCGGAGAGTTGTTCACCTACTT CTACATGGACGTCTGGGGCAAGGGGACTGCGGTCACCGTCTCCTCA (SEQ ID NO: 166)
[0389] 4858P08 (PGT-123) gamma heavy chain amino acid sequence: expressed protein with variable region in bold. MKHLWIFLLLVATPRWVESQLHLQESGPGLVKPPETLSLTCSVSGASIND AYWSWIRQSPGKRPEWVGYVHHSGDTNYNPSLKRRVTFSLDTAKNEVS LKLVDLTAADSATYFCARALHGKRIYGIVALGELFTYFYMDVWGKGTA VTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTS GVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPK SCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKC KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 167)
[0390] 4858P08 (PGT-123) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics)
QLHLQESGPGLVKPPETLSLTCSVSGASINDAYWSWIRQSPGKRPEWVGYVH HSGDTNYNPSLKRRVTFSLDTAKNEVSLKLVDLTAADSATYFCARALHGKRI YGIVALGELFTYFYMDVWGKGTAVTVSS (SEQ ID NO: 168)
[0391] 4858_P08 (PGT- 123) gamma heavy chain Kabat CDRs: CDR 1: DAYWS (SEQ ID NO: 169) CDR 2: YVHHSGDTNYNPSLKR (SEQ ID NO: 170) CDR 3: ALHGKRIYGIVALGELFTYFYMDV (SEQ ID NO: 171)
[0392] 4858_P08 (PGT-123) gamma heavy chain Chothia CDRs: CDR 1: GASIND (SEQ ID NO: 172) CDR 2: YVHHSGDTN (SEQ ID NO: 173) CDR 3: ALHGKRIYGIVALGELFTYFYMDV (SEQ ID NO: 171)
[0393] 4858P08 (PGT-123) lambda light chain nucleotide sequence: coding sequence (variable region in bold) ATGGCCTGGACCGTTCTCCTCCTCGGCCTCCTCTCTCACTGCACAGGCTCT CTGGCCTCCTCTATGTCCGTGTCCCCGGGGGAGACGGCCAAGATCTC CTGTGGAAAAGAGAGCATTGGTAGCAGAGCTGTGCAATGGTATCAGC AGAAGCCAGGCCAGCCCCCCTCATTGATTATCTATAATAATCAGGAC CGCCCCGCAGGGGTCCCTGAGCGATTCTCTGCCTCCCCTGACTTCCG TCCTGGGACCACGGCCACCCTGACCATCACCAATGTCGACGCCGAGG ATGAGGCCGACTATTACTGTCATATATATGATGCTAGAGGTGGCACC AATTGGGTCTTCGACAGAGGGACCACACTGACCGTCTTAGGTCAGCCC AAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTTCAA GCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGC CGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGTCAAGGCGGGAGTG GAGACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCA GCTACCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAAAAGCTACAGC TGCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTA CAGAATGTTCATAG (SEQ ID NO: 174)
[0394] 4858_P08 (PGT- 123) lambda light chain variable region nucleotide sequence: TCCTCTATGTCCGTGTCCCCGGGGGAGACGGCCAAGATCTCCTGTGGAAA AGAGAGCATTGGTAGCAGAGCTGTGCAATGGTATCAGCAGAAGCCAGGC CAGCCCCCCTCATTGATTATCTATAATAATCAGGACCGCCCCGCAGGGGT CCCTGAGCGATTCTCTGCCTCCCCTGACTTCCGTCCTGGGACCACGGCCAC CCTGACCATCACCAATGTCGACGCCGAGGATGAGGCCGACTATTACTGTC ATATATATGATGCTAGAGGTGGCACCAATTGGGTCTTCGACAGAGGGACC ACACTGACCGTCTTA (SEQ ID NO: 175)
[0395] 4858P08 (PGT-123) lambda light chain amino acid sequence: expressed protein with variable region in bold.
MAWTVLLLGLLSHCTGSLASSMSVSPGETAKISCGKESIGSRAVQWYQQ KPGQPPSLIIYNNQDRPAGVPERFSASPDFRPGTTATLTITNVDAEDEADY YCHIYDARGGTNWVFDRGTTLTVLGQPKAAPSVTLFPPSSEELQANKATLV CLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQW KSHKSYSCQVTHEGSTVEKTVAPTECS (SEQ ID NO: 176)
[0396] 4858_P08 (PGT- 123) lambda light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) SSMSVSPGETAKISCGKESIGSRA VOWYQQKPGQPPSLIIYNNODRPAGVPER FSASPDFRPGTTATLTITNVDAEDEADYYCHIYDARGGTNWVFDRGTTLTVL (SEQ ID NO: 177)
[0397] 4858_P08 (PGT- 123) lambda light chain Kabat CDRs: CDR 1: GKESIGSRAVQ (SEQ ID NO: 178) CDR 2: NNQDRPA (SEQ ID NO: 179) CDR 3: HIYDARGGTNWV (SEQ ID NO: 180)
[0398] 4858_P08 (PGT- 123) lambda light chain Chothia CDRs: CDR 1: GKESIGSRAVQ (SEQ ID NO: 178) CDR 2: NNQDRPA (SEQ ID NO: 179) CDR 3: HIYDARGGTNWV (SEQ ID NO: 180)
[0399] 5123A06 (PGT-125) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGAAACACCTGTGGTTCTTCTTCCTGCTGGTGGCGGCTCCCAGATGCGTC CTGTCCCAGTCGCAGCTGCAGGAGTCGGGCCCACGACTGGTGGAGGC CTCGGAGACCCTGTCACTCACGTGCAATGTGTCCGGCGAGTCCACTG GTGCCTGTACTTATTTCTGGGGCTGGGTCCGGCAGGCCCCAGGGAAG GGGCTGGAGTGGATCGGGAGTTTGTCCCATTGTCAGAGTTTCTGGGG TTCCGGTTGGACCTTCCACAACCCGTCTCTCAAGAGTCGACTCACGA TTTCACTCGACACGCCCAAGAATCAGGTCTTCCTCAAGCTCACTTCTC TGACTGCCGCGGACACGGCCACTTACTACTGTGCGCGATTCGACGGC GAAGTCTTGGTCTATAATCATTGGCCAAAGCCGGCCTGGGTGGACCT CTGGGGCCGCGGAATACCGGTCACCGTCTCCTCAGCCTCCACCAAGGG CCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCA CAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACG GTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGC TGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCC CTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGC CCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAA AACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGT CAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGA CCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAG
GTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTC CTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAA GGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAG CCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCT TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGA GAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT TCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC AGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 181)
[0400] 5123A06 (PGT-125) gamma heavy chain variable region nucleotide sequence: CAGTCGCAGCTGCAGGAGTCGGGCCCACGACTGGTGGAGGCCTCGGAGA CCCTGTCACTCACGTGCAATGTGTCCGGCGAGTCCACTGGTGCCTGTACTT ATTTCTGGGGCTGGGTCCGGCAGGCCCCAGGGAAGGGGCTGGAGTGGATC GGGAGTTTGTCCCATTGTCAGAGTTTCTGGGGTTCCGGTTGGACCTTCCAC AACCCGTCTCTCAAGAGTCGACTCACGATTTCACTCGACACGCCCAAGAA TCAGGTCTTCCTCAAGCTCACTTCTCTGACTGCCGCGGACACGGCCACTTA CTACTGTGCGCGATTCGACGGCGAAGTCTTGGTCTATAATCATTGGCCAA AGCCGGCCTGGGTGGACCTCTGGGGCCGCGGAATACCGGTCACCGTCTCC TCA (SEQ ID NO: 182)
[0401] 5123A06 (PGT-125) gamma heavy chain amino acid sequence: expressed protein with variable region in bold. MKHLWFFFLLVAAPRCVLSQSQLQESGPRLVEASETLSLTCNVSGESTG ACTYFWGWVRQAPGKGLEWIGSLSHCQSFWGSGWTFHNPSLKSRLTIS LDTPKNQVFLKLTSLTAADTATYYCARFDGEVLVYNHWPKPAWVDLW GRGIPVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK RVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVK GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV FSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 183)
[0402] 5123A06 (PGT-125) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QSQLQESGPRLVEASETLSLTCNVSGESTGACTYFWGWVRQAPGKGLEWIGS LSHCQSFWGSGWTFHNPSLKSRLTISLDTPKNQVFLKLTSLTAADTATYYCA RFDGEVLVYNHWPKPAWVDLWGRGIPVTVSS (SEQ ID NO: 184)
[0403] 5123A06 (PGT-125) gamma heavy chain Kabat CDRs: CDR 1: ACTYFWG (SEQ ID NO: 185)
CDR 2: SLSHCQSFWGSGWTFHNPSLKS (SEQ ID NO: 186) CDR 3: FDGEVLVYNHWPKPAWVDL (SEQ ID NO: 187)
[0404] 5123A06 (PGT-125) gamma heavy chain Chothia CDRs: CDR 1: GESTGACT (SEQ ID NO: 188) CDR 2: SLSHCQSFWGSGWTF (SEQ ID NO: 189) CDR 3: FDGEVLVYNHWPKPAWVDL (SEQ ID NO: 187)
[0405] 5123_A06 (PGT-125) lambda light chain nucleotide sequence: coding sequence (variable region in bold) ATGGCCTGGGCTCTGCTCCTCCTCACCCTCCTCACTCAGGGCACAGGGGC CTGGGCCCAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCC TGGACAGTCAATCACCATCTCCTGCAATGGAACCGCCACTAACTTTGT CTCCTGGTACCAACAATTCCCAGACAAGGCCCCCAAACTCATCATTTT TGGGGTCGATAAGCGCCCCCCCGGTGTCCCCGATCGTTTCTCTGGCT CCCGGTCTGGCACGACGGCCTCCCTTACCGTCTCCCGACTCCAGACT GACGATGAGGCTGTCTATTATTGCGGTTCACTTGTCGGCAACTGGGA TGTGATTTTCGGCGGAGGGACCACCTTGACCGTCCTAGGTCAGCCCAA GGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTTCAAGC CAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGCCG TGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGTCAAGGCGGGAGTGGA GACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAGC TACCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAAAAGCTACAGCTG CCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTACA GAATGTTCATAG (SEQ ID NO: 190)
[0406] 5123A06 (PGT-125) lambda light chain variable region nucleotide sequence: CAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCCTGGACAGTCA ATCACCATCTCCTGCAATGGAACCGCCACTAACTTTGTCTCCTGGTACCAA CAATTCCCAGACAAGGCCCCCAAACTCATCATTTTTGGGGTCGATAAGCG CCCCCCCGGTGTCCCCGATCGTTTCTCTGGCTCCCGGTCTGGCACGACGGC CTCCCTTACCGTCTCCCGACTCCAGACTGACGATGAGGCTGTCTATTATTG CGGTTCACTTGTCGGCAACTGGGATGTGATTTTCGGCGGAGGGACCACCT TGACCGTCCTA (SEQ ID NO: 191)
[0407] 5123A06 (PGT-125) lambda light chain amino acid sequence: expressed protein with variable region in bold. MAWALLLLTLLTQGTGAWAQSALTQPPSASGSPGQSITISCNGTATNFVS WYQQFPDKAPKLIIFGVDKRPPGVPDRFSGSRSGTTASLTVSRLQTDDEA VYYCGSLVGNWDVIFGGGTTLTVLGQPKAAPSVTLFPPSSEELQANKATLV CLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQW KSHKSYSCQVTHEGSTVEKTVAPTECS (SEQ ID NO: 192)
[04081 5123_A06 (PGT-125) lambda light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QSALTQPPSASGSPGQSITISCNGTA TNFVSWYQQFPDKAPKLIIFGVDKRPPG VPDRFSGSRSGTTASLTVSRLQTDDEAVYYCGSLVGNWDVIFGGGTTLTVL (SEQ ID NO: 193)
[04091 5123A06 (PGT-125) lambda light chain Kabat CDRs: CDR 1: NGTATNFVS (SEQ ID NO: 194) CDR 2: GVDKRPP (SEQ ID NO: 195) CDR 3: GSLVGNWDVI (SEQ ID NO: 196)
[0410] 5123A06 (PGT-125) lambda light chain Chothia CDRs: CDR 1: NGTATNFVS (SEQ ID NO: 194) CDR 2: GVDKRPP (SEQ ID NO: 195) CDR 3: GSLVGNWDVI (SEQ ID NO: 196)
[0411] 5141_B17 (PGT-126) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGAAACACCTGTGGTTCTTCCTCCTGCTGGTGGCGGCTCCCAGATGGGTC CTGTCCCAGCCGCAGCTGCAGGAGTCGGGGCCAGGACTGGTGGAGGC TTCGGAGACCCTGTCCCTCACCTGCACTGTGTCCGGCGACTCCACTG CTGCTTGTGACTATTTCTGGGGCTGGGTCCGGCAGCCCCCAGGGAAG GGCCTGGAGTGGATTGGGGGTTTGTCACATTGTGCAGGTTACTACAA TACTGGCTGGACCTACCACAACCCGTCTCTCAAGAGTCGGCTCACGA TTTCACTCGACACCCCCAAGAATCAGGTCTTCCTGAAGTTAAATTCTG TGACCGCCGCGGACACGGCCATTTACTACTGTGCGCGATTCGACGGC GAAGTTTTGGTGTACCACGATTGGCCAAAGCCGGCCTGGGTCGACCT CTGGGGCCGGGGAACTTTGGTCACCGTCTCCTCAGCCTCCACCAAGGG CCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCA CAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACG GTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGC TGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCC CTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGC CCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAA AACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGT CAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGA CCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAG GTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTC CTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAA GGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAG CCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCT
TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGA GAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT TCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC AGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 197)
[0412] 514 1B 17 (PGT- 126) gamma heavy chain variable region nucleotide sequence: CAGCCGCAGCTGCAGGAGTCGGGGCCAGGACTGGTGGAGGCTTCGGAGA CCCTGTCCCTCACCTGCACTGTGTCCGGCGACTCCACTGCTGCTTGTGACT ATTTCTGGGGCTGGGTCCGGCAGCCCCCAGGGAAGGGCCTGGAGTGGATT GGGGGTTTGTCACATTGTGCAGGTTACTACAATACTGGCTGGACCTACCA CAACCCGTCTCTCAAGAGTCGGCTCACGATTTCACTCGACACCCCCAAGA ATCAGGTCTTCCTGAAGTTAAATTCTGTGACCGCCGCGGACACGGCCATTT ACTACTGTGCGCGATTCGACGGCGAAGTTTTGGTGTACCACGATTGGCCA AAGCCGGCCTGGGTCGACCTCTGGGGCCGGGGAACTTTGGTCACCGTCTC CTCA(SEQ ID NO: 198)
[0413] 5141B17 (PGT-126) gamma heavy chain amino acid sequence: expressed protein with variable region in bold. MKHLWFFLLLVAAPRWVLSQPQLQESGPGLVEASETLSLTCTVSGDSTA ACDYFWGWVRQPPGKGLEWIGGLSHCAGYYNTGWTYHNPSLKSRLTIS LDTPKNQVFLKLNSVTAADTAIYYCARFDGEVLVYHDWPKPAWVDLWG RGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK RVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVK GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV FSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 199)
[0414] 5141B17 (PGT-126) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QPQLQESGPGLVEASETLSLTCTVSGDSTAACDYFWGWVRQPPGKGLEWIGG LSHCAGYYNTGWTYHNPSLKSRLTISLDTPKNQVFLKLNSVTAADTAIYYCAR FDGEVLVYHDWPKPAWVDLWGRGTLVTVSS (SEQ ID NO: 200)
[0415] 5141_B17 (PGT-126) gamma heavy chain Kabat CDRs: CDR 1: ACDYFWG (SEQ ID NO: 201) CDR 2: GLSHCAGYYNTGWTYHNPSLKS (SEQ ID NO: 202) CDR 3: FDGEVLVYHDWPKPAWVDL (SEQ ID NO: 203)
[0416] 5141_B17 (PGT-126) gamma heavy chain Chothia CDRs: CDR 1: GDSTAACD (SEQ ID NO: 204)
CDR 2: GLSHCAGYYNTGWTY (SEQ ID NO: 205) CDR 3: FDGEVLVYHDWPKPAWVDL (SEQ ID NO: 203)
[0417] 5141_B17 (PGT-126) lambda light chain nucleotide sequence: coding sequence (variable region in bold) ATGGCCTGGGCTCTGCTCCTCCTCACCCTCCTCACTCAGGGCACAGGGGC CTGGGCCCAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCC TGGACAGTCAATCTCCATCTCCTGCACTGGAACCAGCAATAGGTTTG TCTCCTGGTACCAGCAACACCCAGGCAAGGCCCCCAAACTCGTCATT TATGGGGTCAATAAGCGCCCCTCAGGTGTCCCTGATCGTTTTTCTGG CTCCAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGA CTGACGATGAGGCTGTCTATTACTGCAGCTCACTTGTAGGCAACTGG GATGTGATTTTCGGCGGAGGGACCAAGTTGACCGTCCTGGGTCAGCC CAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTTCA AGCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAG CCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGTCAAGGCGGGAGT GGAGACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGC AGCTACCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAAAAGCTACA GCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCC TACAGAATGTTCATAG (SEQ ID NO: 206)
[0418] 5141_B17 (PGT-126) lambda light chain variable region nucleotide sequence: CAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCCTGGACAGTCA ATCTCCATCTCCTGCACTGGAACCAGCAATAGGTTTGTCTCCTGGTACCAG CAACACCCAGGCAAGGCCCCCAAACTCGTCATTTATGGGGTCAATAAGCG CCCCTCAGGTGTCCCTGATCGTTTTTCTGGCTCCAAGTCTGGCAACACGGC CTCCCTGACCGTCTCTGGGCTCCAGACTGACGATGAGGCTGTCTATTACTG CAGCTCACTTGTAGGCAACTGGGATGTGATTTTCGGCGGAGGGACCAAGT TGACCGTCCTG (SEQ ID NO: 207)
[0419] 5141B17 (PGT-126) lambda light chain amino acid sequence: expressed protein with variable region in bold. MAWALLLLTLLTQGTGAWAQSALTQPPSASGSPGQSISISCTGTSNRFVS WYQQHPGKAPKLVIYGVNKRPSGVPDRFSGSKSGNTASLTVSGLQTDDE AVYYCSSLVGNWDVIFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATL VCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQ WKSHKSYSCQVTHEGSTVEKTVAPTECS (SEQ ID NO: 208)
[0420] 5141_B17 (PGT-126) lambda light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QSALTQPPSASGSPGQSISISCTGTSNRFVSWYQQHPGKAPKLVIYGVNKRPS GVPDRFSGSKSGNTASLTVSGLQTDDEAVYYCSSLVGNWDVIFGGGTKLTVL (SEQ ID NO: 209)
[04211 5141_B17 (PGT-126) lambda light chain Kabat CDRs: CDR 1: TGTSNRFVS (SEQ ID NO: 210) CDR 2: GVNKRPS (SEQ ID NO: 211) CDR 3: SSLVGNWDVI (SEQ ID NO: 212)
[0422] 5141_B17 (PGT-126) lambda light chain Chothia CDRs: CDR 1: TGTSNRFVS (SEQ ID NO: 210) CDR 2: GVNKRPS (SEQ ID NO: 211) CDR 3: SSLVGNWDVI (SEQ ID NO: 212)
[0423] 5147N06 (PGT-130) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGAAACACCTGTGGTTCTTCCTCCTGCTGGTGGCGGCTCCCAGATGGGTC CTGTCCCAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCC TGCGGAGACCCTGTCCCTCACCTGCAGTGTCTCTGGAGAATCTATCA ATACTGGTCATTACTACTGGGGCTGGGTCCGTCAGGTCCCAGGGAAG GGACTTGAGTGGATAGGTCATATCCATTATACGACGGCTGTCCTGCA CAACCCGTCCCTCAAGAGTCGACTCACCATCAAAATTTACACGTTGA GAAACCAGATTACCCTGAGGCTCAGTAATGTGACGGCCGCGGACACG GCCGTCTATCACTGCGTACGATCCGGCGGCGACATCTTATATTATTAT GAGTGGCAAAAGCCGCACTGGTTCTCTCCCTGGGGCCCGGGAATCCA CGTCACCGTCTCGAGCGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTG GCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCT GGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCG CCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGA CTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCAC CCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTG GACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACC GTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCC AAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCG TGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTAC GTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGC AGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAG GACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCC TCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG AGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAG AACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACAT CGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACC ACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTC ACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGT GATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGT CTCCGGGTAAATGA (SEQ ID NO: 213)
[0424] 5147N06 (PGT-130) gamma heavy chain variable region nucleotide sequence:
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTGCGGAGA CCCTGTCCCTCACCTGCAGTGTCTCTGGAGAATCTATCAATACTGGTCATT ACTACTGGGGCTGGGTCCGTCAGGTCCCAGGGAAGGGACTTGAGTGGATA GGTCATATCCATTATACGACGGCTGTCCTGCACAACCCGTCCCTCAAGAG TCGACTCACCATCAAAATTTACACGTTGAGAAACCAGATTACCCTGAGGC TCAGTAATGTGACGGCCGCGGACACGGCCGTCTATCACTGCGTACGATCC GGCGGCGACATCTTATATTATTATGAGTGGCAAAAGCCGCACTGGTTCTC TCCCTGGGGCCCGGGAATCCACGTCACCGTCTCGAGC (SEQ ID NO:214)
[0425] 5147N06 (PGT-130) gamma heavy chain amino acid sequence: expressed protein with variable region in bold. MKHLWFFLLLVAAPRWVLSQVQLQESGPGLVKPAETLSLTCSVSGESIN TGHYYWGWVRQVPGKGLEWIGHIHYTTAVLHNPSLKSRLTIKIYTLRN QITLRLSNVTAADTAVYHCVRSGGDILYYYEWQKPHWFSPWGPGIHVTV SSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVH TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCD KTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKF NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALHNHYTQKSLSLSPGK (SEQ ID NO: 215)
[0426] 5147N06 (PGT-130) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QVQLQESGPGLVKPAETLSLTCSVSGESINTGHYYWGWVRQVPGKGLEWIG HIHYTTA VLHNPSLKSRLTIKIYTLRNQITLRLSNVTAADTAVYHCVRSGGDIL YYYEWOKPHWFSPWGPGIHVTVSS (SEQ ID NO: 216)
[0427] 5147N06 (PGT-130) gamma heavy chain Kabat CDRs: CDR 1: TGHYYWG (SEQ ID NO: 217) CDR 2: HIHYTTAVLHNPSLKS (SEQ ID NO: 218) CDR 3: SGGDILYYYEWQKPHWFSP (SEQ ID NO: 219)
[0428] 5147N06 (PGT-130) gamma heavy chain Chothia CDRs: CDR 1: GESINTGH (SEQ ID NO: 220) CDR 2: HIHYTTAVL (SEQ ID NO: 221) CDR 3: SGGDILYYYEWQKPHWFSP (SEQ ID NO: 219)
[0429] 5147_N06 (PGT-130) lambda light chain nucleotide sequence: coding sequence (variable region in bold) ATGGCCTGGGCTCTGCTCCTCCTCACCCTCCTCACTCAGGGCACAGGGTCC TGGGCCCAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCTT
GGACAGTCAGTCACCATCTCCTGCAATGGAACCAGCAGTGACATTGG CGGTTGGAATTTTGTCTCCTGGTATCAACAGTTCCCGGGCAGAGCCC CCAGACTCATTATTTTTGAGGTCAATAAGCGGCCCTCAGGGGTCCCT GGTCGCTTCTCTGGCTCCAAGTCGGGCAATTCGGCCTCCCTGACCGT CTCTGGGCTCCAGTCTGACGATGAGGGTCAATATTTCTGCAGTTCAC TTTTCGGCAGGTGGGATGTTGTTTTTGGCGGGGGGACCAAGCTGACC GTCCTAGGTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTC CTCTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTG ACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCC GTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACA AGTACGCGGCCAGCAGCTACCTGAGCCTGACGCCTGAGCAGTGGAAGTCC CACAAAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGA AGACAGTGGCCCCTACAGAATGTTCATAG (SEQ ID NO: 222)
[0430] 5147N06 (PGT-130) lambda light chain variable region nucleotide sequence: CAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCTTGGACAGTCA GTCACCATCTCCTGCAATGGAACCAGCAGTGACATTGGCGGTTGGAATTT TGTCTCCTGGTATCAACAGTTCCCGGGCAGAGCCCCCAGACTCATTATTTT TGAGGTCAATAAGCGGCCCTCAGGGGTCCCTGGTCGCTTCTCTGGCTCCA AGTCGGGCAATTCGGCCTCCCTGACCGTCTCTGGGCTCCAGTCTGACGAT GAGGGTCAATATTTCTGCAGTTCACTTTTCGGCAGGTGGGATGTTGTTTTT GGCGGGGGGACCAAGCTGACCGTCCTA (SEQ ID NO: 223)
[0431] 5147N06 (PGT-130) lambda light chain amino acid sequence: expressed protein with variable region in bold. MAWALLLLTLLTQGTGSWAQSALTQPPSASGSLGQSVTISCNGTSSDIGG WNFVSWYQQFPGRAPRLIIFEVNKRPSGVPGRFSGSKSGNSASLTVSGLQ SDDEGQYFCSSLFGRWDVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQAN KATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSL TPEQWKSHKSYSCQVTHEGSTVEKTVAPTECS (SEQ ID NO: 224)
[04321 5147_N06 (PGT-130) lambda light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QSALTQPPSASGSLGQSVTISCNGTSSDIGGWNFVSWYQQFPGRAPRLIIFEVN KRPSGVPGRFSGSKSGNSASLTVSGLQSDDEGQYFCSSLFGR WDVVFGGGTK LTVL (SEQ ID NO: 225)
[0433] 5147N06 (PGT-130) lambda light chain Kabat CDRs: CDR 1: NGTSSDIGGWNFVS (SEQ ID NO: 226) CDR 2: EVNKRPS (SEQ ID NO: 227) CDR 3: SSLFGRWDVV (SEQ ID NO: 228)
[0434] 5147N06 (PGT-130) lambda light chain Chothia CDRs:
CDR 1: NGTSSDIGGWNFVS (SEQ ID NO: 226) CDR 2: EVNKRPS (SEQ ID NO: 227) CDR 3: SSLFGRWDVV (SEQ ID NO: 228)
[0435] 5343_B08 (PGT-135) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGAAACACCTGTGGTTCTTCCTCTTGCTGGTGGCGGCTCCCAGATGGGTC CTGTCCCAGTTGCAGATGCAGGAGTCGGGCCCAGGACTGGTGAAGCC TTCGGAGACCCTGTCTCTGAGTTGCACTGTCTCTGGTGACTCCATAA GGGGTGGCGAGTGGGGCGATAAAGATTATCATTGGGGCTGGGTCCG CCACTCAGCAGGAAAGGGCCTGGAGTGGATTGGGAGTATCCATTGGA GGGGGACCACCCACTACAAAGAGTCCCTCAGGAGAAGAGTGAGTATG TCGATCGACACGTCCAGGAATTGGTTCTCCCTGAGGCTGGCCTCTGT GACCGCCGCGGACACGGCCGTCTACTTTTGTGCGAGACACCGACATC ATGATGTTTTCATGTTGGTCCCTATTGCGGGCTGGTTCGACGTCTGG GGCCCGGGAGTCCAGGTCACCGTCTCGAGCGCCTCCACCAAGGGCCCA TCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGC GGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGT CGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTC CTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCC AGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAG CAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACT CACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGT CTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCC TGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCA AGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAA GCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTC ACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGG TCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCC AAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGG AGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTC TATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGA ACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTC CTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACG TCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAG AAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 229)
[0436] 5343_B08 (PGT-135) gamma heavy chain variable region nucleotide sequence: CAGTTGCAGATGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGA CCCTGTCTCTGAGTTGCACTGTCTCTGGTGACTCCATAAGGGGTGGCGAGT GGGGCGATAAAGATTATCATTGGGGCTGGGTCCGCCACTCAGCAGGAAA GGGCCTGGAGTGGATTGGGAGTATCCATTGGAGGGGGACCACCCACTACA AAGAGTCCCTCAGGAGAAGAGTGAGTATGTCGATCGACACGTCCAGGAA TTGGTTCTCCCTGAGGCTGGCCTCTGTGACCGCCGCGGACACGGCCGTCT ACTTTTGTGCGAGACACCGACATCATGATGTTTTCATGTTGGTCCCTATTG
CGGGCTGGTTCGACGTCTGGGGCCCGGGAGTCCAGGTCACCGTCTCGAGC (SEQ ID NO: 230)
[0437] 5343_B08 (PGT-135) gamma heavy chain amino acid sequence: expressed protein with variable region in bold. MKHLWFFLLLVAAPRWVLSQLQMQESGPGLVKPSETLSLSCTVSGDSIR GGEWGDKDYHWGWVRHSAGKGLEWIGSIHWRGTTHYKESLRRRVSM SIDTSRNWFSLRLASVTAADTAVYFCARHRHHDVFMLVPIAGWFDVWGP GVQVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSG ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKR VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVK GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV FSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 231)
[0438] 5343_B08 (PGT-135) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QLQMQESGPGLVKPSETLSLSCTVSGDSIRGGEWGDKDYHWGWVRHSAGK GLEWIGSIHWRGTTHYKESLRRRVSMSIDTSRNWFSLRLASVTAADTAVYFC ARHRHHDVFMLVPIAGWFDVWGPGVQVTVSS (SEQ ID NO: 232)
[0439] 5343_B08 (PGT-135) gamma heavy chain Kabat CDRs: CDR 1: GGEWGDKDYHWG (SEQ ID NO: 233) CDR 2: SIHWRGTTHYKESLRR (SEQ ID NO: 234) CDR 3: HRHHDVFMLVPIAGWFDV (SEQ ID NO: 235)
[0440] 5343B08 (PGT-135) gamma heavy chain Chothia CDRs: CDR 1: GDSIRGGEWGDKD (SEQ ID NO: 236) CDR 2: SIHWRGTTH (SEQ ID NO: 237) CDR 3: HRHHDVFMLVPIAGWFDV (SEQ ID NO: 235)
[0441] 5343_B08 (PGT-135) kappa light chain nucleotide sequence: coding sequence (variable region in bold) ATGGAAACCCCAGCTCAGCTTCTCTTCCTCCTGCTACTCTGGCTCCCAGAT ACCACTGGAGAAATTGTGATGACGCAGTCTCCCGACACCCTGTCTGTC TCTCCAGGGGAGACAGTCACACTCTCCTGCAGGGCCAGTCAGAATAT TAACAAGAATTTAGCCTGGTACCAATACAAACCTGGCCAGTCTCCCA GGCTCGTAATTTTTGAAACATATAGCAAGATCGCTGCTTTCCCTGCCA GGTTCGTTGCCAGTGGTTCTGGGACAGAGTTCACTCTCACCATCAAC AACATGCAGTCTGAAGATGTTGCAGTTTATTACTGTCAACAATATGAA GAGTGGCCTCGGACGTTCGGGCAAGGGACCAAGGTGGATATCAAACG
TACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTT GAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAG AGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAAC TCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCC TCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGT CTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGA GCTTCAACAGGGGAGAGTGTTAG(SEQ ID NO: 238)
[0442] 5343B08 (PGT-135) kappa light chain variable region nucleotide sequence: GAAATTGTGATGACGCAGTCTCCCGACACCCTGTCTGTCTCTCCAGGGGA GACAGTCACACTCTCCTGCAGGGCCAGTCAGAATATTAACAAGAATTTAG CCTGGTACCAATACAAACCTGGCCAGTCTCCCAGGCTCGTAATTTTTGAA ACATATAGCAAGATCGCTGCTTTCCCTGCCAGGTTCGTTGCCAGTGGTTCT GGGACAGAGTTCACTCTCACCATCAACAACATGCAGTCTGAAGATGTTGC AGTTTATTACTGTCAACAATATGAAGAGTGGCCTCGGACGTTCGGGCAAG GGACCAAGGTGGATATCAAA (SEQ ID NO: 239)
[0443] 5343B08 (PGT-135) kappa light chain amino acid sequence: expressed protein with variable region in bold. METPAQLLFLLLLWLPDTTGEIVMTQSPDTLSVSPGETVTLSCRASQNIN KNLAWYQYKPGQSPRLVIFETYSKIAAFPARFVASGSGTEFTLTINNMQS EDVAVYYCQQYEEWPRTFGQGTKVDIKRTVAAPSVFIFPPSDEQLKSGTAS VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 240)
[0444] 5343B08 (PGT-135) kappa light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) EIVMTQSPDTLSVSPGETVTLSCRASONINKNLAWYQYKPGQSPRLVIFETYS KIAAFPARFVASGSGTEFTLTINNMQSEDVAVYYCOOYEEWPRTFGQGTKVD IK (SEQ ID NO: 242)
[0445] 5343B08 (PGT-135) kappa light chain Kabat CDRs: CDR 1: RASQNINKNLA (SEQ ID NO: 243) CDR 2: ETYSKIA (SEQ ID NO: 244) CDR 3: QQYEEWPRT (SEQ ID NO: 245)
[0446] 5343_B08 (PGT-135) kappa light chain Chothia CDRs: CDR 1: RASQNINKNLA (SEQ ID NO: 243) CDR 2: ETYSKIA (SEQ ID NO: 244) CDR 3: QQYEEWPRT (SEQ ID NO: 245)
[04471 5344_E16 (PGT-135) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGAAACACCTGTGGTTCTTCCTCTTGCTGGTGGCGGCTCCCAGATGGGTC CTGTCCCAGTTGCAGATGCAGGAGTCGGGCCCAGGACTGGTGAAGCC TTCGGAGACCCTGTCTCTGAGTTGCACTGTCTCTGGTGACTCCATAA GGGGTGGCGAGTGGGGCGATAAAGATTATCATTGGGGCTGGGTCCG CCACTCAGCAGGAAAGGGCCTGGAGTGGATTGGGAGTATCCATTGGA GGGGGACCACCCACTACAAAGAGTCCCTCAGGAGAAGAGTGAGTATG TCGATCGACACGTCCAGGAATTGGTTCTCCCTGAGGCTGGCCTCTGT GACCGCCGCGGACACGGCCGTCTACTTTTGTGCGAGACACCGACATC ATGATGTTTTCATGTTGGTCCCTATTGCGGGCTGGTTCGACGTCTGG GGCCCGGGAGTCCAGGTCACCGTCTCGAGCGCCTCCACCAAGGGCCCA TCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGC GGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGT CGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTC CTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCC AGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAG CAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACT CACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGT CTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCC TGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCA AGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAA GCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTC ACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGG TCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCC AAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGG AGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTC TATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGA ACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTC CTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACG TCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAG AAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 229)
[0448] 5344_E16 (PGT-135) gamma heavy chain variable region nucleotide sequence: CAGTTGCAGATGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGA CCCTGTCTCTGAGTTGCACTGTCTCTGGTGACTCCATAAGGGGTGGCGAGT GGGGCGATAAAGATTATCATTGGGGCTGGGTCCGCCACTCAGCAGGAAA GGGCCTGGAGTGGATTGGGAGTATCCATTGGAGGGGGACCACCCACTACA AAGAGTCCCTCAGGAGAAGAGTGAGTATGTCGATCGACACGTCCAGGAA TTGGTTCTCCCTGAGGCTGGCCTCTGTGACCGCCGCGGACACGGCCGTCT ACTTTTGTGCGAGACACCGACATCATGATGTTTTCATGTTGGTCCCTATTG CGGGCTGGTTCGACGTCTGGGGCCCGGGAGTCCAGGTCACCGTCTCGAGC (SEQ ID NO: 230)
[04491 5344_E16 (PGT-135) gamma heavy chain amino acid sequence: expressed protein with variable region in bold. MKHLWFFLLLVAAPRWVLSQLQMQESGPGLVKPSETLSLSCTVSGDSIR GGEWGDKDYHWGWVRHSAGKGLEWIGSIHWRGTTHYKESLRRRVSM SIDTSRNWFSLRLASVTAADTAVYFCARHRHHDVFMLVPIAGWFDVWGP GVQVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSG ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKR VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVK GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV FSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 231)
[0450] 5344_E16 (PGT-135) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QLQMQESGPGLVKPSETLSLSCTVSGDSIRGGEWGDKDYHWGWVRHSAGK GLEWIGSIHWRGTTHYKESLRRRVSMSIDTSRNWFSLRLASVTAADTAVYFC ARHRHHDVFMLVPIAGWFDVWGPGVQVTVSS (SEQ ID NO: 232)
[0451] 5344_E16 (PGT-135) gamma heavy chain Kabat CDRs: CDR 1: GGEWGDKDYHWG (SEQ ID NO: 233) CDR 2: SIHWRGTTHYKESLRR (SEQ ID NO: 234) CDR 3: HRHHDVFMLVPIAGWFDV (SEQ ID NO: 235)
[0452] 5344_E16 (PGT-135) gamma heavy chain Chothia CDRs: CDR 1: GDSIRGGEWGDKD (SEQ ID NO: 236) CDR 2: SIHWRGTTH (SEQ ID NO: 237) CDR 3: HRHHDVFMLVPIAGWFDV (SEQ ID NO: 235)
[0453] 5344_E16 (PGT-135) kappa light chain nucleotide sequence: coding sequence (variable region in bold) ATGGAAACCCCAGCTCAGCTTCTCTTCCTCCTGCTACTCTGGCTCCCAGAT ACCACTGGAGAAATTGTGATGACGCAGTCTCCCGACACCCTGTCTGTC TCTCCAGGGGAGACAGTCACACTCTCCTGCAGGGCCAGTCAGAATAT TAACAAGAATTTAGCCTGGTACCAATACAAACCTGGCCAGTCTCCCA GGCTCGTAATTTTTGAAACATATAGCAAGATCGCTGCTTTCCCTGCCA GGTTCGTTGCCAGTGGTTCTGGGACAGAGTTCACTCTCACCATCAAC AACATGCAGTCTGAAGATGTTGCAGTTTATTACTGTCAACAATATGAA GAGTGGCCTCGGACGTTCGGGCAAGGGACCAAGGTGGATATCAAACG TACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTT GAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAG AGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAAC
TCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCC TCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGT CTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGA GCTTCAACAGGGGAGAGTGTTAG (SEQ ID NO: 238)
[0454] 5344E16 (PGT-135) kappa light chain variable region nucleotide sequence: GAAATTGTGATGACGCAGTCTCCCGACACCCTGTCTGTCTCTCCAGGGGA GACAGTCACACTCTCCTGCAGGGCCAGTCAGAATATTAACAAGAATTTAG CCTGGTACCAATACAAACCTGGCCAGTCTCCCAGGCTCGTAATTTTTGAA ACATATAGCAAGATCGCTGCTTTCCCTGCCAGGTTCGTTGCCAGTGGTTCT GGGACAGAGTTCACTCTCACCATCAACAACATGCAGTCTGAAGATGTTGC AGTTTATTACTGTCAACAATATGAAGAGTGGCCTCGGACGTTCGGGCAAG GGACCAAGGTGGATATCAAA (SEQ ID NO: 239)
[0455] 5344_E16 (PGT-135) kappa light chain amino acid sequence: expressed protein with variable region in bold. METPAQLLFLLLLWLPDTTGEIVMTQSPDTLSVSPGETVTLSCRASQNIN KNLAWYQYKPGQSPRLVIFETYSKIAAFPARFVASGSGTEFTLTINNMQS EDVAVYYCQQYEEWPRTFGQGTKVDIKRTVAAPSVFIFPPSDEQLKSGTAS VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 240)
[0456] 5344E16 (PGT-135) kappa light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) EIVMTQSPDTLSVSPGETVTLSCRASONINKNLAWYQYKPGQSPRLVIFETYS KIAAFPARFVASGSGTEFTLTINNMQSEDVAVYYCQQYEEWPRTFGQGTKVD IK (SEQ ID NO: 242)
[0457] 5344_E16 (PGT-135) kappa light chain Kabat CDRs: CDR 1: RASQNINKNLA (SEQ ID NO: 243) CDR 2: ETYSKIA (SEQ ID NO: 244) CDR 3: QQYEEWPRT (SEQ ID NO: 245)
[0458] 5344lE16 (PGT-135) kappa light chain Chothia CDRs: CDR 1: RASQNINKNLA (SEQ ID NO: 243) CDR 2: ETYSKIA (SEQ ID NO: 244) CDR 3: QQYEEWPRT (SEQ ID NO: 245)
[0459] 5329C19 (PGT-136) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold)
ATGAAACACCTGTGGTTCTTCCTCCTGCTAGTGGCGGCTCCCAGATGGGTC CTGTCGCAGCTGCAGTTGCAGGAATCGGGCCCAGGACTGGTGAAGCC TTCGGAGACCCTGTCCCTGACTTGCACAGTTTCTGGTGGCTCCATGA GGGGCACCGACTGGGGCGAGAATGACTTCCACTACGGCTGGATCCG CCAGTCCTCCGCAAAGGGGCTGGAGTGGATTGGGAGCATCCATTGGA GGGGGAGGACCACCCACTACAAGACGTCCTTCAGGAGTCGGGCCAC CTTGTCGATAGACACGTCCAATAATCGCTTCTCCCTGACGTTTAGTTT TGTGACCGCCGCGGACACGGCCGTCTACTATTGTGCGAGACATAAAT ATCATGATATTTTCAGGGTGGTCCCTGTTGCGGGCTGGTTCGACCCC TGGGGCCAGGGATTACTGGTCACCGTCTCGAGCGCCTCCACCAAGGGC CCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCAC AGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGG TGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCT GTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCC CTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGC CCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAA AACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGT CAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGA CCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAG GTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTC CTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAA GGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAG CCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCT TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGA GAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT TCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC AGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 246)
[0460] 5329_C19 (PGT-136) gamma heavy chain variable region nucleotide sequence: CAGCTGCAGTTGCAGGAATCGGGCCCAGGACTGGTGAAGCCTTCGGAGA CCCTGTCCCTGACTTGCACAGTTTCTGGTGGCTCCATGAGGGGCACCGACT GGGGCGAGAATGACTTCCACTACGGCTGGATCCGCCAGTCCTCCGCAAAG GGGCTGGAGTGGATTGGGAGCATCCATTGGAGGGGGAGGACCACCCACT ACAAGACGTCCTTCAGGAGTCGGGCCACCTTGTCGATAGACACGTCCAAT AATCGCTTCTCCCTGACGTTTAGTTTTGTGACCGCCGCGGACACGGCCGTC TACTATTGTGCGAGACATAAATATCATGATATTTTCAGGGTGGTCCCTGTT GCGGGCTGGTTCGACCCCTGGGGCCAGGGATTACTGGTCACCGTCTCGAG C (SEQ ID NO: 247)
[0461] 5329_C19 (PGT-136) gamma heavy chain amino acid sequence: expressed protein with variable region in bold.
MKHLWFFLLLVAAPRWVLSQLQLQESGPGLVKPSETLSLTCTVSGGSM RGTDWGENDFHYGWIRQSSAKGLEWIGSIHWRGRTTHYKTSFRSRATLS IDTSNNRFSLTFSFVTAADTAVYYCARHKYHDIFRVVPVAGWFDPWGQG LLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVE PKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 248)
[0462] 5329_C19 (PGT-136) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QLQLQESGPGLVKPSETLSLTCTVSGGSMRGTDWGENDFHYGWIRQSSAKG LEWIGSIHWRGRTTHYKTSFRSRATLSIDTSNNRFSLTFSFVTAADTAVYYCA RHKYHDIFRVVPVAGWFDPWGQGLLVTVSS (SEQ ID NO: 249)
[0463] 5329_C19 (PGT-136) gamma heavy chain Kabat CDRs: CDR 1: GTDWGENDFHYG (SEQ ID NO: 250) CDR 2: SIHWRGRTTHYKTSFRS (SEQ ID NO: 251) CDR 3: HKYHDIFRVVPVAGWFDP (SEQ ID NO: 252)
[0464] 5329_C19 (PGT-136) gamma heavy chain Chothia CDRs: CDR 1: GGSMRGTDWGEND (SEQ ID NO: 253) CDR 2: SIHWRGRTTH (SEQ ID NO: 254) CDR 3: HKYHDIFRVVPVAGWFDP (SEQ ID NO: 252)
[04651 5329_C19 (PGT-136) kappa light chain nucleotide sequence: coding sequence (variable region in bold) ATGGAAACCCCAGCTCAGCTTCTCTTCCTCCTGCTACTCTGGCTCCCAGAT AGCACTGGAGAAATAGTGATGACGCAGTCTCCACCCACCCTGTCTGTG TCTCCAGGGGAAACAGCCACACTCTCCTGTAGGGCCAGTCAGAATGT TAAGAATAATTTAGCCTGGTACCAGCTGAAACCTGGCCAGGCTCCCA GGCTCCTCATCTTTGATGCGTCCAGCAGGGCCGGTGGTATTCCTGAC AGGTTCAGTGGCAGCGGTTATGGGACAGACTTCACTCTCACCGTCAA CAGTGTGCAGTCCGAAGATTTTGGAGATTATTTTTGTCAGCAATATGA AGAGTGGCCTCGGACGTTCGGCCAAGGGACCAAGGTGGATATCAAAC GTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGT TGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCA GAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAA CTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGC CTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAG
TCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAG AGCTTCAACAGGGGAGAGTGTTAG (SEQ ID NO: 255)
[0466] 5329_C19 (PGT-136) kappa light chain variable region nucleotide sequence: GAAATAGTGATGACGCAGTCTCCACCCACCCTGTCTGTGTCTCCAGGGGA AACAGCCACACTCTCCTGTAGGGCCAGTCAGAATGTTAAGAATAATTTAG CCTGGTACCAGCTGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTTTGAT GCGTCCAGCAGGGCCGGTGGTATTCCTGACAGGTTCAGTGGCAGCGGTTA TGGGACAGACTTCACTCTCACCGTCAACAGTGTGCAGTCCGAAGATTTTG GAGATTATTTTTGTCAGCAATATGAAGAGTGGCCTCGGACGTTCGGCCAA GGGACCAAGGTGGATATCAAA (SEQ ID NO: 256)
[0467] 5329_C19 (PGT-136) kappa light chain amino acid sequence: expressed protein with variable region in bold. METPAQLLFLLLLWLPDSTGEIVMTQSPPTLSVSPGETATLSCRASQNVK NNLAWYQLKPGQAPRLLIFDASSRAGGIPDRFSGSGYGTDFTLTVNSVQS EDFGDYFCQQYEEWPRTFGQGTKVDIKRTVAAPSVFIFPPSDEQLKSGTAS VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 257)
[0468] 5329_C19 (PGT-136) kappa light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) EIVMTQSPPTLSVSPGETATLSCRASONVKNNLAWYQLKPGQAPRLLIFDASS RAGGIPDRFSGSGYGTDFTLTVNSVQSEDFGDYFCOOYEEWPRTFGQGTKVD IK (SEQ ID NO: 258)
[0469] 5329_C19 (PGT-136) kappa light chain Kabat CDRs: CDR 1: RASQNVKNNLA (SEQ ID NO: 259) CDR 2: DASSRAG (SEQ ID NO: 260) CDR 3: QQYEEWPRT (SEQ ID NO: 245)
[0470] 5329_C19 (PGT-136) kappa light chain Chothia CDRs: CDR 1: RASQNVKNNLA (SEQ ID NO: 259) CDR 2: DASSRAG (SEQ ID NO: 260) CDR 3: QQYEEWPRT (SEQ ID NO: 245)
[0471] 5366P21 (PGT-136) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGAAACACCTGTGGTTCTTCCTCCTGCTAGTGGCGGCTCCCAGATGGGTC CTGTCGCAGCTGCAGTTGCAGGAATCGGGCCCAGGACTGGTGAAGCC TTCGGAGACCCTGTCCCTGACTTGCACAGTTTCTGGTGGCTCCATGA
GGGGCACCGACTGGGGCGAGAATGACTTCCACTACGGCTGGATCCG CCAGTCCTCCGCAAAGGGGCTGGAGTGGATTGGGAGCATCCATTGGA GGGGGAGGACCACCCACTACAAGACGTCCTTCAGGAGTCGGGCCAC CTTGTCGATAGACACGTCCAATAATCGCTTCTCCCTGACGTTTAGTTT TGTGACCGCCGCGGACACGGCCGTCTACTATTGTGCGAGACATAAAT ATCATGATATTTTCAGGGTGGTCCCTGTTGCGGGCTGGTTCGACCCC TGGGGCCAGGGATTACTGGTCACCGTCTCGAGCGCCTCCACCAAGGGC CCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCAC AGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGG TGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCT GTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCC CTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGC CCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAA AACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGT CAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGA CCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAG GTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTC CTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAA GGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAG CCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCT TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGA GAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT TCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC AGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 246)
[0472] 5366P21 (PGT-136) gamma heavy chain variable region nucleotide sequence: CAGCTGCAGTTGCAGGAATCGGGCCCAGGACTGGTGAAGCCTTCGGAGA CCCTGTCCCTGACTTGCACAGTTTCTGGTGGCTCCATGAGGGGCACCGACT GGGGCGAGAATGACTTCCACTACGGCTGGATCCGCCAGTCCTCCGCAAAG GGGCTGGAGTGGATTGGGAGCATCCATTGGAGGGGGAGGACCACCCACT ACAAGACGTCCTTCAGGAGTCGGGCCACCTTGTCGATAGACACGTCCAAT AATCGCTTCTCCCTGACGTTTAGTTTTGTGACCGCCGCGGACACGGCCGTC TACTATTGTGCGAGACATAAATATCATGATATTTTCAGGGTGGTCCCTGTT GCGGGCTGGTTCGACCCCTGGGGCCAGGGATTACTGGTCACCGTCTCGAG C (SEQ ID NO: 247)
[0473] 5366P21 (PGT-136) gamma heavy chain amino acid sequence: expressed protein with variable region in bold. MKHLWFFLLLVAAPRWVLSQLQLQESGPGLVKPSETLSLTCTVSGGSM RGTDWGENDFHYGWIRQSSAKGLEWIGSIHWRGRTTHYKTSFRSRATLS IDTSNNRFSLTFSFVTAADTAVYYCARHKYHDIFRVVPVAGWFDPWGQG LLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL
TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVE PKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 248)
[0474] 5366P21 (PGT-136) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QLQLQESGPGLVKPSETLSLTCTVSGGSMRGTDWGENDFHYGWIRQSSAKG LEWIGSIHWRGRTTHYKTSFRSRATLSIDTSNNRFSLTFSFVTAADTAVYYCA RHKYHDIFRVVPVAGWFDPWGQGLLVTVSS (SEQ ID NO: 249)
[0475] 5366P21 (PGT-136) gamma heavy chain Kabat CDRs: CDR 1: GTDWGENDFHYG (SEQ ID NO: 250) CDR 2: SIHWRGRTTHYKTSFRS (SEQ ID NO: 251) CDR 3: HKYHDIFRVVPVAGWFDP (SEQ ID NO: 252)
[04761 5366P21 (PGT-136) gamma heavy chain Chothia CDRs: CDR 1: GGSMRGTDWGEND (SEQ ID NO: 253) CDR 2: SIHWRGRTTH (SEQ ID NO: 254) CDR 3: HKYHDIFRVVPVAGWFDP (SEQ ID NO: 252)
[0477] 5366_P21 (PGT-136) kappa light chain nucleotide sequence: coding sequence (variable region in bold) ATGGAAACCCCAGCTCAGCTTCTCTTCCTCCTGCTACTCTGGCTCCCAGAT AGCACTGGAGAAATAGTGATGACGCAGTCTCCACCCACCCTGTCTGTG TCTCCAGGGGAAACAGCCACACTCTCCTGTAGGGCCAGTCAGAATGT TAAGAATAATTTAGCCTGGTACCAGCTGAAACCTGGCCAGGCTCCCA GGCTCCTCATCTTTGATGCGTCCAGCAGGGCCGGTGGTATTCCTGAC AGGTTCAGTGGCAGCGGTTATGGGACAGACTTCACTCTCACCGTCAA CAGTGTGCAGTCCGAAGATTTTGGAGATTATTTTTGTCAGCAATATGA AGAGTGGCCTCGGACGTTCGGCCAAGGGACCAAGGTGGATATCAAAC GTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGT TGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCA GAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAA CTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGC CTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAG TCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAG AGCTTCAACAGGGGAGAGTGTTAG(SEQ ID NO: 255)
[0478] 5366P21 (PGT-136) kappa light chain variable region nucleotide sequence:
GAAATAGTGATGACGCAGTCTCCACCCACCCTGTCTGTGTCTCCAGGGGA AACAGCCACACTCTCCTGTAGGGCCAGTCAGAATGTTAAGAATAATTTAG CCTGGTACCAGCTGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTTTGAT GCGTCCAGCAGGGCCGGTGGTATTCCTGACAGGTTCAGTGGCAGCGGTTA TGGGACAGACTTCACTCTCACCGTCAACAGTGTGCAGTCCGAAGATTTTG GAGATTATTTTTGTCAGCAATATGAAGAGTGGCCTCGGACGTTCGGCCAA GGGACCAAGGTGGATATCAAA (SEQ ID NO: 256)
[0479] 5366P21 (PGT-136) kappa light chain amino acid sequence: expressed protein with variable region in bold. METPAQLLFLLLLWLPDSTGEIVMTQSPPTLSVSPGETATLSCRASQNVK NNLAWYQLKPGQAPRLLIFDASSRAGGIPDRFSGSGYGTDFTLTVNSVQS EDFGDYFCQQYEEWPRTFGQGTKVDIKRTVAAPSVFIFPPSDEQLKSGTAS VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 257)
[0480] 5366P21 (PGT-136) kappa light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) EIVMTQSPPTLSVSPGETATLSCRASONVKNNLAWYQLKPGQAPRLLIFDASS RAGGIPDRFSGSGYGTDFTLTVNSVQSEDFGDYFCOOYEEWPRTFGQGTKVD IK (SEQ ID NO: 258)
[0481] 5366P21 (PGT-136) kappa light chain Kabat CDRs: CDR 1: RASQNVKNNLA (SEQ ID NO: 259) CDR 2: DASSRAG (SEQ ID NO: 260) CDR 3: QQYEEWPRT (SEQ ID NO: 245)
[0482] 5366P21 (PGT-136) kappa light chain Chothia CDRs: CDR 1: RASQNVKNNLA (SEQ ID NO: 259) CDR 2: DASSRAG (SEQ ID NO: 260) CDR 3: QQYEEWPRT (SEQ ID NO: 245)
[0483] 4964G22 (PGT-141) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGGACTGGATTTGGAGGATCCTCTTCTTGGTGGCAGCAGTTGCAAGTGC CCACTCGCAGGTGCAGCTGGTGCAGTCTGGGCCGGAGGTGAAGAAGC CTGGGTCCTCAGTGAAGGTCTCCTGCAAGGCCTCTGGAAACACCTTC AGTAAATATGATGTCCACTGGGTACGACAGGCCACTGGACAGGGGCT TGAATGGGTGGGATGGATGAGTCATGAGGGTGATAAGACAGAATCTG CACAGAGATTTAAGGGCCGAGTCACCTTCACGAGGGACACTTCCGCA AGCACAGCCTACATGGAACTGCGCGGCCTGACATCTGACGACACGGC CATCTATTATTGTACGAGAGGCTCAAAACATCGTTTGCGAGACTACGT
TCTCTACGATGACTACGGCTTAATTAATTATCAAGAGTGGAATGACTA CCTTGAATTTTTGGACGTCTGGGGCCATGGAACCGCGGTCACCGTCT CCTCAGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCC AAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACT ACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGC GGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTC AGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACAT CTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTT GAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAA TGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCA TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT GTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGC CTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTG GGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTG CTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAA GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG CTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA TGA (SEQ ID NO: 273)
[0484] 4964G22 (PGT- 141) gamma heavy chain variable region nucleotide sequence: CAGGTGCAGCTGGTGCAGTCTGGGCCGGAGGTGAAGAAGCCTGGGT CCTCAGTGAAGGTCTCCTGCAAGGCCTCTGGAAACACCTTCAGTAAA TATGATGTCCACTGGGTACGACAGGCCACTGGACAGGGGCTTGAATG GGTGGGATGGATGAGTCATGAGGGTGATAAGACAGAATCTGCACAGA GATTTAAGGGCCGAGTCACCTTCACGAGGGACACTTCCGCAAGCACA GCCTACATGGAACTGCGCGGCCTGACATCTGACGACACGGCCATCTA TTATTGTACGAGAGGCTCAAAACATCGTTTGCGAGACTACGTTCTCTA CGATGACTACGGCTTAATTAATTATCAAGAGTGGAATGACTACCTTGA ATTTTTGGACGTCTGGGGCCATGGAACCGCGGTCACCGTCTCCTCA (SEQ ID NO: 274)
[0485] 4964G22 (PGT-141) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MDWIWRILFLVAAVASAHSQVQLVQSGPEVKKPGSSVKVSCKASGNTFSKY DVHWVRQATGQGLEWVGWMSHEGDKTESAQRFKGRVTFTRDTSASTA YMELRGLTSDDTAIYYCTRGSKHRLRDYVLYDDYGLINYQEWNDYLEFL DVWGHGTAVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT KVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQD
WLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVS LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 275)
[0486] 4964G22 (PGT-141) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QVQLVQSGPEVKKPGSSVKVSCKASGNTFSKYDVHWVRQATGQGLEWVG WMSHEGDKTESAQRFKGRVTFTRDTSASTAYMELRGLTSDDTAIYYCTRGS KHRLRDYVLYDDYGLINYQEWNDYLEFLDVWGHGTAVTVSS (SEQ ID NO: 276)
[0487] 4964G22 (PGT-141) gamma heavy chain Kabat CDRs: CDR 1: KYDVH (SEQ ID NO: 277) CDR 2: WMSHEGDKTESAQRFKG (SEQ ID NO: 278) CDR 3: GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279)
[0488] 4964_G22 (PGT-141) gamma heavy chain Chothia CDRs: CDR 1: GNTFSK (SEQ ID NO: 280) CDR 2: WMSHEGDKTE (SEQ ID NO: 281) CDR 3: GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279)
[0489] 4964_G22 (PGT-141) kappa light chain nucleotide sequence: coding sequence (variable region in bold) ATGAGGCTCCCTGCTCAGCTCCTGGGGCTGCTAATGCTCTGGGTCTCTGGA TCCAGTGCGGATACTGTCGTGACTCAGTCTCCACTCTCCCTGCCCGTC ACCCCTGGAGAGGCGGCCTCCATGTCCTGTTCGTCGACTCAGAGCCT CCGGCATAGTAATGGAGCCAACTATTTGGCTTGGTATCAGCACAAAC CGGGGCAGTCTCCACGACTCCTAATCCGTTTAGGTTCTCAACGGGCC TCCGGGGTCCCTGACAGATTCAGTGGCAGTGGATCAGGCACTCATTT TACACTGAAAATCAGTAGAGTGGAGGCTGAAGATGCTGCAATTTATT ATTGCATGCAAGGTCTGAACCGTCCCTGGACGTTCGGCAAGGGGACC AAGTTGGAAATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCC GCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCT GAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAAC GCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCA AGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGA CTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGA GCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG(SEQ ID NO: 282)
[04901 4964G22 (PGT-141) kappa light chain variable region nucleotide sequence:
GATACTGTCGTGACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGG AGAGGCGGCCTCCATGTCCTGTTCGTCGACTCAGAGCCTCCGGCATA GTAATGGAGCCAACTATTTGGCTTGGTATCAGCACAAACCGGGGCAG TCTCCACGACTCCTAATCCGTTTAGGTTCTCAACGGGCCTCCGGGGT CCCTGACAGATTCAGTGGCAGTGGATCAGGCACTCATTTTACACTGA AAATCAGTAGAGTGGAGGCTGAAGATGCTGCAATTTATTATTGCATG CAAGGTCTGAACCGTCCCTGGACGTTCGGCAAGGGGACCAAGTTGGA AATCAAA (SEQ ID NO: 283)
[0491] 4964G22 (PGT-141) kappa light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MRLPAQLLGLLMLWVSGSSADTVVTQSPLSLPVTPGEAASMSCSSTQSLRHS NGANYLAWYQHKPGQSPRLLIRLGSQRASGVPDRFSGSGSGTHFTLKISR VEAEDAAIYYCMQGLNRPWTFGKGTKLEIKRTVAAPSVFIFPPSDEQLKSG TASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 284)
[0492] 4964G22 (PGT-141) kappa light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) DTVVTQSPLSLPVTPGEAASMSCSSTOSLRHSNGANYLAWYQHKPGQSPRLLI RLGSQRASGVPDRFSGSGSGTHFTLKISRVEAEDAAIYYCMOGLNRPWTFGK GTKLEIK (SEQ ID NO: 285)
[0493] 4964G22 (PGT-141) kappa light chain Kabat CDRs: CDR 1: SSTQSLRHSNGANYLA (SEQ ID NO: 286) CDR 2: LGSQRAS (SEQ ID NO: 287) CDR 3: MQGLNRPWT (SEQ ID NO: 288)
[0494] 4964G22 (PGT-141) kappa light chain Chothia CDRs: CDR 1: SSTQSLRHSNGANYLA (SEQ ID NO: 286) CDR 2: LGSQRAS (SEQ ID NO: 287) CDR 3: MQGLNRPWT (SEQ ID NO: 288)
[0495] 4993K13 (PGT-141) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGGACTGGATTTGGAGGATCCTCTTCTTGGTGGCAGCAGTTGCAAGTGC CCACTCGCAGGTGCAGCTGGTGCAGTCTGGGCCTGAGGTGAAGAAGC CTGGGTCCTCAGTGAAGGTCTCCTGCAAGGCCTCTGGAAACACCTTC AGTAAATATGATGTCCACTGGGTACGGCAGGCCACTGGACAGGGGCT TGAATGGGTGGGATGGATGAGTCATGAGGGTGATAAGACAGAATCTG CACAGAGATTTAAGGGCCGAGTCACCTTCACGAGGGACACTTCCGCA AGCACAGCCTACATGGAACTGCGCGGCCTGACATCTGACGACACGGC
CATTTATTATTGTACGAGAGGCTCAAAACATCGCTTGCGAGACTATGT TCTCTACGATGACTACGGCTTAATTAATTATCAAGAGTGGAATGACTA CCTTGAATTTTTGGACGTCTGGGGCCATGGAACCGCGGTCACCGTCT CCTCAGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCC AAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACT ACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGC GGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTC AGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACAT CTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTT GAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAA TGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCA TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT GTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGC CTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTG GGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTG CTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAA GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG CTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA TGA (SEQ ID NO: 289)
[0496] 4993K13 (PGT-141) gamma heavy chain variable region nucleotide sequence: CAGGTGCAGCTGGTGCAGTCTGGGCCTGAGGTGAAGAAGCCTGGGT CCTCAGTGAAGGTCTCCTGCAAGGCCTCTGGAAACACCTTCAGTAAA TATGATGTCCACTGGGTACGGCAGGCCACTGGACAGGGGCTTGAATG GGTGGGATGGATGAGTCATGAGGGTGATAAGACAGAATCTGCACAGA GATTTAAGGGCCGAGTCACCTTCACGAGGGACACTTCCGCAAGCACA GCCTACATGGAACTGCGCGGCCTGACATCTGACGACACGGCCATTTA TTATTGTACGAGAGGCTCAAAACATCGCTTGCGAGACTATGTTCTCTA CGATGACTACGGCTTAATTAATTATCAAGAGTGGAATGACTACCTTGA ATTTTTGGACGTCTGGGGCCATGGAACCGCGGTCACCGTCTCCTCA(S EQ ID NO: 290)
[0497] 4993K13 (PGT-141) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MDWIWRILFLVAAVASAHSQVQLVQSGPEVKKPGSSVKVSCKASGNTFSKY DVHWVRQATGQGLEWVGWMSHEGDKTESAQRFKGRVTFTRDTSASTA YMELRGLTSDDTAIYYCTRGSKHRLRDYVLYDDYGLINYQEWNDYLEFL DVWGHGTAVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT KVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV
VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQD WLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVS LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 275)
[0498] 4993K13 (PGT-141) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QVQLVQSGPEVKKPGSSVKVSCKASGNTFSKYDVHWVRQATGQGLEWVG WMSHEGDKTESAQRFKGRVTFTRDTSASTAYMELRGLTSDDTAIYYCTRGS KHRLRDYVLYDDYGLINYOEWNDYLEFLDVWGHGTAVTVSS (SEQ ID NO: 276)
[0499] 4993K13 (PGT-141) gamma heavy chain Kabat CDRs: CDR 1: KYDVH (SEQ ID NO: 277) CDR 2: WMSHEGDKTESAQRFKG (SEQ ID NO: 278) CDR 3: GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279)
[0500] 4993K13 (PGT-141) gamma heavy chain Chothia CDRs: CDR 1: GNTFSK (SEQ ID NO: 280) CDR 2: WMSHEGDKTE (SEQ ID NO: 281) CDR 3: GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279)
[0501] 4993_K13 (PGT-141) kappa light chain nucleotide sequence: coding sequence (variable region in bold) ATGAGGCTCCCTGCTCAGCTCCTGGGGCTGCTAATGCTCTGGGTCTCTGGA TCCAGTGCGGATACTGTCGTGACTCAGTCTCCACTCTCCCTGCCCGTC ACCCCTGGAGAGGCGGCCTCCATGTCCTGTTCGTCGACTCAGAGCCT CCGGCATAGTAATGGAGCCAACTATTTGGCTTGGTATCAGCACAAAC CGGGGCAGTCTCCACGACTCCTAATCCGTTTAGGTTCTCAACGGGCC TCCGGGGTCCCTGACAGATTCAGTGGCAGTGGATCAGGCACTCATTT TACACTGAAAATCAGTAGAGTGGAGGCTGAAGATGCTGCAATTTATT ATTGCATGCAAGGTCTGAACCGTCCCTGGACGTTCGGCAAGGGGACC AAGTTGGAAATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCC GCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCT GAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAAC GCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCA AGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGA CTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGA GCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG(SEQ ID NO: 282)
[0502] 4993K13 (PGT-141) kappa light chain variable region nucleotide sequence:
GATACTGTCGTGACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGG AGAGGCGGCCTCCATGTCCTGTTCGTCGACTCAGAGCCTCCGGCATA GTAATGGAGCCAACTATTTGGCTTGGTATCAGCACAAACCGGGGCAG TCTCCACGACTCCTAATCCGTTTAGGTTCTCAACGGGCCTCCGGGGT CCCTGACAGATTCAGTGGCAGTGGATCAGGCACTCATTTTACACTGA AAATCAGTAGAGTGGAGGCTGAAGATGCTGCAATTTATTATTGCATG CAAGGTCTGAACCGTCCCTGGACGTTCGGCAAGGGGACCAAGTTGGA AATCAAA(SEQ ID NO: 283)
[0503] 4993K13 (PGT-141) kappa light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MRLPAQLLGLLMLWVSGSSADTVVTQSPLSLPVTPGEAASMSCSSTQSLRHS NGANYLAWYQHKPGQSPRLLIRLGSQRASGVPDRFSGSGSGTHFTLKISR VEAEDAAIYYCMQGLNRPWTFGKGTKLEIKRTVAAPSVFIFPPSDEQLKSG TASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 284)
[0504] 4993K13 (PGT-141) kappa light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) DTVVTQSPLSLPVTPGEAASMSCSSTOSLRHSNGANYLAWYQHKPGQSPRLLI RLGSQRASGVPDRFSGSGSGTHFTLKISRVEAEDAAIYYCMOGLNRPWTFGK GTKLEIK (SEQ ID NO: 285)
[0505] 4993K13 (PGT-141) kappa light chain Kabat CDRs: CDR 1: SSTQSLRHSNGANYLA (SEQ ID NO: 286) CDR 2: LGSQRAS (SEQ ID NO: 287) CDR 3: MQGLNRPWT (SEQ ID NO: 288)
[0506] 4993K13 (PGT-141) kappa light chain Chothia CDRs: CDR 1: SSTQSLRHSNGANYLA (SEQ ID NO: 286) CDR 2: LGSQRAS (SEQ ID NO: 287) CDR 3: MQGLNRPWT (SEQ ID NO: 288)
[0507] 4995E20 (PGT-142) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGGACTGGATTTGGAGGATCCTCTTCTTGGTGGCAGCAGTTGCAAGTGC CCACTCGCAGGTGCAGCTGGTGCAGTCTGGGCCTGAGGTGAAGAAGC CTGGGTCCTCAGTGAAGGTCTCCTGCAAGGCCTCTGGAAACACCTTC AGTAAATATGATGTCCACTGGGTACGACAGGCCACTGGACAGGGGCT TGAATGGGTGGGATGGATTAGTCATGAGCGTGATAAGACAGAATCTG CACAGAGATTTAAGGGCCGAGTCACCTTCACGAGGGACACTTCCGCA ACCACAGCCTACATGGAACTGCGCGGCCTGACATCTGACGACACGGC
CATTTATTATTGTACGAGAGGCTCAAAACATCGCTTGCGAGACTACGT TCTCTACGATGACTACGGCTTAATTAATTATCAAGAGTGGAATGACTA CCTTGAATTTTTGGACGTCTGGGGCCATGGAACCGCGGTCACCGTCT CCTCAGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCC AAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACT ACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGC GGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTC AGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACAT CTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTT GAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAA TGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCA TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT GTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGC CTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTG GGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTG CTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAA GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG CTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA TGA (SEQ ID NO: 314)
[0508] 4995E20 (PGT-142) gamma heavy chain variable region nucleotide sequence: CAGGTGCAGCTGGTGCAGTCTGGGCCTGAGGTGAAGAAGCCTGGGT CCTCAGTGAAGGTCTCCTGCAAGGCCTCTGGAAACACCTTCAGTAAA TATGATGTCCACTGGGTACGACAGGCCACTGGACAGGGGCTTGAATG GGTGGGATGGATTAGTCATGAGCGTGATAAGACAGAATCTGCACAGA GATTTAAGGGCCGAGTCACCTTCACGAGGGACACTTCCGCAACCACA GCCTACATGGAACTGCGCGGCCTGACATCTGACGACACGGCCATTTA TTATTGTACGAGAGGCTCAAAACATCGCTTGCGAGACTACGTTCTCTA CGATGACTACGGCTTAATTAATTATCAAGAGTGGAATGACTACCTTGA ATTTTTGGACGTCTGGGGCCATGGAACCGCGGTCACCGTCTCCTCA (SEQ ID NO: 315)
[0509] 4995E20 (PGT-142) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MDWIWRILFLVAAVASAHSQVQLVQSGPEVKKPGSSVKVSCKASGNTFSKY DVHWVRQATGQGLEWVGWISHERDKTESAQRFKGRVTFTRDTSATTAY MELRGLTSDDTAIYYCTRGSKHRLRDYVLYDDYGLINYQEWNDYLEFLD VWGHGTAVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTK VDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVV
VDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLT CLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQ QGNVFSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 291)
[0510] 4995E20 (PGT-142) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QVQLVQSGPEVKKPGSSVKVSCKASGNTFSKYDVHWVRQATGQGLEWVG WISHERDKTESAQRFKGRVTFTRDTSATTAYMELRGLTSDDTAIYYCTRGSK HRLRDYVLYDDYGLINYOEWNDYLEFLDVWGHGTAVTVSS (SEQ ID NO: 292)
[0511] 4995E20 (PGT-142) gamma heavy chain Kabat CDRs: CDR 1: KYDVH (SEQ ID NO: 277) CDR 2: WISHERDKTESAQRFKG (SEQ ID NO: 293) CDR 3: GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279)
[0512] 4995E20 (PGT-142) gamma heavy chain Chothia CDRs: CDR 1: GNTFSK (SEQ ID NO: 280) CDR 2: WISHERDKTE (SEQ ID NO: 294) CDR 3: GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279)
[0513] 4995_E20 (PGT-142) kappa light chain nucleotide sequence: coding sequence (variable region in bold) ATGAGGCTCCCTGCTCAGCTCCTGGGGCTGCTAATGCTCTGGGTCTCTGGA TCCAGTGCGGATACTGTCGTGACTCAGTCTCCACTCTCCCTGCCCGTC ACCCCTGGAGAGGCGGCCTCCATGTCCTGTTCGTCGACTCAGAGCCT CCGGCATAGTAATGGAGCCAACTATTTGGCTTGGTATCAGCACAAAC CGGGGCAGTCTCCACGACTCCTAATCCGTTTAGGTTCTCAACGGGCC TCCGGGGTCCCTGACAGATTCAGTGGCAGTGGATCAGGCACTCATTT TACACTGAAAATCAGTAGAGTGGAGGCTGAAGATGCTGCAATTTATT ATTGCATGCAAGGTCTGAACCGTCCCTGGACGTTCGGCAAGGGGACC AAGTTGGAAATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCC GCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCT GAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAAC GCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCA AGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGA CTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGA GCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG(SEQ ID NO: 282)
[0514] 4995E20 (PGT-142) kappa light chain variable region nucleotide sequence:
GATACTGTCGTGACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGG AGAGGCGGCCTCCATGTCCTGTTCGTCGACTCAGAGCCTCCGGCATA GTAATGGAGCCAACTATTTGGCTTGGTATCAGCACAAACCGGGGCAG TCTCCACGACTCCTAATCCGTTTAGGTTCTCAACGGGCCTCCGGGGT CCCTGACAGATTCAGTGGCAGTGGATCAGGCACTCATTTTACACTGA AAATCAGTAGAGTGGAGGCTGAAGATGCTGCAATTTATTATTGCATG CAAGGTCTGAACCGTCCCTGGACGTTCGGCAAGGGGACCAAGTTGGA AATCAAA (SEQ ID NO: 283)
[0515] 4995E20 (PGT-142) kappa light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MRLPAQLLGLLMLWVSGSSADTVVTQSPLSLPVTPGEAASMSCSSTQSLRHS NGANYLAWYQHKPGQSPRLLIRLGSQRASGVPDRFSGSGSGTHFTLKISR VEAEDAAIYYCMQGLNRPWTFGKGTKLEIKRTVAAPSVFIFPPSDEQLKSG TASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 284)
[0516] 4995E20 (PGT-142) kappa light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) DTVVTQSPLSLPVTPGEAASMSCSSTOSLRHSNGANYLAWYQHKPGQSPRLLI RLGSQRASGVPDRFSGSGSGTHFTLKISRVEAEDAAIYYCMOGLNRPWTFGK GTKLEIK (SEQ ID NO: 285)
[0517] 4995E20 (PGT-142) kappa light chain Kabat CDRs: CDR 1: SSTQSLRHSNGANYLA (SEQ ID NO: 286) CDR 2: LGSQRAS (SEQ ID NO: 287) CDR 3: MQGLNRPWT (SEQ ID NO: 288)
[0518] 4995E20 (PGT-142) kappa light chain Chothia CDRs: CDR 1: SSTQSLRHSNGANYLA (SEQ ID NO: 286) CDR 2: LGSQRAS (SEQ ID NO: 287) CDR 3: MQGLNRPWT (SEQ ID NO: 288)
[0519] 4980N08 (PGT-143) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGGACTGGATTTGGAGGATCCTCTTCTTGGTGGCAGCAGTTGCAAGTGC CCACGCGCAGGTGCAGCTGGAGCAGTCTGGGGCTGAGGTGAAGAAGC CTGGGTCCTCAGTGAAGGTCTCCTGCAAGGCCTCTGGAAACACCTTC AGTAAATATGATGTCCACTGGGTACGACAGGCCACTGGACAGGGGCT TGAATGGGTGGGATGGATGAGTCATGAGGGTGATAAGACAGAATCTG CACAGAGATTTAAGGGGCGAGTCACCTTCACGAGGGACACTTCCGCA AGCACAGCCTACATGGAACTGCGCGGCCTGACATCTGACGACACGGC
CATTTATTATTGTACGAGAGGTTCAAAACATCGCTTGCGAGACTACGT TCTCTACGATGACTACGGCTTAATTAATTATCAAGAGTGGAATGACTA CCTTGAATTTTTGGACGTCTGGGGCCATGGAACCGCGGTCACCGTCT CCTCAGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCC AAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACT ACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGC GGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTC AGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACAT CTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTT GAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAA TGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCA TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT GTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGC CTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTG GGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTG CTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAA GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG CTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA TGA (SEQ ID NO: 295)
[0520] 4980N08 (PGT-143) gamma heavy chain variable region nucleotide sequence: CAGGTGCAGCTGGAGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGT CCTCAGTGAAGGTCTCCTGCAAGGCCTCTGGAAACACCTTCAGTAAA TATGATGTCCACTGGGTACGACAGGCCACTGGACAGGGGCTTGAATG GGTGGGATGGATGAGTCATGAGGGTGATAAGACAGAATCTGCACAGA GATTTAAGGGGCGAGTCACCTTCACGAGGGACACTTCCGCAAGCACA GCCTACATGGAACTGCGCGGCCTGACATCTGACGACACGGCCATTTA TTATTGTACGAGAGGTTCAAAACATCGCTTGCGAGACTACGTTCTCTA CGATGACTACGGCTTAATTAATTATCAAGAGTGGAATGACTACCTTGA ATTTTTGGACGTCTGGGGCCATGGAACCGCGGTCACCGTCTCCTCA (SEQ ID NO: 296)
[0521] 4980N08 (PGT-143) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MDWIWRILFLVAAVASAHAQVQLEQSGAEVKKPGSSVKVSCKASGNTFSKY DVHWVRQATGQGLEWVGWMSHEGDKTESAQRFKGRVTFTRDTSASTA YMELRGLTSDDTAIYYCTRGSKHRLRDYVLYDDYGLINYQEWNDYLEFL DVWGHGTAVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT KVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV
VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQD WLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVS LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 297)
[0522] 4980N08 (PGT-143) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QVQLEQSGAEVKKPGSSVKVSCKASGNTFSKYDVHWVRQATGQGLEWVG WMSHEGDKTESAQRFKGRVTFTRDTSASTAYMELRGLTSDDTAIYYCTRGS KHRLRDYVLYDDYGLINYOEWNDYLEFLDVWGHGTAVTVSS (SEQ ID NO: 298)
[0523] 4980N08 (PGT-143) gamma heavy chain Kabat CDRs: CDR 1: KYDVH (SEQ ID NO: 277) CDR 2: WMSHEGDKTESAQRFKG (SEQ ID NO: 278) CDR 3: GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279)
[0524] 4980N08 (PGT-143) gamma heavy chain Chothia CDRs: CDR 1: GNTFSK (SEQ ID NO: 280) CDR 2: WMSHEGDKTE (SEQ ID NO: 281) CDR 3: GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279)
[0525] 4980_N08 (PGT-143) kappa light chain nucleotide sequence: coding sequence (variable region in bold) ATGAGGCTCCCTGCTCAGCTCCTGGGGCTGCTAATGCTCTGGGTCTCTGGA TCCAGTGCGGATACTGTCGTGACTCAGTCTCCACTCTCCCTGCCCGTC ACCCCTGGAGAGGCGGCCTCCATGTCCTGTACGTCGACTCAGAGCCT CCGTCATAGTAATGGAGCCAACTATTTGGCTTGGTACCAGCACAAAC CAGGGCAGTCTCCACGACTCCTAATCCGTTTAGGTTCTCAACGGGCC TCCGGGGTCCCTGACAGATTCAGTGGCAGTGGATCAGGCACTCATTT TACACTGAAAATCAGTCGAGTGGAGCCTGAAGATGCTGCAATTTATT ATTGCATGCAAGGTCTGAACCGTCCCTGGACGTTCGGCAAGGGGACC AAGTTGGAAATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCC GCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCT GAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAAC GCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCA AGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGA CTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGA GCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG (SEQ ID NO: 299)
[0526] 4980N08 (PGT-143) kappa light chain variable region nucleotide sequence:
GATACTGTCGTGACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGG AGAGGCGGCCTCCATGTCCTGTACGTCGACTCAGAGCCTCCGTCATA GTAATGGAGCCAACTATTTGGCTTGGTACCAGCACAAACCAGGGCAG TCTCCACGACTCCTAATCCGTTTAGGTTCTCAACGGGCCTCCGGGGT CCCTGACAGATTCAGTGGCAGTGGATCAGGCACTCATTTTACACTGA AAATCAGTCGAGTGGAGCCTGAAGATGCTGCAATTTATTATTGCATG CAAGGTCTGAACCGTCCCTGGACGTTCGGCAAGGGGACCAAGTTGGA AATCAAA (SEQ ID NO: 300)
[0527] 4980N08 (PGT-143) kappa light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MRLPAQLLGLLMLWVSGSSADTVVTQSPLSLPVTPGEAASMSCTSTQSLRHS NGANYLAWYQHKPGQSPRLLIRLGSQRASGVPDRFSGSGSGTHFTLKISR VEPEDAAIYYCMQGLNRPWTFGKGTKLEIKRTVAAPSVFIFPPSDEQLKSG TASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 301)
[0528] 4980N08 (PGT-143) kappa light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) DTVVTQSPLSLPVTPGEAASMSCTSTOSLRHSNGANYLAWYQHKPGQSPRLLI RLGSQRASGVPDRFSGSGSGTHFTLKISRVEPEDAAIYYCMOGLNRPWTFGK GTKLEIK (SEQ ID NO: 302)
[0529] 4980N08 (PGT-143) kappa light chain Kabat CDRs: CDR 1: TSTQSLRHSNGANYLA (SEQ ID NO: 303) CDR 2: LGSQRAS (SEQ ID NO: 287) CDR 3: MQGLNRPWT (SEQ ID NO: 288)
[0530] 4980N08 (PGT-143) kappa light chain Chothia CDRs: CDR 1: TSTQSLRHSNGANYLA (SEQ ID NO: 303) CDR 2: LGSQRAS (SEQ ID NO: 287) CDR 3: MQGLNRPWT (SEQ ID NO: 288)
[0531] 4970K22 (PGT-144) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGGACTGGATTTGGAGGATCCTCTTCTTGGTGGCAGCAGTTGCAAGTGC CCACTCGCAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGC CTGGGTCCTCAGTGAAGGTCTCCTGCAAGGCCTCTGGAAACACCTTC AGGAAATATGATGTCCACTGGGTACGACAGGCCACTGGACAGGGGCT TGAATGGGTGGGATGGATGAGTCATGAGGGTGATAAGACAGAATCTG CACAGAGATTTAAGGGCCGAGTCTCTTTCACGAGGGACAATTCCGCA AGCACAGCCTACATTGAACTGCGCGGCCTGACATCTGACGACACGGC
CATTTATTATTGTACCGGAGGCTCAAAACATCGCTTGCGAGACTACGT TCTCTACGATGATTACGGCCTAATAAATCAGCAAGAGTGGAATGACT ACCTTGAATTTTTGGACGTCTGGGGCCATGGAACCGCGGTCACCGTC TCCTCAGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTC CAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACT ACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGC GGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTC AGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACAT CTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTT GAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACC TGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGAC GTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAA TGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCA TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT GTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGC CTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTG GGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTG CTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAA GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG CTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA TGA (SEQ ID NO: 304)
[0532] 4970K22 (PGT-144) gamma heavy chain variable region nucleotide sequence: CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGT CCTCAGTGAAGGTCTCCTGCAAGGCCTCTGGAAACACCTTCAGGAAA TATGATGTCCACTGGGTACGACAGGCCACTGGACAGGGGCTTGAATG GGTGGGATGGATGAGTCATGAGGGTGATAAGACAGAATCTGCACAGA GATTTAAGGGCCGAGTCTCTTTCACGAGGGACAATTCCGCAAGCACA GCCTACATTGAACTGCGCGGCCTGACATCTGACGACACGGCCATTTA TTATTGTACCGGAGGCTCAAAACATCGCTTGCGAGACTACGTTCTCTA CGATGATTACGGCCTAATAAATCAGCAAGAGTGGAATGACTACCTTG AATTTTTGGACGTCTGGGGCCATGGAACCGCGGTCACCGTCTCCTCA (SEQ ID NO: 305)
[0533] 4970K22 (PGT-144) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MDWIWRILFLVAAVASAHSQVQLVQSGAEVKKPGSSVKVSCKASGNTFRKY DVHWVRQATGQGLEWVGWMSHEGDKTESAQRFKGRVSFTRDNSASTA YIELRGLTSDDTAIYYCTGGSKHRLRDYVLYDDYGLINQQEWNDYLEFL DVWGHGTAVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT KVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV
VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQD WLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVS LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 306)
[0534] 4970K22 (PGT-144) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QVQLVQSGAEVKKPGSSVKVSCKASGNTFRKYDVHWVRQATGQGLEWVG WMSHEGDKTESAQRFKGRVSFTRDNSASTAYIELRGLTSDDTAIYYCTGGSK HRLRDYVLYDDYGLINOOEWNDYLEFLDVWGHGTAVTVSS (SEQ ID NO: 307)
[0535] 4970K22 (PGT-144) gamma heavy chain Kabat CDRs: CDR 1: KYDVH (SEQ ID NO: 277) CDR 2: WMSHEGDKTESAQRFKG (SEQ ID NO: 278) CDR 3: GSKHRLRDYVLYDDYGLINQQEWNDYLEFLDV (SEQ ID NO: 308)
[0536] 4970K22 (PGT-144) gamma heavy chain Chothia CDRs: CDR 1: GNTFRK (SEQ ID NO: 309) CDR 2: WMSHEGDKTE (SEQ ID NO: 281) CDR 3: GSKHRLRDYVLYDDYGLINQQEWNDYLEFLDV (SEQ ID NO: 308)
[0537] 4970_K22 (PGT-144) kappa light chain nucleotide sequence: coding sequence (variable region in bold) ATGAGGCTCCCTGCTCAGCTCCTGGGGCTGCTAATGCTCTGGGTCTCTGGA TCCAGTGCGGATACTGTCGTGACTCAGTCTCCACTCTCCCTGTCCGTC ACCCCTGGAGAGGCGGCCTCCATGTCCTGTACGTCGACTCAGAGCCT CCGGCATAGTAATGGAGCCAACTATTTGGCTTGGTACCAGCACAAAC CAGGGCAGTCTCCACGACTCCTAATCCGTTTAGGTTCTCAACGGGCC TCCGGGGTCCCTGACAGATTCAGTGGCAGTGGATCAGGCACTCATTT TACACTGAAAATCAGTAGAGTGGAGGCTGACGATGCTGCAATTTATT ATTGCATGCAAGGTCTGAACCGTCCCTGGACGTTCGGCAAGGGGACC AAGTTGGAGATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCC GCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCT GAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAAC GCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCA AGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGA CTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGA GCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG (SEQ ID NO: 310)
[0538] 4970K22 (PGT-144) kappa light chain variable region nucleotide sequence:
GATACTGTCGTGACTCAGTCTCCACTCTCCCTGTCCGTCACCCCTGGA GAGGCGGCCTCCATGTCCTGTACGTCGACTCAGAGCCTCCGGCATAG TAATGGAGCCAACTATTTGGCTTGGTACCAGCACAAACCAGGGCAGT CTCCACGACTCCTAATCCGTTTAGGTTCTCAACGGGCCTCCGGGGTC CCTGACAGATTCAGTGGCAGTGGATCAGGCACTCATTTTACACTGAA AATCAGTAGAGTGGAGGCTGACGATGCTGCAATTTATTATTGCATGC AAGGTCTGAACCGTCCCTGGACGTTCGGCAAGGGGACCAAGTTGGAG ATCAAA (SEQ ID NO: 311)
[0539] 4970K22 (PGT-144) kappa light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MRLPAQLLGLLMLWVSGSSADTVVTQSPLSLSVTPGEAASMSCTSTQSLRHS NGANYLAWYQHKPGQSPRLLIRLGSQRASGVPDRFSGSGSGTHFTLKISR VEADDAAIYYCMQGLNRPWTFGKGTKLEIKRTVAAPSVFIFPPSDEQLKSG TASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 312)
[0540] 4970K22 (PGT-144) kappa light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) DTVVTQSPLSLSVTPGEAASMSCTSTOSLRHSNGANYLAWYQHKPGQSPRLLI RLGSQRASGVPDRFSGSGSGTHFTLKISRVEADDAAIYYCMOGLNRPWTFGK GTKLEIK (SEQ ID NO: 313)
[0541] 4970K22 (PGT-144) kappa light chain Kabat CDRs: CDR 1: TSTQSLRHSNGANYLA (SEQ ID NO: 303) CDR 2: LGSQRAS (SEQ ID NO: 287) CDR 3: MQGLNRPWT (SEQ ID NO: 288)
[0542] 4970K22 (PGT-144) kappa light chain Chothia CDRs: CDR 1: TSTQSLRHSNGANYLA (SEQ ID NO: 303) CDR 2: LGSQRAS (SEQ ID NO: 287) CDR 3: MQGLNRPWT (SEQ ID NO: 288)
[0543] The 4838_L06 (PGT-121) antibody includes a heavy chain variable region (SEQ ID NO: 79), encoded by the nucleic acid sequence shown in SEQ ID NO: 63, and a light chain variable region (SEQ ID NO: 149) encoded by the nucleic acid sequence shown in SEQ ID NO: 147.
[0544] The heavy chain CDRs of the 4838_L06 (PGT-121) antibody have the following sequences per Kabat definition: DSYWS (SEQ ID NO: 90), YVHKSGDTNYSPSLKS (SEQ ID NO: 265), and TLHGRRIYGIVAFNEWFTYFYMDV (SEQ ID NO: 143). The light chain CDRs of the 4838L06 (PGT-121) antibody have the following sequences per Kabat definition: GEKSLGSRAVQ (SEQ ID NO: 150), NNQDRPS (SEQ ID NO: 151), and HIWDSRVPTKWV (SEQ ID NO: 152).
[0545] The heavy chain CDRs of the 4838_L06 (PGT-121) antibody have the following sequences per Chothia definition: GASISD (SEQ ID NO: 144), YVHKSGDTN (SEQ ID NO: 145), and TLHGRRIYGIVAFNEWFTYFYMDV (SEQ ID NO: 143). The light chain CDRs of the 4838_L06 (PGT-121) antibody have the following sequences per Chothia definition: GEKSLGSRAVQ (SEQ ID NO: 150), NNQDRPS (SEQ ID NO: 151), and HIWDSRVPTKWV (SEQ ID NO: 152).
[0546] The 4873_E03 (PGT-121) antibody includes a heavy chain variable region (SEQ ID NO: 79), encoded by the nucleic acid sequence shown in SEQ ID NO: 63, and a light chain variable region (SEQ ID NO: 149) encoded by the nucleic acid sequence shown in SEQ ID NO: 147.
[0547] The heavy chain CDRs of the 4873_E03 (PGT-121) antibody have the following sequences per Kabat definition: DSYWS (SEQ ID NO: 90), YVHKSGDTNYSPSLKS (SEQ ID NO: 265), and TLHGRRIYGIVAFNEWFTYFYMDV (SEQ ID NO: 143). The light chain CDRs of the 4873E03 (PGT-121) antibody have the following sequences per Kabat definition: GEKSLGSRAVQ (SEQ ID NO: 150), NNQDRPS (SEQ ID NO: 151), and HIWDSRVPTKWV (SEQ ID NO: 152).
[0548] The heavy chain CDRs of the 4873_E03 (PGT-121) antibody have the following sequences per Chothia definition: GASISD (SEQ ID NO: 144), YVHKSGDTN (SEQ ID NO: 145), and TLHGRRIYGIVAFNEWFTYFYMDV (SEQ ID NO: 143). The light chain CDRs of the 4873_E03 (PGT-121) antibody have the following sequences per Chothia definition: GEKSLGSRAVQ (SEQ ID NO: 150), NNQDRPS (SEQ ID NO: 151), and HIWDSRVPTKWV (SEQ ID NO: 152).
[0549] The 4877_D15 (PGT-122) antibody includes a heavy chain variable region (SEQ ID NO: 156), encoded by the nucleic acid sequence shown in SEQ ID NO: 154, and a light chain variable region (SEQ ID NO: 161) encoded by the nucleic acid sequence shown in SEQ ID NO: 159.
[0550] The heavy chain CDRs of the 4877_D15 (PGT-122) antibody have the following sequences per Kabat definition: DNYWS (SEQ ID NO: 261), YVHDSGDTNYNPSLKS (SEQ
ID NO: 157), and TKHGRRIYGVVAFKEWFTYFYMDV (SEQ ID NO: 262). The light chain CDRs of the 4877_D15 (PGT-122) antibody have the following sequences per Kabat definition: GEESLGSRSVI (SEQ ID NO: 162), NNNDRPS (SEQ ID NO: 163), and HIWDSRRPTNWV (SEQ ID NO: 164).
[0551] The heavy chain CDRs of the 4877_Di5 (PGT-122) antibody have the following sequences per Chothia definition: GTLVRD (SEQ ID NO: 263), YVHDSGDTN (SEQ ID NO: 264), and TKHGRRIYGVVAFKEWFTYFYMDV (SEQ ID NO: 262). The light chain CDRs of the 4877_D15 (PGT-122) antibody have the following sequences per Chothia definition: GEESLGSRSVI (SEQ ID NO: 162), NNNDRPS (SEQ ID NO: 163), and HIWDSRRPTNWV (SEQ ID NO: 164).
[0552] The 4858_P08 (PGT-123) antibody includes a heavy chain variable region (SEQ ID NO: 168), encoded by the nucleic acid sequence shown in SEQ ID NO: 166, and a light chain variable region (SEQ ID NO: 177) encoded by the nucleic acid sequence shown in SEQ ID NO: 175.
[0553] The heavy chain CDRs of the 4858_P08 (PGT-123) antibody have the following sequences per Kabat definition: DAYWS (SEQ ID NO: 169), YVHHSGDTNYNPSLKR (SEQ ID NO: 170), ALHGKRIYGIVALGELFTYFYMDV (SEQ ID NO: 171). The light chain CDRs of the 4858P08 (PGT-123) antibody have the following sequences per Kabat definition: GKESIGSRAVQ (SEQ ID NO: 178), NNQDRPA (SEQ ID NO: 179), and HIYDARGGTNWV (SEQ ID NO: 180).
[0554] The heavy chain CDRs of the 4858_P08 (PGT-123) antibody have the following sequences per Chothia definition: GASIND (SEQ ID NO: 172), YVHHSGDTN (SEQ ID NO: 173), ALHGKRIYGIVALGELFTYFYMDV (SEQ ID NO: 171). The light chain CDRs of the 4858P08 (PGT-123) antibody have the following sequences per Chothia definition: GKESIGSRAVQ (SEQ ID NO: 178), NNQDRPA (SEQ ID NO: 179), HIYDARGGTNWV (SEQ ID NO: 180).
[0555] The 5123_A06 (PGT-125) antibody includes a heavy chain variable region (SEQ ID NO: 164), encoded by the nucleic acid sequence shown in SEQ ID NO: 182, and a light chain variable region (SEQ ID NO: 193) encoded by the nucleic acid sequence shown in SEQ ID NO: 191.
[05561 The heavy chain CDRs of the 5123_A06 (PGT-125) antibody have the following sequences per Kabat definition: ACTYFWG (SEQ ID NO: 185), SLSHCQSFWGSGWTFHNPSLKS (SEQ ID NO: 186), and FDGEVLVYNHWPKPAWVDL (SEQ ID NO: 187). The light chain CDRs of the 5123_A06 (PGT-125) antibody have the following sequences per Kabat definition: NGTATNFVS (SEQ ID NO: 194), GVDKRPP (SEQ ID NO: 195), and GSLVGNWDVI (SEQ ID NO: 196).
[0557] The heavy chain CDRs of the 5123_A06 (PGT-125) antibody have the following sequences per Chothia definition: GESTGACT (SEQ ID NO: 188), SLSHCQSFWGSGWTF (SEQ ID NO: 189), and FDGEVLVYNHWPKPAWVDL (SEQ ID NO: 187). The light chain CDRs of the 5123_A06 (PGT-125) antibody have the following sequences per Chothia definition: NGTATNFVS (SEQ ID NO: 194), GVDKRPP (SEQ ID NO: 195), and GSLVGNWDVI (SEQ ID NO: 196).
[0558] The 5141_B17 (PGT-126) antibody includes a heavy chain variable region (SEQ ID NO: 200), encoded by the nucleic acid sequence shown in SEQ ID NO: 198, and a light chain variable region (SEQ ID NO: 209) encoded by the nucleic acid sequence shown in SEQ ID NO: 207.
[0559] The heavy chain CDRs of the 5141_B17 (PGT-126) antibody have the following sequences per Kabat definition: ACDYFWG (SEQ ID NO: 201), GLSHCAGYYNTGWTYHNPSLKS (SEQ ID NO: 202), and FDGEVLVYHDWPKPAWVDL (SEQ ID NO: 203). The light chain CDRs of the 5141_B17 (PGT-126) antibody have the following sequences per Kabat definition: TGTSNRFVS (SEQ ID NO: 210), GVNKRPS (SEQ ID NO: 211), and SSLVGNWDVI (SEQ ID NO: 212).
[05601 The heavy chain CDRs of the 5141_B17 (PGT-126) antibody have the following sequences per Chothia definition: GDSTAACD (SEQ ID NO: 204), GLSHCAGYYNTGWTY (SEQ ID NO: 205), and FDGEVLVYHDWPKPAWVDL (SEQ ID NO: 203). The light chain CDRs of the 5141_B17 (PGT-126) antibody have the following sequences per Chothia definition: TGTSNRFVS (SEQ ID NO: 210), GVNKRPS (SEQ ID NO: 211), and SSLVGNWDVI (SEQ ID NO: 212).
[0561] The 5147_N06 (PGT-130) antibody includes a heavy chain variable region (SEQ ID NO: 216), encoded by the nucleic acid sequence shown in SEQ ID NO: 214, and a light chain variable region (SEQ ID NO: 225) encoded by the nucleic acid sequence shown in SEQ ID NO: 223.
[0562] The heavy chain CDRs of the 5147_N06 (PGT-130) antibody have the following sequences per Kabat definition: TGHYYWG (SEQ ID NO: 217), HIHYTTAVLHNPSLKS (SEQ ID NO: 218), and SGGDILYYYEWQKPHWFSP (SEQ ID NO: 219). The light chain CDRs of the 5147_N06 (PGT-130) antibody have the following sequences per Kabat definition: NGTSSDIGGWNFVS (SEQ ID NO: 226), EVNKRPS (SEQ ID NO: 227), and SSLFGRWDVV (SEQ ID NO: 228).
[0563] The heavy chain CDRs of the 5147_N06 (PGT-130) antibody have the following sequences per Chothia definition: GESINTGH (SEQ ID NO: 220), HIHYTTAVL (SEQ ID NO: 221), and SGGDILYYYEWQKPHWFSP (SEQ ID NO: 219). The light chain CDRs of the 5147_N06 (PGT-130) antibody have the following sequences per Chothia definition: NGTSSDIGGWNFVS (SEQ ID NO: 226), EVNKRPS (SEQ ID NO: 227), and SSLFGRWDVV (SEQ ID NO: 228).
[0564] The 5343_B08 (PGT-135) antibody includes a heavy chain variable region (SEQ ID NO: 232), encoded by the nucleic acid sequence shown in SEQ ID NO: 230, and a light chain variable region (SEQ ID NO: 242) encoded by the nucleic acid sequence shown in SEQ ID NO: 239.
[0565] The heavy chain CDRs of the 5343_B08 (PGT-135) antibody have the following sequences per Kabat definition: GGEWGDKDYIIWG (SEQ ID NO: 233), SIHWRGTTHYKESLRR (SEQ ID NO: 234), and HRHHDVFMLVPIAGWFDV (SEQ ID NO: 235). The light chain CDRs of the 5343_B08 (PGT-135) antibody have the following sequences per Kabat definition: RASQNINKNLA (SEQ ID NO: 243), ETYSKIA (SEQ ID NO: 244), and QQYEEWPRT (SEQ ID NO: 245).
[0566] The heavy chain CDRs of the 5343_B08 (PGT-135) antibody have the following sequences per Chothia definition: GDSIRGGEWGDKD (SEQ ID NO: 236), SIHWRGTTH (SEQ ID NO: 237), and HRHHDVFMLVPIAGWFDV (SEQ ID NO: 235). The light chain CDRs of the 5343_BO8 (PGT-135) antibody have the following sequences per Chothia definition: RASQNINKNLA (SEQ ID NO: 243), ETYSKIA (SEQ ID NO: 244), and QQYEEWPRT (SEQ ID NO: 245).
[05671 The 5344_E16 (PGT-135) antibody includes a heavy chain variable region (SEQ ID NO: 232), encoded by the nucleic acid sequence shown in SEQ ID NO: 230, and a light chain variable region (SEQ ID NO: 242) encoded by the nucleic acid sequence shown in SEQ ID NO: 239.
[0568] The heavy chain CDRs of the 5344_E16 (PGT-135) antibody have the following sequences per Kabat definition: GGEWGDKDYHWG (SEQ ID NO: 233), SIHWRGTTHYKESLRR (SEQ ID NO: 234), and HRHHDVFMLVPIAGWFDV (SEQ ID NO: 235). The light chain CDRs of the 5344_E16 (PGT-135) antibody have the following sequences per Kabat definition: RASQNINKNLA (SEQ ID NO: 243), ETYSKIA (SEQ ID NO: 244), and QQYEEWPRT (SEQ ID NO: 245).
[0569] The heavy chain CDRs of the 5344_E16 (PGT-135) antibody have the following sequences per Chothia definition: GDSIRGGEWGDKD (SEQ ID NO: 236), SIHWRGTTH (SEQ ID NO: 237), and HRHHDVFMLVPIAGWFDV (SEQ ID NO: 235). The light chain CDRs of the 5344_E16 (PGT-135) antibody have the following sequences per Chothia definition: RASQNINKNLA (SEQ ID NO: 243), ETYSKIA (SEQ ID NO: 244), and QQYEEWPRT (SEQ ID NO: 245).
[0570] The 5329_C19 (PGT-136) antibody includes a heavy chain variable region (SEQ ID NO: 249), encoded by the nucleic acid sequence shown in SEQ ID NO: 247, and a light chain variable region (SEQ ID NO: 258) encoded by the nucleic acid sequence shown in SEQ ID NO: 256.
[0571] The heavy chain CDRs of the 5329_C19 (PGT-136) antibody have the following sequences per Kabat definition: GTDWGENDFHYG (SEQ ID NO: 250), SIHWRGRTTHYKTSFRS (SEQ ID NO: 251), and HKYHDIFRVVPVAGWFDP (SEQ ID NO: 252). The light chain CDRs of the 5329_C19 (PGT-136) antibody have the following sequences per Kabat definition: RASQNVKNNLA (SEQ ID NO: 259), DASSRAG (SEQ ID NO: 260), and QQYEEWPRT (SEQ ID NO: 245).
[0572] The heavy chain CDRs of the 5329_C19 (PGT-136) antibody have the following sequences per Chothia definition: GGSMRGTDWGEND (SEQ ID NO: 253), SIHWRGRTTH (SEQ ID NO: 254), and HKYHDIFRVVPVAGWFDP (SEQ ID NO: 252). The light chain CDRs of the 5329_C19 (PGT-136) antibody have the following sequences per Chothia definition:
RASQNVKNNLA (SEQ ID NO: 259), DASSRAG (SEQ ID NO: 260), and QQYEEWPRT (SEQ ID NO: 245).
[0573] The 5366_P21 (PGT-136) antibody includes a heavy chain variable region (SEQ ID NO: 249), encoded by the nucleic acid sequence shown in SEQ ID NO: 247, and a light chain variable region (SEQ ID NO: 258) encoded by the nucleic acid sequence shown in SEQ ID NO: 256.
[0574] The heavy chain CDRs of the 5366_P21 (PGT-136) antibody have the following sequences per Kabat definition: GTDWGENDFHYG (SEQ ID NO: 250), SIHWRGRTTHYKTSFRS (SEQ ID NO: 251), and HKYHDIFRVVPVAGWFDP (SEQ ID NO: 252). The light chain CDRs of the 5366_P21 (PGT-136) antibody have the following sequences per Kabat definition: RASQNVKNNLA (SEQ ID NO: 259), DASSRAG (SEQ ID NO: 260), and QQYEEWPRT (SEQ ID NO: 245).
[0575] The heavy chain CDRs of the 5366_P21 (PGT-136) antibody have the following sequences per Chothia definition: GGSMRGTDWGEND (SEQ ID NO: 253), SIHWRGRTTH (SEQ ID NO: 254), and HKYHDIFRVVPVAGWFDP (SEQ ID NO: 252). The light chain CDRs of the 5366P21 (PGT-136) antibody have the following sequences per Chothia definition: RASQNVKNNLA (SEQ ID NO: 259), DASSRAG (SEQ ID NO: 260), and QQYEEWPRT (SEQ ID NO: 245).
[0576] The 5964_G22 (PGT-141) antibody includes a heavy chain variable region (SEQ ID NO: 276), encoded by the nucleic acid sequence shown in SEQ ID NO: 274, and a light chain variable region (SEQ ID NO: 285) encoded by the nucleic acid sequence shown in SEQ ID NO: 283.
[0577] The heavy chain CDRs of the 5964_G22 (PGT-141) antibody have the following sequences per Kabat definition: KYDVH (SEQ ID NO: 277), WMSHEGDKTESAQRFKG (SEQ ID NO: 278), and GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279). The light chain CDRs of the 5964_G22 (PGT-141) antibody have the following sequences per Kabat definition: SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
[0578] The heavy chain CDRs of the 5964_G22 (PGT-141) antibody have the following sequences per Chothia definition: GNTFSK (SEQ ID NO: 280), WMSHEGDKTE (SEQ ID NO: 281), and GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279). The light chain CDRs of the 5964_G22 (PGT-141) antibody have the following sequences per Chothia definition: SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
[0579] The 4993_K13 (PGT-141) antibody includes a heavy chain variable region (SEQ ID NO: 276), encoded by the nucleic acid sequence shown in SEQ ID NO: 290, and a light chain variable region (SEQ ID NO: 285) encoded by the nucleic acid sequence shown in SEQ ID NO: 283.
[0580] The heavy chain CDRs of the 4993_K13 (PGT-141) antibody have the following sequences per Kabat definition: KYDVH (SEQ ID NO: 277), WMSHEGDKTESAQRFKG (SEQ ID NO: 278), and GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279). The light chain CDRs of the 4993_K13 (PGT-141) antibody have the following sequences per Kabat definition: SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
[0581] The heavy chain CDRs of the 4993_K13 (PGT-141) antibody have the following sequences per Chothia definition: GNTFSK (SEQ ID NO: 280), WMSHEGDKTE (SEQ ID NO: 281), and GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279). The light chain CDRs of the 4993K13 (PGT-141) antibody have the following sequences per Chothia definition: SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
[0582] The 4995_E20 (PGT-142) antibody includes a heavy chain variable region (SEQ ID NO: 292), encoded by the nucleic acid sequence shown in SEQ ID NO: 315, and a light chain variable region (SEQ ID NO: 285) encoded by the nucleic acid sequence shown in SEQ ID NO: 283.
[0583] The heavy chain CDRs of the 4995_E20 (PGT-142) antibody have the following sequences per Kabat definition: KYDVH (SEQ ID NO: 277), WISHERDKTESAQRFKG (SEQ ID NO: 293), and GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279). The light chain CDRs of the 4995_E20 (PGT-142) antibody have the following sequences per Kabat definition: SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
[0584] The heavy chain CDRs of the 4995_E20 (PGT-142) antibody have the following sequences per Chothia definition: GNTFSK (SEQ ID NO: 280), WISHERDKTE (SEQ ID NO:
294), and GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279). The light chain CDRs of the 4995E20 (PGT-142) antibody have the following sequences per Chothia definition: SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
[0585] The 4980_NO8 (PGT-143) antibody includes a heavy chain variable region (SEQ ID NO: 298), encoded by the nucleic acid sequence shown in SEQ ID NO: 296, and a light chain variable region (SEQ ID NO: 302) encoded by the nucleic acid sequence shown in SEQ ID NO: 300.
[0586] The heavy chain CDRs of the 4980_N08 (PGT-143) antibody have the following sequences per Kabat definition: KYDVH (SEQ ID NO: 277), WMSHEGDKTESAQRFKG (SEQ ID NO: 278), and GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279). The light chain CDRs of the 4980_N08 (PGT-143) antibody have the following sequences per Kabat definition: TSTQSLRHSNGANYLA (SEQ ID NO: 303), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
[0587] The heavy chain CDRs of the 4980_N08 (PGT-143) antibody have the following sequences per Chothia definition: GNTFSK (SEQ ID NO: 280), WMSHEGDKTE (SEQ ID NO: 281), and GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279). The light chain CDRs of the 4980N08 (PGT-143) antibody have the following sequences per Chothia definition: TSTQSLRHSNGANYLA (SEQ ID NO: 303), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
[0588] The 4970_K22 (PGT-144) antibody includes a heavy chain variable region (SEQ ID NO: 307), encoded by the nucleic acid sequence shown in SEQ ID NO: 305, and a light chain variable region (SEQ ID NO: 313) encoded by the nucleic acid sequence shown in SEQ ID NO: 311.
[0589] The heavy chain CDRs of the 4970_K22 (PGT-144) antibody have the following sequences per Kabat definition: KYDVH (SEQ ID NO: 277), WMSHEGDKTESAQRFKG (SEQ ID NO: 278), and GSKHRLRDYVLYDDYGLINQQEWNDYLEFLDV (SEQ ID NO: 308). The light chain CDRs of the 4970_K22 (PGT-144) antibody have the following sequences per Kabat definition: TSTQSLRHSNGANYLA (SEQ ID NO: 303), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
[0590] The heavy chain CDRs of the 4970_K22 (PGT-144) antibody have the following sequences per Chothia definition: GNTFRK (SEQ ID NO: 309), WMSHEGDKTE (SEQ ID NO: 281), and GSKHRLRDYVLYDDYGLINQQEWNDYLEFLDV (SEQ ID NO: 308). The light chain CDRs of the 4970K22 (PGT-144) antibody have the following sequences per Chothia definition: TSTQSLRHSNGANYLA (SEQ ID NO: 303), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
[0591] The sequences of additional human monoclonal antibodies were determined, including the sequences of the variable regions of the Gamma heavy and Kappa or Lambda light chains. In addition, the sequence of each of the polynucleotides encoding the antibody sequences was determined. Shown below are the polypeptide and polynucleotide sequences of the gamma heavy chains and kappa light chains, with the signal peptides at the N-terminus (or 5' end) and the constant regions at the C-terminus (or 3' end) of the variable regions, which are shown in bolded text.
[0592] 5145_B14 (PGT-127) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGAAACACCTGTGGTTCTTCCTCCTGCTGGTGGCGGCTCCCAGATGGGTC CTGTCCCAGCCGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGGAGGC TTCGGAGACCCTGTCCCTCACGTGCACTGTGTCCGGCGACTCCACTG GTCGTTGTAATTATTTCTGGGGCTGGGTCCGGCAGCCCCCAGGGAAG GGGCTGGAGTGGATTGGGAGTTTGTCCCACTGTAGAAGTTACTACAA TACTGACTGGACCTACCACAACCCGTCTCTCAAGAGTCGACTCACTAT TTCACTCGACACGCCCAAGAATCAGGTCTTCCTGAGATTGACCTCTGT GACCGCCGCGGACACGGCCACTTATTACTGTGCGCGATTCGGCGGCG AAGTTCTAGTGTACAGAGATTGGCCAAAGCCGGCCTGGGTCGACCTC TGGGGCCGGGGAACGCTGGTCGTCACCGTCTCGAGCGCCTCCACCAA GGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGG GCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTG ACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCC GGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCG TGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCAC AAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTG ACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGA CCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCC CGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACC CTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCC AAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCA GCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAG TGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTC CAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCA
TCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCA AAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCA GCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCT CCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAG GGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTA CACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 316)
[0593] 5 145B 14 (PGT- 127) gamma heavy chain variable region nucleotide sequence: CAGCCGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGGAGGCTTCGGAGA CCCTGTCCCTCACGTGCACTGTGTCCGGCGACTCCACTGGTCGTTGTAATT ATTTCTGGGGCTGGGTCCGGCAGCCCCCAGGGAAGGGGCTGGAGTGGATT GGGAGTTTGTCCCACTGTAGAAGTTACTACAATACTGACTGGACCTACCA CAACCCGTCTCTCAAGAGTCGACTCACTATTTCACTCGACACGCCCAAGA ATCAGGTCTTCCTGAGATTGACCTCTGTGACCGCCGCGGACACGGCCACT TATTACTGTGCGCGATTCGGCGGCGAAGTTCTAGTGTACAGAGATTGGCC AAAGCCGGCCTGGGTCGACCTCTGGGGCCGGGGAACGCTGGTCGTCACCG TCTCGAGC (SEQ ID NO: 317)
[0594] 5145B14 (PGT-127) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MKHLWFFLLLVAAPRWVLSQPQLQESGPGLVEASETLSLTCTVSGDSTGRC NYFWGWVRQPPGKGLEWIGSLSHCRSYYNTDWTYHNPSLKSRLTISLDT PKNQVFLRLTSVTAADTATYYCARFGGEVLVYRDWPKPAWVDLWGRG TLVVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSG ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKR VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVK GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV FSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 318)
[05951 5145B14 (PGT-127) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QPQLQESGPGLVEASETLSLTCTVSGDSTGRCNYFWGWVRQPPGKGLEWIGS LSHCRSYYNTDWTYHNPSLKSRLTISLDTPKNQVFLRLTSVTAADTATYYCAR FGGEVLVYRDWPKPAWVDLWGRGTLVVTVSS (SEQ ID NO: 319)
[0596] 5145B 14 (PGT- 127) gamma heavy chain Kabat CDRs: CDR 1: RCNYFWG (SEQ ID NO: 320) CDR 2: SLSHCRSYYNTDWTYHNPSLKS (SEQ ID NO: 321) CDR 3: FGGEVLVYRDWPKPAWVDL (SEQ ID NO: 322)
[0597] 5145B 14 (PGT- 127) gamma heavy chain Chothia CDRs:
CDR 1: GDSTGRCN (SEQ ID NO: 323) CDR 2: SLSHCRSYYNTDWTY (SEQ ID NO: 324) CDR 3: FGGEVLVYRDWPKPAWVDL (SEQ ID NO: 322)
[0598] 5145B14 (PGT-127) lambda light chain nucleotide sequence: coding sequence (variable region in bold) ATGGCCTGGGCTCTGCTCCTCCTCACCCTCCTCACTCAGGGCACAGGGGC CTGGGCCCAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCC TGGACAGTCAATCACCATCTCCTGCACTGGAACCAGCAATAACTTTGT CTCCTGGTACCAACAATACCCAGGCAAGGCCCCCAAACTCGTCATTT ATGAGGTCAATAAGCGCCCCTCAGGTGTCCCTGATCGTTTCTCTGGC TCCAAGTCTGGCAGCACGGCCTCCCTGACCGTCTCTGGACTCCAGGC TGACGATGAGGGTGTCTATTATTGTAGTTCACTTGTAGGCAACTGGG ATGTGATTTTCGGCGGAGGGACCAAGTTGACCGTCCTAGGTCAGCCCA AGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTTCAAG CCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGCC GTGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGTCAAGGCGGGAGTGG AGACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAG CTATCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAGAAGCTACAGCT GCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTAC AGAATGTTCATAG (SEQ ID NO:327)
[0599] 5145B 14 (PGT- 127) lambda light chain variable region nucleotide sequence: CAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCCTGGACAGTCA ATCACCATCTCCTGCACTGGAACCAGCAATAACTTTGTCTCCTGGTACCAA CAATACCCAGGCAAGGCCCCCAAACTCGTCATTTATGAGGTCAATAAGCG CCCCTCAGGTGTCCCTGATCGTTTCTCTGGCTCCAAGTCTGGCAGCACGGC CTCCCTGACCGTCTCTGGACTCCAGGCTGACGATGAGGGTGTCTATTATTG TAGTTCACTTGTAGGCAACTGGGATGTGATTTTCGGCGGAGGGACCAAGT TGACCGTCCTA (SEQ ID NO: 328)
[0600] 5145B14 (PGT-127) lambda light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MA WALLLLTLLTQGTGA WAQSALTQPPSASGSPGQSITISCTGTSNNFVSWY QQYPGKAPKLVIYEVNKRPSGVPDRFSGSKSGSTASLTVSGLQADDEGVY YCSSLVGNWDVIFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKS HRSYSCQVTHEGSTVEKTVAPTECS (SEQ ID NO: 329)
[0601] 5145B14 (PGT-127) lambda light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics)
QSALTQPPSASGSPGQSITISCTGTSNNFVSWYQQYPGKAPKLVIYEVNKRPS GVPDRFSGSKSGSTASLTVSGLQADDEGVYYCSSLVGNWDVIFGGGTKLTVL (SEQ ID NO: 330)
[0602] 5145B 14 (PGT- 127) lambda light chain Kabat CDRs: CDR 1: TGTSNNFVS (SEQ ID NO: 325) CDR 2: EVNKRPS (SEQ ID NO: 227) CDR 3: SSLVGNWDVI (SEQ ID NO: 212)
[0603] 5145B 14 (PGT- 127) lambda light chain Chothia CDRs: CDR 1: TGTSNNFVS (SEQ ID NO: 325) CDR 2: EVNKRPS (SEQ ID NO: 227) CDR 3: SSLVGNWDVI (SEQ ID NO: 212)
[0604] 5114A19 (PGT-128) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGAAACACCTGTGGTTCTTCCTCCTGCTGGTGGCGGCTCCCAGATGGGTC CTGTCCCAGCCGCAGCTGCAGGAGTCGGGCCCAACACTGGTGGAGGC TTCGGAGACTCTGTCCCTCACCTGCGCTGTGTCCGGCGACTCCACTG CTGCATGTAATTCTTTCTGGGGCTGGGTCCGGCAGCCCCCAGGGAAG GGGCTGGAGTGGGTTGGGAGTTTGTCCCATTGTGCAAGCTATTGGAA TCGTGGGTGGACCTACCACAACCCGTCTCTCAAGAGTCGGCTCACGC TTGCTCTCGACACACCCAAGAATCTGGTCTTCCTCAAATTAAATTCTG TGACTGCCGCGGACACGGCCACTTACTACTGTGCGCGATTCGGCGGC GAAGTTTTACGCTACACGGATTGGCCAAAGCCGGCCTGGGTCGACCT CTGGGGCCGGGGAACGCTGGTCACCGTCTCGAGCGCCTCCACCAAGG GCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGC ACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGAC GGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGG CTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGC CCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAG CCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACA AAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCG TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGG ACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGA GGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGA CAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGT CCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCA AGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAA GCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCG GGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGC TTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTC TTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGA
ACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG CAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA(SEQ ID NO: 331)
[0605] 5114A19 (PGT-128) gamma heavy chain variable region nucleotide sequence: CAGCCGCAGCTGCAGGAGTCGGGCCCAACACTGGTGGAGGCTTCGGAGA CTCTGTCCCTCACCTGCGCTGTGTCCGGCGACTCCACTGCTGCATGTAATT CTTTCTGGGGCTGGGTCCGGCAGCCCCCAGGGAAGGGGCTGGAGTGGGTT GGGAGTTTGTCCCATTGTGCAAGCTATTGGAATCGTGGGTGGACCTACCA CAACCCGTCTCTCAAGAGTCGGCTCACGCTTGCTCTCGACACACCCAAGA ATCTGGTCTTCCTCAAATTAAATTCTGTGACTGCCGCGGACACGGCCACTT ACTACTGTGCGCGATTCGGCGGCGAAGTTTTACGCTACACGGATTGGCCA AAGCCGGCCTGGGTCGACCTCTGGGGCCGGGGAACGCTGGTCACCGTCTC GAGC (SEQ ID NO:332)
[0606] 5114_A19 (PGT-128) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MKHLWFFLLLVAAPRWVLSQPQLQESGPTLVEASETLSLTCAVSGDSTAAC NSFWGWVRQPPGKGLEWVGSLSHCASYWNRGWTYHNPSLKSRLTLAL DTPKNLVFLKLNSVTAADTATYYCARFGGEVLRYTDWPKPAWVDLWG RGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK RVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVK GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV FSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 333)
[0607] 5114A19 (PGT-128) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QPQLQESGPTLVEASETLSLTCAVSGDSTAACNSFWGWVRQPPGKGLEWVG SLSHCASYWNRGWTYHNPSLKSRLTLALDTPKNLVFLKLNSVTAADTATYYC ARFGGEVLRYTDWPKPAWVDLWGRGTLVTVSS (SEQ ID NO: 334)
[0608] 5114A19 (PGT-128) gamma heavy chain Kabat CDRs: CDR 1: ACNSFWG (SEQ ID NO: 326) CDR 2: SLSHCASYWNRGWTYHNPSLKS (SEQ ID NO: 335) CDR 3: FGGEVLRYTDWPKPAWVDL (SEQ ID NO: 336)
[0609] 5114_A19 (PGT-128) gamma heavy chain Chothia CDRs: CDR 1: GDSTAACN (SEQ ID NO: 337) CDR 2: SLSHCASYWNRGWTY (SEQ ID NO: 338) CDR 3: FGGEVLRYTDWPKPAWVDL (SEQ ID NO: 336)
[06101 5114_A19 (PGT-128) lambda light chain nucleotide sequence: coding sequence (variable region in bold) ATGGCCTGGGCTCTGCTCCTCCTCACCCTCCTCACTCAGGGCACAGGGGC CTGGGCCCAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCC TGGACAGTCAATCACCATCTCCTGCACTGGAACCAGCAATAACTTTGT CTCCTGGTACCAGCAACACGCAGGCAAGGCCCCCAAGCTCGTCATTT ATGACGTCAATAAGCGCCCCTCAGGTGTCCCTGATCGTTTCTCTGGC TCCAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGACTCCAGAC TGACGATGAGGCTGTCTATTACTGCGGCTCACTTGTAGGCAACTGGG ATGTGATTTTCGGCGGAGGGACCAAGTTGACCGTCCTAGGTCAGCCCA AGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTTCAAG CCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGCC GTGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGTCAAGGCGGGAGTGG AGACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAG CTATCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAGAAGCTACAGCT GCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTAC AGAATGTTCATAG(SEQ ID NO: 390)
[0611] 5114A19 (PGT-128) lambda light chain variable region nucleotide sequence: CAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCCTGGACAGTCA ATCACCATCTCCTGCACTGGAACCAGCAATAACTTTGTCTCCTGGTACCAG CAACACGCAGGCAAGGCCCCCAAGCTCGTCATTTATGACGTCAATAAGCG CCCCTCAGGTGTCCCTGATCGTTTCTCTGGCTCCAAGTCTGGCAACACGGC CTCCCTGACCGTCTCTGGACTCCAGACTGACGATGAGGCTGTCTATTACTG CGGCTCACTTGTAGGCAACTGGGATGTGATTTTCGGCGGAGGGACCAAGT TGACCGTCCTA(SEQ ID NO: 391)
[0612] 5114A19 (PGT-128) lambda light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MAWALLLLTLLTQGTGAWAQSALTQPPSASGSPGQSITISCTGTSNNFVSWY QQHAGKAPKLVIYDVNKRPSGVPDRFSGSKSGNTASLTVSGLQTDDEAV YYCGSLVGNWDVIFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVC LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWK SHRSYSCQVTHEGSTVEKTVAPTECS (SEQ ID NO: 392)
[0613] 5114_A19 (PGT-128) lambda light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QSALTQPPSASGSPGQSITISCTGTSNNFVSWYQQHAGKAPKLVIYDVNKRPS GVPDRFSGSKSGNTASLTVSGLQTDDEAVYYCGSLVGNWDVIFGGGTKLTVL (SEQ ID NO: 393)
[0614] 5114A19 (PGT-128) lambda light chain Kabat CDRs: CDR 1: TGTSNNFVS (SEQ ID NO: 325)
CDR 2: DVNKRPS (SEQ ID NO: 343) CDR 3: GSLVGNWDVI (SEQ ID NO: 196)
[0615] 5114A19 (PGT-128) lambda light chain Chothia CDRs: CDR 1: TGTSNNFVS (SEQ ID NO: 325) CDR 2: DVNKRPS (SEQ ID NO: 343) CDR 3: GSLVGNWDVI (SEQ ID NO: 196)
[0616] 5136_HOJ (PGT-131) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGAAACACCTGTGGTTCTTCCTCCTGCTGGTGGCGGCTCCCAGATGGGTC CTTTCCCAGGTGCAACTACAGGAGTCGGGCCCAGGACTGGTGAAGCC TTCGGAGACCCTTTCCCTCACCTGCACTGTCTCTGGTGACTCCATCAA CACTGGTCATCACTACTGGGGCTGGGTCCGTCAGGTCCCAGGGAAGG GACCGGAATGGATTGCTCACATCCACTATAATACGGCTGTCTTACAC AATCCGGCCCTCAAGAGTCGAGTCACCATTTCGATTTTCACCCTGAA GAATCTGATTACCCTGAGCCTCAGTAATGTGACCGCCGCGGACACGG CCGTCTATTTCTGCGTTCGATCCGGCGGCGACATTTTATACTATATTG AGTGGCAAAAACCCCACTGGTTCTATCCCTGGGGCCCGGGAATTTTG GTCACCGTCTCGAGCGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGG CACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTG GTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGC CCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGAC TCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACC CAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGG ACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCG TGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCA AAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGT GGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACG TGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCA GTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGG ACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCT CCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGA GAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGA ACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATC GCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCA CGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCA CCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTG ATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTC TCCGGGTAAATGA(SEQ ID NO: 344)
[0617] 5136_HOJ (PGT-131) gamma heavy chain variable region nucleotide sequence: CAGGTGCAACTACAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGA CCCTTTCCCTCACCTGCACTGTCTCTGGTGACTCCATCAACACTGGTCATC
ACTACTGGGGCTGGGTCCGTCAGGTCCCAGGGAAGGGACCGGAATGGATT GCTCACATCCACTATAATACGGCTGTCTTACACAATCCGGCCCTCAAGAG TCGAGTCACCATTTCGATTTTCACCCTGAAGAATCTGATTACCCTGAGCCT CAGTAATGTGACCGCCGCGGACACGGCCGTCTATTTCTGCGTTCGATCCG GCGGCGACATTTTATACTATATTGAGTGGCAAAAACCCCACTGGTTCTATC CCTGGGGCCCGGGAATTTTGGTCACCGTCTCGAGC(SEQ ID NO: 345)
[0618] 5136_HOJ (PGT-131) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MKHLWFFLLLVAAPRWVLSQVQLQESGPGLVKPSETLSLTCTVSGDSINTGH HYWGWVRQVPGKGPEWIAHIHYNTAVLHNPALKSRVTISIFTLKNLITLS LSNVTAADTAVYFCVRSGGDILYYIEWQKPHWFYPWGPGILVTVSSASTK GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCP PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWES NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN HYTQKSLSLSPGK (SEQ ID NO: 346)
[0619] 5136_H01 (PGT-131) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QVQLQESGPGLVKPSETLSLTCTVSGDSINTGHHYWGWVRQVPGKGPEWIA HIHYNTA VLHNPALKSRVTISIFTLKNLITLSLSNVTAADTAVYFCVRSGGDIL YYIEWOKPHWFYPWGPGILVTVSS (SEQ ID NO: 347)
[0620] 5136_HOJ (PGT-131) gamma heavy chain Kabat CDRs: CDR 1: TGHHYWG (SEQ ID NO: 348) CDR 2: HIHYNTAVLHNPALKS (SEQ ID NO: 349) CDR 3: SGGDILYYIEWQKPHWFYP (SEQ ID NO: 350)
[0621] 5136_HOJ (PGT-131) gamma heavy chain Chothia CDRs: CDR 1: GDSINTGH (SEQ ID NO: 351) CDR 2: HIHYNTAVL (SEQ ID NO: 352) CDR 3: SGGDILYYIEWQKPHWFYP (SEQ ID NO: 350)
[0622] 5136_HO1 (PGT-131) lambda light chain nucleotide sequence: coding sequence (variable region in bold) ATGGCCTGGGCTCTGCTCCTCCTCACCCTCCTCACTCAGGGCACAGGGTCC TGGGCCCAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCTT GGACAGTCACTCACCATCTCCTGCAGTGGAACCGGCAGTGACATTGG CAGTTGGAATTTTGTCTCCTGGTATCAACAATTCCCAGGCAGAGCCC
CCAACCTCATTATTTTTGAGGTCAATAGGCGGCGATCAGGGGTCCCT GATCGCTTCTCTGGTTCCAAGTCGGGCAATACGGCCTCCCTGACCGT CTCTGGGCTCCGGTCTGAGGATGAGGCTGAATATTTTTGCAGTTCCC TTTCAGGCAGGTGGGACATTGTTTTTGGCGGAGGGACCAAGGTGACC GTCCTAGGTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTC CTCTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTG ACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCC GTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACA AGTACGCGGCCAGCAGCTATCTGAGCCTGACGCCTGAGCAGTGGAAGTCC CACAGAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGA AGACAGTGGCCCCTACAGAATGTTCATAG(SEQ ID NO:353)
[0623] 5136_HOJ (PGT-131) lambda light chain variable region nucleotide sequence: CAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCTTGGACAGTCA CTCACCATCTCCTGCAGTGGAACCGGCAGTGACATTGGCAGTTGGAATTT TGTCTCCTGGTATCAACAATTCCCAGGCAGAGCCCCCAACCTCATTATTTT TGAGGTCAATAGGCGGCGATCAGGGGTCCCTGATCGCTTCTCTGGTTCCA AGTCGGGCAATACGGCCTCCCTGACCGTCTCTGGGCTCCGGTCTGAGGAT GAGGCTGAATATTTTTGCAGTTCCCTTTCAGGCAGGTGGGACATTGTTTTT GGCGGAGGGACCAAGGTGACCGTCCTA (SEQ ID NO:354)
[0624] 5136_HOJ (PGT-131) lambda light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MA WALLLLTLLTQGTGSWAQSALTQPPSASGSLGQSLTISCSGTGSDIGSWNF VSWYQQFPGRAPNLIIFEVNRRRSGVPDRFSGSKSGNTASLTVSGLRSEDE AEYFCSSLSGRWDIVFGGGTKVTVLGQPKAAPSVTLFPPSSEELQANKATL VCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQ WKSHRSYSCQVTHEGSTVEKTVAPTECS (SEQ ID NO: 355)
[0625] 5136_HOJ (PGT-131) lambda light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QSALTQPPSASGSLGQSLTISCSGTGSDIGSWNFVSWYQQFPGRAPNLIIFEVN RRRSGVPDRFSGSKSGNTASLTVSGLRSEDEAEYFCSSLSGRWDIVFGGGTKV TVL (SEQ ID NO: 356)
[0626] 5136_HOJ (PGT-131) lambda light chain Kabat CDRs: CDR 1: SGTGSDIGSWNFVS (SEQ ID NO: 357) CDR 2: EVNRRRS (SEQ ID NO: 358) CDR 3: SSLSGRWDIV (SEQ ID NO: 359)
[0627] 5136_HOJ (PGT-131) lambda light chain Chothia CDRs: CDR 1: SGTGSDIGSWNFVS (SEQ ID NO: 357)
CDR 2: EVNRRRS (SEQ ID NO: 358) CDR 3: SSLSGRWDIV (SEQ ID NO: 359)
[0628] 5345_101 (PGT-137) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGAAACACCTGTGGTTCTTCCTCCTGCTGGTTGCGGCTCCCAGATGTGTC CTGTCTGAGGTGCATCTGGAGGAGTCGGGCCCAGGACTGGTGAGGCC CTCGGAGACCTTGTCCCTGACTTGCACGGCCTCTGGTGGCTCCATAA GGGGGGGCGAGTGGGGCGATAGTGACTACCACTGGGGCTGGGTCCG CCACTCTCCCGAAAAGGGACTGGAATGGATTGGAAGTATTCATTGGC GGGGGACCACCCACTACAACGCGCCCTTCCGGGGGCGAGGCAGATT GTCGATAGACCTCTCCCGGAATCAATTCTCCCTGCGCCTGACGTCTG TGACCGCCGAAGACACTGCCGTCTATTATTGTGTGAAGCACAAATAT CATGACATTGTCATGGTGGTCCCCATTGCGGGCTGGTTCGACCCCTG GGGCCAGGGACTCCAGGTCACCGTCTCGAGCGCCTCCACCAAGGGCCC ATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAG CGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTG TCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGT CCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTC CAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCA GCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAAC TCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAG TCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCC CTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTC AAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAA AGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCT CACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAG GTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGC CAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCT TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGA GAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT TCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC AGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO:360)
[0629] 5345_101 (PGT-137) gamma heavy chain variable region nucleotide sequence: GAGGTGCATCTGGAGGAGTCGGGCCCAGGACTGGTGAGGCCCTCGGAGA CCTTGTCCCTGACTTGCACGGCCTCTGGTGGCTCCATAAGGGGGGGCGAG TGGGGCGATAGTGACTACCACTGGGGCTGGGTCCGCCACTCTCCCGAAAA GGGACTGGAATGGATTGGAAGTATTCATTGGCGGGGGACCACCCACTACA ACGCGCCCTTCCGGGGGCGAGGCAGATTGTCGATAGACCTCTCCCGGAAT CAATTCTCCCTGCGCCTGACGTCTGTGACCGCCGAAGACACTGCCGTCTAT TATTGTGTGAAGCACAAATATCATGACATTGTCATGGTGGTCCCCATTGCG
GGCTGGTTCGACCCCTGGGGCCAGGGACTCCAGGTCACCGTCTCGAGC(SE Q ID NO:361)
[0630] 5345_101 (PGT-137) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MKHLWFFLLLVAAPRCVLSEVHLEESGPGLVRPSETLSLTCTASGGSIRGGE WGDSDYHWGWVRHSPEKGLEWIGSIHWRGTTHYNAPFRGRGRLSIDLS RNQFSLRLTSVTAEDTAVYYCVKHKYHDIVMVVPIAGWFDPWGQGLQV TVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKS CDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKC KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 362)
[0631] 5345_101 (PGT-137) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) EVHLEESGPGLVRPSETLSLTCTASGGSIRGGEWGDSDYHWGWVRHSPEKGL EWIGSIHWRGTTHYNAPFRGRGRLSIDLSRNQFSLRLTSVTAEDTAVYYCVK HKYHDIVMVVPIAGWFDPWGQGLQVTVSS (SEQ ID NO: 363)
[0632] 5345_101 (PGT-137) gamma heavy chain Kabat CDRs: CDR 1: GGEWGDSDYHWG (SEQ ID NO: 364) CDR 2: SIHWRGTTHYNAPFRG (SEQ ID NO: 365) CDR 3: HKYHDIVMVVPIAGWFDP (SEQ ID NO: 366)
[0633] 5345_01 (PGT-137) gamma heavy chain Chothia CDRs: CDR 1: GGSIRGGEWGDSD (SEQ ID NO: 367) CDR 2: SIHWRGTTH (SEQ ID NO: 237) CDR 3: HKYHDIVMVVPIAGWFDP (SEQ ID NO: 366)
[0634] 5345_101 (PGT-137) kappa light chain nucleotide sequence: coding sequence (variable region in bold) ATGGAAACCCCAGCTCAGCTTCTCTTCCTCCTGCTACTCTGGCTCCCAGAT ACTACTGGAGAAATAATGATGACGCAGTCTCCAGCCATCCTGTCTGTG TCTCCAGGAGACAGAGCCACACTCTCCTGCAGGGCCAGTCAGAGTGT GAAGAATAATTTAGCCTGGTACCAGAAGAGACCTGGCCAGGCTCCCA GACTCCTCATCTTTGATACATCCAGCAGGGCCTCTGGTATCCCTGCCA GGTTCAGTGGCGGTGGTTCTGGGACAGAGTTCACTCTCACCGTCAAC AGCATGCAGTCTGAAGACTTTGCGACTTATTACTGTCAGCAATATGAA GAGTGGCCTCGGACGTTCGGCCAGGGGACCAAGGTGGAAATCAAAC
GTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGT TGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCA GAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAA CTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGC CTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAG TCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAG AGCTTCAACAGGGGAGAGTGTTAG (SEQ ID NO: 394)
[0635] 5345_01 (PGT-137) kappa light chain variable region nucleotide sequence: GAAATAATGATGACGCAGTCTCCAGCCATCCTGTCTGTGTCTCCAGGAGA CAGAGCCACACTCTCCTGCAGGGCCAGTCAGAGTGTGAAGAATAATTTAG CCTGGTACCAGAAGAGACCTGGCCAGGCTCCCAGACTCCTCATCTTTGAT ACATCCAGCAGGGCCTCTGGTATCCCTGCCAGGTTCAGTGGCGGTGGTTC TGGGACAGAGTTCACTCTCACCGTCAACAGCATGCAGTCTGAAGACTTTG CGACTTATTACTGTCAGCAATATGAAGAGTGGCCTCGGACGTTCGGCCAG GGGACCAAGGTGGAAATCAAA (SEQ ID NO: 395)
[0636] 5345_01 (PGT-137) kappa light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. METPAQLLFLLLLWLPDTTGEIMMTQSPAILSVSPGDRATLSCRASQSVKNN LAWYQKRPGQAPRLLIFDTSSRASGIPARFSGGGSGTEFTLTVNSMQSED FATYYCQQYEEWPRTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVV CLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKAD YEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 396)
[0637] 5345_01 (PGT-137) kappa light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) EIMMTQSPAILSVSPGDRATLSCRASOSVKNNLAWYQKRPGQAPRLLIFDTSS RASGIPARFSGGGSGTEFTLTVNSMQSEDFATYYCOOYEEWPRTFGQGTKVEI K (SEQ ID NO: 397)
[0638] 5345_01 (PGT-137) kappa light chain Kabat CDRs: CDR 1: RASQSVKNNLA (SEQ ID NO: 372) CDR 2: DTSSRAS (SEQ ID NO: 373) CDR 3: QQYEEWPRT (SEQ ID NO: 245)
[0639] 5345_01 (PGT-137) kappa light chain Chothia CDRs: CDR 1: RASQSVKNNLA (SEQ ID NO: 372) CDR 2: DTSSRAS (SEQ ID NO: 373) CDR 3: QQYEEWPRT (SEQ ID NO: 245)
[0640] 4995P16 (PGT-145) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGGACTGGATTTGGAGGATCCTCTTCTTGGTGGCAGCAGCTACAAGTGC CCACTCCCAGGTGCAGTTGGTGCAGTCTGGGGCTGAAGTGAAGAAGC CTGGGTCCTCAGTGAAGGTCTCCTGCAAGGCCTCTGGAAACAGTTTC AGTAATCATGATGTCCACTGGGTACGACAGGCCACTGGACAGGGGCT TGAATGGATGGGATGGATGAGTCATGAGGGTGATAAGACAGGCTTGG CACAAAAGTTTCAGGGCAGAGTCACCATCACGAGGGACAGTGGCGCA AGTACAGTCTACATGGAGTTGCGCGGCCTGACAGCTGACGACACGGC CATTTATTATTGTTTGACCGGCTCAAAACATCGCCTGCGAGATTATTT TCTGTACAATGAATATGGCCCCAATTATGAAGAGTGGGGTGACTACC TTGCGACTTTGGACGTCTGGGGCCATGGGACCGCGGTCACCGTCTCG AGCGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAA GAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACT TCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGC GTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGC AGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTG CAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAG CCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGA ACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTG AGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGG AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCAC GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATG GCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATC GAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT ACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCT GACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCT GGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGA GCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCT CTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATG A (SEQ ID NO: 398)
[06411 4995P16 (PGT- 145) gamma heavy chain variable region nucleotide sequence: CAGGTGCAGTTGGTGCAGTCTGGGGCTGAAGTGAAGAAGCCTGGGTCCTC AGTGAAGGTCTCCTGCAAGGCCTCTGGAAACAGTTTCAGTAATCATGATG TCCACTGGGTACGACAGGCCACTGGACAGGGGCTTGAATGGATGGGATG GATGAGTCATGAGGGTGATAAGACAGGCTTGGCACAAAAGTTTCAGGGC AGAGTCACCATCACGAGGGACAGTGGCGCAAGTACAGTCTACATGGAGTT GCGCGGCCTGACAGCTGACGACACGGCCATTTATTATTGTTTGACCGGCT CAAAACATCGCCTGCGAGATTATTTTCTGTACAATGAATATGGCCCCAATT ATGAAGAGTGGGGTGACTACCTTGCGACTTTGGACGTCTGGGGCCATGGG ACCGCGGTCACCGTCTCGAGC (SEQ ID NO:399)
[06421 4995P16 (PGT-145) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MDWIWRILFLVAAATSAHSQVQLVQSGAEVKKPGSSVKVSCKASGNSFSNH DVHWVRQATGQGLEWMGWMSHEGDKTGLAQKFQGRVTITRDSGAST VYMELRGLTADDTAIYYCLTGSKHRLRDYFLYNEYGPNYEEWGDYLAT LDVWGHGTAVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVT VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSN TKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC VVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQ DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQV SLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 400)
[0643] 4995P16 (PGT-145) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QVQLVQSGAEVKKPGSSVKVSCKASGNSFSNHDVHWVRQATGQGLEWMG WMSHEGDKTGLAQKFQGRVTITRDSGASTVYMELRGLTADDTAIYYCLTGS KHRLRDYFLYNEYGPNYEEWGDYLATLDVWGHGTAVTVSS (SEQ ID NO: 401)
[0644] 4995P16 (PGT- 145) gamma heavy chain Kabat CDRs: CDR 1: NHDVH (SEQ ID NO: 378) CDR 2: WMSHEGDKTGLAQKFQG (SEQ ID NO: 379) CDR 3: GSKHRLRDYFLYNEYGPNYEEWGDYLATLDV (SEQ ID NO: 380)
[0645] 4995P16 (PGT-145) gamma heavy chain Chothia CDRs: CDR 1: GNSFSN (SEQ ID NO: 381) CDR 2: WMSHEGDKTG (SEQ ID NO: 382) CDR 3: GSKHRLRDYFLYNEYGPNYEEWGDYLATLDV (SEQ ID NO: 380)
[0646] 4995P16 (PGT-145) kappa light chain nucleotide sequence: coding sequence (variable region in bold) ATGAGGCTCCCTGCTCAGCTCCTGGGGCTGCTAATGCTCTGGGTCTCTGGA TCCGGTGCGGAGGTTGTCATAACTCAGTCTCCACTCTTCCTGCCCGTC ACCCCTGGAGAGGCGGCCTCCTTGTCTTGCAAGTGCAGCCACAGCCT CCAACATTCAACTGGAGCCAACTATTTGGCTTGGTACCTGCAGAGAC CAGGGCAAACTCCACGCCTGTTGATCCATTTGGCCACTCATCGGGCC TCCGGGGTCCCTGACAGATTCAGTGGCAGTGGATCAGGCACAGATTT TACACTTAAAATCAGTCGAGTGGAGTCTGACGATGTTGGAACTTATTA TTGCATGCAGGGTCTGCACAGTCCCTGGACGTTCGGCCAAGGGACCA AGGTGGAGATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCG CCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTG
AATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACG CCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAA GGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGAC TACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGA GCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG (SEQ ID NO:383)
[06471 4995P16 (PGT- 145) kappa light chain variable region nucleotide sequence: GAGGTTGTCATAACTCAGTCTCCACTCTTCCTGCCCGTCACCCCTGGAGAG GCGGCCTCCTTGTCTTGCAAGTGCAGCCACAGCCTCCAACATTCAACTGG AGCCAACTATTTGGCTTGGTACCTGCAGAGACCAGGGCAAACTCCACGCC TGTTGATCCATTTGGCCACTCATCGGGCCTCCGGGGTCCCTGACAGATTCA GTGGCAGTGGATCAGGCACAGATTTTACACTTAAAATCAGTCGAGTGGAG TCTGACGATGTTGGAACTTATTATTGCATGCAGGGTCTGCACAGTCCCTGG ACGTTCGGCCAAGGGACCAAGGTGGAGATCAAA (SEQ ID NO:384)
[0648] 4995P16 (PGT-145) kappa light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MRLPAQLLGLLMLWVSGSGAEVVITQSPLFLPVTPGEAASLSCKCSHSLQHS TGANYLAWYLQRPGQTPRLLIHLATHRASGVPDRFSGSGSGTDFTLKISR VESDDVGTYYCMQGLHSPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKS GTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 385)
[0649] 4995P16 (PGT-145) kappa light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) EVVITQSPLFLPVTPGEAASLSCKCSHSLOHSTGANYLAWYLQRPGQTPRLLI HLATHRASGVPDRFSGSGSGTDFTLKISRVESDDVGTYYCMOGLHSPWTFGQ GTKVEIK (SEQ ID NO: 386)
[0650] 4995P16 (PGT- 145) kappa lambda light chain Kabat CDRs: CDR 1: KCSHSLQHSTGANYLA (SEQ ID NO: 387) CDR 2: LATHRAS (SEQ ID NO: 388) CDR 3: MQGLHSPWT (SEQ ID NO: 389)
[0651] 4995P16 (PGT- 145) kappa light chain Chothia CDRs: CDR 1: KCSHSLQHSTGANYLA (SEQ ID NO: 387) CDR 2: LATHRAS (SEQ ID NO: 388) CDR 3: MQGLHSPWT (SEQ ID NO: 389)
[0652] The 5145_B14 (PGT-127) antibody includes a heavy chain variable region (SEQ ID NO: 319), encoded by the nucleic acid sequence shown in SEQ ID NO: 317, and a light chain variable region (SEQ ID NO: 330) encoded by the nucleic acid sequence shown in SEQ ID NO: 328.
[0653] The heavy chain CDRs of the 5145_B14 (PGT-127) antibody have the following sequences per Kabat definition: RCNYFWG (SEQ ID NO: 320), SLSHCRSYYNTDWTYHNPSLKS (SEQ ID NO: 321), and FGGEVLVYRDWPKPAWVDL (SEQ ID NO: 322). The light chain CDRs of the 5145_B14 (PGT-127) antibody have the following sequences per Kabat definition: TGTSNNFVS (SEQ ID NO: 325), EVNKRPS (SEQ ID NO: 227), and SSLVGNWDVI (SEQ ID NO: 212).
[0654] The heavy chain CDRs of the 5145_B14 (PGT-127) antibody have the following sequences per Chothia definition: GDSTGRCN (SEQ ID NO: 323), SLSHCRSYYNTDWTY (SEQ ID NO: 324), and FGGEVLVYRDWPKPAWVDL (SEQ ID NO: 322). The light chain CDRs of the 5145_B14 (PGT-127) antibody have the following sequences per Chothia definition: TGTSNNFVS (SEQ ID NO: 325), EVNKRPS (SEQ ID NO: 227), and SSLVGNWDVI (SEQ ID NO: 212).
[0655] The 5114_A19 (PGT-128) antibody includes a heavy chain variable region (SEQ ID NO: 334), encoded by the nucleic acid sequence shown in SEQ ID NO: 332, and a light chain variable region (SEQ ID NO: 393) encoded by the nucleic acid sequence shown in SEQ ID NO: 391.
[0656] The heavy chain CDRs of the 5114_A19 (PGT-128) antibody have the following sequences per Kabat definition: ACNSFWG (SEQ ID NO: 326), SLSHCASYWNRGWTYHNPSLKS (SEQ ID NO: 335), and FGGEVLRYTDWPKPAWVDL (SEQ ID NO: 336). The light chain CDRs of the 5114_A19 (PGT-128) antibody have the following sequences per Kabat definition: TGTSNNFVS (SEQ ID NO: 325), DVNKRPS (SEQ ID NO: 343), GSLVGNWDVI (SEQ ID NO: 196).
[0657] The heavy chain CDRs of the 5114_A19 (PGT-128) antibody have the following sequences per Chothia definition: GDSTAACN (SEQ ID NO: 337), SLSHCASYWNRGWTY (SEQ ID NO: 338), FGGEVLRYTDWPKPAWVDL (SEQ ID NO: 336)
[0658] . The light chain CDRs of the 5114_A19 (PGT-128) antibody have the following sequences per Chothia definition: TGTSNNFVS (SEQ ID NO: 325), DVNKRPS (SEQ ID NO: 343), GSLVGNWDVI (SEQ ID NO: 196).
[06591 The 5136_HOl (PGT-131) antibody includes a heavy chain variable region (SEQ ID NO: 347), encoded by the nucleic acid sequence shown in SEQ ID NO: 345, and a light chain variable region (SEQ ID NO: 356) encoded by the nucleic acid sequence shown in SEQ ID NO: 354.
[0660] The heavy chain CDRs of the 5136_HO1 (PGT-131) antibody have the following sequences per Kabat definition: TGHHYWG (SEQ ID NO: 348), HIHYNTAVLHNPALKS (SEQ ID NO: 349), and SGGDILYYIEWQKPHWFYP (SEQ ID NO: 350). The light chain CDRs of the 5136_HOl (PGT-131) antibody have the following sequences per Kabat definition: SGTGSDIGSWNFVS (SEQ ID NO: 357), EVNRRRS (SEQ ID NO: 358), and SSLSGRWDIV (SEQ ID NO: 359).
[0661] The heavy chain CDRs of the 5136_HOl (PGT-131) antibody have the following sequences per Chothia definition: GDSINTGH (SEQ ID NO: 351), HIHYNTAVL (SEQ ID NO: 352), and SGGDILYYIEWQKPHWFYP (SEQ ID NO: 350). The light chain CDRs of the 5136_HO1 (PGT-131) antibody have the following sequences per Chothia definition: SGTGSDIGSWNFVS (SEQ ID NO: 357), EVNRRRS (SEQ ID NO: 358), and SSLSGRWDIV (SEQ ID NO: 359).
[0662] The 5345_101 (PGT-137) antibody includes a heavy chain variable region (SEQ ID NO: 363), encoded by the nucleic acid sequence shown in SEQ ID NO: 361, and a light chain variable region (SEQ ID NO: 397) encoded by the nucleic acid sequence shown in SEQ ID NO: 395.
[0663] The heavy chain CDRs of the 5345_101 (PGT-137) antibody have the following sequences per Kabat definition: GGEWGDSDYHWG (SEQ ID NO: 364), SIHWRGTTHYNAPFRG (SEQ ID NO: 365), and HKYHDIVMVVPIAGWFDP (SEQ ID NO: 366). The light chain CDRs of the 5345_101 (PGT-137) antibody have the following sequences per Kabat definition: RASQSVKNNLA (SEQ ID NO: 372), DTSSRAS (SEQ ID NO: 373), and QQYEEWPRT (SEQ ID NO: 245).
[0664] The heavy chain CDRs of the 5345_101 (PGT-137) antibody have the following sequences per Chothia definition: GGSIRGGEWGDSD (SEQ ID NO: 367), SIHWRGTTH (SEQ ID NO: 237), and HKYHDIVMVVPIAGWFDP (SEQ ID NO: 366). The light chain CDRs of the 5345_01 (PGT-137) antibody have the following sequences per Chothia definition:
RASQSVKNNLA (SEQ ID NO: 372), DTSSRAS (SEQ ID NO: 373), and QQYEEWPRT (SEQ ID NO: 245).
[0665] The 4995_P16 (PGT-145) antibody includes a heavy chain variable region (SEQ ID NO: 401), encoded by the nucleic acid sequence shown in SEQ ID NO: 399, and a light chain variable region (SEQ ID NO: 386) encoded by the nucleic acid sequence shown in SEQ ID NO: 384.
[0666] The heavy chain CDRs of the 4995_P16 (PGT-145) antibody have the following sequences per Kabat definition: NHDVH (SEQ ID NO: 378), WMSHEGDKTGLAQKFQG (SEQ ID NO: 379), and GSKHRLRDYFLYNEYGPNYEEWGDYLATLDV (SEQ ID NO: 380). The light chain CDRs of the 4995P16 (PGT-145) antibody have the following sequences per Kabat definition: KCSHSLQHSTGANYLA (SEQ ID NO: 387), LATHRAS (SEQ ID NO: 388), and MQGLHSPWT (SEQ ID NO: 389).
[0667] The heavy chain CDRs of the 4995_P16 (PGT-145) antibody have the following sequences per Chothia definition: GNSFSN (SEQ ID NO: 381), WMSHEGDKTG (SEQ ID NO: 382), and GSKHRLRDYFLYNEYGPNYEEWGDYLATLDV (SEQ ID NO: 380). The light chain CDRs of the 4995P16 (PGT-145) antibody have the following sequences per Chothia definition: KCSHSLQHSTGANYLA (SEQ ID NO: 387), LATHRAS (SEQ ID NO: 388), and MQGLHSPWT (SEQ ID NO: 389).
[0668] The sequences of additional human monoclonal antibodies were determined, including the sequences of the variable regions of the Gamma heavy and Kappa or Lambda light chains. In addition, the sequence of each of the polynucleotides encoding the antibody sequences was determined. Shown below are the polypeptide and polynucleotide sequences of the gamma heavy chains and kappa light chains, with the signal peptides at the N-terminus (or 5' end) and the constant regions at the C-terminus (or 3' end) of the variable regions, which are shown in bolded text.
[0669] 4835_F12 (PGT-124) gamma heavy chain nucleotide sequence: coding sequence (leader sequence in italics, variable region in bold) ATGAAACACCTGTGGT TCTTCCTCCTGCTGGTGGCAGCTCCCAGATGGGTCCT ATCCCAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAGACCTT CGGAGACCCTGTCCGTCACCTGCATCGTCTCTGGGGGCTCCATCAGC AATTACTACTGGACTTGGATCCGACAGTCCCCAGGAAAGGGACTGGA GTGGATAGGCTATATTTCTGACAGAGAAACAACGACTTACAATCCCT CCCTCAACAGTCGAGCCGTCATATCACGAGACACGTCGAAAAACCAA
TTGTCCCTACAATTACGTTCCGTCACCACTGCGGACACGGCCATCTAT TTCTGTGCGACAGCGCGCCGAGGACAGAGGATTTATGGAGTGGTTTC ATTTGGAGAGTTCTTCTACTACTACTACATGGACGTCTGGGGCAAAG GGACTGCGGTCACCGTCTCCTCAGCGTCGACCAAGGGCCCATCGGTCTT CCCTCTGGCACCATCATCCAAGTCGACCTCTGGGGGCACAGCGGCCCTGG GCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAAC TCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTC CTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCT TGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACC AAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACAT GCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTC TTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGT CACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCA ACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCG GGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCC TGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAA CAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGG CAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGAT GACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCA GCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTA CAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAG CAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCA TGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCT CTCCCTGTCTCCGGGTAAATGA(SEQ ID NO: 402)
[0670] 4835_F12 (PGT-124) gamma heavy chain variable region nucleotide sequence: CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAGACCTTCGG AGACCCTGTCCGTCACCTGCATCGTCTCTGGGGGCTCCATCAGCAAT TACTACTGGACTTGGATCCGACAGTCCCCAGGAAAGGGACTGGAGTG GATAGGCTATATTTCTGACAGAGAAACAACGACTTACAATCCCTCCCT CAACAGTCGAGCCGTCATATCACGAGACACGTCGAAAAACCAATTGT CCCTACAATTACGTTCCGTCACCACTGCGGACACGGCCATCTATTTCT GTGCGACAGCGCGCCGAGGACAGAGGATTTATGGAGTGGTTTCATTT GGAGAGTTCTTCTACTACTACTACATGGACGTCTGGGGCAAAGGGAC TGCGGTCACCGTCTCCTCA(SEQ ID NO: 403)
[06711 4835F12 (PGT-124) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MKHLWFFLLLVAAPRWVLSQVQLQESGPGLVRPSETLSVTCIVSGGSISNYY WTWIRQSPGKGLEWIGYISDRETTTYNPSLNSRAVISRDTSKNQLSLQLR SVTTADTAIYFCATARRGQRIYGVVSFGEFFYYYYMDVWGKGTAVTVSS ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTF PAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKT HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN
KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH EALHNHYTQKSLSLSPGK (SEQ ID NO: 404)
[0672] 4835F12 (PGT-124) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QVQLQESGPGLVRPSETLSVTCIVSGGSISNYYWTWIRQSPGKGLEWIGYISD RETTTYNPSLNSRAVISRDTSKNQLSLQLRSVTTADTAIYFCATARRGORIYG VVSFGEFFYYYYMDVWGKGTAVTVSS (SEQ ID NO: 405)
[0673] 4835_F12 (PGT-124) gamma heavy chain Kabat CDRs: CDR 1: NYYWT (SEQ ID NO: 406) CDR 2: YISDRETTTYNPSLNS (SEQ ID NO: 407) CDR 3: ARRGQRIYGVVSFGEFFYYYYMDV (SEQ ID NO: 408)
[0674] 4835F12 (PGT-124) gamma heavy chain Chothia CDRs: CDR 1: GGSISN (SEQ ID NO: 409) CDR 2: YISDRETTT (SEQ ID NO: 410) CDR 3: ARRGQRIYGVVSFGEFFYYYYMDV (SEQ ID NO: 408)
[0675] 4835F12 (PGT-124) light chain nucleotide sequence: coding sequence (variable region in bold) ATGGCCTGGATCCCTCTCCTCCTCGGCCTCCTCTCTCACTGCACAGGGTCTGT GACGTCCTATGTGAGCCCACTGTCAGTGGCCCTGGGGGAGACGGCCA GGATTTCCTGTGGACGACAGGCCCTTGGAAGTAGAGCTGTGCAGTGG TATCAACATAAGCCAGGCCAGGCCCCTATTTTGCTCATCTATAATAAT CAAGACCGGCCCTCAGGGATCCCTGAGCGGTTCTCTGGCACCCCTGA TATTAATTTTGGGACCACGGCCACCCTGACTATCAGCGGGGTCGAAG TCGGGGATGAAGCCGACTATTACTGTCACATGTGGGACTCTAGAAGT GGTTTCAGTTGGTCTTTCGGCGGGGCGACCAGGCTGACCGTCCTAGG TCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCTGAGGA GCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACC CGGGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGTCAAGGC GGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCG GCCAGCAGCTATCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAAAA GCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGT GGCCCCTACAGAATGTTCATAG (SEQ ID NO: 411)
[0676] 4835F12 (PGT-124) light chain variable region nucleotide sequence: TCCTATGTGAGCCCACTGTCAGTGGCCCTGGGGGAGACGGCCAGGAT TTCCTGTGGACGACAGGCCCTTGGAAGTAGAGCTGTGCAGTGGTATC AACATAAGCCAGGCCAGGCCCCTATTTTGCTCATCTATAATAATCAAG
ACCGGCCCTCAGGGATCCCTGAGCGGTTCTCTGGCACCCCTGATATT AATTTTGGGACCACGGCCACCCTGACTATCAGCGGGGTCGAAGTCGG GGATGAAGCCGACTATTACTGTCACATGTGGGACTCTAGAAGTGGTT TCAGTTGGTCTTTCGGCGGGGCGACCAGGCTGACCGTCCTA(SEQ ID NO: 412)
[0677] 4835F12 (PGT-124) light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MA WIPLLLGLLSHCTGSVTSYVSPLSVALGETARISCGRQALGSRAVQWYQ HKPGQAPILLIYNNQDRPSGIPERFSGTPDINFGTTATLTISGVEVGDEAD YYCHMWDSRSGFSWSFGGATRLTVLGQPKAAPSVTLFPPSSEELQANKAT LVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPE QWKSHKSYSCQVTHEGSTVEKTVAPTECS (SEQ ID NO: 413)
[06781 4835F12 (PGT-124) light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) SYVSPLSVALGETARISCGROALGSRA VOWYQHKPGQAPILLIYNNODRPSGI PERFSGTPDINFGTTATLTISGVEVGDEADYYCHMWDSRSGFSWSFGGATRL TVL (SEQ ID NO: 414)
[06791 4835F12 (PGT-124) light chain Kabat CDRs: CDR 1: GRQALGSRAVQ (SEQ ID NO: 415) CDR 2: NNQDRPS (SEQ ID NO: 151) CDR 3: HMWDSRSGFSWS (SEQ ID NO: 416)
[0680] 4835F12 (PGT-124) light chain Chothia CDRs: CDR 1: GRQALGSRAVQ (SEQ ID NO: 415) CDR 2: NNQDRPS (SEQ ID NO: 151) CDR 3: HMWDSRSGFSWS (SEQ ID NO: 416)
[0681] 4869K15 (PGT-133) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGAAACACCTGTGGT TCTTCCT TCTCCTGGTGGCAGCTCCCAGATGGGTCGT GTCCCAGGTGCATCTGCAAGAGTCGGGGCCAGGACTGGTGACGCCTT CGGAAACCCTGTCCCTCACTTGCACTGTGTCGAATGGCTCCGTCAGT GGTCGCTTCTGGAGCTGGATCCGGCAGTCCCCAGGGAGAGGACTGG AATGGATCGGTTATTTTTCTGACACTGACAGGTCTGAATATAATCCTT CTCTCAGGAGTCGACTCACCTTATCAGTAGATAGATCTAAGAACCAG TTGTCCCTGAGATTGAAGTCCGTGACCGCTGCGGATTCGGCCACTTA TTACTGTGCGAGAGCACAGCAGGGGAAGAGGATCTATGGAATAGTGT CTTTCGGAGAGTTCTTCTATTATTATTACATGGACGCCTGGGGCAAAG GGACTCCGGTCACCGTCTCCTCAGCGTCGACCAAGGGCCCATCGGTCTT
CCCTCTGGCACCATCATCCAAGTCGACCTCTGGGGGCACAGCGGCCCTGG GCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAAC TCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTC CTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCT TGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACC AAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACAT GCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTC TTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGT CACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCA ACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCG GGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCC TGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAA CAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGG CAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGAT GACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCA GCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTA CAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAG CAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCA TGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCT CTCCCTGTCTCCGGGTAAATGA(SEQ ID NO: 417)
[0682] 4869_K15 (PGT-133) gamma heavy chain variable region nucleotide sequence: CAGGTGCATCTGCAAGAGTCGGGGCCAGGACTGGTGACGCCTTCGG AAACCCTGTCCCTCACTTGCACTGTGTCGAATGGCTCCGTCAGTGGT CGCTTCTGGAGCTGGATCCGGCAGTCCCCAGGGAGAGGACTGGAAT GGATCGGTTATTTTTCTGACACTGACAGGTCTGAATATAATCCTTCTC TCAGGAGTCGACTCACCTTATCAGTAGATAGATCTAAGAACCAGTTG TCCCTGAGATTGAAGTCCGTGACCGCTGCGGATTCGGCCACTTATTA CTGTGCGAGAGCACAGCAGGGGAAGAGGATCTATGGAATAGTGTCTT TCGGAGAGTTCTTCTATTATTATTACATGGACGCCTGGGGCAAAGGG ACTCCGGTCACCGTCTCCTCA(SEQ ID NO: 418)
[0683] 4869K15 (PGT-133) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MKHLWFFLLLVAAPRWVVSQVHLQESGPGLVTPSETLSLTCTVSNGSVSGRF WSWIRQSPGRGLEWIGYFSDTDRSEYNPSLRSRLTLSVDRSKNQLSLRLK SVTAADSATYYCARAQQGKRIYGIVSFGEFFYYYYMDAWGKGTPVTVSS ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTF PAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKT HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH EALHNHYTQKSLSLSPGK (SEQ ID NO: 419)
[06841 4869_K15 (PGT-133) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QVHLQESGPGLVTPSETLSLTCTVSNGSVSGRFWSWIRQSPGRGLEWIGYFSD TDRSEYNPSLRSRLTLSVDRSKNQLSLRLKSVTAADSATYYCARAOQGKRIY GIVSFGEFFYYYYMDAWGKGTPVTVSS (SEQ ID NO: 420)
[0685] 4869_K15 (PGT-133) gamma heavy chain Kabat CDRs: CDR 1: GRFWS (SEQ ID NO: 421) CDR 2: YFSDTDRSEYNPSLRS (SEQ ID NO: 422) CDR 3: AQQGKRIYGIVSFGEFFYYYYMDA (SEQ ID NO: 423)
[0686] 4869_K15 (PGT-133) gamma heavy chain Chothia CDRs: CDR 1: NGSVSG (SEQ ID NO: 424) CDR 2: YFSDTDRSE (SEQ ID NO: 425) CDR 3: AQQGKRIYGIVSFGEFFYYYYMDA (SEQ ID NO: 423)
[0687] 4869K15 (PGT-133) light chain nucleotide sequence: coding sequence (variable region in bold) ATGGCCTGGATCCCTCTCCTCCTCGGCCTCCTCTCTCACTGCACAGGTTCTGA CACTTCGTTAAACCCACTGTCGCTGGCCCCAGGAGCGACGGCCAAAA TTCCCTGCGGAGAAAGGAGCCGTGGAAGTAGGGCTGTCCAGTGGTAT CAGCAGAAGCCAGGCCAGGCCCCCACATTGATCATTTATAATAATCA AGACCGGCCCGCAGGGGTCTCTGAACGATTTTCTGGCAATCCTGACG TCGCTATTGGGGTGACGGCCACCCTGACCATCAGTCGGGTCGAAGTC GGGGATGAGGCCGACTATTATTGTCACTATTGGGACAGTAGAAGTCC CATCAGCTGGATTTTCGGCGGAGGGACCCAGCTGACCGTCCTGGGTC AGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCTGAGGAGC TTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCG GGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGTCAAGGCGG GAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCGGC CAGCAGCTATCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAAAAGCT ACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGC CCCTACAGAATGTTCATAG(SEQ ID NO: 426)
[0688] 4869K15 (PGT-133) light chain variable region nucleotide sequence: TCGTTAAACCCACTGTCGCTGGCCCCAGGAGCGACGGCCAAAATTCC CTGCGGAGAAAGGAGCCGTGGAAGTAGGGCTGTCCAGTGGTATCAG CAGAAGCCAGGCCAGGCCCCCACATTGATCATTTATAATAATCAAGA CCGGCCCGCAGGGGTCTCTGAACGATTTTCTGGCAATCCTGACGTCG CTATTGGGGTGACGGCCACCCTGACCATCAGTCGGGTCGAAGTCGGG GATGAGGCCGACTATTATTGTCACTATTGGGACAGTAGAAGTCCCAT
CAGCTGGATTTTCGGCGGAGGGACCCAGCTGACCGTCCTG(SEQ ID NO: 427)
[0689] 4869K15 (PGT-133) light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MA WIPLLLGLLSHCTGSDTSLNPLSLAPGATAKIPCGERSRGSRAVQWYQQ KPGQAPTLIIYNNQDRPAGVSERFSGNPDVAIGVTATLTISRVEVGDEADY YCHYWDSRSPISWIFGGGTQLTVLGQPKAAPSVTLFPPSSEELQANKATLV CLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQW KSHKSYSCQVTHEGSTVEKTVAPTECS (SEQ ID NO: 428)
[0690] 4869K15 (PGT-133) light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) SLNPLSLAPGATAKIPCGERSRGSRA VOWYQQKPGQAPTLIIYNNODRPAGVS ERFSGNPDVAIGVTATLTISRVEVGDEADYYCHYWDSRSPISWIFGGGTQLTV L (SEQ ID NO: 429)
[0691] 4869K15 (PGT-133) light chain Kabat CDRs: CDR 1: GERSRGSRAVQ (SEQ ID NO: 430) CDR 2: NNQDRPA (SEQ ID NO: 179) CDR 3: HYWDSRSPISWI (SEQ ID NO: 431)
[0692] 4869K15 (PGT-133) light chain Chothia CDRs: CDR 1: GERSRGSRAVQ (SEQ ID NO: 430) CDR 2: NNQDRPA (SEQ ID NO: 179) CDR 3: HYWDSRSPISWI (SEQ ID NO: 431)
[0693] 4876_M06 (PGT-134) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGAAACACCTGTGGTTCTTCCTCCTGCTGGTGGCAGCTCCCAGATGGGTCGT GTCCCAGGTGCATCTGCAAGAGTCGGGGCCAGGACTGGTGACGCCTT CGGAAACCCTGTCCCTCACTTGCACTGTGTCGAATGGCTCCGTCAGT GGTCGCTTCTGGAGCTGGATCCGGCAGTCCCCAGGGAGAGGACTGG AATGGATCGGTTATTTTTCTGACACTGACAGGTCTGAATATAATCCTT CTCTCAGGAGTCGACTCACCTTATCAGTCGATAGATCCAAGAACCAG TTGTCCCTAAAATTGAAGTCCGTGACCGCTGCGGATTCGGCCACTTA TTACTGTGCGAGAGCACAACAGGGGAAGAGGATCTATGGAATAGTGT CTTTCGGAGAGTTGTTCTATTATTATTACATGGACGCCTGGGGCAAA GGGACTCCGGTCACCGTCTCCTCAGCGTCGACCAAGGGCCCATCGGTC TTCCCTCTGGCACCATCATCCAAGTCGACCTCTGGGGGCACAGCGGCCCT GGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGA ACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAG
TCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAG CTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACA CCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACAC ATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCC TCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAG GTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTT CAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCG CGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGT CCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCC AACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAG GGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGA GATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATC CCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAA CTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTA TAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTC TCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAG CCTCTCCCTGTCTCCGGGTAAATGA(SEQ ID NO: 432)
[0694] 4876M06 (PGT-134) gamma heavy chain variable region nucleotide sequence: CAGGTGCATCTGCAAGAGTCGGGGCCAGGACTGGTGACGCCTTCGG AAACCCTGTCCCTCACTTGCACTGTGTCGAATGGCTCCGTCAGTGGT CGCTTCTGGAGCTGGATCCGGCAGTCCCCAGGGAGAGGACTGGAAT GGATCGGTTATTTTTCTGACACTGACAGGTCTGAATATAATCCTTCTC TCAGGAGTCGACTCACCTTATCAGTCGATAGATCCAAGAACCAGTTG TCCCTAAAATTGAAGTCCGTGACCGCTGCGGATTCGGCCACTTATTA CTGTGCGAGAGCACAACAGGGGAAGAGGATCTATGGAATAGTGTCTT TCGGAGAGTTGTTCTATTATTATTACATGGACGCCTGGGGCAAAGGG ACTCCGGTCACCGTCTCCTCA(SEQ ID NO: 433)
[0695] 4876_M06 (PGT-134) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MKHLWFFLLLVAAPRWVVSQVHLQESGPGLVTPSETLSLTCTVSNGSVSGRF WSWIRQSPGRGLEWIGYFSDTDRSEYNPSLRSRLTLSVDRSKNQLSLKLK SVTAADSATYYCARAQQGKRIYGIVSFGELFYYYYMDAWGKGTPVTVSS ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTF PAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKT HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH EALHNHYTQKSLSLSPGK (SEQ ID NO: 434)
[0696] 4876_M06 (PGT-134) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics)
QVHLQESGPGLVTPSETLSLTCTVSNGSVSGRFWSWIRQSPGRGLEWIGYFSD TDRSEYNPSLRSRLTLSVDRSKNQLSLKLKSVTAADSATYYCARAOOGKRIY GIVSFGELFYYYYMDAWGKGTPVTVSS (SEQ ID NO: 435)
[0697] 4876M06 (PGT-134) gamma heavy chain Kabat CDRs: CDR 1: GRFWS (SEQ ID NO: 421) CDR 2: YFSDTDRSEYNPSLRS (SEQ ID NO: 422) CDR 3: AQQGKRIYGIVSFGELFYYYYMDA (SEQ ID NO: 436)
[0698] 4876M06 (PGT-134) gamma heavy chain Chothia CDRs: CDR 1: NGSVSG (SEQ ID NO: 424) CDR 2: YFSDTDRSE (SEQ ID NO: 425) CDR 3: AQQGKRIYGIVSFGELFYYYYMDA (SEQ ID NO: 436)
[0699] 4876_M06 (PGT-134) light chain nucleotide sequence: coding sequence (variable region in bold) ATGGCCTGGATCCCTCTCCTCCTCGGCCTCCTCTCTCACTGCACAGGTTCTGA CACTTCGTTAAACCCACTGTCGCTGGCCCCGGGAGCGACGGCCAAAA TTCCCTGCGGAGAAAGGAGCCGTGGAAGTAGGGCTGTCCAGTGGTAT CAGCAGAAGCCAGGCCAGGCCCCCACATTGATCATTTATAATAATCA AGACCGGCCCGCAGGGGTCTCTGAACGATTTTCTGGCAATCCTGACG TCGCTATTGGGGTGACGGCCACCCTGACCATCAGTCGGGTCGAAGTC GGGGATGAGGGCGACTATTATTGTCACTATTGGGACAGTAGAAGTCC CATCAGCTGGATTTTCGCCGGAGGGACCCAGTTGACCGTCCTGGGTC AGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCTGAGGAGC TTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCG GGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGTCAAGGCGG GAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCGGC CAGCAGCTATCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAAAAGCT ACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGC CCCTACAGAATGTTCATAG (SEQ ID NO: 437)
[0700] 4876M06 (PGT-134) light chain variable region nucleotide sequence: TCGTTAAACCCACTGTCGCTGGCCCCGGGAGCGACGGCCAAAATTCC CTGCGGAGAAAGGAGCCGTGGAAGTAGGGCTGTCCAGTGGTATCAG CAGAAGCCAGGCCAGGCCCCCACATTGATCATTTATAATAATCAAGA CCGGCCCGCAGGGGTCTCTGAACGATTTTCTGGCAATCCTGACGTCG CTATTGGGGTGACGGCCACCCTGACCATCAGTCGGGTCGAAGTCGGG GATGAGGGCGACTATTATTGTCACTATTGGGACAGTAGAAGTCCCAT CAGCTGGATTTTCGCCGGAGGGACCCAGTTGACCGTCCTG (SEQ ID NO: 438)
[0701] 4876M06 (PGT- 134) light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MA WIPLLLGLLSHCTGSDTSLNPLSLAPGATAKIPCGERSRGSRAVQWYQQ KPGQAPTLIIYNNQDRPAGVSERFSGNPDVAIGVTATLTISRVEVGDEGDY YCHYWDSRSPISWIFAGGTQLTVLGQPKAAPSVTLFPPSSEELQANKATLV CLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQW KSHKSYSCQVTHEGSTVEKTVAPTECS (SEQ ID NO: 439)
[0702] 4876M06 (PGT-134) light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) SLNPLSLAPGATAKIPCGERSRGSRA VOWYQQKPGQAPTLIIYNNODRPAGVS ERFSGNPDVAIGVTATLTISRVEVGDEGDYYCHYWDSRSPISWIFAGGTQLTV L (SEQ ID NO: 440)
[0703] 4876M06 (PGT-134) light chain Kabat CDRs: CDR 1: GERSRGSRAVQ (SEQ ID NO: 430) CDR 2: NNQDRPA (SEQ ID NO: 179) CDR 3: HYWDSRSPISWI (SEQ ID NO: 431)
[0704] 4876M06 (PGT-134) light chain Chothia CDRs: CDR 1: GERSRGSRAVQ (SEQ ID NO: 430) CDR 2: NNQDRPA (SEQ ID NO: 179) CDR 3: HYWDSRSPISWI (SEQ ID NO: 431)
[0705] 5131_A17 (PGT-132) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGAAACACCTGTGGJTCTTCCTCCTGCTGGTGGCAGCTCCCAGATGGGTCCT TTCCCAGGTGCAACTACAGGAGTCGGGCCCAGGACTGGTGAAGCCTT CGGAGACCCTTTCCCTCACCTGCACTGTCTCTGGTGACTCCATCAACA CTGGTCATCACTACTGGGGCTGGGTCCGTCAGGTCCCAGGGAAGGGA CCGGAATGGATTGCTCACATCCACTATAATACGGCTGTCTTGCACAAT CCGGCCCTCAAGAGTCGAGTCACCATTTCGATTTTCACCCTGAAGAA TCTGATTACCCTGAGGCTCAGTAATATGACCGCCGCGGACACGGCCG TCTATTTCTGCGTTCGATCCGGCGGCGACATTTTATACTATAATGAGT GGCAAAAACCCCACTGGTTCTATCCCTGGGGCCCGGGAATTTTGGTC ACCGTCTCGAGCGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACC CTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCA AGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTG ACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTA CTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGA CCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAA GAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCC
CAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAA CCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT GGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGG ACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTA CAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACT GGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCC AGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAA CCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACC AGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCC GTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC CTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCG TGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATG CATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCC GGGTAAATGA(SEQ ID NO: 441)
[0706] 5131_A17 (PGT-132) gamma heavy chain variable region nucleotide sequence: CAGGTGCAACTACAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGG AGACCCTTTCCCTCACCTGCACTGTCTCTGGTGACTCCATCAACACTG GTCATCACTACTGGGGCTGGGTCCGTCAGGTCCCAGGGAAGGGACC GGAATGGATTGCTCACATCCACTATAATACGGCTGTCTTGCACAATCC GGCCCTCAAGAGTCGAGTCACCATTTCGATTTTCACCCTGAAGAATCT GATTACCCTGAGGCTCAGTAATATGACCGCCGCGGACACGGCCGTCT ATTTCTGCGTTCGATCCGGCGGCGACATTTTATACTATAATGAGTGGC AAAAACCCCACTGGTTCTATCCCTGGGGCCCGGGAATTTTGGTCACC GTCTCGAGC(SEQ ID NO: 442)
[0707] 5131_A17 (PGT-132) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MKHLWFFLLLVAAPRWVLSQVQLQESGPGLVKPSETLSLTCTVSGDSINTGH HYWGWVRQVPGKGPEWIAHIHYNTAVLHNPALKSRVTISIFTLKNLITL RLSNMTAADTAVYFCVRSGGDILYYNEWQKPHWFYPWGPGILVTVSSAS TKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPA VLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHT CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL PAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEW ESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL HNHYTQKSLSLSPGK (SEQ ID NO: 443)
[0708] 5131_A17 (PGT-132) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QVQLQESGPGLVKPSETLSLTCTVSGDSINTGHHYWGWVRQVPGKGPEWIA HIHYNTA VLHNPALKSRVTISIFTLKNLITLRLSNMTAADTAVYFCVRSGGDIL YYNEWOKPHWFYPWGPGILVTVSS (SEQ ID NO: 444)
[07091 5131_A17 (PGT-132) gamma heavy chain Kabat CDRs: CDR 1: TGHHYWG (SEQ ID NO: 348) CDR 2: HIHYNTAVLHNPALKS (SEQ ID NO: 349) CDR 3: SGGDILYYNEWQKPHWFYP (SEQ ID NO: 445)
[0710] 5131_A17 (PGT-132) gamma heavy chain Chothia CDRs: CDR 1: GDSINTGH (SEQ ID NO: 351) CDR 2: HIHYNTAVL (SEQ ID NO: 352) CDR 3: SGGDILYYNEWQKPHWFYP (SEQ ID NO: 445)
[0711] 5131_A17 (PGT-132) light chain nucleotide sequence: coding sequence (variable region in bold) ATGGCCTGGGCTCTGCTCCTCCTCACCCTCCTCACTCAGGGCACAGGGTCCTG GGCCCAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCTTG GACAGTCACTCACCATCTCCTGCAGTGGAACCGCCAGTGACATTGGC AGTTGGAATTTTGTCTCCTGGTATCAACAATTCCCAGGCAGAGCCCC CAACCTCATTATTTTTGAGGTCAATAGGCGGCGATCAGGGGTCCCTG ATCGCTTCTCTGGTTCCAAGTCGGGCAATACGGCCTCCCTGACCGTC TCTGGGCTCCGGTCTGAGGATGAGGCTGAATATTTTTGCAGTTCCCT TTCAGGCAGGTGGGACATTGTTTTTGGCGGAGGGACCAAGGTGACCG TCCTAGGTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCT CTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTGAC TTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGT CAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACAAG TACGCGGCCAGCAGCTACCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCA CAAAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAG ACAGTGGCCCCTACAGAATGTTCATAG(SEQ ID NO: 446)
[0712] 5131_A17 (PGT-132) light chain variable region nucleotide sequence: CAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCTTGGACA GTCACTCACCATCTCCTGCAGTGGAACCGCCAGTGACATTGGCAGTT GGAATTTTGTCTCCTGGTATCAACAATTCCCAGGCAGAGCCCCCAAC CTCATTATTTTTGAGGTCAATAGGCGGCGATCAGGGGTCCCTGATCG CTTCTCTGGTTCCAAGTCGGGCAATACGGCCTCCCTGACCGTCTCTG GGCTCCGGTCTGAGGATGAGGCTGAATATTTTTGCAGTTCCCTTTCA GGCAGGTGGGACATTGTTTTTGGCGGAGGGACCAAGGTGACCGTCCT A(SEQ ID NO: 447)
[07131 5131_A17 (PGT-132) light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MA WALLLLTLLTQGTGSWAQSALTQPPSASGSLGQSLTISCSGTASDIGSWNF VSWYQQFPGRAPNLIIFEVNRRRSGVPDRFSGSKSGNTASLTVSGLRSEDE
AEYFCSSLSGRWDIVFGGGTKVTVLGQPKAAPSVTLFPPSSEELQANKATL VCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQ WKSHKSYSCQVTHEGSTVEKTVAPTECS (SEQ ID NO: 448)
[0714] 5131_A17 (PGT-132) light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QSALTQPPSASGSLGQSLTISCSGTASDIGSWNFVSWYQQFPGRAPNLIIFEVN RRRSGVPDRFSGSKSGNTASLTVSGLRSEDEAEYFCSSLSGRWDIVFGGGTKV TVL (SEQ ID NO: 449)
[0715] 5131_A17 (PGT-132) light chain Kabat CDRs: CDR 1: SGTASDIGSWNFVS (SEQ ID NO: 450) CDR 2: EVNRRRS (SEQ ID NO: 358) CDR 3: SSLSGRWDIV (SEQ ID NO: 359)
[0716] 5131_A17 (PGT-132) light chain Chothia CDRs: CDR 1: SGTASDIGSWNFVS (SEQ ID NO: 450) CDR 2: EVNRRRS (SEQ ID NO: 358) CDR 3: SSLSGRWDIV (SEQ ID NO: 359)
[0717] 5138_G07 (PGT-138) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGAAACACCTGTGGJTCTTCCTCCTGCTGGTGGCAGCTCCCAGATGGGTCCT GTCCCAGCCGCAGCTGCAGGAGTCGGGGCCAGGACTGGTGGAGGCTT CGGAGACCCTGTCCCTCACCTGCACTGTGTCCGGCGACTCCACTGCT GCTTGTGACTATTTCTGGGGCTGGGTCCGGCAGCCCCCAGGGAAGGG GCTGGAGTGGATTGGAAGTTTGTCACATTGTGCAGGTTACTACAATA GTGGCTGGACCTACCACAACCCGTCTCTCAAGAGTCGACTCACGATT TCACTCGACACGCCCAAGAATCAGGTCTTCCTGAAGTTAAATTCTGTG ACCGCCGCGGACACGGCCATTTACTACTGTGCGCGATTCGGTGGCGA CGTTTTGGTGTACCACGATTGGCCAAAGCCGGCCTGGGTCGACCTCT GGGGCCGGGGAGTTTTGGTCACCGTCTCGAGCGCCTCCACCAAGGGC CCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCAC AGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGG TGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCT GTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCC CTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGC CCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAA AACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGT CAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGA CCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAG GTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTC
CTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAA GGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAG CCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCT TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGA GAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT TCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC AGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA(SEQ ID NO: 451)
[0718] 5138_G07 (PGT-138) gamma heavy chain variable region nucleotide sequence: CAGCCGCAGCTGCAGGAGTCGGGGCCAGGACTGGTGGAGGCTTCGG AGACCCTGTCCCTCACCTGCACTGTGTCCGGCGACTCCACTGCTGCT TGTGACTATTTCTGGGGCTGGGTCCGGCAGCCCCCAGGGAAGGGGCT GGAGTGGATTGGAAGTTTGTCACATTGTGCAGGTTACTACAATAGTG GCTGGACCTACCACAACCCGTCTCTCAAGAGTCGACTCACGATTTCA CTCGACACGCCCAAGAATCAGGTCTTCCTGAAGTTAAATTCTGTGAC CGCCGCGGACACGGCCATTTACTACTGTGCGCGATTCGGTGGCGACG TTTTGGTGTACCACGATTGGCCAAAGCCGGCCTGGGTCGACCTCTGG GGCCGGGGAGTTTTGGTCACCGTCTCGAGC (SEQ ID NO: 452)
[0719] 5138_G07 (PGT-138) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MKHLWFFLLLVAAPRWVLSQPQLQESGPGLVEASETLSLTCTVSGDSTAAC DYFWGWVRQPPGKGLEWIGSLSHCAGYYNSGWTYHNPSLKSRLTISLD TPKNQVFLKLNSVTAADTAIYYCARFGGDVLVYHDWPKPAWVDLWGR GVLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSG ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKR VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVK GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV FSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 453)
[0720] 5138_G07 (PGT-138) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QPQLQESGPGLVEASETLSLTCTVSGDSTAACDYFWGWVRQPPGKGLEWIGS LSHCAGYYNSGWTYHNPSLKSRLTISLDTPKNQVFLKLNSVTAADTAIYYCAR FGGDVLVYHDWPKPAWVDLWGRGVLVTVSS (SEQ ID NO: 454)
[0721] 5138_G07 (PGT-138) gamma heavy chain Kabat CDRs: CDR 1: ACDYFWG (SEQ ID NO: 201) CDR 2: SLSHCAGYYNSGWTYHNPSLKS (SEQ ID NO: 455)
CDR 3: FGGDVLVYHDWPKPAWVDL (SEQ ID NO: 456)
[0722] 5138_G07 (PGT-138) gamma heavy chain Chothia CDRs: CDR 1: GDSTAACD (SEQ ID NO: 204) CDR 2: SLSHCAGYYNSGWTY (SEQ ID NO: 457) CDR 3: FGGDVLVYHDWPKPAWVDL (SEQ ID NO: 456)
[0723] 5138_G07 (PGT-138) light chain nucleotide sequence: coding sequence (variable region in bold) ATGGCCTGGGCTCTGCTCCTCCTCACCCTCCTCACTCAGGGCACAGGGGCCT GGGCCCAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCCT GGACAGTCAATCACCATCTCCTGCACTGGAAATATCAATAACTTTGTC TCCTGGTACCAACAACACCCTGGCAAGGCCCCCAAACTCGTCATTTA TGGGGTCAATAAGCGCCCCTCAGGTGTCCCTGATCGTTTTTCTGGCT CCAAGTCTGGCAACGCGGCCTCCCTGACCGTCTCTGGACTCCAGACT GACGATGAGGCTGTCTATTACTGCGGCTCACTTGCAGGCAACTGGGA TGTGGTTTTCGGCGGAGGGACCAAGTTGACTGTCCTGGGTCAGCCCAT GGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTTCAAGC CAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGCCG TGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGTCAAGGCGGGAGTGGA GACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAGC TACCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAAAAGCTACAGCTG CCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTACA GAATGTTCATAG(SEQ ID NO: 581)
[0724] 5138_G07 (PGT-138) light chain variable region nucleotide sequence: CAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCCTGGACA GTCAATCACCATCTCCTGCACTGGAAATATCAATAACTTTGTCTCCTG GTACCAACAACACCCTGGCAAGGCCCCCAAACTCGTCATTTATGGGG TCAATAAGCGCCCCTCAGGTGTCCCTGATCGTTTTTCTGGCTCCAAGT CTGGCAACGCGGCCTCCCTGACCGTCTCTGGACTCCAGACTGACGAT GAGGCTGTCTATTACTGCGGCTCACTTGCAGGCAACTGGGATGTGGT TTTCGGCGGAGGGACCAAGTTGACTGTCCTG(SEQ ID NO: 582)
[0725] 5138_G07 (PGT-138) light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MA WALLLLTLLTQGTGAWAQSALTQPPSASGSPGQSITISCTGNINNFVSWY QQHPGKAPKLVIYGVNKRPSGVPDRFSGSKSGNAASLTVSGLQTDDEAV YYCGSLAGNWDVVFGGGTKLTVLGQPMAAPSVTLFPPSSEELQANKATLV CLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQW KSHKSYSCQVTHEGSTVEKTVAPTECS (SEQ ID NO: 583)
[07261 5138_G07 (PGT-138) light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QSALTQPPSASGSPGQSITISCTGNINNFVSWYQQHPGKAPKLVIYGVNKRPS GVPDRFSGSKSGNAASLTVSGLQTDDEAVYYCGSIAGNWDVVFGGGTKLTV L (SEQ ID NO: 584)
[0727] 5138_G07 (PGT-138) light chain Kabat CDRs: CDR 1: TGNINNFVS (SEQ ID NO: 458) CDR 2: GVNKRPS (SEQ ID NO: 211) CDR 3: GSLAGNWDVV (SEQ ID NO: 459)
[0728] 5138_G07 (PGT-138) light chain Chothia CDRs: CDR 1: TGNINNFVS (SEQ ID NO: 458) CDR 2: GVNKRPS (SEQ ID NO: 211) CDR 3: GSLAGNWDVV (SEQ ID NO: 459)
[0729] 5120_N10 (PGT-139) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGAAACACCTGTGGTTCTTCCTCCTGCTGGTGGCAGCTCCCAGATGGGTCCT GTCCCAGCCGCAGCTGCAGGAGTCGGGGCCAGGACTGGTGGAGGCTT CGGAGACCCTGTCCCTCACCTGCACTGTGTCCGGCGACTCCACTGCT GGTTGTGACTATTTCTGGGGCTGGGTCCGGCAGCCCCCAGGGAAGG GGCTGGAGTGGATTGGGGGTTTGTCACATTGTGCAGGTTACTACAAT ACTGGCTGGACCTACCACAACCCGTCTCTCAAGAGTCGACTCACGAT TTCACTCGACACGCCCAAGAATCAGGTCTTCCTGAAGTTAAATTCTGT GACCGCCGCGGACACGGCCATTTACTACTGTGCGCGATTCGACGGCG AAGTTTTGGTGTACAACGATTGGCCAAAGCCGGCCTGGGTCGACCTC TGGGGCCGGGGAACTTTGGTCACCGTCTCGAGCGCCTCCACCAAGGG CCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCA CAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACG GTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGC TGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCC CTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGC CCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAA AACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGT CAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGA CCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAG GTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTC CTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAA GGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAG CCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCT
TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGA GAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT TCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC AGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA(SEQ ID NO: 460)
[0730] 5120_N10 (PGT-139) gamma heavy chain variable region nucleotide sequence: CAGCCGCAGCTGCAGGAGTCGGGGCCAGGACTGGTGGAGGCTTCGG AGACCCTGTCCCTCACCTGCACTGTGTCCGGCGACTCCACTGCTGGT TGTGACTATTTCTGGGGCTGGGTCCGGCAGCCCCCAGGGAAGGGGCT GGAGTGGATTGGGGGTTTGTCACATTGTGCAGGTTACTACAATACTG GCTGGACCTACCACAACCCGTCTCTCAAGAGTCGACTCACGATTTCA CTCGACACGCCCAAGAATCAGGTCTTCCTGAAGTTAAATTCTGTGAC CGCCGCGGACACGGCCATTTACTACTGTGCGCGATTCGACGGCGAAG TTTTGGTGTACAACGATTGGCCAAAGCCGGCCTGGGTCGACCTCTGG GGCCGGGGAACTTTGGTCACCGTCTCGAGC (SEQ ID NO: 461)
[0731] 5120_N10 (PGT-139) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MKHLWFFLLLVAAPRWVLSQPQLQESGPGLVEASETLSLTCTVSGDSTAGC DYFWGWVRQPPGKGLEWIGGLSHCAGYYNTGWTYHNPSLKSRLTISLD TPKNQVFLKLNSVTAADTAIYYCARFDGEVLVYNDWPKPAWVDLWGRG TLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVE PKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 462)
[0732] 5120_N10 (PGT-139) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QPQLQESGPGLVEASETLSLTCTVSGDSTAGCDYFWGWVRQPPGKGLEWIG GLSHCAGYYNTGWTYHNPSLKSRLTISLDTPKNQVFLKLNSVTAADTAIYYC ARFDGEVLVYNDWPKPAWVDLWGRGTLVTVSS (SEQ ID NO: 463)
[0733] 5120N10 (PGT-139) gamma heavy chain Kabat CDRs: CDR 1: GCDYFWG (SEQ ID NO: 464) CDR 2: GLSHCAGYYNTGWTYHNPSLKS (SEQ ID NO: 202) CDR 3: FDGEVLVYNDWPKPAWVDL (SEQ ID NO: 465)
[0734] 5120N10 (PGT-139) gamma heavy chain Chothia CDRs: CDR 1: GDSTAGCD (SEQ ID NO: 466)
CDR 2: GLSHCAGYYNTGWTY (SEQ ID NO: 205) CDR 3: FDGEVLVYNDWPKPAWVDL (SEQ ID NO: 465)
[0735] 5120_N10 (PGT-139) light chain nucleotide sequence: coding sequence (variable region in bold) ATGGCCTGGGCTCTGCTCCTCCTCACCCTCCTCACTCAGGGCACAGGGGCCT GGGCCCAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCCT GGACAGTCAATCACCATCTCCTGCACTGGAACCAGCAATAACTTTGT CTCCTGGTACCAGCAACACCCAGCCAAGGCCCCCAAACTCGTCATTT ATGGGGTCAATAAGCGCCCCTCAGGTGTCCCTGATCGTTTTTCTGGC TCCAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGACTCCAGAC TGACGATGAGGCTGTCTATTACTGCGGCTCACTTGTAGGCAACTGGG ATGTGATTTTCGGCGGAGGGACCAAGTTGACCGTCCTGGGTCAGCCC ATGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTTCAA GCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGC CGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGTCAAGGCGGGAGTG GAGACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCA GCTACCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAAAAGCTACAGC TGCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTA CAGAATGTTCATAG(SEQ ID NO: 467)
[0736] 5 120N10 (PGT-139) light chain variable region nucleotide sequence: CAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCCTGGACA GTCAATCACCATCTCCTGCACTGGAACCAGCAATAACTTTGTCTCCTG GTACCAGCAACACCCAGCCAAGGCCCCCAAACTCGTCATTTATGGGG TCAATAAGCGCCCCTCAGGTGTCCCTGATCGTTTTTCTGGCTCCAAGT CTGGCAACACGGCCTCCCTGACCGTCTCTGGACTCCAGACTGACGAT GAGGCTGTCTATTACTGCGGCTCACTTGTAGGCAACTGGGATGTGAT TTTCGGCGGAGGGACCAAGTTGACCGTCCTG(SEQ ID NO: 468)
[0737] 5120_N10 (PGT-139) light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MA WALLLLTLLTQGTGAWAQSALTQPPSASGSPGQSITISCTGTSNNFVSWY QQHPAKAPKLVIYGVNKRPSGVPDRFSGSKSGNTASLTVSGLQTDDEAV YYCGSLVGNWDVIFGGGTKLTVLGQPMAAPSVTLFPPSSEELQANKATLV CLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQW KSHKSYSCQVTHEGSTVEKTVAPTECS (SEQ ID NO: 469)
[0738] 5120_N10 (PGT-139) light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QSALTQPPSASGSPGQSITISCTGTSNNFVSWYQQHPAKAPKLVIYGVNKRPS GVPDRFSGSKSGNTASLTVSGLQTDDEAVYYCGSLVGNWDVIFGGGTKLTVL (SEQ ID NO: 470)
[07391 5120_N10 (PGT-139) light chain Kabat CDRs: CDR 1: TGTSNNFVS (SEQ ID NO: 325) CDR 2: GVNKRPS (SEQ ID NO: 211) CDR 3: GSLVGNWDVI (SEQ ID NO: 196)
[07401 5120N10 (PGT-139) light chain Chothia CDRs: CDR 1: TGTSNNFVS (SEQ ID NO: 325) CDR 2: GVNKRPS (SEQ ID NO: 211) CDR 3: GSLVGNWDVI (SEQ ID NO: 196)
[0741] The 4835_F12 (PGT-124) antibody includes a heavy chain variable region (SEQ ID NO: 405), encoded by the nucleic acid sequence shown in SEQ ID NO: 403, and a light chain variable region (SEQ ID NO: 414) encoded by the nucleic acid sequence shown in SEQ ID NO: 412.
[0742] The heavy chain CDRs of the 4835_F12 (PGT-124) antibody have the following sequences per Kabat definition: NYYWT (SEQ ID NO: 406), YISDRETTTYNPSLNS (SEQ ID NO: 407), and ARRGQRIYGVVSFGEFFYYYYMDV (SEQ ID NO: 408). The light chain CDRs of the 4835_F12 (PGT-124) antibody have the following sequences per Kabat definition: GRQALGSRAVQ (SEQ ID NO: 415), NNQDRPS (SEQ ID NO: 151), and HMWDSRSGFSWS (SEQ ID NO: 416).
[0743] The heavy chain CDRs of the 4835_F12 (PGT-124) antibody have the following sequences per Chothia definition: GGSISN (SEQ ID NO: 409), YISDRETTT (SEQ ID NO: 410), and ARRGQRIYGVVSFGEFFYYYYMDV (SEQ ID NO: 408). The light chain CDRs of the 4835_F12 (PGT-124) antibody have the following sequences per Chothia definition: GRQALGSRAVQ (SEQ ID NO: 415), NNQDRPS (SEQ ID NO: 151), and HMWDSRSGFSWS (SEQ ID NO: 416).
[0744] The 4869_Ki5 (PGT-133) antibody includes a heavy chain variable region (SEQ ID NO: 420), encoded by the nucleic acid sequence shown in SEQ ID NO: 418, and a light chain variable region (SEQ ID NO: 429) encoded by the nucleic acid sequence shown in SEQ ID NO: 427.
[0745] The heavy chain CDRs of the 4869_K15 (PGT-133) antibody have the following sequences per Kabat definition: GRFWS (SEQ ID NO: 421), YFSDTDRSEYNPSLRS (SEQ ID NO: 422), and AQQGKRIYGIVSFGEFFYYYYMDA (SEQ ID NO: 423). The light chain CDRs of the 4869_K15 (PGT-133) antibody have the following sequences per Kabat definition: GERSRGSRAVQ (SEQ ID NO: 430), NNQDRPA (SEQ ID NO: 179), and HYWDSRSPISWI (SEQ ID NO: 431).
[0746] The heavy chain CDRs of the 4869_K15 (PGT-133) antibody have the following sequences per Chothia definition: NGSVSG (SEQ ID NO: 424), YFSDTDRSE (SEQ ID NO: 425), and AQQGKRIYGIVSFGEFFYYYYMDA (SEQ ID NO: 423). The light chain CDRs of the 4869_K15 (PGT-133) antibody have the following sequences per Chothia definition: GERSRGSRAVQ (SEQ ID NO: 430), NNQDRPA (SEQ ID NO: 179), and HYWDSRSPISWI (SEQ ID NO: 431).
[0747] The 4876_M06 (PGT-134) antibody includes a heavy chain variable region (SEQ ID NO: 435), encoded by the nucleic acid sequence shown in SEQ ID NO: 433, and a light chain variable region (SEQ ID NO: 440) encoded by the nucleic acid sequence shown in SEQ ID NO: 438.
[0748] The heavy chain CDRs of the 4876_M06 (PGT-134) antibody have the following sequences per Kabat definition: GRFWS (SEQ ID NO: 421), YFSDTDRSEYNPSLRS (SEQ ID NO: 422), and AQQGKRIYGIVSFGELFYYYYMDA (SEQ ID NO: 436). The light chain CDRs of the 4876_M06 (PGT-134) antibody have the following sequences per Kabat definition: GERSRGSRAVQ (SEQ ID NO: 430), NNQDRPA (SEQ ID NO: 179), and HYWDSRSPISWI (SEQ ID NO: 431).
[0749] The heavy chain CDRs of the 4876_M06 (PGT-134) antibody have the following sequences per Chothia definition: NGSVSG (SEQ ID NO: 424), YFSDTDRSE (SEQ ID NO: 425), and AQQGKRIYGIVSFGELFYYYYMDA (SEQ ID NO: 436). The light chain CDRs of the 4876_M06 (PGT-134) antibody have the following sequences per Chothia definition: GERSRGSRAVQ (SEQ ID NO: 430), NNQDRPA (SEQ ID NO: 179), and HYWDSRSPISWI (SEQ ID NO: 431).
[0750] The 5131_A17 (PGT-132) antibody includes a heavy chain variable region (SEQ ID NO: 444), encoded by the nucleic acid sequence shown in SEQ ID NO: 442, and a light chain variable region (SEQ ID NO: 449) encoded by the nucleic acid sequence shown in SEQ ID NO: 447.
[0751] The heavy chain CDRs of the 5131_A17 (PGT-132) antibody have the following sequences per Kabat definition: TGHHYWG (SEQ ID NO: 348), HIHYNTAVLHNPALKS
(SEQ ID NO: 349), and SGGDILYYNEWQKPHWFYP (SEQ ID NO: 445). The light chain CDRs of the 5131_A17 (PGT-132) antibody have the following sequences per Kabat definition: SGTASDIGSWNFVS (SEQ ID NO: 450), EVNRRRS (SEQ ID NO: 358), and SSLSGRWDIV (SEQ ID NO: 359).
[0752] The heavy chain CDRs of the 5131_A17 (PGT-132) antibody have the following sequences per Chothia definition: GDSINTGH (SEQ ID NO: 351), HIHYNTAVL (SEQ ID NO: 352), and SGGDILYYNEWQKPHWFYP (SEQ ID NO: 445). The light chain CDRs of the 5131_A17 (PGT-132) antibody have the following sequences per Chothia definition: SGTASDIGSWNFVS (SEQ ID NO: 450), EVNRRRS (SEQ ID NO: 358), and SSLSGRWDIV (SEQ ID NO: 359).
[0753] The 5138_G07 (PGT-138) antibody includes a heavy chain variable region (SEQ ID NO: 454), encoded by the nucleic acid sequence shown in SEQ ID NO: 452, and a light chain variable region (SEQ ID NO: 461) encoded by the nucleic acid sequence shown in SEQ ID NO: 459.
[0754] The heavy chain CDRs of the 5138_G07 (PGT-138) antibody have the following sequences per Kabat definition: ACDYFWG (SEQ ID NO: 201), SLSHCAGYYNSGWTYHNPSLKS (SEQ ID NO: 455), and FGGDVLVYHDWPKPAWVDL (SEQ ID NO: 456). The light chain CDRs of the 5138_G07 (PGT-138) antibody have the following sequences per Kabat definition: TGNINNFVS (SEQ ID NO: 458), GVNKRPS (SEQ ID NO: 211), and GSLAGNWDVV (SEQ ID NO: 459).
[0755] The heavy chain CDRs of the 5138_G07 (PGT-138) antibody have the following sequences per Chothia definition: GDSTAACD (SEQ ID NO: 204), SLSHCAGYYNSGWTY (SEQ ID NO: 457), and FGGDVLVYHDWPKPAWVDL (SEQ ID NO: 456). The light chain CDRs of the 5138_G07 (PGT-138) antibody have the following sequences per Chothia definition: TGNINNFVS (SEQ ID NO: 458), GVNKRPS (SEQ ID NO: 211), and GSLAGNWDVV (SEQ ID NO: 459).
[0756] The 5120_N1O (PGT-139) antibody includes a heavy chain variable region (SEQ ID NO: 463), encoded by the nucleic acid sequence shown in SEQ ID NO: 461, and a light chain variable region (SEQ ID NO: 470) encoded by the nucleic acid sequence shown in SEQ ID NO: 468.
[07571 The heavy chain CDRs of the 5120_N10 (PGT-139) antibody have the following sequences per Kabat definition: GCDYFWG (SEQ ID NO: 464), GLSHCAGYYNTGWTYHNPSLKS (SEQ ID NO: 202), and FDGEVLVYNDWPKPAWVDL (SEQ ID NO: 465). The light chain CDRs of the 5120_NI (PGT-139) antibody have the following sequences per Kabat definition: TGTSNNFVS (SEQ ID NO: 325), GVNKRPS (SEQ ID NO: 211), and GSLVGNWDVI (SEQ ID NO: 196).
[0758] The heavy chain CDRs of the 5120_N1O (PGT-139) antibody have the following sequences per Chothia definition: GDSTAGCD (SEQ ID NO: 466), GLSHCAGYYNTGWTY (SEQ ID NO: 205), and FDGEVLVYNDWPKPAWVDL (SEQ ID NO: 465). The light chain CDRs of the 5120_Ni0 (PGT-139) antibody have the following sequences per Chothia definition: TGTSNNFVS (SEQ ID NO: 325), GVNKRPS (SEQ ID NO: 211), and GSLVGNWDVI (SEQ ID NO: 196).
[0759] The sequences of additional human monoclonal antibodies were determined, including the sequences of the variable regions of the Gamma heavy and Kappa or Lambda light chains. In addition, the sequence of each of the polynucleotides encoding the antibody sequences was determined. Shown below are the polypeptide and polynucleotide sequences of the gamma heavy chains and kappa light chains, with the signal peptides at the N-terminus (or 5' end) and the constant regions at the C-terminus (or 3' end) of the variable regions, which are shown in bolded text.
[0760] 6831_A21 (PGT-151) gamma heavy chain nucleotide sequence: coding sequence (leader sequence in italics, variable region in bold) ATGGAATTGGGGCTGAGCTGGGT TTTCCTCGTTGGTCTCTTA AGAGGTGTCCA GTGTCGGGTGCAGTTGGTGGAGTCGGGGGGAGGCGTGGTCCAGCCTG GGAAGTCCGTGAGACTTTCCTGTGTAGTCTCCGATTTCCCCTTCAGCA AGTATCCTATGTATTGGGTTCGCCAGGCTCCAGGCAAGGGGCTGGAG TGGGTGGCAGCCATCTCCGGTGATGCCTGGCATGTGGTCTACTCAAA TTCCGTGCAGGGCCGATTTCTCGTCTCCAGGGACAATGTCAAGAACA CTCTATATTTAGAAATGAACAGCCTGAAAATTGAGGATACGGCCGTA TATCGCTGCGCGAGAATGTTCCAGGAGTCTGGTCCACCACGTTTGGA TCGTTGGAGCGGTCGAAATTATTACTATTATTCTGGTATGGACGTCTG GGGCCAAGGGACCACGGTCACCGTCTCGAGCGCCTCCACCAAGGGCC CATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACA GCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGT GTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTG TCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCT CCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCC
AGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAA CTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCA GTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC CCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCC TCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAA GGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAG CCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCT TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGA GAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT TCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC AGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO:471)
[0761] 683 1A21 (PGT-151) gamma heavy chain variable region nucleotide sequence: CGGGTGCAGTTGGTGGAGTCGGGGGGAGGCGTGGTCCAGCCTGGGA AGTCCGTGAGACTTTCCTGTGTAGTCTCCGATTTCCCCTTCAGCAAGT ATCCTATGTATTGGGTTCGCCAGGCTCCAGGCAAGGGGCTGGAGTGG GTGGCAGCCATCTCCGGTGATGCCTGGCATGTGGTCTACTCAAATTC CGTGCAGGGCCGATTTCTCGTCTCCAGGGACAATGTCAAGAACACTC TATATTTAGAAATGAACAGCCTGAAAATTGAGGATACGGCCGTATAT CGCTGCGCGAGAATGTTCCAGGAGTCTGGTCCACCACGTTTGGATCG TTGGAGCGGTCGAAATTATTACTATTATTCTGGTATGGACGTCTGGG GCCAAGGGACCACGGTCACCGTCTCGAGC (SEQ ID NO:472)
[0762] 6831_A21 (PGT-151) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MELGLSWVFLVGLLRGVQCRVQLVESGGGVVQPGKSVRLSCVVSDFPFSKY PMYWVRQAPGKGLEWVAAISGDAWHVVYSNSVQGRFLVSRDNVKNTL YLEMNSLKIEDTAVYRCARMFQESGPPRLDRWSGRNYYYYSGMDVWG QGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK RVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVK GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV FSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 473)
[0763] 6831_A21 (PGT-151) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics)
RVQLVESGGGVVQPGKSVRLSCVVSDFPFSKYPMYWVRQAPGKGLEWVAA ISGDA WHVVYSNSVOGRFLVSRDNVKNTLYLEMNSLKIEDTAVYRCARMFQ ESGPPRLDRWSGRNYYYYSGMDVWGQGTTVTVSS (SEQ ID NO: 474)
[0764] 683 1A21 (PGT-151) gamma heavy chain Kabat CDRs: CDR 1: KYPMY (SEQ ID NO: 475) CDR 2: AISGDAWHVVYSNSVQG (SEQ ID NO: 476) CDR 3: MFQESGPPRLDRWSGRNYYYYSGMDV (SEQ ID NO: 477)
[0765] 683 1A21 (PGT-151) gamma heavy chain Chothia CDRs: CDR 1: DFPFSK (SEQ ID NO: 478) CDR 2: AISGDAWHVV (SEQ ID NO: 479) CDR 3: MFQESGPPRLDRWSGRNYYYYSGMDV (SEQ ID NO: 477)
[0766] 6831_A21 (PGT-151) light chain nucleotide sequence: coding sequence (variable region in bold) ATGAGGCTCCCTGCTCAGCTCCTGGGGCTGCTAATGCTCTGGATACCTGAATT CACTGCAGACATTGTGATGACCCAGACTCCTCTCTCTTTGTCCGTCAC CCCTGGACAGCCGGCCTCCATCTCCTGCAAGTCCAGTGAGAGCCTCC GACAAAGTAATGGAAAGACCTCTTTGTATTGGTATCGGCAGAAGCCA GGCCAGTCTCCACAACTCCTAGTGTTTGAAGTTTCTAATCGATTCTCT GGCGTGTCGGATAGGTTTGTTGGCAGCGGGTCAGGGACAGACTTCAC ACTGAGAATCAGCCGGGTAGAGGCTGAGGATGTTGGATTTTATTACT GCATGCAAAGTAAAGACTTCCCACTTACATTTGGCGGCGGGACCAAG GTGGATCTCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCC ATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAA TAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCC TCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGA CAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTAC GAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTC GCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG (SEQ ID NO:480)
[0767] 6831_A21 (PGT-151) light chain variable region nucleotide sequence: GACATTGTGATGACCCAGACTCCTCTCTCTTTGTCCGTCACCCCTGGA CAGCCGGCCTCCATCTCCTGCAAGTCCAGTGAGAGCCTCCGACAAAG TAATGGAAAGACCTCTTTGTATTGGTATCGGCAGAAGCCAGGCCAGT CTCCACAACTCCTAGTGTTTGAAGTTTCTAATCGATTCTCTGGCGTGT CGGATAGGTTTGTTGGCAGCGGGTCAGGGACAGACTTCACACTGAGA ATCAGCCGGGTAGAGGCTGAGGATGTTGGATTTTATTACTGCATGCA AAGTAAAGACTTCCCACTTACATTTGGCGGCGGGACCAAGGTGGATC TCAAA (SEQ ID NO:481)
[07681 683 1A21 (PGT-151) light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MRLPA QLLGLLMLWIPEFTADIVMTQTPLSLSVTPGQPASISCKSSESLRQSN GKTSLYWYRQKPGQSPQLLVFEVSNRFSGVSDRFVGSGSGTDFTLRISRV EAEDVGFYYCMQSKDFPLTFGGGTKVDLKRTVAAPSVFIFPPSDEQLKSGT ASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTL SKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 482)
[0769] 683 1A21 (PGT-151) light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) DIVMTQTPLSLSVTPGQPASISCKSSESLROSNGKTSLYWYRQKPGQSPQLLVF EVSNRFSGVSDRFVGSGSGTDFTLRISRVEAEDVGFYYCMOSKDFPLTFGGG TKVDLK (SEQ ID NO: 483)
[0770] 683 1A21 (PGT-151) light chain Kabat CDRs: CDR 1: KSSESLRQSNGKTSLY (SEQ ID NO: 484) CDR 2: EVSNRFS (SEQ ID NO: 485) CDR 3: MQSKDFPLT (SEQ ID NO: 486)
[0771] 683 1A21 (PGT-151) light chain Chothia CDRs: CDR 1: KSSESLRQSNGKTSLY (SEQ ID NO: 484) CDR 2: EVSNRFS (SEQ ID NO: 485) CDR 3: MQSKDFPLT (SEQ ID NO: 486)
[0772] 6889_117 (PGT-152) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGGAATTGGGGCTGAGCTGGGT TTTCCTCGTTGGTCTCTTAAGAGGTGTCCA CTGTCGGGTGCAGTTGGTGGAGTCGGGGGGAGGCGTGGTCCAGCCTG GGAAGTCCGTGAGACTTTCCTGTGTAGTCTCTGATTTCCCCTTCAGCA AGTATCCTATGTATTGGGTTCGCCAGGCTCCAGGCAAGGGGCTGGAG TGGGTGGCAGCCATCTCCGCTGATGCCTGGCATGTGGTCTACTCAGG CTCCGTGCAGGGCCGATTTCTCGTCTCCAGGGACAACTCCAAGAACA TTCTGTATTTGGAAATGAACACCCTGAAAATTGAGGACACGGCCGTA TATCGCTGCGCGAGAATGTTCCAGGAGTCTGGTCCACCACGTTTCGA TTCTTGGAGCGGTCGAAATTACTACTATTACTCTGGTATGGACGTCTG GGGCCAAGGGACCACGGTCACCGTCTCGAGCGCCTCCACCAAGGGCC CATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACA GCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGT GTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTG TCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCT CCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCC AGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAA
CTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCA GTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC CCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCC TCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAA GGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAG CCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCT TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGA GAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT TCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC AGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO:487)
[0773] 6889_17 (PGT-152) gamma heavy chain variable region nucleotide sequence: CGGGTGCAGTTGGTGGAGTCGGGGGGAGGCGTGGTCCAGCCTGGGA AGTCCGTGAGACTTTCCTGTGTAGTCTCTGATTTCCCCTTCAGCAAGT ATCCTATGTATTGGGTTCGCCAGGCTCCAGGCAAGGGGCTGGAGTGG GTGGCAGCCATCTCCGCTGATGCCTGGCATGTGGTCTACTCAGGCTC CGTGCAGGGCCGATTTCTCGTCTCCAGGGACAACTCCAAGAACATTC TGTATTTGGAAATGAACACCCTGAAAATTGAGGACACGGCCGTATAT CGCTGCGCGAGAATGTTCCAGGAGTCTGGTCCACCACGTTTCGATTC TTGGAGCGGTCGAAATTACTACTATTACTCTGGTATGGACGTCTGGG GCCAAGGGACCACGGTCACCGTCTCGAGC (SEQ ID NO:488)
[0774] 6889_17 (PGT-152) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MELGLSWVFLVGLLRGVHCRVQLVESGGGVVQPGKSVRLSCVVSDFPFSKY PMYWVRQAPGKGLEWVAAISADAWHVVYSGSVQGRFLVSRDNSKNILY LEMNTLKIEDTAVYRCARMFQESGPPRFDSWSGRNYYYYSGMDVWGQ GTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSG ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKR VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVK GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV FSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 489)
[0775] 6889_117 (PGT-152) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) RVQLVESGGGVVQPGKSVRLSCVVSDFPFSKYPMYWVRQAPGKGLEWVAA ISADAWHVVYSGSVQGRFLVSRDNSKNILYLEMNTLKIEDTAVYRCARMFQ ESGPPRFDSWSGRNYYYYSGMDVWGQGTTVTVSS (SEQ ID NO: 490)
[07761 6889_17 (PGT-152) gamma heavy chain Kabat CDRs: CDR 1: KYPMY (SEQ ID NO: 475) CDR 2: AISADAWHVVYSGSVQG (SEQ ID NO: 491) CDR 3: MFQESGPPRFDSWSGRNYYYYSGMDV (SEQ ID NO: 492)
[0777] 6889_17 (PGT-152) gamma heavy chain Chothia CDRs: CDR 1: DFPFSK (SEQ ID NO: 478) CDR 2: AISADAWHVV (SEQ ID NO: 493) CDR 3: MFQESGPPRFDSWSGRNYYYYSGMDV (SEQ ID NO: 492)
[0778] 6889_17 (PGT-152) light chain nucleotide sequence: coding sequence (variable region in bold) ATGAGGCTCCCTGCTCAGCTCCTGGGGCTGCTAATGCTCTGGATACCTGAATT TATTGCCGACATTGTGATGACCCAGACTCCTCTCTCTTTGTCCGTCGAC CCTGGACAGCCGGCCTCCATCTCCTGCAAGTCCAGTCAGAGCCTCCG ACAAAGTAATGGAAAGACCTCTTTGTATTGGTATCAGCAGAAGCCAG GCCAGTCTCCACAACTCCTAATATTTGAAGTTTCTAATCGATTCTCTG GCGTGTCGGATAGGTTTGTTGGCAGCGGGTCAGGGACAGACTTCACA CTGAGAATCAGCCGGGTAGAGGCTGAGGATGTTGGATTTTATTACTG CATGCAAAGTAAAGACTTCCCACTCACCTTTGGCGGCGGGACCAAGG TGGATCTCAACCGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCA TCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAAT AACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCT CCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGAC AGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACG AGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCG CCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG (SEQ ID NO:494)
[0779] 6889_17 (PGT-152) light chain variable region nucleotide sequence: GACATTGTGATGACCCAGACTCCTCTCTCTTTGTCCGTCGACCCTGGA CAGCCGGCCTCCATCTCCTGCAAGTCCAGTCAGAGCCTCCGACAAAG TAATGGAAAGACCTCTTTGTATTGGTATCAGCAGAAGCCAGGCCAGT CTCCACAACTCCTAATATTTGAAGTTTCTAATCGATTCTCTGGCGTGT CGGATAGGTTTGTTGGCAGCGGGTCAGGGACAGACTTCACACTGAGA ATCAGCCGGGTAGAGGCTGAGGATGTTGGATTTTATTACTGCATGCA AAGTAAAGACTTCCCACTCACCTTTGGCGGCGGGACCAAGGTGGATC TCAAC (SEQ ID NO:495)
[07801 6889_17 (PGT-152) light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MRLPAQLLGLLMLWIPEFIADIVMTQTPLSLSVDPGQPASISCKSSQSLRQSN GKTSLYWYQQKPGQSPQLLIFEVSNRFSGVSDRFVGSGSGTDFTLRISRV
EAEDVGFYYCMQSKDFPLTFGGGTKVDLNRTVAAPSVFIFPPSDEQLKSGT ASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTL SKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 496)
[0781] 6889_17 (PGT-152) light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) DIVMTQTPLSLSVDPGQPASISCKSSOSLROSNGKTSLYWYQQKPGQSPQLLIF EVSNRFSGVSDRFVGSGSGTDFTLRISRVEAEDVGFYYCMOSKDFPLTFGGG TKVDLN (SEQ ID NO: 497)
[0782] 6889_17 (PGT-152) light chain Kabat CDRs: CDR 1: KSSQSLRQSNGKTSLY (SEQ ID NO: 498) CDR 2: EVSNRFS (SEQ ID NO: 485) CDR 3: MQSKDFPLT (SEQ ID NO: 486)
[0783] 6889_17 (PGT-152) light chain Chothia CDRs: CDR 1: KSSQSLRQSNGKTSLY (SEQ ID NO: 498) CDR 2: EVSNRFS (SEQ ID NO: 485) CDR 3: MQSKDFPLT (SEQ ID NO: 486)
[0784] 6891F06 (PGT-153) gamma heavy chain nucleotide sequence: coding sequence (leader sequence in italics, variable region in bold) ATGGAATTGGGGCTGAGCTGGGT TTTCCTCGTTGCTCTCTTAAGAGGTGTCCA GTGTCAGGTGCAGTTGGTGGAGTCGGGCGGAGGCGTGGTCCAGCCTG GGAAGTCCCTGAGACTCTCCTGTGTAGTCTCTAATTTTCTCTTCAATA AACGTCACATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGACTAGAG TGGATAGCAGTCATTTCCTCTGATGCCATTCACGTAGACTACGCAAGT TCCGTGCGGGGCCGATCCCTCATCTCCAGAGACAATTCCAAAAATAG TTTATATCTAGACATGAATAACCTGAAAATTGAGGACACGGCCACATA TTATTGTGCAAGAGATAGAGACGGATATGGTCCACCACAGATCCAGA CTTGGAGCGGTCGATACCTCCACCTTTATTCTGGAATAGACGCCTGG GGCCTAGGGACCACGGTCACCGTCTCGAGCGCCTCCACCAAGGGCCCA TCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGC GGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGT CGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTC CTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCC AGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAG CAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACT CACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGT CTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCC TGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCA AGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAA GCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTC
ACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGG TCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCC AAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGG AGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTC TATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGA ACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTC CTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACG TCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAG AAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 499)
[0785] 689 1F06 (PGT-153) gamma heavy chain variable region nucleotide sequence: CAGGTGCAGTTGGTGGAGTCGGGCGGAGGCGTGGTCCAGCCTGGGA AGTCCCTGAGACTCTCCTGTGTAGTCTCTAATTTTCTCTTCAATAAAC GTCACATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGACTAGAGTG GATAGCAGTCATTTCCTCTGATGCCATTCACGTAGACTACGCAAGTTC CGTGCGGGGCCGATCCCTCATCTCCAGAGACAATTCCAAAAATAGTT TATATCTAGACATGAATAACCTGAAAATTGAGGACACGGCCACATATT ATTGTGCAAGAGATAGAGACGGATATGGTCCACCACAGATCCAGACT TGGAGCGGTCGATACCTCCACCTTTATTCTGGAATAGACGCCTGGGG CCTAGGGACCACGGTCACCGTCTCGAGC (SEQ ID NO:500)
[0786] 6891_FO6 (PGT-153) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MELGLSWVFLVALLRGVQCQVQLVESGGGVVQPGKSLRLSCVVSNFLFNKR HMHWVRQAPGKGLEWIAVISSDAIHVDYASSVRGRSLISRDNSKNSLYLD MNNLKIEDTATYYCARDRDGYGPPQIQTWSGRYLHLYSGIDAWGLGTT VTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTS GVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPK SCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKC KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 501)
[0787] 6891_FO6 (PGT-153) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QVQLVESGGGVVQPGKSLRLSCVVSNFLFNKRHMHWVRQAPGKGLEWIAV ISSDAIHVDYASSVRGRSLISRDNSKNSLYLDMNNLKIEDTATYYCARDRDGY GPPOIOTWSGRYLHLYSGIDAWGLGTTVTVSS (SEQ ID NO: 502)
[0788] 689 1F06 (PGT-153) gamma heavy chain Kabat CDRs: CDR 1: KRHMH (SEQ ID NO: 503) CDR 2: VISSDAIHVDYASSVRG (SEQ ID NO: 504)
CDR 3: DRDGYGPPQIQTWSGRYLHLYSGIDA (SEQ ID NO: 505)
[0789] 689 1F06 (PGT-153) gamma heavy chain Chothia CDRs: CDR 1: NFLFNK (SEQ ID NO: 506) CDR 2: VISSDAIHVD (SEQ ID NO: 507) CDR 3: DRDGYGPPQIQTWSGRYLHLYSGIDA (SEQ ID NO: 505)
[0790] 6891F06 (PGT-153) light chain nucleotide sequence: coding sequence (variable region in bold) ATGAGGCTCCCTGCTCAGCTCCTGGGGCTGCTAATGCTCTGGATACCTGAATT CACTGCGGACATTGTGCTGACCCAGAGCCCCCTCTTTCTGTCCGTCAG TCCTGGACAGCCGGCCTCCATCTCCTGTAAGTCTAGTCAGAGCCTCC GACAAAGTAATGGAAAGACATATTTGTATTGGTACGTACAAAAGTCC GGCCAGTCTCCACAACCCCTGATCCAGGAAGTTTCCATTCGCTTCTCT GGAGTGCCAGGTAGATTCGCTGGCAGCGGATCAGGGACAGACTTCAC ACTGAAAATCAGCCGGGTGGAGGCTGAAGATGTTGGAGTTTATTTCT GCATGCAAAGTAAAGACTTTCCACTCACTTTTGGCGGAGGGACCAAG GTGGACCTCAATCGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCC ATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAA TAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCC TCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGA CAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTAC GAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTC GCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG (SEQ ID NO:508)
[0791] 689 1F06 (PGT-153) light chain variable region nucleotide sequence: GACATTGTGCTGACCCAGAGCCCCCTCTTTCTGTCCGTCAGTCCTGG ACAGCCGGCCTCCATCTCCTGTAAGTCTAGTCAGAGCCTCCGACAAA GTAATGGAAAGACATATTTGTATTGGTACGTACAAAAGTCCGGCCAG TCTCCACAACCCCTGATCCAGGAAGTTTCCATTCGCTTCTCTGGAGTG CCAGGTAGATTCGCTGGCAGCGGATCAGGGACAGACTTCACACTGAA AATCAGCCGGGTGGAGGCTGAAGATGTTGGAGTTTATTTCTGCATGC AAAGTAAAGACTTTCCACTCACTTTTGGCGGAGGGACCAAGGTGGAC CTCAAT (SEQ ID NO:509)
[0792] 689 1F06 (PGT- 153) light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MRLPAQLLGLLMLWIPEFTADIVLTQSPLFLSVSPGQPASISCKSSQSLRQSN GKTYLYWYVQKSGQSPQPLIQEVSIRFSGVPGRFAGSGSGTDFTLKISRV EAEDVGVYFCMQSKDFPLTFGGGTKVDLNRTVAAPSVFIFPPSDEQLKSGT ASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTL SKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 510)
[0793] 6891_FO6 (PGT-153) light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) DIVLTQSPLFLSVSPGQPASISCKSSOSLROSNGKTYL YWYVQKSGQSPQPLIQ EVSIRFSGVPGRFAGSGSGTDFTLKISRVEAEDVGVYFCMOSKDFPLTFGGGT KVDLN (SEQ ID NO: 511)
[07941 689 1FO6 (PGT-153) light chain Kabat CDRs: CDR 1: KSSQSLRQSNGKTYLY (SEQ ID NO: 512) CDR 2: EVSIRFS (SEQ ID NO: 513) CDR 3: MQSKDFPLT (SEQ ID NO: 486)
[0795] 689 1F06 (PGT-153) light chain Chothia CDRs: CDR 1: KSSQSLRQSNGKTYLY (SEQ ID NO: 512) CDR 2: EVSIRFS (SEQ ID NO: 513) CDR 3: MQSKDFPLT (SEQ ID NO: 486)
[0796] 6843G20 (PGT-154) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGGAATTGGGGCTGAGCTGGGTTTTCCTCGTTGCTCTCTTAAGAGGTGTCCA GTGTCAGGTGCAGCTGGTGGAATCGGGAGGAGGCGTGGTCCAGCCTG GAAAGTCCCTCAGACTCTCATGTGTCGTCTCTAATTTCATCTTTAATA AATATCCTATGTATTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAG TGGGTGGCAGCCATCTCCGCTGATGCCTGGCATGTAGACTACGCAGC CTCCGTGAAGGACCGATTTCTCATCTCCAGAGACAATTCCAAGAATG CTCTATATTTGGAAATGAACACCCTGAGAGTTGAAGACACGGGTATC TACTACTGTGCGAGAAATATAGAGGAGTTTAGTGTTCCACAGTTCGA TTCTTGGAGCGGTCGAAGCTACTACCACTATTTTGGGATGGACGTCT GGGGCCAAGGGACCACGGTCACCGTCTCGAGCGCCTCCACCAAGGGC CCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCAC AGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGG TGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCT GTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCC CTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGC CCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAA AACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGT CAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGA CCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAG GTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTC CTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAA GGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAG CCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCT
TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGA GAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT TCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC AGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 514)
[0797] 6843G20 (PGT-154) gamma heavy chain variable region nucleotide sequence: CAGGTGCAGCTGGTGGAATCGGGAGGAGGCGTGGTCCAGCCTGGAA AGTCCCTCAGACTCTCATGTGTCGTCTCTAATTTCATCTTTAATAAAT ATCCTATGTATTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGG GTGGCAGCCATCTCCGCTGATGCCTGGCATGTAGACTACGCAGCCTC CGTGAAGGACCGATTTCTCATCTCCAGAGACAATTCCAAGAATGCTC TATATTTGGAAATGAACACCCTGAGAGTTGAAGACACGGGTATCTAC TACTGTGCGAGAAATATAGAGGAGTTTAGTGTTCCACAGTTCGATTCT TGGAGCGGTCGAAGCTACTACCACTATTTTGGGATGGACGTCTGGGG CCAAGGGACCACGGTCACCGTCTCGAGC (SEQ ID NO: 515)
[0798] 6843G20 (PGT-154) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MELGLSWVFLVALLRGVQCQVQLVESGGGVVQPGKSLRLSCVVSNFIFNKY PMYWVRQAPGKGLEWVAAISADAWHVDYAASVKDRFLISRDNSKNALY LEMNTLRVEDTGIYYCARNIEEFSVPQFDSWSGRSYYHYFGMDVWGQG TTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVE PKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 516)
[0799] 6843G20 (PGT-154) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QVQLVESGGGVVQPGKSLRLSCVVSNFIFNKYPMYWVRQAPGKGLEWVAA ISADAWHVDYAASVKDRFLISRDNSKNALYLEMNTLRVEDTGIYYCARNIEE FSVPQFDSWSGRSYYHYFGMDVWGQGTTVTVSS (SEQ ID NO: 517)
[0800] 6843G20 (PGT-154) gamma heavy chain Kabat CDRs: CDR 1: KYPMY (SEQ ID NO: 475) CDR 2: AISADAWHVDYAASVKD (SEQ ID NO: 518) CDR 3: NIEEFSVPQFDSWSGRSYYHYFGMDV (SEQ ID NO: 519)
[0801] 6843G20 (PGT-154) gamma heavy chain Chothia CDRs: CDR 1: NFIFNK (SEQ ID NO: 520)
CDR 2: AISADAWHVD (SEQ ID NO: 521) CDR 3: NIEEFSVPQFDSWSGRSYYHYFGMDV (SEQ ID NO: 519)
[0802] 6843G20 (PGT-154) light chain nucleotide sequence: coding sequence (variable region in bold) ATGAGGCTCCCTGCTCAGCTCCTGGGGCTGCTAATGCTCTGGATACCTGAGTT CGCTGCAGACATTGTGATGACTCAGACTCCTGTCTCTCTGTCCGTCAG TCTTGGACAGGCGGCCTCCATCTCCTGCAGCTCCAGTGAGAGTCTCG GACGTGGTGATGGAAGGACCTATTTGCATTGGTACCGACAGAAGCCA GGCCAGACTCCACAATTACTCATGTATGAAGTTTCTACTCGATTCTCT GGAGTGTCCGACAGGTTCGCTGGCAGCGGGTCACGTACACAATTCAC ATTGAAAATTAGTCGGGTGGAGGCTGAAGATGTTGGCGTTTATTACT GCATGCAAAGTAGAGACTTCCCAATCACTTTTGGCGGAGGGACCAGG GTGGATCTCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCC ATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAA TAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCC TCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGA CAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTAC GAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTC GCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG (SEQ ID NO:522)
[0803] 6843G20 (PGT-154) light chain variable region nucleotide sequence: GACATTGTGATGACTCAGACTCCTGTCTCTCTGTCCGTCAGTCTTGGA CAGGCGGCCTCCATCTCCTGCAGCTCCAGTGAGAGTCTCGGACGTGG TGATGGAAGGACCTATTTGCATTGGTACCGACAGAAGCCAGGCCAGA CTCCACAATTACTCATGTATGAAGTTTCTACTCGATTCTCTGGAGTGT CCGACAGGTTCGCTGGCAGCGGGTCACGTACACAATTCACATTGAAA ATTAGTCGGGTGGAGGCTGAAGATGTTGGCGTTTATTACTGCATGCA AAGTAGAGACTTCCCAATCACTTTTGGCGGAGGGACCAGGGTGGATC TCAAA (SEQ ID NO:523)
[0804] 6843G20 (PGT-154) light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MRLPAQLLGLLMLWIPEFAADIVMTQTPVSLSVSLGQAASISCSSSESLGRGD GRTYLHWYRQKPGQTPQLLMYEVSTRFSGVSDRFAGSGSRTQFTLKISR VEAEDVGVYYCMQSRDFPITFGGGTRVDLKRTVAAPSVFIFPPSDEQLKSG TASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 524)
[0805] 6843G20 (PGT-154) light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics)
DIVMTQTPVSLSVSLGQAASISCSSSESLGRGDGRTYLHWYRQKPGQTPQLL MYEVSTRFSGVSDRFAGSGSRTQFTLKISRVEAEDVGVYYCMOSRDFPITFG GGTRVDLK (SEQ ID NO: 525)
[0806] 6843G20 (PGT-154) light chain Kabat CDRs: CDR 1: SSSESLGRGDGRTYLH (SEQ ID NO: 526) CDR 2: EVSTRFS (SEQ ID NO: 527) CDR 3: MQSRDFPIT (SEQ ID NO: 528)
[0807] 6843G20 (PGT-154) light chain Chothia CDRs: CDR 1: SSSESLGRGDGRTYLH (SEQ ID NO: 526) CDR 2: EVSTRFS (SEQ ID NO: 527) CDR 3: MQSRDFPIT (SEQ ID NO: 528)
[0808] 6892D19 (PGT-155) gamma heavy chain nucleotide sequence: coding sequence (leader sequence in italics, variable region in bold) ATGGAATTGGGGCTGAGCTGGGTITTTCCTCGTCGT TCTCCTAAGAGGTGTCCA CTGTCAGGTGCATCTGGTGGAGTCGGGGGGAGGCGTGGTCCAACCTG GGAAGTCCCTAAGACTCTCCTGTGAAACCTCTGGCTTCATCTTCAACG AATATCCCATGTATTGGATCCGCCAGGCTCCAGGCAAGGGACCGGAG TGGGTGGCCGCCATCTCCGCTGACGCCTGGCATGTGGACTACGCAGG CTCCGTGCGGGGCCGATTTACCGTCTCCAGAGACAATTCTAAGAATT CTCTATATTTAGACATGAAGAGTCTGAAAGTTGAAGACACGGCTATAT ATTTCTGTGCGAAAGATGGGGAGGAACACAAGGTACCACAATTGCAT TCCTGGAGCGGACGAAACTTATATCACTACACTGGTTTTGACGTCTG GGGCCCAGGGACCACGGTCACCGTCTCGAGCGCCTCCACCAAGGGCC CATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACA GCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGT GTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTG TCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCT CCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCC AGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAA CTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCA GTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC CCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCC TCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAA GGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAG CCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCT TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGA GAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT TCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA
CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC AGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO:529)
[0809] 6892_D19 (PGT-155) gamma heavy chain variable region nucleotide sequence: CAGGTGCATCTGGTGGAGTCGGGGGGAGGCGTGGTCCAACCTGGGA AGTCCCTAAGACTCTCCTGTGAAACCTCTGGCTTCATCTTCAACGAAT ATCCCATGTATTGGATCCGCCAGGCTCCAGGCAAGGGACCGGAGTGG GTGGCCGCCATCTCCGCTGACGCCTGGCATGTGGACTACGCAGGCTC CGTGCGGGGCCGATTTACCGTCTCCAGAGACAATTCTAAGAATTCTC TATATTTAGACATGAAGAGTCTGAAAGTTGAAGACACGGCTATATATT TCTGTGCGAAAGATGGGGAGGAACACAAGGTACCACAATTGCATTCC TGGAGCGGACGAAACTTATATCACTACACTGGTTTTGACGTCTGGGG CCCAGGGACCACGGTCACCGTCTCGAGC (SEQ ID NO:530)
[0810] 6892_D19 (PGT-155) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MELGLSWVFLVVLLRGVHCQVHLVESGGGVVQPGKSLRLSCETSGFIFNEY PMYWIRQAPGKGPEWVAAISADAWHVDYAGSVRGRFTVSRDNSKNSLY LDMKSLKVEDTAIYFCAKDGEEHKVPQLHSWSGRNLYHYTGFDVWGPG TTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVE PKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 531)
[0811] 6892D19 (PGT-155) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QVHLVESGGGVVQPGKSLRLSCETSGFIFNEYPMYWIRQAPGKGPEWVAAIS ADA WHVDYAGSVRGRFTVSRDNS KNS LYLDMKSLKVEDTAIYFCAKDGEE HKVPOLHSWSGRNLYHYTGFDVWGPGTTVTVSS (SEQ ID NO: 532)
[0812] 6892_D19 (PGT-155) gamma heavy chain Kabat CDRs: CDR 1: EYPMY (SEQ ID NO: 533) CDR 2: AISADAWHVDYAGSVRG (SEQ ID NO: 534) CDR 3: DGEEHKVPQLHSWSGRNLYHYTGFDV (SEQ ID NO: 535)
[0813] 6892D19 (PGT-155) gamma heavy chain Chothia CDRs: CDR 1: GFIFNE (SEQ ID NO: 536) CDR 2: AISADAWHVD (SEQ ID NO: 521) CDR 3: DGEEHKVPQLHSWSGRNLYHYTGFDV (SEQ ID NO: 535)
[0814] 6892_D19 (PGT-155) light chain nucleotide sequence: coding sequence (variable region in bold) ATGAGGCTCCCTGCTCAGCTCCTGGGGCTGCTAATGCTCTGGATACCTGAACT TGCTGCAGACATTGTGATGACCCAGTCTCCTGTCTCTCTGTCCGTCAC CCTCGGACAGCCGGCCTCCATGTCCTGCAAGTCCAGTCAGAGTGTCC GACAGAGTGATGGCAAGACTTTCTTATATTGGTATCGACAGAAGCCA GGCCAGTCTCCACAACTGTTAATATATGAGGGTTCGAGTCGATTCTCT GGAGTGTCAGATAGGATCTCTGGCAGCGGGTCAGGGACAGACTTCAC ACTGAGGATCAGTCGAGTGGAGGCTGAGGATGCTGGCGTTTACTTCT GCTTGCAAACTAAAGACTTCCCCCTCACTTTTGGCGGAGGGACCAGG GTGGATCTCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCC ATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAA TAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCC TCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGA CAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTAC GAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTC GCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG (SEQ ID NO:537)
[0815] 6892_D19 (PGT-155) light chain variable region nucleotide sequence: GACATTGTGATGACCCAGTCTCCTGTCTCTCTGTCCGTCACCCTCGGA CAGCCGGCCTCCATGTCCTGCAAGTCCAGTCAGAGTGTCCGACAGAG TGATGGCAAGACTTTCTTATATTGGTATCGACAGAAGCCAGGCCAGT CTCCACAACTGTTAATATATGAGGGTTCGAGTCGATTCTCTGGAGTGT CAGATAGGATCTCTGGCAGCGGGTCAGGGACAGACTTCACACTGAGG ATCAGTCGAGTGGAGGCTGAGGATGCTGGCGTTTACTTCTGCTTGCA AACTAAAGACTTCCCCCTCACTTTTGGCGGAGGGACCAGGGTGGATC TCAAA (SEQ ID NO:538)
[0816] 6892_D19 (PGT-155) light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MRLPAQLLGLLMLWIPELAADIVMTQSPVSLSVTLGQPASMSCKSSQSVRQS DGKTFLYWYRQKPGQSPQLLIYEGSSRFSGVSDRISGSGSGTDFTLRISRV EAEDAGVYFCLQTKDFPLTFGGGTRVDLKRTVAAPSVFIFPPSDEQLKSGT ASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTL SKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 539)
[08171 6892_D19 (PGT-155) light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) DIVMTQSPVSLSVTLGQPASMSCKSSOSVROSDGKTFLYWYRQKPGQSPQLLI YEGSSRFSGVSDRISGSGSGTDFTLRISRVEAEDAGVYFCLOTKDFPLTFGGG TRVDLK (SEQ ID NO: 540)
[0818] 6892D19 (PGT-155) light chain Kabat CDRs:
CDR 1: KSSQSVRQSDGKTFLY (SEQ ID NO: 541) CDR 2: EGSSRFS (SEQ ID NO: 542) CDR 3: LQTKDFPLT (SEQ ID NO: 543)
[0819] 6892_D19 (PGT-155) light chain Chothia CDRs: CDR 1: KSSQSVRQSDGKTFLY (SEQ ID NO: 541) CDR 2: EGSSRFS (SEQ ID NO: 542) CDR 3: LQTKDFPLT (SEQ ID NO: 543)
[0820] 6808B09 (PGT-156) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGGAATTGGGGCTGAGCTGGGTITTTCCTCGTCGTTCTCCTAAGAGGTGTCCA CTGTCAGGTGCATCTGGTGGAGTCGGGGGGAGGCGTTGTCCAACCTG GAAAGTCCCTAAGACTCTCCTGTGAAACCTCTGGCTTCATCTTCAATC AATATCCCATGTATTGGGTCCGCCAGGCTCCAGGCAAGGGACCGGAG TGGGTGGCCGCCATCTCCGCTGATGCCTGGCATGTGGACTACCCAGG CTCCGTGCGGGGCCGATTTACCGTCTCCAGAGACAATTCCAAGAGTT CTCTATATTTAGACATGAAGAGTCTGAAAGTTGAAGACACGGCTATAT ATTTCTGTGCGAAAGATGGGGAGGAACACAAGGTACCACAATTGCAT TCCTGGAGCGGACGAAACTTATATCACTACACTGGTTTTGACGTCTG GGGCCCAGGGACCACGGTCACCGTCTCGAGCGCCTCCACCAAGGGCC CATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACA GCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGT GTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTG TCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCT CCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCC AGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAA CTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCA GTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC CCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCC TCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAA GGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAG CCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCT TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGA GAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT TCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC AGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 544)
[0821] 6808B09 (PGT-156) gamma heavy chain variable region nucleotide sequence:
CAGGTGCATCTGGTGGAGTCGGGGGGAGGCGTTGTCCAACCTGGAA AGTCCCTAAGACTCTCCTGTGAAACCTCTGGCTTCATCTTCAATCAAT ATCCCATGTATTGGGTCCGCCAGGCTCCAGGCAAGGGACCGGAGTGG GTGGCCGCCATCTCCGCTGATGCCTGGCATGTGGACTACCCAGGCTC CGTGCGGGGCCGATTTACCGTCTCCAGAGACAATTCCAAGAGTTCTC TATATTTAGACATGAAGAGTCTGAAAGTTGAAGACACGGCTATATATT TCTGTGCGAAAGATGGGGAGGAACACAAGGTACCACAATTGCATTCC TGGAGCGGACGAAACTTATATCACTACACTGGTTTTGACGTCTGGGG CCCAGGGACCACGGTCACCGTCTCGAGC (SEQ ID NO:545)
[0822] 6808B09 (PGT-156) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MELGLSWVFLVVLLRGVHCQVHLVESGGGVVQPGKSLRLSCETSGFIFNQY PMYWVRQAPGKGPEWVAAISADAWHVDYPGSVRGRFTVSRDNSKSSLY LDMKSLKVEDTAIYFCAKDGEEHKVPQL HSWSGRNLYHYTGFDVWGPG TTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVE PKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 546)
[0823] 6808B09 (PGT-156) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) QVHLVESGGGVVQPGKSLRLSCETSGFIFNQYPMYWVRQAPGKGPEWVAAI SADA WHVDYPGSVRGRFTVSRDNSKSSLYLDMKSLKVEDTAIYFCAKDGEE HKVPOLHSWSGRNLYHYTGFDVWGPGTTVTVSS (SEQ ID NO: 547)
[0824] 6808B09 (PGT-156) gamma heavy chain Kabat CDRs: CDR 1: QYPMY (SEQ ID NO: 548) CDR 2: AISADAWHVDYPGSVRG (SEQ ID NO: 549) CDR 3: DGEEHKVPQLHSWSGRNLYHYTGFDV (SEQ ID NO: 535)
[0825] 6808_B09 (PGT-156) gamma heavy chain Chothia CDRs: CDR 1: GFIFNQ (SEQ ID NO: 550) CDR 2: AISADAWHVD (SEQ ID NO: 521) CDR 3: DGEEHKVPQLHSWSGRNLYHYTGFDV (SEQ ID NO: 535)
[0826] 6808B09 (PGT-156) light chain nucleotide sequence: coding sequence (variable region in bold)
ATGAGGCTCCCTGCTCAGCTCCTGGGGCTGCTAATGCTCTGGATACCTGAACT TGCTGCAGACATTGTGATGACCCAGTCTCCTGTCTCTCTGTCCGTCAC CCTCGGACAGCCGGCCTCCATGTCCTGCAAGTCCAGTCAGACTGTCC GACAGAGTGATGGCAAGACTTTCTTATATTGGTATCGACAGAAGGCA GGCCAGTCTCCACAACTGTTAATATATGAGGGTTCGAATCGATTCTCT GGAGTGTCAGATAGGATCTCTGGCAGCGGGTCGGGGACAGATTTCAC ACTGAGAATCAGTCGAGTGGAGGCTGAGGATGTTGGCGTTTATTTCT GCCTGCAAACTAAAGACTTCCCCCTCACTTTTGGCGGAGGGACCAGG GTGGATATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCC ATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAA TAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCC TCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGA CAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTAC GAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTC GCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG (SEQ ID NO:551)
[0827] 6808B09 (PGT-156) light chain variable region nucleotide sequence: GACATTGTGATGACCCAGTCTCCTGTCTCTCTGTCCGTCACCCTCGGA CAGCCGGCCTCCATGTCCTGCAAGTCCAGTCAGACTGTCCGACAGAG TGATGGCAAGACTTTCTTATATTGGTATCGACAGAAGGCAGGCCAGT CTCCACAACTGTTAATATATGAGGGTTCGAATCGATTCTCTGGAGTGT CAGATAGGATCTCTGGCAGCGGGTCGGGGACAGATTTCACACTGAGA ATCAGTCGAGTGGAGGCTGAGGATGTTGGCGTTTATTTCTGCCTGCA AACTAAAGACTTCCCCCTCACTTTTGGCGGAGGGACCAGGGTGGATA TCAAA (SEQ ID NO:552)
[0828] 6808B09 (PGT-156) light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MRLPAQLLGLLMLWIPELAADIVMTQSPVSLSVTLGQPASMSCKSSQTVRQS DGKTFLYWYRQKAGQSPQLLIYEGSNRFSGVSDRISGSGSGTDFTLRISR VEAEDVGVYFCLQTKDFPLTFGGGTRVDIKRTVAAPSVFIFPPSDEQLKSG TASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 553)
[0829] 6808B09 (PGT-156) light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) DIVMTQSPVSLSVTLGQPASMSCKSSOTVROSDGKTFLYWYRQKAGQSPQLL IYEGSNRFSGVSDRISGSGSGTDFTLRISRVEAEDVGVYFCLOTKDFPLTFGG GTRVDIK (SEQ ID NO: 554)
[0830] 6808B09 (PGT-156) light chain Kabat CDRs: CDR 1: KSSQTVRQSDGKTFLY (SEQ ID NO: 555) CDR 2: EGSNRFS (SEQ ID NO: 556)
CDR 3: LQTKDFPLT (SEQ ID NO: 543)
[0831] 6808B09 (PGT-156) light chain Chothia CDRs: CDR 1: KSSQTVRQSDGKTFLY (SEQ ID NO: 555) CDR 2: EGSNRFS (SEQ ID NO: 556) CDR 3: LQTKDFPLT (SEQ ID NO: 543)
[0832] 6892_C23 (PGT-157) gamma heavy chain nucleotide sequence: coding sequence (leader sequence in italics, variable region in bold) ATGGAATTGGGGCTGAGCTGGGTITTTCCTCGTCGCTCTCCTAAGAGGTGTCCA CTGTGAAGTGCATCTGGTGGAGTCGGGGGGAGGCGTGGTCCAACCTG GAAAGTCCCTCAGACTCTCCTGTGTAACTTCTGGCTTCATCTTCAAAC AATATCCTATGTATTGGATCCGCCAGGCTCCAGGCAAGGGGCTGGAG TGGGTGGCCGCCATCTCCGCTGATGCCTGGCATGTGGACTACGCAGG CTCCGTGCGGGGCCGATTTACCGTCTCCAGAGACAACTCCAAGAATT CTCTATATTTAGACATGAACAGTCTGACAGTTGAAGACACGGCTATAT ATTTCTGTGCGAAAGATGGGGAAGAACACGAAGTACCACAGTTGCAC TCCTGGAGCGGACGAAATTTATATCACTACACTGGTGTGGACATCTG GGGCCCAGGGACCACGGTCACCGTCTCGAGCGCCTCCACCAAGGGCC CATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACA GCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGT GTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTG TCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCT CCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCC AGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAA CTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCA GTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC CCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCC TCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAA GGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAG CCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCT TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGA GAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT TCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC AGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO:557)
[0833] 6892C23 (PGT-157) gamma heavy chain variable region nucleotide sequence: GAAGTGCATCTGGTGGAGTCGGGGGGAGGCGTGGTCCAACCTGGAA AGTCCCTCAGACTCTCCTGTGTAACTTCTGGCTTCATCTTCAAACAAT ATCCTATGTATTGGATCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGG GTGGCCGCCATCTCCGCTGATGCCTGGCATGTGGACTACGCAGGCTC
CGTGCGGGGCCGATTTACCGTCTCCAGAGACAACTCCAAGAATTCTC TATATTTAGACATGAACAGTCTGACAGTTGAAGACACGGCTATATATT TCTGTGCGAAAGATGGGGAAGAACACGAAGTACCACAGTTGCACTCC TGGAGCGGACGAAATTTATATCACTACACTGGTGTGGACATCTGGGG CCCAGGGACCACGGTCACCGTCTCGAGC (SEQ ID NO:558)
[0834] 6892_C23 (PGT-157) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MELGLSWVFLVALLRGVHCEVHLVESGGGVVQPGKSLRLSCVTSGFIFKQY PMYWIRQAPGKGLEWVAAISADAWHVDYAGSVRGRFTVSRDNSKNSLY LDMNSLTVEDTAIYFCAKDGEEHEVPQLHSWSGRNLYHYTGVDIWGPG TTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVE PKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 559)
[08351 6892_C23 (PGT-157) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) EVHLVESGGGVVQPGKSLRLSCVTSGFIFKQYPMYWIRQAPGKGLEWVAAI SADA WHVDYAGSVRGRFTVSRDNSKNSLYLDMNSLTVEDTAIYFCAKDGEE HEVPOLHSWSGRNLYHYTGVDIWGPGTTVTVSS (SEQ ID NO: 560)
[08361 6892_C23 (PGT-157) gamma heavy chain Kabat CDRs: CDR 1: QYPMY (SEQ ID NO: 548) CDR 2: AISADAWHVDYAGSVRG (SEQ ID NO: 534) CDR 3: DGEEHEVPQLHSWSGRNLYHYTGVDI (SEQ ID NO: 561)
[0837] 6892_C23 (PGT-157) gamma heavy chain Chothia CDRs: CDR 1: GFIFKQ (SEQ ID NO: 562) CDR 2: AISADAWHVD (SEQ ID NO: 521) CDR 3: DGEEHEVPQLHSWSGRNLYHYTGVDI (SEQ ID NO: 561)
[0838] 6892_C23 (PGT-157) light chain nucleotide sequence: coding sequence (variable region in bold) ATGAGGCTCCCTGCTCAGCTCCTGGGGCTGCTAATGCTCTGGATACCTGAACT TACTGCAGACATTGTGATGACCCAGACTCCTGTCTCTCTGTCCGTCAC CCTCGGACAGCCGGCCTCCATGTCCTGTAAGTCCAGTCAGAGCCTCC GACAAAGTGATGGCAAGACTTTCTTGTATTGGTATCGACAGAAGGCA GGCCAGTCTCCACAACTCCTAATATCTGAGGCTTCGAATCGATTCTCT
GGAGTGTCAGATAGGTTCTCTGGCAGCGGTTCAGGGACAGACTTCAC ACTGAAAATCAGTCGGGTGGAGGCTGAGGATGTTGGCATTTATTTCT GCATGCAAACTAAAGACTTCCCCCTCACTTTTGGCGGAGGGACCAAG GTGGATCTCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCC ATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAA TAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCC TCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGA CAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTAC GAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTC GCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG (SEQ ID NO:563)
[0839] 6892_C23 (PGT-157) light chain variable region nucleotide sequence: GACATTGTGATGACCCAGACTCCTGTCTCTCTGTCCGTCACCCTCGG ACAGCCGGCCTCCATGTCCTGTAAGTCCAGTCAGAGCCTCCGACAAA GTGATGGCAAGACTTTCTTGTATTGGTATCGACAGAAGGCAGGCCAG TCTCCACAACTCCTAATATCTGAGGCTTCGAATCGATTCTCTGGAGTG TCAGATAGGTTCTCTGGCAGCGGTTCAGGGACAGACTTCACACTGAA AATCAGTCGGGTGGAGGCTGAGGATGTTGGCATTTATTTCTGCATGC AAACTAAAGACTTCCCCCTCACTTTTGGCGGAGGGACCAAGGTGGAT CTCAAA (SEQ ID NO:564)
[0840] 6892C23 (PGT-157) light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MRLPAQLLGLLMLWIPELTADIVMTQTPVSLSVTLGQPASMSCKSSQSLRQS DGKTFLYWYRQKAGQSPQLLISEASNRFSGVSDRFSGSGSGTDFTLKISR VEAEDVGIYFCMQTKDFPLTFGGGTKVDLKRTVAAPSVFIFPPSDEQLKSG TASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 565)
[0841] 6892_C23 (PGT-157) light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) DIVMTQTPVSLSVTLGQPASMSCKSSOSLROSDGKTFLYWYRQKAGQSPQLL ISEASNRFSGVSDRFSGSGSGTDFTLKISRVEAEDVGIYFCMOTKDFPLTFGG GTKVDLK (SEQ ID NO: 566)
[0842] 6892_C23 (PGT-157) light chain Kabat CDRs: CDR 1: KSSQSLRQSDGKTFLY (SEQ ID NO: 567) CDR 2: EASNRFS (SEQ ID NO: 568) CDR 3: MQTKDFPLT (SEQ ID NO: 569)
[0843] 6892_C23 (PGT-157) light chain Chothia CDRs: CDR 1: KSSQSLRQSDGKTFLY (SEQ ID NO: 567)
CDR 2: EASNRFS (SEQ ID NO: 568) CDR 3: MQTKDFPLT (SEQ ID NO: 569)
[0844] 6881N05 (PGT-158) gamma heavy chain nucleotide sequence: coding sequence (variable region in bold) ATGGAATTGGGGCTGAGCTGGGT TTTCCTCGTCGCTCTCCTAAGAGGTGTCCA CTGTGAGGTGCGTCTGATGGAGTCGGGGGGAGGCGTGGTCCAGCCTG GGAAGTCCCTCAGACTCTCCTGTGTAACCTCTGGCTTCATCTTCAAAA AATATCCTATGTACTGGATCCGCCAGGCTCCAGGCAAGGGGCTGGAG TGGGTGGCCGCCATCTCCGCTGATGCCTGGCATGTGGACTACCCAGG CTCCGTGCGGGGCCGATTTACCGTCTCAAGAGACAACTCCAAGAATT CTCTATATTTAGACATGAATAGTCTGACAGTAGAAGACACGGCTATAT ATTTTTGTGCGAAAGATGGGGAGGAACACGAAGTCCCACAACTGCAC TCCTGGAGCGGACGAAATTTATATCACTACACTGGTGTAGACGTCTG GGGCCCAGGGACCACGGTCACCGTCTCGAGCGCCTCCACCAAGGGCC CATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACA GCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGT GTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTG TCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCT CCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCC AGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAA CTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCA GTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC CCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCC TCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAA GGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAG CCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCT TCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGA GAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT TCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAA CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC AGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO:570)
[0845] 688 1N05 (PGT-158) gamma heavy chain variable region nucleotide sequence: GAGGTGCGTCTGATGGAGTCGGGGGGAGGCGTGGTCCAGCCTGGGA AGTCCCTCAGACTCTCCTGTGTAACCTCTGGCTTCATCTTCAAAAAAT ATCCTATGTACTGGATCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGG GTGGCCGCCATCTCCGCTGATGCCTGGCATGTGGACTACCCAGGCTC CGTGCGGGGCCGATTTACCGTCTCAAGAGACAACTCCAAGAATTCTC TATATTTAGACATGAATAGTCTGACAGTAGAAGACACGGCTATATATT TTTGTGCGAAAGATGGGGAGGAACACGAAGTCCCACAACTGCACTCC
TGGAGCGGACGAAATTTATATCACTACACTGGTGTAGACGTCTGGGG CCCAGGGACCACGGTCACCGTCTCGAGC (SEQ ID NO:571)
[0846] 6881_NO5 (PGT-158) gamma heavy chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MELGLSWVFLVALLRGVHCEVRLMESGGGVVQPGKSLRLSCVTSGFIFKKY PMYWIRQAPGKGLEWVAAISADAWHVDYPGSVRGRFTVSRDNSKNSLY LDMNSLTVEDTAIYFCAKDGEEHEVPQLHSWSGRNLYHYTGVDVWGPG TTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVE PKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 572)
[0847] 6881_NO5 (PGT-158) gamma heavy chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) EVRLMESGGGVVQPGKSLRLSCVTSGFIFKKYPMYWIRQAPGKGLEWVAAI SADA WHVDYPGSVRGRFTVSRDNSKNSLYLDMNSLTVEDTAIYFCAKDGEE HEVPOLHSWSGRNLYHYTGVDVWGPGTTVTVSS (SEQ ID NO: 573)
[0848] 688 1N05 (PGT-158) gamma heavy chain Kabat CDRs: CDR 1: KYPMY (SEQ ID NO: 475) CDR 2: AISADAWHVDYPGSVRG (SEQ ID NO: 549) CDR 3: DGEEHEVPQLHSWSGRNLYHYTGVDV (SEQ ID NO: 574)
[0849] 688 1N05 (PGT-158) gamma heavy chain Chothia CDRs: CDR 1: GFIFKK (SEQ ID NO: 575) CDR 2: AISADAWHVD (SEQ ID NO: 521) CDR 3: DGEEHEVPQLHSWSGRNLYHYTGVDV (SEQ ID NO: 574)
[0850] 6881N05 (PGT-158) light chain nucleotide sequence: coding sequence (variable region in bold) ATGAGGCTCCCTGCTCAGCTCCTGGGGCTGCTAATGCTCTGGATACCTGAAGT GACTGCAGACATTGTGATGACCCAGACTCCTGTCTCTGTGTCCGTCAC CCTCGGACAGCCGGCCTCCATGTCCTGCAAGTCCAGTCAGAGCGTCC GACAAAGTGATGGCAAGACTTTTTTATATTGGTATCGACAGAAGGCA GGCCAGTCTCCACAACTCTTAATATATGAGGCTTCGAAGCGATTCTCT GGAGTGTCAGATAGGTTCTCTGGCAGCGGGTCAGGGACAGACTTCAC ACTGAAAATCAGTCGGGTGGGGGCTGAGGATGTTGGCGTTTATTTCT GCATGCAAACTAAAGACTTCCCCCTTACTTTTGGCGGAGGGACCAAG
GTGGATCTCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCC ATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAA TAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCC TCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGA CAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTAC GAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTC GCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG (SEQ ID NO:576)
[0851] 688 1N05 (PGT-158) light chain variable region nucleotide sequence: GACATTGTGATGACCCAGACTCCTGTCTCTGTGTCCGTCACCCTCGG ACAGCCGGCCTCCATGTCCTGCAAGTCCAGTCAGAGCGTCCGACAAA GTGATGGCAAGACTTTTTTATATTGGTATCGACAGAAGGCAGGCCAG TCTCCACAACTCTTAATATATGAGGCTTCGAAGCGATTCTCTGGAGTG TCAGATAGGTTCTCTGGCAGCGGGTCAGGGACAGACTTCACACTGAA AATCAGTCGGGTGGGGGCTGAGGATGTTGGCGTTTATTTCTGCATGC AAACTAAAGACTTCCCCCTTACTTTTGGCGGAGGGACCAAGGTGGAT CTCAAA (SEQ ID NO:577)
[0852] 6881_NO5 (PGT-158) light chain amino acid sequence: expressed protein with leader sequence in italics and variable region in bold. MRLPAQLLGLLMLWIPEVTADIVMTQTPVSVSVTLGQPASMSCKSSQSVRQS DGKTFLYWYRQKAGQSPQLLIYEASKRFSGVSDRFSGSGSGTDFTLKISR VGAEDVGVYFCMQTKDFPLTFGGGTKVDLKRTVAAPSVFIFPPSDEQLKS GTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 578)
[08531 6881_NO5 (PGT-158) light chain variable region amino acid sequence: (Kabat CDRs underlined, Chothia CDRs in bold italics) DIVMTQTPVSVSVTLGQPASMSCKSSOSVROSDGKTFLYWYRQKAGQSPQLL IYEASKRFSGVSDRFSGSGSGTDFTLKISRVGAEDVGVYFCMQTKDFPLTFGG GTKVDLK (SEQ ID NO: 579)
[0854] 688 1NO5 (PGT-158) light chain Kabat CDRs: CDR 1: KSSQSVRQSDGKTFLY (SEQ ID NO: 541) CDR 2: EASKRFS (SEQ ID NO: 580) CDR 3: MQTKDFPLT (SEQ ID NO: 569)
[0855] 688 1N05 (PGT-158) light chain Chothia CDRs: CDR 1: KSSQSVRQSDGKTFLY (SEQ ID NO: 541) CDR 2: EASKRFS (SEQ ID NO: 580) CDR 3: MQTKDFPLT (SEQ ID NO: 569)
[08561 The 6831_A21 (PGT-151) antibody includes a heavy chain variable region (SEQ ID NO: 474), encoded by the nucleic acid sequence shown in SEQ ID NO: 472, and a light chain variable region (SEQ ID NO: 483) encoded by the nucleic acid sequence shown in SEQ ID NO: 481.
[0857] The heavy chain CDRs of the 6831_A21 (PGT-151) antibody have the following sequences per Kabat definition: KYPMY (SEQ ID NO: 475), AISGDAWHVVYSNSVQG (SEQ ID NO: 476), and MFQESGPPRLDRWSGRNYYYYSGMDV (SEQ ID NO: 477). The light chain CDRs of the 6831_A21 (PGT-151) antibody have the following sequences per Kabat definition: KSSESLRQSNGKTSLY (SEQ ID NO: 484), EVSNRFS (SEQ ID NO: 485), and MQSKDFPLT (SEQ ID NO: 486).
[0858] The heavy chain CDRs of the 6831_A21 (PGT-151) antibody have the following sequences per Chothia definition: DFPFSK (SEQ ID NO: 478), AISGDAWHVV (SEQ ID NO: 479), and MFQESGPPRLDRWSGRNYYYYSGMDV (SEQ ID NO: 477). The light chain CDRs of the 6831_A21 (PGT-151) antibody have the following sequences per Chothia definition: KSSESLRQSNGKTSLY (SEQ ID NO: 484), EVSNRFS (SEQ ID NO: 485), and MQSKDFPLT (SEQ ID NO: 486).
[0859] The 6889_117 (PGT-152) antibody includes a heavy chain variable region (SEQ ID NO: 490), encoded by the nucleic acid sequence shown in SEQ ID NO: 488, and a light chain variable region (SEQ ID NO: 497) encoded by the nucleic acid sequence shown in SEQ ID NO: 495.
[0860] The heavy chain CDRs of the 6889_117 (PGT-152) antibody have the following sequences per Kabat definition: KYPMY (SEQ ID NO: 475), AISADAWHVVYSGSVQG (SEQ ID NO: 491), and MFQESGPPRFDSWSGRNYYYYSGMDV (SEQ ID NO: 492). The light chain CDRs of the 6889_17 (PGT-152) antibody have the following sequences per Kabat definition: KSSQSLRQSNGKTSLY (SEQ ID NO: 498), EVSNRFS (SEQ ID NO: 485), and MQSKDFPLT (SEQ ID NO: 486).
[0861] The heavy chain CDRs of the 6889_117 (PGT-152) antibody have the following sequences per Chothia definition: DFPFSK (SEQ ID NO: 478), AISADAWHVV (SEQ ID NO: 493), and MFQESGPPRFDSWSGRNYYYYSGMDV (SEQ ID NO: 492). The light chain CDRs of the 6889117 (PGT-152) antibody have the following sequences per Chothia definition:
KSSQSLRQSNGKTSLY (SEQ ID NO: 498), EVSNRFS (SEQ ID NO: 485), and MQSKDFPLT (SEQ ID NO: 486).
[0862] The 6891_F06 (PGT-153) antibody includes a heavy chain variable region (SEQ ID NO: 502), encoded by the nucleic acid sequence shown in SEQ ID NO: 500, and a light chain variable region (SEQ ID NO: 511) encoded by the nucleic acid sequence shown in SEQ ID NO: 509.
[0863] The heavy chain CDRs of the 6891_F06 (PGT-153) antibody have the following sequences per Kabat definition: KRHMH (SEQ ID NO: 503), VISSDAIHVDYASSVRG (SEQ ID NO: 504), and DRDGYGPPQIQTWSGRYLHLYSGIDA (SEQ ID NO: 505). The light chain CDRs of the 6891_F06 (PGT-153) antibody have the following sequences per Kabat definition: KSSQSLRQSNGKTYLY (SEQ ID NO: 512), EVSIRFS (SEQ ID NO: 513), and MQSKDFPLT (SEQ ID NO: 486).
[0864] The heavy chain CDRs of the 6891_F06 (PGT-153) antibody have the following sequences per Chothia definition: NFLFNK (SEQ ID NO: 506), VISSDAIHVD (SEQ ID NO: 507), and DRDGYGPPQIQTWSGRYLHLYSGIDA (SEQ ID NO: 505). The light chain CDRs of the 6891F06 (PGT-153) antibody have the following sequences per Chothia definition: KSSQSLRQSNGKTYLY (SEQ ID NO: 512), EVSIRFS (SEQ ID NO: 513), and MQSKDFPLT (SEQ ID NO: 486).
[0865] The 6843_G20 (PGT-154) antibody includes a heavy chain variable region (SEQ ID NO: 517), encoded by the nucleic acid sequence shown in SEQ ID NO: 515, and a light chain variable region (SEQ ID NO: 525) encoded by the nucleic acid sequence shown in SEQ ID NO: 523.
[08661 The heavy chain CDRs of the 6843_G20 (PGT-154) antibody have the following sequences per Kabat definition: KYPMY (SEQ ID NO: 475), AISADAWHVDYAASVKD (SEQ ID NO: 518), and NIEEFSVPQFDSWSGRSYYHYFGMDV (SEQ ID NO: 519). The light chain CDRs of the 6843G20 (PGT-154) antibody have the following sequences per Kabat definition: SSSESLGRGDGRTYLH (SEQ ID NO: 526), EVSTRFS (SEQ ID NO: 527), and MQSRDFPIT (SEQ ID NO: 528).
[0867] The heavy chain CDRs of the 6843_G20 (PGT-154) antibody have the following sequences per Chothia definition: NFIFNK (SEQ ID NO: 520), AISADAWHVD (SEQ ID NO: 521), and NIEEFSVPQFDSWSGRSYYHYFGMDV (SEQ ID NO: 519). The light chain CDRs of the 6843_G20 (PGT-154) antibody have the following sequences per Chothia definition: SSSESLGRGDGRTYLH (SEQ ID NO: 526), EVSTRFS (SEQ ID NO: 527), and MQSRDFPIT (SEQ ID NO: 528).
[0868] The 6892_D19 (PGT-155) antibody includes a heavy chain variable region (SEQ ID NO: 532), encoded by the nucleic acid sequence shown in SEQ ID NO: 530, and a light chain variable region (SEQ ID NO: 540) encoded by the nucleic acid sequence shown in SEQ ID NO: 538.
[0869] The heavy chain CDRs of the 6892_D19 (PGT-155) antibody have the following sequences per Kabat definition: EYPMY (SEQ ID NO: 533), AISADAWHVDYAGSVRG (SEQ ID NO: 534), and DGEEHKVPQLHSWSGRNLYHYTGFDV (SEQ ID NO: 535). The light chain CDRs of the 6892D19 (PGT-155) antibody have the following sequences per Kabat definition: KSSQSVRQSDGKTFLY (SEQ ID NO: 541), EGSSRFS (SEQ ID NO: 542), and LQTKDFPLT (SEQ ID NO: 543).
[0870] The heavy chain CDRs of the 6892_D19 (PGT-155) antibody have the following sequences per Chothia definition: GFIFNE (SEQ ID NO: 536), AISADAWHVD (SEQ ID NO: 521), and DGEEHKVPQLHSWSGRNLYHYTGFDV (SEQ ID NO: 535). The light chain CDRs of the 6892D19 (PGT-155) antibody have the following sequences per Chothia definition: KSSQSVRQSDGKTFLY (SEQ ID NO: 541), EGSSRFS (SEQ ID NO: 542), and LQTKDFPLT (SEQ ID NO: 543).
[0871] The 6808_B09 (PGT-156) antibody includes a heavy chain variable region (SEQ ID NO: 547), encoded by the nucleic acid sequence shown in SEQ ID NO: 545, and a light chain variable region (SEQ ID NO: 554) encoded by the nucleic acid sequence shown in SEQ ID NO: 552.
[0872] The heavy chain CDRs of the 6808_B09 (PGT-156) antibody have the following sequences per Kabat definition: QYPMY (SEQ ID NO: 548), AISADAWHVDYPGSVRG (SEQ ID NO: 549), and DGEEHKVPQLHSWSGRNLYHYTGFDV (SEQ ID NO: 535). The light chain CDRs of the 6808B09 (PGT-156) antibody have the following sequences per Kabat definition: KSSQTVRQSDGKTFLY (SEQ ID NO: 555), EGSNRFS (SEQ ID NO: 556), and LQTKDFPLT (SEQ ID NO: 543).
[0873] The heavy chain CDRs of the 6808_B09 (PGT-156) antibody have the following sequences per Chothia definition: GFIFNQ (SEQ ID NO: 550), AISADAWHVD (SEQ ID NO:
521), and DGEEHKVPQLHSWSGRNLYHYTGFDV (SEQ ID NO: 535). The light chain CDRs of the 6808_B09 (PGT-156) antibody have the following sequences per Chothia definition: KSSQTVRQSDGKTFLY (SEQ ID NO: 555), EGSNRFS (SEQ ID NO: 556), and LQTKDFPLT (SEQ ID NO: 543).
[0874] The 6892_C23 (PGT-157) antibody includes a heavy chain variable region (SEQ ID NO: 560), encoded by the nucleic acid sequence shown in SEQ ID NO: 558, and a light chain variable region (SEQ ID NO: 566) encoded by the nucleic acid sequence shown in SEQ ID NO: 564.
[0875] The heavy chain CDRs of the 6892_C23 (PGT-157) antibody have the following sequences per Kabat definition: QYPMY (SEQ ID NO: 548), AISADAWHVDYAGSVRG (SEQ ID NO: 534), and DGEEHEVPQLHSWSGRNLYHYTGVDI (SEQ ID NO: 561). The light chain CDRs of the 6892_C23 (PGT-157) antibody have the following sequences per Kabat definition: KSSQSLRQSDGKTFLY (SEQ ID NO: 567), EASNRFS (SEQ ID NO: 568), and MQTKDFPLT (SEQ ID NO: 569).
[0876] The heavy chain CDRs of the 6892_C23 (PGT-157) antibody have the following sequences per Chothia definition: GFIFKQ (SEQ ID NO: 562), AISADAWHVD (SEQ ID NO: 521), and DGEEHEVPQLHSWSGRNLYHYTGVDI (SEQ ID NO: 561). The light chain CDRs of the 6892_C23 (PGT-157) antibody have the following sequences per Chothia definition: KSSQSLRQSDGKTFLY (SEQ ID NO: 567), EASNRFS (SEQ ID NO: 568), and MQTKDFPLT (SEQ ID NO: 569).
[0877] The 6881_NO5 (PGT-158) antibody includes a heavy chain variable region (SEQ ID NO: 573), encoded by the nucleic acid sequence shown in SEQ ID NO: 571, and a light chain variable region (SEQ ID NO: 579) encoded by the nucleic acid sequence shown in SEQ ID NO: 577.
[0878] The heavy chain CDRs of the 6881_NO5 (PGT-158) antibody have the following sequences per Kabat definition: KYPMY (SEQ ID NO: 475), AISADAWHVDYPGSVRG (SEQ ID NO: 549), and DGEEHEVPQLHSWSGRNLYHYTGVDV (SEQ ID NO: 574). The light chain CDRs of the 6881N05 (PGT-158) antibody have the following sequences per Kabat definition: KSSQSVRQSDGKTFLY (SEQ ID NO: 541), EASKRFS (SEQ ID NO: 580), and MQTKDFPLT (SEQ ID NO: 569).
[08791 The heavy chain CDRs of the 6881_N05 (PGT-158) antibody have the following sequences per Chothia definition: GFIFKK (SEQ ID NO: 575), AISADAWHVD (SEQ ID NO: 521), and DGEEHEVPQLHSWSGRNLYHYTGVDV (SEQ ID NO: 574). The light chain CDRs of the 6881N05 (PGT-158) antibody have the following sequences per Chothia definition: KSSQSVRQSDGKTFLY (SEQ ID NO: 541), EASKRFS (SEQ ID NO: 580), and MQTKDFPLT (SEQ ID NO: 569).
[0880] In one aspect, an antibody according to the invention contains a heavy chain having the amino acid sequence of SEQ ID NOs: 12, 16, 20, 24, 28, 139, 47, 53, 59, 65, 62, 153, 165, 181, 197, 213, 229, 246, 275, 291, 297, 306, 318, 333, 346, 362, 400, 404, 419, 434, 443, 453, 462, 473, 489, 501, 516, 531, 546, 559, or 572, and a light chain having the amino acid sequence of SEQ ID NOs: 14, 18, 22, 26, 30, 142, 50, 56, 148, 158, 174, 190, 206, 222, 238, 255, 284, 301, 312, 329, 392, 355, 396, 385, 413, 428, 439, 448, 583, 469, 482, 496, 510, 524, 539, 553, 565, or 578. Alternatively, an antibody according to the invention contains a heavy chain variable region having the amino acid sequence of SEQ ID NOs: 31, 33, 35, 37, 39, 140, 48, 54, ,79, 156,168, 184,200,216,232, 149,276,292,298,307,319,334,347,363,401,405,420, 435, 444, 454, 463, 474, 490, 502, 517, 532, 547, 560, or 573, and a light chain variable region having the amino acid sequence of SEQ ID NOs: 32, 34, 36, 38, 40, 96, 51, 57, 149, 161, 177, 193, 209, 225, 242, 258, 285, 302, 313, 330, 393, 356, 397, 386, 414, 429, 440, 449, 584, 470, 483,497,511,525,540,554,566,or579.
[0881] In another aspect, an antibody according to the invention contains a heavy chain having the amino acid sequence encoded by the nucleic acid sequence of SEQ ID NOs: 11, 15, 19, 23, 27, 138, 46, 52, 58, 64, 66, 166, 167, 183, 199, 215, 231, 248, 273, 289, 295, 304, 314, 316,331,344,360,398,402,417,432,441,451,460,471,487,499,514,529,544,557,or570, and a light chain having the amino acid sequence encoded by the nucleic acid sequence of SEQ ID NOs: 13, 17, 21, 25, 29, 141, 49, 55, 61, 67, 146, 160, 176, 192, 208, 224, 240, 257, 282, 299, 310,327,390,353,394,383,411,426,437,446,581,467,480,494,508,522,537,551,563,or 576. Alternatively, an antibody according to the invention contains a heavy chain variable region having the amino acid sequence encoded by the nucleic acid sequence of SEQ ID NOs: 99, 101, 109, 115, 122, 128, 130, 132, 134, 136, 63, 154, 166, 182, 198, 214, 230, 247, 274, 290, 296, 305, 315, 317, 332, 345, 361, 399, 403, 418, 433, 442, 452, 461, 472, 488, 500, 515, 530, 545, 558, or 571, and a light chain variable region having the amino acid sequence encoded by the nucleic acid sequence of SEQ ID NOs: 100, 106, 112, 119, 125, 129, 131, 133, 135, 137, 147, 159, 175, 191, 207, 223, 239, 256, 283, 300, 311, 328, 391, 354, 395, 384, 412, 427, 438, 447, 582, 468, 481, 495, 509, 523, 538, 552, 564, or 577. Furthermore, an antibody according to the invention contains a heavy chain having the amino acid sequence encoded by a nucleic acid sequence of SEQ ID NOs: 11, 15, 19, 23, 27, 138, 46, 52, 58, 64, 66, 166, 167, 183, 199, 215, 231, 248, 273, 289, 295, 304, 314, 316, 331, 344, 360, 398, 402, 417, 432, 441, 451, 460, 471, 487, 499, 514, 529, 544, 557, or 570, which contains a silent or degenerate mutation, and a light chain having the amino acid sequence encoded by the nucleic acid sequence of SEQ ID NOs: 13, 17, 21, 25, 29, 141, 49, 55, 61, 67, 146, 160, 176, 192, 208, 224, 240, 257, 282, 299, 310, 327, 390, 353, 394, 383, 411, 426, 437, 446, 581, 467, 480, 494, 508, 522, 537, 551, 563, or 576, which contains a silent or degenerate mutation. Silent and degenerate mutations alter the nucleic acid sequence, but do not alter the resultant amino acid sequence.
[0882] Preferably the three heavy chain CDRs include an amino acid sequence of at least %, 92%, 95%, 97%, 98%, 99%, or more identical to the amino acid sequence of KYGMH (SEQ ID NO: 88), LISDDGMRKYHSDSMWG (SEQ ID NO: 89), EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6), SYAFT (SEQ ID NO: 104), MVTPIFGEAKYSQRFEG (SEQ ID NO: 105), DRRAVPIATDNWLDP (SEQ ID NO: 9), SYAFS (SEQ ID NO: 110), MITPVFGETKYAPRFQG (SEQ ID NO: 111), DRRVVPMATDNWLDP (SEQ ID NO: 8), DYYLH (SEQ ID NO: 116), LIDPENGEARYAEKFQG (SEQ ID NO: 117), GAVGADSGSWFDP (SEQ ID NO: 10), RQGMH (SEQ ID NO: 123), FIKYDGSEKYHADSVWG (SEQ ID NO: 124), EAGGPDYRNGYNYYDFYDGYYNYHYMDV (SEQ ID NO: 7), LISDDGMRKYHSNSMWG (SEQ ID NO: 98), DSYWS (SEQ ID NO: 90), YVHKSGDTNYSPSLKS (SEQ ID NO: 265), TLHGRRIYGIVAFNEWFTYFYMDV (SEQ ID NO: 143), DNYWS (SEQ ID NO: 261), YVHDSGDTNYNPSLKS (SEQ ID NO: 157), TKHGRRIYGVVAFKEWFTYFYMDV (SEQ ID NO: 262), DAYWS (SEQ ID NO: 169), YVHHSGDTNYNPSLKR (SEQ ID NO: 170), ALHGKRIYGIVALGELFTYFYMDV (SEQ ID NO: 171), ACTYFWG (SEQ ID NO: 185), SLSHCQSFWGSGWTFHNPSLKS (SEQ ID NO: 186), FDGEVLVYNHWPKPAWVDL (SEQ ID NO: 187), ACDYFWG (SEQ ID NO: 201), GLSHCAGYYNTGWTYHNPSLKS (SEQ ID NO: 202), FDGEVLVYHDWPKPAWVDL (SEQ ID NO: 203), TGHYYWG (SEQ ID NO: 217), HIHYTTAVLHNPSLKS (SEQ ID NO:
218), SGGDILYYYEWQKPHWFSP (SEQ ID NO: 219), GGEWGDKDYHWG (SEQ ID NO: 233), SIHWRGTTHYKESLRR (SEQ ID NO: 234), HRHHDVFMLVPIAGWFDV (SEQ ID NO: 235), GTDWGENDFHYG (SEQ ID NO: 250), SIHWRGRTTHYKTSFRS (SEQ ID NO: 251), HKYHDIFRVVPVAGWFDP (SEQ ID NO: 252), KYDVH (SEQ ID NO: 277), WMSHEGDKTESAQRFKG (SEQ ID NO: 278), GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279), WISHERDKTESAQRFKG (SEQ ID NO: 293), GSKHRLRDYVLYDDYGLINQQEWNDYLEFLDV (SEQ ID NO: 308), RCNYFWG (SEQ ID NO: 320), SLSHCRSYYNTDWTYHNPSLKS (SEQ ID NO: 321), FGGEVLVYRDWPKPAWVDL (SEQ ID NO: 322), ACNSFWG (SEQ ID NO: 326), SLSHCASYWNRGWTYHNPSLKS (SEQ ID NO: 335), FGGEVLRYTDWPKPAWVDL (SEQ ID NO: 336), TGHHYWG (SEQ ID NO: 348), HIHYNTAVLHNPALKS (SEQ ID NO: 349), SGGDILYYIEWQKPHWFYP (SEQ ID NO: 350), GGEWGDSDYHWG (SEQ ID NO: 364), SIHWRGTTHYNAPFRG (SEQ ID NO: 365), HKYHDIVMVVPIAGWFDP (SEQ ID NO: 366), NHDVH (SEQ ID NO: 378), WMSHEGDKTGLAQKFQG (SEQ ID NO: 379), GSKHRLRDYFLYNEYGPNYEEWGDYLATLDV (SEQ ID NO: 380), NYYWT (SEQ ID NO: 406), YISDRETTTYNPSLNS (SEQ ID NO: 407), ARRGQRIYGVVSFGEFFYYYYMDV (SEQ ID NO: 408), GRFWS (SEQ ID NO: 421), YFSDTDRSEYNPSLRS (SEQ ID NO: 422), AQQGKRIYGIVSFGEFFYYYYMDA (SEQ ID NO: 423), AQQGKRIYGIVSFGELFYYYYMDA (SEQ ID NO: 436), SGGDILYYNEWQKPHWFYP (SEQ ID NO: 445), SLSHCAGYYNSGWTYHNPSLKS (SEQ ID NO: 455), FGGDVLVYHDWPKPAWVDL (SEQ ID NO: 456), GCDYFWG (SEQ ID NO: 464), FDGEVLVYNDWPKPAWVDL (SEQ ID NO: 465), KYPMY (SEQ ID NO: 475), AISGDAWHVVYSNSVQG (SEQ ID NO: 476), MFQESGPPRLDRWSGRNYYYYSGMDV (SEQ ID NO: 477), AISADAWHVVYSGSVQG (SEQ ID NO: 491), MFQESGPPRFDSWSGRNYYYYSGMDV (SEQ ID NO: 492), KRHMH (SEQ ID NO: 503), VISSDAIHVDYASSVRG (SEQ ID NO: 504), DRDGYGPPQIQTWSGRYLHLYSGIDA (SEQ ID NO: 505), AISADAWHVDYAASVKD (SEQ ID NO: 518), NIEEFSVPQFDSWSGRSYYHYFGMDV (SEQ ID NO: 519), EYPMY (SEQ ID NO: 533), AISADAWHVDYAGSVRG (SEQ ID NO: 534), DGEEHKVPQLHSWSGRNLYHYTGFDV (SEQ ID NO: 535), QYPMY (SEQ ID NO: 548), AISADAWHVDYPGSVRG (SEQ ID NO:
549), DGEEHEVPQLHSWSGRNLYHYTGVDI (SEQ ID NO: 561), DGEEHEVPQLHSWSGRNLYHYTGVDV (SEQ ID NO: 574), (as determined by the Kabat method) or GFTFHK (SEQ ID NO: 266), LISDDGMRKY (SEQ ID NO: 267), EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6), GGTFSS (SEQ ID NO: 268), MVTPIFGEAK (SEQ ID NO: 269), DRRAVPIATDNWLDP (SEQ ID NO: 9), GGAFSS (SEQ ID NO: 270), MITPVFGETK (SEQ ID NO: 271), DRRVVPMATDNWLDP (SEQ ID NO: 8), GYSFID (SEQ ID NO: 102), LIDPENGEAR (SEQ ID NO: 103), GAVGADSGSWFDP (SEQ ID NO: 10), GFDFSR (SEQ ID NO: 118), FIKYDGSEKY (SEQ ID NO: 272), EAGGPDYRNGYNYYDFYDGYYNYHYMDV (SEQ ID NO: 7), GASISD (SEQ ID NO: 144), YVHKSGDTN (SEQ ID NO: 145), TLHGRRIYGIVAFNEWFTYFYMDV (SEQ ID NO: 143), GTLVRD (SEQ ID NO: 263), YVHDSGDTN (SEQ ID NO: 264), TKHGRRIYGVVAFKEWFTYFYMDV (SEQ ID NO: 262), GASIND (SEQ ID NO: 172), YVHHSGDTN (SEQ ID NO: 173), ALHGKRIYGIVALGELFTYFYMDV (SEQ ID NO: 171), GESTGACT (SEQ ID NO: 188), SLSHCQSFWGSGWTF (SEQ ID NO: 189), FDGEVLVYNHWPKPAWVDL (SEQ ID NO: 187), GDSTAACD (SEQ ID NO: 204), GLSHCAGYYNTGWTY (SEQ ID NO: 205), FDGEVLVYHDWPKPAWVDL (SEQ ID NO: 203), GESINTGH (SEQ ID NO: 220), HIHYTTAVL (SEQ ID NO: 221), SGGDILYYYEWQKPHWFSP (SEQ ID NO: 219), GDSIRGGEWGDKD (SEQ ID NO: 236), SIHWRGTTH (SEQ ID NO: 237), HRHHDVFMLVPIAGWFDV (SEQ ID NO: 235), GGSMRGTDWGEND (SEQ ID NO: 253), SIHWRGRTTH (SEQ ID NO: 254), HKYHDIFRVVPVAGWFDP (SEQ ID NO: 252), GNTFSK (SEQ ID NO: 280), WMSHEGDKTE (SEQ ID NO: 281), GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279), WISHERDKTE (SEQ ID NO: 294), GSKHRLRDYVLYDDYGLINQQEWNDYLEFLDV (SEQ ID NO: 308), or GNTFRK (SEQ ID NO: 309), GDSTGRCN (SEQ ID NO: 323), SLSHCRSYYNTDWTY (SEQ ID NO: 324), FGGEVLVYRDWPKPAWVDL (SEQ ID NO: 322), GDSTAACN (SEQ ID NO: 337), SLSHCASYWNRGWTY (SEQ ID NO: 338), FGGEVLRYTDWPKPAWVDL (SEQ ID NO: 336), GDSINTGH (SEQ ID NO: 351), HIHYNTAVL (SEQ ID NO: 352), SGGDILYYIEWQKPHWFYP (SEQ ID NO: 350), GGSIRGGEWGDSD (SEQ ID NO: 367), SIHWRGTTH (SEQ ID NO: 237), HKYHDIVMVVPIAGWFDP (SEQ ID NO: 366), GNSFSN (SEQ ID NO: 381), WMSHEGDKTG (SEQ ID NO: 382),
GSKHRLRDYFLYNEYGPNYEEWGDYLATLDV (SEQ ID NO: 380), GGSISN (SEQ ID NO: 409), YISDRETTT (SEQ ID NO: 410), ARRGQRIYGVVSFGEFFYYYYMDV (SEQ ID NO: 408), NGSVSG (SEQ ID NO: 424), YFSDTDRSE (SEQ ID NO: 425), AQQGKRIYGIVSFGEFFYYYYMDA (SEQ ID NO: 423), AQQGKRIYGIVSFGELFYYYYMDA (SEQ ID NO: 436), SGGDILYYNEWQKPHWFYP (SEQ ID NO: 445), SLSHCAGYYNSGWTY (SEQ ID NO: 457), FGGDVLVYHDWPKPAWVDL (SEQ ID NO: 456), GDSTAGCD (SEQ ID NO: 466), FDGEVLVYNDWPKPAWVDL (SEQ ID NO: 465), DFPFSK (SEQ ID NO: 478), AISGDAWHVV (SEQ ID NO: 479), MFQESGPPRLDRWSGRNYYYYSGMDV (SEQ ID NO: 477), AISADAWHVV (SEQ ID NO: 493), MFQESGPPRFDSWSGRNYYYYSGMDV (SEQ ID NO: 492), NFLFNK (SEQ ID NO: 506), VISSDAIHVD (SEQ ID NO: 507), DRDGYGPPQIQTWSGRYLHLYSGIDA (SEQ ID NO: 505), NFIFNK (SEQ ID NO: 520), AISADAWHVD (SEQ ID NO: 521), NIEEFSVPQFDSWSGRSYYHYFGMDV (SEQ ID NO: 519), GFIFNE (SEQ ID NO: 536), DGEEHKVPQLHSWSGRNLYHYTGFDV (SEQ ID NO: 535), GFIFNQ (SEQ ID NO: 550), GFIFKQ (SEQ ID NO: 562), DGEEHEVPQLHSWSGRNLYHYTGVDI (SEQ ID NO: 561), GFIFKK (SEQ ID NO: 575), DGEEHEVPQLHSWSGRNLYHYTGVDV (SEQ ID NO: 574), (as determined by the Chothia method), and a light chain with three CDRs that include an amino acid sequence of at least 90%, 92%, 95%, 97%, 98%, 99%, or more identical to the amino acid sequence of NGTSSDVGGFDSVS (SEQ ID NO: 97), DVSHRPS (SEQ ID NO: 95), SSLTDRSHRI (SEQ ID NO: 41), RASQTINNYLN (SEQ ID NO: 107), GASNLQN (SEQ ID NO: 108), QQSFSTPRT (SEQ ID NO: 42), RASQTIHTYLN (SEQ ID NO: 113), GASTLQS (SEQ ID NO: 114), QQSYSTPRT (SEQ ID NO: 43), SGSKLGDKYVS (SEQ ID NO: 120), ENDRRPS (SEQ ID NO: 121), QAWETTTTTFVF (SEQ ID NO: 44), NGTSNDVGGYESVS (SEQ ID NO: 126), DVSKRPS (SEQ ID NO: 127), KSLTSTRRRV (SEQ ID NO: 45), NGTRSDVGGFDSVS (SEQ ID NO: 92), NGTSRDVGGFDSVS (SEQ ID NO: 93), GEKSLGSRAVQ (SEQ ID NO: 150), NNQDRPS (SEQ ID NO: 151), HIWDSRVPTKWV (SEQ ID NO: 152), GEESLGSRSVI (SEQ ID NO: 162), NNNDRPS (SEQ ID NO: 163), HIWDSRRPTNWV (SEQ ID NO: 164), GKESIGSRAVQ (SEQ ID NO: 178), NNQDRPA (SEQ ID NO: 179), HIYDARGGTNWV (SEQ ID NO: 180), NGTATNFVS (SEQ ID NO: 194), GVDKRPP (SEQ ID NO: 195), GSLVGNWDVI (SEQ ID NO: 196), TGTSNRFVS (SEQ ID NO: 210), GVNKRPS (SEQ ID
NO: 211), SSLVGNWDVI (SEQ ID NO: 212), NGTSSDIGGWNFVS (SEQ ID NO: 226), EVNKRPS (SEQ ID NO: 227), SSLFGRWDVV (SEQ ID NO: 228), RASQNINKNLA (SEQ ID NO: 243), ETYSKIA (SEQ ID NO: 244), QQYEEWPRT (SEQ ID NO: 245), RASQNVKNNLA (SEQ ID NO: 259), DASSRAG (SEQ ID NO: 260), SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), MQGLNRPWT (SEQ ID NO: 288), or TSTQSLRHSNGANYLA (SEQ ID NO: 303), TGTSNNFVS (SEQ ID NO: 325), DVNKRPS (SEQ ID NO: 343), GSLVGNWDVI (SEQ ID NO: 196), SGTGSDIGSWNFVS (SEQ ID NO: 357), EVNRRRS (SEQ ID NO: 358), SSLSGRWDIV (SEQ ID NO: 359), RASQSVKNNLA (SEQ ID NO: 372), DTSSRAS (SEQ ID NO: 373), KCSHSLQHSTGANYLA (SEQ ID NO: 387), LATHRAS (SEQ ID NO: 388), MQGLHSPWT (SEQ ID NO: 389), GRQALGSRAVQ (SEQ ID NO: 415), HMWDSRSGFSWS (SEQ ID NO: 416), GERSRGSRAVQ (SEQ ID NO: 430), HYWDSRSPISWI (SEQ ID NO: 431), SGTASDIGSWNFVS (SEQ ID NO: 450), TGNINNFVS (SEQ ID NO: 458), GSLAGNWDVV (SEQ ID NO: 459), KSSESLRQSNGKTSLY (SEQ ID NO: 484), EVSNRFS (SEQ ID NO: 485), MQSKDFPLT (SEQ ID NO: 486), KSSQSLRQSNGKTSLY (SEQ ID NO: 498), KSSQSLRQSNGKTYLY (SEQ ID NO: 512), EVSIRFS (SEQ ID NO: 513), SSSESLGRGDGRTYLH (SEQ ID NO: 526), EVSTRFS (SEQ ID NO: 527), MQSRDFPIT (SEQ ID NO: 528), KSSQSVRQSDGKTFLY (SEQ ID NO: 541), EGSSRFS (SEQ ID NO: 542), LQTKDFPLT (SEQ ID NO: 543), KSSQTVRQSDGKTFLY (SEQ ID NO: 555), EGSNRFS (SEQ ID NO: 556), KSSQSLRQSDGKTFLY (SEQ ID NO: 567), EASNRFS (SEQ ID NO: 568), MQTKDFPLT (SEQ ID NO: 569), EASKRFS (SEQ ID NO: 580), (as determined by the Kabat method), or NGTSSDVGGFDSVS (SEQ ID NO: 97), DVSHRPS (SEQ ID NO: ), SSLTDRSHRI (SEQ ID NO: 41), RASQTINNYLN (SEQ ID NO: 107), GASNLQN (SEQ ID NO: 108), QQSFSTPRT (SEQ ID NO: 42), RASQTIHTYLN (SEQ ID NO: 113), GASTLQS (SEQ ID NO: 114), QQSYSTPRT (SEQ ID NO: 43), SGSKLGDKYVS (SEQ ID NO: 120), ENDRRPS (SEQ ID NO: 121), QAWETTTTTFVF (SEQ ID NO: 44), NGTSNDVGGYESVS (SEQ ID NO: 126), DVSKRPS (SEQ ID NO: 127), KSLTSTRRRV (SEQ ID NO: 45), NGTRSDVGGFDSVS (SEQ ID NO: 92), NGTSRDVGGFDSVS (SEQ ID NO: 93) GEKSLGSRAVQ (SEQ ID NO: 150), NNQDRPS (SEQ ID NO: 151), HIWDSRVPTKWV (SEQ ID NO: 152), GEESLGSRSVI (SEQ ID NO: 162), NNNDRPS (SEQ ID NO: 163), HIWDSRRPTNWV (SEQ ID NO: 164), GKESIGSRAVQ (SEQ ID NO: 178), NNQDRPA
(SEQ ID NO: 179), HIYDARGGTNWV (SEQ ID NO: 180), NGTATNFVS (SEQ ID NO: 194), GVDKRPP (SEQ ID NO: 195), GSLVGNWDVI (SEQ ID NO: 196), TGTSNRFVS (SEQ ID NO: 210), GVNKRPS (SEQ ID NO: 211), SSLVGNWDVI (SEQ ID NO: 212), NGTSSDIGGWNFVS (SEQ ID NO: 226), EVNKRPS (SEQ ID NO: 227), SSLFGRWDVV (SEQ ID NO: 228), RASQNINKNLA (SEQ ID NO: 243), ETYSKIA (SEQ ID NO: 244), QQYEEWPRT (SEQ ID NO: 245), RASQNVKNNLA (SEQ ID NO: 259), DASSRAG (SEQ ID NO: 260), SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), MQGLNRPWT (SEQ ID NO: 288), TSTQSLRHSNGANYLA (SEQ ID NO: 303), TGTSNNFVS (SEQ ID NO: 325), DVNKRPS (SEQ ID NO: 343), GSLVGNWDVI (SEQ ID NO: 196), SGTGSDIGSWNFVS (SEQ ID NO: 357), EVNRRRS (SEQ ID NO: 358), SSLSGRWDIV (SEQ ID NO: 359), RASQSVKNNLA (SEQ ID NO: 372), DTSSRAS (SEQ ID NO: 373), KCSHSLQHSTGANYLA (SEQ ID NO: 387), LATHRAS (SEQ ID NO: 388), MQGLHSPWT (SEQ ID NO: 389), GRQALGSRAVQ (SEQ ID NO: 415), HMWDSRSGFSWS (SEQ ID NO: 416), GERSRGSRAVQ (SEQ ID NO: 430), HYWDSRSPISWI (SEQ ID NO: 431), SGTASDIGSWNFVS (SEQ ID NO: 450), TGNINNFVS (SEQ ID NO: 458), GSLAGNWDVV (SEQ ID NO: 459), KSSESLRQSNGKTSLY (SEQ ID NO: 484), EVSNRFS (SEQ ID NO: 485), MQSKDFPLT (SEQ ID NO: 486), KSSQSLRQSNGKTSLY (SEQ ID NO: 498), KSSQSLRQSNGKTYLY (SEQ ID NO: 512), EVSIRFS (SEQ ID NO: 513), SSSESLGRGDGRTYLH (SEQ ID NO: 526), EVSTRFS (SEQ ID NO: 527), MQSRDFPIT (SEQ ID NO: 528), KSSQSVRQSDGKTFLY (SEQ ID NO: 541), EGSSRFS (SEQ ID NO: 542), LQTKDFPLT (SEQ ID NO: 543), KSSQTVRQSDGKTFLY (SEQ ID NO: 555), EGSNRFS (SEQ ID NO: 556), KSSQSLRQSDGKTFLY (SEQ ID NO: 567), EASNRFS (SEQ ID NO: 568), MQTKDFPLT (SEQ ID NO: 569), EASKRFS (SEQ ID NO: 580), (as determined by the Chothia method).
[0883] The heavy chain of the anti-HIV monoclonal antibody is derived from a germ line variable (V) gene such as, for example, the IGHV1, IGHV3, or IGHV4 germline gene or an allele thereof.
[0884] The anti-HIV antibodies of the invention include a variable heavy chain (VH) region encoded by a human IGHV1, IGHV3, or IGHV4 germline gene sequence or an allele thereof. Antibodies of the invention are derived from the IGHV1-2, IGHV1-8, or IGHV1-46 genes, or an allele thereof. Exemplary alleles of the IGHV1 germline gene include, but are not limited to,
IGHV1-2*02, IGHV1-2*04, IGHV1-8*01, IGHV1-46*01, IGHV1-46*02, or IGHV1-46*03. IGHV1 germline gene sequences are shown, e.g., in Accession numbers L22582, X27506, X92340, M83132, X67905, L22583, Z29978, Z14309, Z14307, Z14300, Z14296, and Z14301. IGHV3 germline gene sequences are shown, e.g., in Accession numbers AB019439, M99665, M77305, M77335, and M77334. Antibodies of the invention are derived from the IGHV4-59, IGHV4-64, IGHV4-b, IGHV4-39, or IGHV4-28 genes, or an allele thereof. Exemplary alleles of the IGHV4 germline gene include, but are not limited to, IGHV4-59*01, IGHV4-59*07, IGHV4 59*02, IGHV4-59*03, IGHV4-59*04, IGHV4-61*08, IGHV4-b*02, IGHV4-b*01, IGHV4 39*07, IGHV4-39*03, IGHV4-39*06, IGHV4-39*01, IGHV4-39*02, or IGHV4-28*05. IGHV4 germline gene sequences are shown, e.g., in Accession numbers AB019439, L10094, X05715, X92259, X92297, M95116, Z14236, AM940222, X54447, X56362, Z14075, Z75352, AB019438, M29812, M95114, M95117, M95118, M95119, X56360, X87091, Z75359, Z14243, L10088, U03896, X56355, X56359, X92248, X92296, Z12371, M29811, L10097, X92230, X92250, X56356, Z75347, Z75348, AB019437, M95111, X92249, X92251, Z12366, Z75346, Z75361, Z12367, X56365, and X92289. The anti-HIV antibodies of the invention include a VH region that is encoded by a nucleic acid sequence that is at least 80% homologous to the IGHV1, IGHV3, or IGHV4 germline gene sequence or an allele thereof. Preferably, the nucleic acid sequence is at least 90%, 95%, 96%, 97% homologous to the IGHV1, IGHV3, or IGHV4 germline gene sequence, and more preferably, at least 98%, 99% homologous to the IGHV1, IGHV3, or IGHV4 germline gene sequence or an allele thereof. The VH region of the anti-HIV antibody is at least 80% homologous to the amino acid sequence of the VH region encoded by the IGHV1, IGHV3, or IGHV4 germline gene sequence or an allele thereof. Preferably, the amino acid sequence of VH region of the anti-HIV antibody is at least 90%, 95%, 96%, 97% homologous to the amino acid sequence encoded by the IGHV1, IGHV3, or IGHV4 germline gene sequence or an allele thereof, and more preferably, at least 98%, 99% homologous to the sequence encoded by the IGHV1, IGHV3, or IGHV4 germline gene sequence or an allele thereof.
[0885] The light chain of the anti-HIV monoclonal antibody is derived from a germ line variable (V) gene such as, for example, the IGLV2, IGLV3, IGKV1, IGKV2, IGKV2D, or IGKV3 germline gene or an allele thereof.
[08861 The anti-HIV antibodies of the invention also include a variable light chain (VL) region encoded by a human IGLV2, IGLV3, IGKV1, IGKV2, IGKV2D, IGKV3, or IGKV3D germline gene or an allele thereof. A human IGLV2 VL germline gene sequence is shown, e.g., Accession numbers Z73664, L27822, Y12412, and Y12413. A human IGLV3 VL germline gene sequence is shown, e.g., Accession number X57826. Antibodies of the invention are derived from the IGLV2-8 germline gene, or an allele thereof.
[0887] Exemplary alleles of the IGLV2-8 germline gene include, but are not limited to, IGLV2-8*01 and IGLV2-8*02. Antibodies of the invention are derived from the IGLV3-21 germline gene, or an allele thereof. Exemplary alleles of the IGLV3-21 germline gene include, but are not limited to, IGLV3-21*01, IGLV3-21*02, and IGLV3-21*03. Antibodies of the invention are derived from the IGKV2-28 and IGKV2D-28 germline genes, or an allele thereof. Exemplary alleles of the IGKV2-28 and IGKV2D-28 germline genes include, but are not limited to, IGKV2-28*01 and IGKV2D-28*01. Antibodies of the invention are derived from the IGKV3-15 and IGKV3D-15 germline genes, or an allele thereof. Exemplary alleles of the IGKV3-15 and IGKV3D-15 germline genes include, but are not limited to, IGKV3-15*01, IGKV3D-15*01, and IGKV3D-15*02(P).
[0888] A human IGLV2 VL germline gene sequence is shown, e.g., Accession numbers Z73657, Z73664, Z73642, X14616, X97466, Z73643, D87013, Z73641, X97462, D87021, Y12417, L27695, and Z22209. A human IGLV3 VL germline gene sequence is shown, e.g., Accession numbers X57826, X97464, Z73658, X97463, D87015, X97471, X97472, X56178, X97468, X71966, D87007, M94115, Z73666, X71968, X97474, X97467, D86994, Z73644, Z73646, X97469, Z73645, D87024, X97465, X97470, and X97473. A human IGKV1 VL germline gene sequence is shown, e.g., Accession numbers AF306358, AF490911, L12062, L12064, L12065, L12066, L12068, L12072, L12075, L12076, L12079, L12080, L12081, L12082, L12083, L12084, L12085, L12086, :12088, L12091, L12093, L12101, L12106, L12108, L12110, L12112, M95721, M95722, M95723, X73855, X73860, X98972, X98973, Z15073, Z15074, Z15075, Z15077, Z15079, Z15081. A human IGKV3 VL germline gene sequence is shown, e.g., Accession numbers X01668, M23090, X12686, X06583, X71883, X71891, X02725, L37728, L37727, L37730, L19271, L19272, X17264, X72815, X12687, X71886, X71896, X71895, X72820.
[0889] Alternatively, the anti-HIV antibodies include a VL region that is encoded by a nucleic acid sequence that is at least 80% homologous to the IGLV2, IGLV3, IGKV1, IGKV2, IGKV2D, IGKV3, or IGKV3D germline gene or an allele thereof. Preferably, the nucleic acid sequence is at least 90%, 95%, 96%, 97% homologous to the IGLV2, IGLV3, IGKV1, IGKV2, IGKV2D, IGKV3, or IGKV3D germline gene or an allele thereof, and more preferably, at least 98%, 99% homologous to the IGLV2, IGLV3, IGKV1, IGKV2, IGKV2D, IGKV3, or IGKV3D germline gene or an allele thereof. The VL region of the anti-HIV antibody is at least 80% homologous to the amino acid sequence of the VL region encoded the IGLV2, IGLV3, IGKV1, IGKV2, IGKV2D, IGKV3, or IGKV3D germline gene or an allele thereof. Preferably, the amino acid sequence of VL region of the anti-HIV antibody is at least 90%, 95%, 96%, 97% homologous to the amino acid sequence encoded by the IGLV2, IGLV3, IGKV1, IGKV2, IGKV2D, IGKV3, or IGKV3D germline gene or an allele thereof, and more preferably, at least 98%, 99% homologous to the sequence encoded by the IGLV2, IGLV3, IGKV1, IGKV2, IGKV2D, IGKV3, or IGKV3D germline gene or an allele thereof.
FA
t , .0
Cu- -
en o7 .*j2 JoF LLD I 7
-I.,. ,
O LLa
't t 't,,,
A4
I-A
CTT CAl
'C .. . . . . .
- rn o 71E7f' ; . .0 .. . . . . .
ffbb9 fI fO 4fOf ff~~ff f Sff .l . .fI .l ff .. .. .1 .f .i f f 77' Offf af l ff flOf I' -f~ I-f -f -'- QffJfff bb f4 4 ff-ff~ffJffff~~f4
c4 - I-.
.laIf-ff'Of.If fAlj-~ f~'J -ffblffafO4.~oflo
c~~~~~~~~ . . .0'.afff.0 .ffff~ . . .f .off.f.fff.f.
cii
l C-1
0C(3
eCJ ) 0 .I
'C AD tLt
-tV-4
*~ I4
ALJ Q3
0) . . . . .I... U.
a) (a F:XV
I (u 1, Q.1 11
FlF
(23
C-K enIn --
- - - - - - 4
.~IA. c . . .
cn m ( - ) . - 3 cC o
23 4. . r) rr- . .
Cen
o o r r"
~~c
.23
Table 11. Consensus nucleotide sequences of Kabat CDRs of heavy chains of 1443 PG16 sister clones.
CDR1 (kabat): 1443 C16 AAATATGGCATGCAC (SEQ ID NO: 68) 1469 M23 AAATATGGCATGCAC (SEQ ID NO: 68) 1456 A12 AAATATGGCATGCAC (SEQ ID NO: 68) 1503 H05 AAATATGGCATGCAC (SEQ ID NO: 68) 1489 113 AAATATGGCATGCAC (SEQ ID NO: 68) 1480 108 AAATATGGCATGCAC (SEQ ID NO: 68) Consensus AAATATGGCATGCAC (SEQ ID NO: 68)
CDR1 (chothia): 1443 C16 TCTGGATTCACGTTTCACAAA (SEQ ID NO: 69) 1469 M23 TCTGGATTCACCTTTCACAAA (SEQ ID NO: 70) 1456 A12 TCTGGATTCACGTTTCACAAA (SEQ ID NO: 69) 1503 H05 TCTGGATTCACCTTTCACAAA (SEQ ID NO: 70) 1489 113 TCTGGATTCACGTTTCACAAA (SEQ ID NO: 69) 1480 108 TCTGGATTCACGTTTCACAAA (SEQ ID NO: 69) Consensus* TCTGGATTCACXTTTCACAAA (SEQ ID NO: 71) Variations TCTGGATTCACGTTTCACAAA (SEQ ID NO: 69) Variation2 TCTGGATTCACCTTTCACAAA (SEQ ID NO: 70) * Wherein X is C or G.
CDR2: 1443 C 16 CTCATCTCAGATGACGGAATGAGGAAATATCATTCAGACTCCATGTG GGGC (SEQ ID NO: 72) 1469 M23 CTCATCTCAGATGACGGAATGAGGAAATATCATTCAGACTCCATGTG GGGC (SEQ ID NO: 72) 1456 A 12 CTCATCTCAGATGACGGAATGAGGAAATATCATTCAGACTCCATGTG GGGC (SEQ ID NO: 72) 1503 H05 CTCATCTCAGATGACGGAATGAGGAAATATCATTCAGACTCCATGTG GGGC (SEQ ID NO: 72) 1489 113 CTCATCTCAGATGACGGAATGAGGAAATATCATTCAAACTCCATGTG GGGC (SEQ ID NO: 73) 1480 108 CTCATCTCAGATGACGGAATGAGGAAATATCATTCAGACTCCATGTG GGGC (SEQ ID NO: 72) Consensus* CTCATCTCAGATGACGGAATGAGGAAATATCATTCAXACTCCATGTG GGGC (SEQ ID NO: 74) Variations CTCATCTCAGATGACGGAATGAGGAAATATCATTCAGACTCCATGTG GGGC (SEQ ID NO: 72) Variation2 CTCATCTCAGATGACGGAATGAGGAAATATCATTCAAACTCCATGTG GGGC (SEQ ID NO: 73) * Wherein X is A or G.
CDR3: 1443 C16 (SEQ ID NO: 75) GAGGCTGGTGGGCCAATCTGGCATGACGACGTCAAATATTACGATTTTAATGACGG CTACTACAACTACCACTACATGGACGTC 1469 M23 (SEQ ID NO: 75) GAGGCTGGTGGGCCAATCTGGCATGACGACGTCAAATATTACGATTTTAATGACGG CTACTACAACTACCACTACATGGACGTC 1456 A12 (SEQ ID NO: 77) GAGGCCGGTGGGCCAATCTGGCATGACGACGTCAAATATTACGATTTTAATGACGG CTACTACAACTATCACTACATGGACGTC 1503 H05 (SEQ ID NO:79) GAGGCTGGTGGGCCAATCTGGCATGACGACGTCAAATATTACGATTTTAATGACGG CTACTACAATTACCACTACATGGACGTC 1489 113 (SEQ ID NO: 75) GAGGCTGGTGGGCCAATCTGGCATGACGACGTCAAATATTACGATTTTAATGACGG CTACTACAACTACCACTACATGGACGTC 1480 108 (SEQ ID NO: 75) GAGGCTGGTGGGCCAATCTGGCATGACGACGTCAAATATTACGATTTTAATGACGG CTACTACAACTACCACTACATGGACGTC Consensus (SEQ ID NO: 76) GAGGCXGGTGGGCCAATCTGGCATGACGACGTCAAATATTACGATTTTAATGACGG CTACTACAACTATCACTACATGGACGTC VariationI (SEQ ID NO: 78) GAGGCGGGTGGGCCAATCTGGCATGACGACGTCAAATATTACGATTTTAATGACGG CTACTACAACTATCACTACATGGACGTC Variation2 (SEQ ID NO: 77) GAGGCCGGTGGGCCAATCTGGCATGACGACGTCAAATATTACGATTTTAATGACGG CTACTACAACTATCACTACATGGACGTC Wherein X is T, C or G.
Table 12. Consensus nucleotide sequences of Kabat CDRs of light chains of 1443 PG16 sister clones.
CDR1: 1443 C 16 AATGGAACCAGCAGTGACGTTGGTGGATTTGACTCTGTCTCC (SEQ ID NO: 80) 1469 M23 AATGGAACCAGAAGTGACGTTGGTGGATTTGACTCTGTCTCC (SEQ ID NO: 82) 1456 A12 AATGGAACCAGCCGTGACGTTGGTGGATTTGACTCTGTCTCC (SEQ ID NO: 83) 1503 H05 AATGGAACCAGAAGTGACGTTGGTGGATTTGACTCTGTCTCC (SEQ ID NO: 82) 1489 113 AATGGAACCAGCAGTGACGTTGGTGGATTTGACTCTGTCTCC (SEQ ID NO: 80) 1480 108 AATGGAACCAGCAGTGACGTTGGTGGATTTGACTCTGTCTCC (SEQ ID NO: 80) Consensus* AATGGAACCAGX 1X2GTGACGTTGGTGGATTTGACTCTGTCTCC (SEQ
ID NO: 81) Variations AATGGAACCAGCAGTGACGTTGGTGGATTTGACTCTGTCTCC (SEQ ID NO: 80) Variation2 AATGGAACCAGAAGTGACGTTGGTGGATTTGACTCTGTCTCC (SEQ ID NO: 82) Variation2 AATGGAACCAGCCGTGACGTTGGTGGATTTGACTCTGTCTCC (SEQ ID NO: 83) * Wherein X1 is C or A. Wherein X 2 is C or A.
CDR2: 1443 C16 GATGTCAGTCATCGGCCCTCA (SEQ ID NO: 84) 1469 M23 GATGTCAGTCATCGGCCCTCA (SEQ ID NO: 84) 1456 A12 GATGTCAGTCATCGGCCCTCA (SEQ ID NO: 84) 1503 H05 GATGTCAGTCATCGGCCCTCA (SEQ ID NO: 84) 1489 113 GATGTCAGTCATCGGCCCTCA (SEQ ID NO: 84) 1480 108 GATGTCAGTCATCGGCCCTCA (SEQ ID NO: 84) Consensus GATGTCAGTCATCGGCCCTCA (SEQ ID NO: 84)
CDR3: 1443 C16 TCTTCACTGACAGACAGAAGCCATCGCATA (SEQ ID NO: 85) 1469 M23 TCTTCACTGACAGACAGAAGCCATCGCATA (SEQ ID NO: 85) 1456 A12 TCTTCATTGACAGACAGAAGCCATCGCATA (SEQ ID NO: 86) 1503 H05 TCTTCACTGACAGACAGAAGCCATCGCATA (SEQ ID NO: 85) 1489 113 TCTTCACTGACAGACAGAAGCCATCGCATA (SEQ ID NO: 85) 1480 108 TCTTCACTGACAGACAGAAGCCATCGCATA (SEQ ID NO: 85) Consensus* TCTTCAXTGACAGACAGAAGCCATCGCATA (SEQ ID NO: 87) VariationI TCTTCACTGACAGACAGAAGCCATCGCATA (SEQ ID NO: 85) Variation2 TCTTCATTGACAGACAGAAGCCATCGCATA (SEQ ID NO: 86) * Wherein X1 is C or T and wherein X 2 is C or T.
Table 13. Consensus protein sequences of Kabat CDRs of Heavy chains of 1443 PG16 sister clones.
CDR1: 1443 C16 KYGMH (SEQ ID NO: 88) 1469 M23 KYGMH (SEQ ID NO: 88) 1456 A12 KYGMH (SEQ ID NO: 88) 1503 H05 KYGMH (SEQ ID NO: 88) 1489 113 KYGMH (SEQ ID NO: 88) 1480 108 KYGMH (SEQ ID NO: 88) Consensus KYGMH (SEQ ID NO: 88)
CDR2: 1443 C16 LISDDGMRKYHSDSMWG (SEQ ID NO: 89) 1469 M23 LISDDGMRKYHSDSMWG (SEQ ID NO: 89)
1456 A12 LISDDGMRKYHSDSMWG (SEQ ID NO: 89) 1503 H05 LISDDGMRKYHSDSMWG (SEQ ID NO: 89) 1489 113 LISDDGMRKYHSNSMWG (SEQ ID NO: 98) 1480 108 LISDDGMRKYHSDSMWG (SEQ ID NO: 89) Consensus* LISDDGMRKYHSXSMWG (SEQ ID NO: 91) Variations LISDDGMRKYHSDSMWG (SEQ ID NO: 89) Variation2 LISDDGMRKYHSNSMWG (SEQ ID NO: 98) * Wherein X is D or N, or wherein X is an amino acid with similar physical properties to either D or N.
CDR3: 1443 C16 EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6) 1469 M23 EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6) 1456 A12 EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6) 1503 H05 EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6) 1489 113 EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6) 1480 108 EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6) Consensus EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6)
Table 14. Consensus protein sequences of Kabat CDRs of light chains of 1443 PG16 sister clones.
CDR1: 1443 C16 NGTSSDVGGFDSVS (SEQ ID NO: 97) 1469 M23 NGTRSDVGGFDSVS (SEQ ID NO: 92) 1456 A12 NGTSRDVGGFDSVS (SEQ ID NO: 93) 1503 H05 NGTRSDVGGFDSVS (SEQ ID NO: 92) 1489 113 NGTSSDVGGFDSVS (SEQ ID NO: 97) 1480 108 NGTSSDVGGFDSVS (SEQ ID NO: 97) Consensus* NGTX 1X 2DVGGFDSVS (SEQ ID NO: 94) Variations NGTSSDVGGFDSVS (SEQ ID NO: 97) Variation2 NGTRSDVGGFDSVS (SEQ ID NO: 92) Variation3 NGTSRDVGGFDSVS (SEQ ID NO: 93) * Wherein X1 is S or R, or wherein X1 is an amino acid with similar physical properties to either S or R. Wherein X 2 is S or R, or wherein X 2 is an amino acid with similar physical properties to either S or R.
CDR2: 1443 C16 DVSHRPS (SEQ ID NO: 95) 1469 M23 DVSHRPS (SEQ ID NO: 95) 1456 A12 DVSHRPS (SEQ ID NO: 95) 1503 H05 DVSHRPS (SEQ ID NO: 95) 1489 113 DVSHRPS (SEQ ID NO: 95) 1408 108 DVSHRPS (SEQ ID NO: 95) Consensus DVSHRPS (SEQ ID NO: 95)
CDR3: 1443 C16 SSLTDRSHRI (SEQ ID NO: 41) 1469 M23 SSLTDRSHRI (SEQ ID NO: 41) 1456 A12 SSLTDRSHRI (SEQ ID NO: 41) 1503 H05 SSLTDRSHRI (SEQ ID NO: 41) 1489 113 SSLTDRSHRI (SEQ ID NO: 41) 1480 108 SSLTDRSHRI (SEQ ID NO: 41) Consensus SSLTDRSHRI (SEQ ID NO: 41)
[0890] Monoclonal and recombinant antibodies are particularly useful in identification and purification of the individual polypeptides or other antigens against which they are directed. The antibodies of the invention have additional utility in that they may be employed as reagents in immunoassays, radioimmunoassays (RIA) or enzyme-linked immunosorbent assays (ELISA). In these applications, the antibodies can be labeled with an analytically-detectable reagent such as a radioisotope, a fluorescent molecule or an enzyme. The antibodies may also be used for the molecular identification and characterization (epitope mapping) of antigens.
[0891] As mentioned above, the antibodies of the invention can be used to map the epitopes to which they bind. Applicants have discovered that the antibodies 1443C16 (PG16) (TCN 116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN 118), 1489 113 (PG16) (TCN-120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_D15 (PGT-122), 4858_P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HOl (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345_101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-K15 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_NI (PGT-139), 6831_A21 (PGT-151), 6889_17 (PGT-152), 6891_F06 (PGT-153), 6843G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892C23 (PGT-157), and/or 6881_N05 (PGT-158) neutralize HIV. Although the Applicant does not wish to be bound by this theory, it is postulated that the antibodies 1443_C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_Di5
(PGT-122), 4858_P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HOl (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345_01 (PGT-137), 4993K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), 4995P16 (PGT-145), 4835_F12 (PGT-124), 4869-K15 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N1O (PGT-139), 6831_A21 (PGT-151), 6889117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and/or 6881_NO5 (PGT-158) bind to one or more conformational epitopes formed by HIV1-encoded proteins.
[0892] Neutralization activity of human monoclonal antibodies was tested against HIV-1 strains SF162 and JR-CSF. HIV-1 strains SF162 and JR-CSF both belong to HIV clade B. Each clonal monoclonal antibody was screened for neutralization activity and for anti-gp120, anti gp41 and total IgG in quantitative ELISA. For the monoclonal antibodies 1456P20, 1495C14, and 1460_G14 anti-gp120 antigen-specific binding was detected. Neutralizing activity against SF162, but not JR-CSF was detected for 1456P20 (PG20), 1495C14 (PGC14), and 1460_G14 (PGG14). For the two monoclonal antibody preparations that did not show binding to gpl20 in the ELISA assay, 1443_C16 (PG16) and 1496_C09 (PG9), high quantities of human IgG were determined to be present in the assay. However, 1443_C16 (PG16) and 1496_C09 (PG9) both were found to exhibit neutralizing activity against HIV-1 strain JR-CSF, but not against strain SF162. 1443_C16 (PG16) and 1496C09 (PG9) also were found to lack gp4l binding activity in the ELISA assay.
[0893] The epitopes recognized by these antibodies may have a number of uses. The epitopes and mimotopes in purified or synthetic form can be used to raise immune responses (i.e. as a vaccine, or for the production of antibodies for other uses) or for screening patient serum for antibodies that immunoreact with the epitopes or mimotopes. Preferably, such an epitope or mimotope, or antigen comprising such an epitope or mimotope is used as a vaccine for raising an immune response. The antibodies of the invention can also be used in a method to monitor the quality of vaccines in particular to check that the antigen in a vaccine contains the correct immunogenic epitope in the correct conformation.
[08941 The epitopes may also be useful in screening for ligands that bind to said epitopes. Such ligands preferably block the epitopes and thus prevent infection. Such ligands are encompassed within the scope of the invention.
[0895] Standard techniques of molecular biology may be used to prepare DNA sequences coding for the antibodies or fragments of the antibodies of the present invention. Desired DNA sequences may be synthesized completely or in part using oligonucleotide synthesis techniques. Site-directed mutagenesis and polymerase chain reaction (PCR) techniques may be used as appropriate.
[0896] Any suitable host cell/vector system may be used for expression of the DNA sequences encoding the antibody molecules of the present invention or fragments thereof. Bacterial, for example E. coli, and other microbial systems may be used, in part, for expression of antibody fragments such as Fab and F(ab') 2 fragments, and especially Fv fragments and single chain antibody fragments, for example, single chain Fvs. Eukaryotic, e.g. mammalian, host cell expression systems may be used for production of larger antibody molecules, including complete antibody molecules. Suitable mammalian host cells include CHO, HEK293T, PER.C6, myeloma or hybridoma cells.
[0897] The present invention also provides a process for the production of an antibody molecule according to the present invention comprising culturing a host cell comprising a vector of the present invention under conditions suitable for leading to expression of protein from DNA encoding the antibody molecule of the present invention, and isolating the antibody molecule. The antibody molecule may comprise only a heavy or light chain polypeptide, in which case only a heavy chain or light chain polypeptide coding sequence needs to be used to transfect the host cells. For production of products comprising both heavy and light chains, the cell line may be transfected with two vectors, a first vector encoding a light chain polypeptide and a second vector encoding a heavy chain polypeptide. Alternatively, a single vector may be used, the vector including sequences encoding light chain and heavy chain polypeptides.
[0898] Alternatively, antibodies according to the invention may be produced by i) expressing a nucleic acid sequence according to the invention in a cell, and ii) isolating the expressed antibody product. Additionally, the method may include iii) purifying the antibody. Transformed B cells are screened for those producing antibodies of the desired antigen specificity, and individual B cell clones can then be produced from the positive cells. The screening step may be carried out by ELISA, by staining of tissues or cells (including transfected cells), a neutralization assay or one of a number of other methods known in the art for identifying desired antigen specificity. The assay may select on the basis of simple antigen recognition, or may select on the additional basis of a desired function e.g. to select neutralizing antibodies rather than just antigen-binding antibodies, to select antibodies that can change characteristics of targeted cells, such as their signaling cascades, their shape, their growth rate, their capability of influencing other cells, their response to the influence by other cells or by other reagents or by a change in conditions, their differentiation status, etc.
[0899] The cloning step for separating individual clones from the mixture of positive cells may be carried out using limiting dilution, micromanipulation, single cell deposition by cell sorting or another method known in the art. Preferably the cloning is carried out using limiting dilution.
[0900] The immortalized B cell clones of the invention can be used in various ways e.g. as a source of monoclonal antibodies, as a source of nucleic acid (DNA or mRNA) encoding a monoclonal antibody of interest, for research, etc.
[0901] Unless otherwise defined, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclatures utilized in connection with, and techniques of, cell and tissue culture, molecular biology, and protein and oligo- or polynucleotide chemistry and hybridization described herein are those well known and commonly used in the art. Standard techniques are used for recombinant DNA, oligonucleotide synthesis, and tissue culture and transformation (e.g., electroporation, lipofection). Enzymatic reactions and purification techniques are performed according to manufacturer's specifications or as commonly accomplished in the art or as described herein. The practice of the present invention will employ, unless indicated specifically to the contrary, conventional methods of virology, immunology, microbiology, molecular biology and recombinant DNA techniques within the skill of the art, many of which are described below for the purpose of illustration. Such techniques are explained fully in the literature. See, e.g., Sambrook, et al. Molecular Cloning: A Laboratory Manual (2nd Edition, 1989); Maniatis et al. Molecular Cloning: A Laboratory Manual (1982); DNA Cloning: A Practical Approach, vol. I & II (D. Glover, ed.);
Oligonucleotide Synthesis (N. Gait, ed., 1984); Nucleic Acid Hybridization (B. Hames & S. Higgins, eds., 1985); Transcription and Translation (B. Hames & S. Higgins, eds., 1984); Animal Cell Culture (R. Freshney, ed., 1986); Perbal, A Practical Guide to Molecular Cloning (1984). The nomenclatures utilized in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques are used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.
[0902] The following definitions are useful in understanding the present invention: The term "antibody" (Ab) as used herein includes monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments, as long as they exhibit the desired biological activity. The term "immunoglobulin" (Ig) is used interchangeably with "antibody" herein.
[0903] A "neutralizing antibody" may inhibit the entry of HIV-1 virus for example SF162 and/or JR-CSF with a neutralization index >1.5 or >2.0. (Kostrikis LG et al. J Virol. 1996; 70(1): 445-458.) By "broad and potent neutralizing antibodies" are meant antibodies that neutralize more than one HIV-1 virus species (from diverse clades and different strains within a clade) in a neutralization assay. A broad neutralizing antibody may neutralize at least 2, 3, 4, 5, 6, 7, 8, 9 or more different strains of HIV-1, the strains belonging to the same or different clades. A broad neutralizing antibody may neutralize multiple HIV-1 species belonging to at least 2, 3, 4, 5, or 6 different clades. The inhibitory concentration of the monoclonal antibody may be less than about mg/ml to neutralize about 50% of the input virus in the neutralization assay.
[0904] An "isolated antibody" is one that has been separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody is purified: (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight; (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator; or (3) to homogeneity by SDS-PAGE under reducing or non-reducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
[0905] The basic four-chain antibody unit is a heterotetrameric glycoprotein composed of two identical light (L) chains and two identical heavy (H) chains. An IgM antibody consists of 5 basic heterotetramer units along with an additional polypeptide called J chain, and therefore contain 10 antigen binding sites, while secreted IgA antibodies can polymerize to form polyvalent assemblages comprising 2-5 of the basic 4-chain units along with J chain. In the case of IgGs, the 4-chain unit is generally about 150,000 daltons. Each L chain is linked to an H chain by one covalent disulfide bond, while the two H chains are linked to each other by one or more disulfide bonds depending on the H chain isotype. Each H and L chain also has regularly spaced intrachain disulfide bridges. Each H chain has at the N-terminus, a variable region (VH) followed by three constant domains (CH) for each of the a and y chains and four CH domains for paand c isotypes. Each L chain has at the N-terminus, a variable region (VL) followed by a constant domain (CL) at its other end. The VL is aligned with the VH and the CL is aligned with the first constant domain of the heavy chain (CH1). Particular amino acid residues are believed to form an interface between the light chain and heavy chain variable regions. The pairing of a VH and VL together forms a single antigen-binding site. For the structure and properties of the different classes of antibodies, see, e.g., Basic and Clinical Immunology, 8th edition, Daniel P. Stites, Abba I. Terr and Tristram G. Parslow (eds.), Appleton & Lange, Norwalk, Conn., 1994, page 71, and Chapter 6.
[09061 The L chain from any vertebrate species can be assigned to one of two clearly distinct types, called kappa (K) and lambda (X), based on the amino acid sequences of their constant domains (CL). Depending on the amino acid sequence of the constant domain of their heavy chains (CH), immunoglobulins can be assigned to different classes or isotypes. There are five classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, having heavy chains designated alpha (a), delta (6, epsilon (z), gamma (y) and mu ([, respectively. The y and a classes are further divided into subclasses on the basis of relatively minor differences in CH sequence and function, e.g., humans express the following subclasses: IgG1, IgG2, IgG3, IgG4, IgAl, and IgA2.
[0907] The term "variable" refers to the fact that certain segments of the V domains differ extensively in sequence among antibodies. The V domain mediates antigen binding and defines specificity of a particular antibody for its particular antigen. However, the variability is not evenly distributed across the 110-amino acid span of the variable regions. Instead, the V regions consist of relatively invariant stretches called framework regions (FRs) of 15-30 amino acids separated by shorter regions of extreme variability called "hypervariable regions" that are each 9-12 amino acids long. The variable regions of native heavy and light chains each comprise four FRs, largely adopting a P-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the P-sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRs and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC).
[0908] The term "hypervariable region" when used herein refers to the amino acid residues of an antibody that are responsible for antigen binding. The hypervariable region generally comprises amino acid residues from a "complementarity determining region" or "CDR" (e.g., around about residues 24-34 (Li), 50-56 (L2) and 89-97 (L3) in the VL, and around about 31-35 (HI), 50-65 (H2) and 95-102 (H3) in the VH when numbered in accordance with the Kabat numbering system; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)); and/or those residues from a "hypervariable loop" (e.g., residues 24-34 (Li), 50-56 (L2) and 89-97 (L3) in the VL, and 26 32 (Hi), 52-56 (H2) and 95-101 (H3) in the VH when numbered in accordance with the Chothia numbering system; Chothia and Lesk, J. Mol. Biol. 196:901-917 (1987)); and/or those residues from a "hypervariable loop"/CDR (e.g., residues 27-38 (LI), 56-65 (L2) and 105-120 (L3) in the
VL, and 27-38 (Hi), 56-65 (H2) and 105-120 (H3) in the VH when numbered in accordance with the IMGT numbering system; Lefranc, M.P. et al. Nucl. Acids Res. 27:209-212 (1999), Ruiz, M. e al. Nucl. Acids Res. 28:219-221 (2000)). Optionally the antibody has symmetrical insertions at one or more of the following points 28, 36 (Li), 63, 74-75 (L2) and 123 (L3) in the VL, and 28, 36 (HI), 63, 74-75 (H2) and 123 (H3) in the VH when numbered in accordance with AHo; Honneger, A. and Plunkthun, A. J. Mol. Biol. 309:657-670 (2001)).
[09091 By "germline nucleic acid residue" is meant the nucleic acid residue that naturally occurs in a germline gene encoding a constant or variable region. "Germline gene" is the DNA found in a germ cell (i.e., a cell destined to become an egg or in the sperm). A "germline mutation" refers to a heritable change in a particular DNA that has occurred in a germ cell or the zygote at the single-cell stage, and when transmitted to offspring, such a mutation is incorporated in every cell of the body. A germline mutation is in contrast to a somatic mutation which is acquired in a single body cell. In some cases, nucleotides in a germline DNA sequence encoding for a variable region are mutated (i.e., a somatic mutation) and replaced with a different nucleotide.
[0910] The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations that include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they may be synthesized uncontaminated by other antibodies. The modifier "monoclonal" is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies useful in the present invention may be prepared by the hybridoma methodology first described by Kohler et al., Nature, 256:495 (1975), or may be made using recombinant DNA methods in bacterial, eukaryotic animal or plant cells (see, e.g., U.S. Pat. No. 4,816,567). The "monoclonal antibodies" may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991), for example.
[0911] In some aspects, the alternative EBV immortalization method described in W02004/076677 is used. Using this method, B-cells producing the antibody of the invention can be transformed with EBV in the presence of a polyclonal B cell activator. Transformation with EBV is a standard technique and can easily be adapted to include polyclonal B cell activators. Additional stimulants of cellular growth and differentiation may be added during the transformation step to further enhance the efficiency. These stimulants may be cytokines such as
IL-2 and IL-15. In a particularly preferred aspect, IL-2 is added during the immortalization step to further improve the efficiency of immortalization, but its use is not essential.
[0912] The monoclonal antibodies herein include "chimeric" antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (see U.S. Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851 6855 (1984)). The present invention provides variable region antigen-binding sequences derived from human antibodies. Accordingly, chimeric antibodies of primary interest herein include antibodies having one or more human antigen binding sequences (e.g., CDRs) and containing one or more sequences derived from a non-human antibody, e.g., an FR or C region sequence. In addition, chimeric antibodies of primary interest herein include those comprising a human variable region antigen binding sequence of one antibody class or subclass and another sequence, e.g., FR or C region sequence, derived from another antibody class or subclass. Chimeric antibodies of interest herein also include those containing variable region antigen-binding sequences related to those described herein or derived from a different species, such as a non human primate (e.g., Old World Monkey, Ape, etc). Chimeric antibodies also include primatized and humanized antibodies.
[0913] Furthermore, chimeric antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. For further details, see Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992).
[0914] A "humanized antibody" is generally considered to be a human antibody that has one or more amino acid residues introduced into it from a source that is non-human. These non human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable region. Humanization is traditionally performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Reichmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting import hypervariable region sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable region has been substituted by the corresponding sequence from a non-human species.
[0915] A "human antibody" is an antibody containing only sequences present in an antibody naturally produced by a human. However, as used herein, human antibodies may comprise residues or modifications not found in a naturally occurring human antibody, including those modifications and variant sequences described herein. These are typically made to further refine or enhance antibody performance.
[0916] An "intact" antibody is one that comprises an antigen-binding site as well as a CL and at least heavy chain constant domains, CH 1, CH 2 and CH 3. The constant domains may be native sequence constant domains (e.g., human native sequence constant domains) or amino acid sequence variant thereof. Preferably, the intact antibody has one or more effector functions.
[0917] An "antibody fragment" comprises a portion of an intact antibody, preferably the antigen binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab', F(ab') 2, and Fv fragments; diabodies; linear antibodies (see U.S. Pat. No. ,641,870; Zapata et al., Protein Eng. 8(10): 1057-1062 [1995]); single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.
[0918] The phrase "functional fragment or analog" of an antibody is a compound having qualitative biological activity in common with a full-length antibody. For example, a functional fragment or analog of an anti-IgE antibody is one that can bind to an IgE immunoglobulin in such a manner so as to prevent or substantially reduce the ability of such molecule from having the ability to bind to the high affinity receptor, Fc RI.
[0919] Papain digestion of antibodies produces two identical antigen-binding fragments, called "Fab" fragments, and a residual "Fc" fragment, a designation reflecting the ability to crystallize readily. The Fab fragment consists of an entire L chain along with the variable region domain of the H chain (VH), and the first constant domain of one heavy chain (CH 1). Each Fab fragment is monovalent with respect to antigen binding, i.e., it has a single antigen-binding site. Pepsin treatment of an antibody yields a single large F(ab') 2 fragment that roughly corresponds to two disulfide linked Fab fragments having divalent antigen-binding activity and is still capable of cross-linking antigen. Fab' fragments differ from Fab fragments by having additional few residues at the carboxy terminus of the CH1 domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab')2 antibody fragments originally were produced as pairs of Fab' fragments that have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
[0920] The "Fc" fragment comprises the carboxy-terminal portions of both H chains held together by disulfides. The effector functions of antibodies are determined by sequences in the Fc region, which region is also the part recognized by Fc receptors (FcR) found on certain types of cells.
[0921] "Fv" is the minimum antibody fragment that contains a complete antigen-recognition and -binding site. This fragment consists of a dimer of one heavy- and one light-chain variable region domain in tight, non-covalent association. From the folding of these two domains emanate six hypervariable loops (three loops each from the H and L chain) that contribute the amino acid residues for antigen binding and confer antigen binding specificity to the antibody. However, even a single variable region (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
[0922] "Single-chain Fv" also abbreviated as "sFv" or "scFv" are antibody fragments that comprise the VH and VL antibody domains connected into a single polypeptide chain. Preferably, the sFv polypeptide further comprises a polypeptide linker between the VH and VL domains that enables the sFv to form the desired structure for antigen binding. For a review of sFv, see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994); Borrebaeck 1995, infra.
[0923] The term "diabodies" refers to small antibody fragments prepared by constructing sFv fragments (see preceding paragraph) with short linkers (about 5-10 residues) between the VH and
VL domains such that inter-chain but not intra-chain pairing of the V domains is achieved, resulting in a bivalent fragment, i.e., fragment having two antigen-binding sites. Bispecific diabodies are heterodimers of two "crossover" sFv fragments in which the VH and VL domains of the two antibodies are present on different polypeptide chains. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al, Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993).
[09241 Domain antibodies (dAbs), which can be produced in fully human form, are the smallest known antigen-binding fragments of antibodies, ranging from 11 kDa to 15 kDa. dAbs are the robust variable regions of the heavy and light chains of immunoglobulins (VH and VL respectively). They are highly expressed in microbial cell culture, show favourable biophysical properties including solubility and temperature stability, and are well suited to selection and affinity maturation by in vitro selection systems such as phage display. dAbs are bioactive as monomers and, owing to their small size and inherent stability, can be formatted into larger molecules to create drugs with prolonged serum half-lives or other pharmacological activities. Examples of this technology have been described in W09425591 for antibodies derived from Camelidae heavy chain Ig, as well in US20030130496 describing the isolation of single domain fully human antibodies from phage libraries.
[0925] As used herein, an antibody that "internalizes" is one that is taken up by (i.e., enters) the cell upon binding to an antigen on a mammalian cell (e.g., a cell surface polypeptide or receptor). The internalizing antibody will of course include antibody fragments, human or chimeric antibody, and antibody conjugates. For certain therapeutic applications, internalization in vivo is contemplated. The number of antibody molecules internalized will be sufficient or adequate to kill a cell or inhibit its growth, especially an infected cell. Depending on the potency of the antibody or antibody conjugate, in some instances, the uptake of a single antibody molecule into the cell is sufficient to kill the target cell to which the antibody binds. For example, certain toxins are highly potent in killing such that internalization of one molecule of the toxin conjugated to the antibody is sufficient to kill the infected cell.
[09261 As used herein, an antibody is said to be "immunospecific," "specific for" or to "specifically bind" an antigen if it reacts at a detectable level with the antigen, preferably with an
affinity constant, Ka, of greater than or equal to about 104 M-1, or greater than or equal to about
105 M-1, greater than or equal to about 106 M- 1 , greater than or equal to about 107 M-1, or
greater than or equal to 108 M-1. Affinity of an antibody for its cognate antigen is also commonly expressed as a dissociation constant KD, and in certain embodiments, HIV1 antibody specifically
binds to an HIV1 polypeptide if it binds with a KD of less than or equal to 10-4 M, less than or
equal to about 10- 5 M, less than or equal to about 10- 6 M, less than or equal to 10- 7 M, or less
than or equal to 10- 8 M. Affinities of antibodies can be readily determined using conventional techniques, for example, those described by Scatchard et al. (Ann. N.Y Acad. Sci. USA 51:660 (1949)).
[0927] Binding properties of an antibody to antigens, cells or tissues thereof may generally be determined and assessed using immunodetection methods including, for example, immunofluorescence-based assays, such as immuno-histochemistry (IHC) and/or fluorescence activated cell sorting (FACS).
[0928] An antibody having a "biological characteristic" of a designated antibody is one that possesses one or more of the biological characteristics of that antibody which distinguish it from other antibodies. For example, in certain embodiments, an antibody with a biological characteristic of a designated antibody will bind the same epitope as that bound by the designated antibody and/or have a common effector function as the designated antibody.
[0929] The term "antagonist" antibody is used in the broadest sense, and includes an antibody that partially or fully blocks, inhibits, or neutralizes a biological activity of an epitope, polypeptide, or cell that it specifically binds. Methods for identifying antagonist antibodies may comprise contacting a polypeptide or cell specifically bound by a candidate antagonist antibody with the candidate antagonist antibody and measuring a detectable change in one or more biological activities normally associated with the polypeptide or cell.
[0930] An "antibody that inhibits the growth of infected cells" or a "growth inhibitory" antibody is one that binds to and results in measurable growth inhibition of infected cells expressing or capable of expressing an HIV1 epitope bound by an antibody. Preferred growth inhibitory antibodies inhibit growth of infected cells by greater than 20%, preferably from about % to about 50%, and even more preferably, by greater than 50% (e.g., from about 50% to about 100%) as compared to the appropriate control, the control typically being infected cells not treated with the antibody being tested. Growth inhibition can be measured at an antibody concentration of about 0.1 to 30 pg/ml or about 0.5 nM to 200 nM in cell culture, where the growth inhibition is determined 1-10 days after exposure of the infected cells to the antibody. Growth inhibition of infected cells in vivo can be determined in various ways known in the art.
[0931] The antibody is growth inhibitory in vivo if administration of the antibody at about 1 pg/kg to about 100 mg/kg body weight results in reduction the percent of infected cells or total number of infected cells within about 5 days to 3 months from the first administration of the antibody, preferably within about 5 to 30 days.
[09321 An antibody that "induces apoptosis" is one which induces programmed cell death as determined by binding of annexin V, fragmentation of DNA, cell shrinkage, dilation of endoplasmic reticulum, cell fragmentation, and/or formation of membrane vesicles (called apoptotic bodies). Preferably the cell is an infected cell. Various methods are available for evaluating the cellular events associated with apoptosis. For example, phosphatidyl serine (PS) translocation can be measured by annexin binding; DNA fragmentation can be evaluated through DNA laddering; and nuclear/chromatin condensation along with DNA fragmentation can be evaluated by any increase in hypodiploid cells. Preferably, the antibody that induces apoptosis is one that results in about 2 to 50 fold, preferably about 5 to 50 fold, and most preferably about 10 to 50 fold, induction of annexin binding relative to untreated cell in an annexin binding assay.
[0933] Antibody "effector functions" refer to those biological activities attributable to the Fc region (a native sequence Fc region or amino acid sequence variant Fc region) of an antibody, and vary with the antibody isotype. Examples of antibody effector functions include: Clq binding and complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g., B cell receptor); and B cell activation.
[0934] "Antibody-dependent cell-mediated cytotoxicity" or "ADCC" refers to a form of cytotoxicity in which secreted Ig bound to Fc receptors (FcRs) present on certain cytotoxic cells (e.g., Natural Killer (NK) cells, neutrophils, and macrophages) enable these cytotoxic effector cells to bind specifically to an antigen-bearing target cell and subsequently kill the target cell with cytotoxins. The antibodies "arm" the cytotoxic cells and are required for such killing. The primary cells for mediating ADCC, NK cells, express FcyRIII only, whereas monocytes express FcyRI, FcyRII and FcyRIII. FcR expression on hematopoietic cells is summarized in Table 4 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991). To assess ADCC activity of a molecule of interest, an in vitro ADCC assay, such as that described in U.S. Pat. No. ,500,362 or U.S. Pat. No. 5,821,337 may be performed. Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells.
[0935] Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed in vivo, e.g., in a animal model such as that disclosed in Clynes et al., Proc. Natl. A cad. Sci. (USA) 95:652-656 (1998).
[09361 "Fc receptor" or "FcR" describes a receptor that binds to the Fc region of an antibody. In certain embodiments, the FcR is a native sequence human FcR. Moreover, a preferred FcR is one that binds an IgG antibody (a gamma receptor) and includes receptors of the FcyRI, FcyRII, and FecyRIII subclasses, including allelic variants and alternatively spliced forms of these receptors. FCyRII receptors include FcyRIIA (an "activating receptor") and FcyRIIB (an "inhibiting receptor"), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof. Activating receptor FcyRIIA contains an immunoreceptor tyrosine based activation motif (ITAM) in its cytoplasmic domain. Inhibiting receptor FcyRIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain. (see review M. in Daeron, Annu. Rev. Immunol. 15:203-234 (1997)). FcRs are reviewed in Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991); Capel et al., Immunomethods 4:25-34 (1994); and de Haas et al., J. Lab. Clin. Med. 126:330-41 (1995). Other FcRs, including those to be identified in the future, are encompassed by the term "FcR" herein. The term also includes the neonatal receptor, FcRn, which is responsible for the transfer of maternal IgGs to the fetus (Guyer et al., J. Immunol. 117:587 (1976) and Kim et al., J. Immunol. 24:249 (1994)).
[0937] "Human effector cells" are leukocytes that express one or more FcRs and perform effector functions. Preferably, the cells express at least FcyRIII and perform ADCC effector function. Examples of human leukocytes that mediate ADCC include PBMC, NK cells, monocytes, cytotoxic T cells and neutrophils; with PBMCs and NK cells being preferred. The effector cells may be isolated from a native source, e.g., from blood.
[0938] "Complement dependent cytotoxicity" or "CDC" refers to the lysis of a target cell in the presence of complement. Activation of the classical complement pathway is initiated by the binding of the first component of the complement system (Clq) to antibodies (of the appropriate subclass) that are bound to their cognate antigen. To assess complement activation, a CDC assay, e.g., as described in Gazzano-Santoro et al., J. Immunol. Methods 202:163 (1996), may be performed.
[0939] A "mammal" for purposes of treating an infection, refers to any mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, etc. Preferably, the mammal is human.
[0940] "Treating" or "treatment" or "alleviation" refers to both therapeutic treatment and prophylactic or preventative measures; wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented. A subject or mammal is successfully "treated" for an infection if, after receiving a therapeutic amount of an antibody according to the methods of the present invention, the patient shows observable and/or measurable reduction in or absence of one or more of the following: reduction in the number of infected cells or absence of the infected cells; reduction in the percent of total cells that are infected; and/or relief to some extent, one or more of the symptoms associated with the specific infection; reduced morbidity and mortality, and improvement in quality of life issues. The above parameters for assessing successful treatment and improvement in the disease are readily measurable by routine procedures familiar to a physician.
[0941] The term "therapeutically effective amount" refers to an amount of an antibody or a drug effective to "treat" a disease or disorder in a subject or mammal. See preceding definition of "treating."
[0942] "Chronic" administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time. "Intermittent" administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature.
[0943] Administration "in combination with" one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order.
[0944] "Carriers" as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers that are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEENTM polyethylene glycol (PEG), and PLURONICSTM.
[09451 The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g., At 2 11, , 25 Y 90, Re 16, Re 18, Sm 53, Bim, p and radioactive isotopes of Lu), chemotherapeutic agents e.g., methotrexate, adriamicin, vinca alkaloids (vincristine, vinblastine, etoposide), doxorubicin, melphalan, mitomycin C, chlorambucil, daunorubicin or other intercalating agents, enzymes and fragments thereof such as nucleolytic enzymes, antibiotics, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof, and the various antitumor or anticancer agents disclosed below. Other cytotoxic agents are described below.
[0946] A "growth inhibitory agent" when used herein refers to a compound or composition which inhibits growth of a cell, either in vitro or in vivo. Examples of growth inhibitory agents include agents that block cell cycle progression, such as agents that induce G1 arrest and M phase arrest. Classical M-phase blockers include the vinca alkaloids (vincristine, vinorelbine and vinblastine), taxanes, and topoisomerase II inhibitors such as doxorubicin, epirubicin, daunorubicin, etoposide, and bleomycin. Those agents that arrest G1 also spill over into S-phase arrest, for example, DNA alkylating agents such as tamoxifen, prednisone, dacarbazine, mechlorethamine, cisplatin, methotrexate, 5-fluorouracil, and ara-C. Further information can be found in The Molecular Basis of Cancer, Mendelsohn and Israel, eds., Chapter 1, entitled "Cell cycle regulation, oncogenes, and antineoplastic drugs" by Murakami et al. (W B Saunders: Philadelphia, 1995), especially p. 13. The taxanes (paclitaxel and docetaxel) are anticancer drugs both derived from the yew tree. Docetaxel (TAXOTERETM, Rhone-Poulenc Rorer), derived from the European yew, is a semisynthetic analogue of paclitaxel (TAXOL@, Bristol-Myers Squibb). Paclitaxel and docetaxel promote the assembly of microtubules from tubulin dimers and stabilize microtubules by preventing depolymerization, which results in the inhibition of mitosis in cells.
[0947] "Label" as used herein refers to a detectable compound or composition that is conjugated directly or indirectly to the antibody so as to generate a "labeled" antibody. The label may be detectable by itself (e.g., radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition that is detectable.
[09481 The term "epitope tagged" as used herein refers to a chimeric polypeptide comprising a polypeptide fused to a "tag polypeptide." The tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the polypeptide to which it is fused. The tag polypeptide is also preferably fairly unique so that the antibody does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8 and 50 amino acid residues (preferably, between about 10 and 20 amino acid residues).
[0949] A "small molecule" is defined herein to have a molecular weight below about 500 Daltons.
[0950] The terms "nucleic acid" and "polynucleotide" are used interchangeably herein to refer to single- or double-stranded RNA, DNA, or mixed polymers. Polynucleotides may include genomic sequences, extra-genomic and plasmid sequences, and smaller engineered gene segments that express, or may be adapted to express polypeptides.
[0951] An "isolated nucleic acid" is a nucleic acid that is substantially separated from other genome DNA sequences as well as proteins or complexes such as ribosomes and polymerases, which naturally accompany a native sequence. The term embraces a nucleic acid sequence that has been removed from its naturally occurring environment, and includes recombinant or cloned DNA isolates and chemically synthesized analogues or analogues biologically synthesized by heterologous systems. A substantially pure nucleic acid includes isolated forms of the nucleic acid. Of course, this refers to the nucleic acid as originally isolated and does not exclude genes or sequences later added to the isolated nucleic acid by the hand of man.
[0952] The term "polypeptide" is used in its conventional meaning, i.e., as a sequence of amino acids. The polypeptides are not limited to a specific length of the product. Peptides, oligopeptides, and proteins are included within the definition of polypeptide, and such terms may be used interchangeably herein unless specifically indicated otherwise. This term also does not refer to or exclude post-expression modifications of the polypeptide, for example, glycosylations, acetylations, phosphorylations and the like, as well as other modifications known in the art, both naturally occurring and non-naturally occurring. A polypeptide may be an entire protein, or a subsequence thereof. Particular polypeptides of interest in the context of this invention are amino acid subsequences comprising CDRs and being capable of binding an antigen or HIV-infected cell.
[0953] An "isolated polypeptide" is one that has been identified and separated and/or recovered from a component of its natural environment. In preferred embodiments, the isolated polypeptide will be purified (1) to greater than 95% by weight of polypeptide as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or non-reducing conditions using Coomassie blue or, preferably, silver stain. Isolated polypeptide includes the polypeptide in situ within recombinant cells since at least one component of the polypeptide's natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step.
[0954] A "native sequence" polynucleotide is one that has the same nucleotide sequence as a polynucleotide derived from nature. A "native sequence" polypeptide is one that has the same amino acid sequence as a polypeptide (e.g., antibody) derived from nature (e.g., from any species). Such native sequence polynucleotides and polypeptides can be isolated from nature or can be produced by recombinant or synthetic means.
[0955] A polynucleotide "variant," as the term is used herein, is a polynucleotide that typically differs from a polynucleotide specifically disclosed herein in one or more substitutions, deletions, additions and/or insertions. Such variants may be naturally occurring or may be synthetically generated, for example, by modifying one or more of the polynucleotide sequences of the invention and evaluating one or more biological activities of the encoded polypeptide as described herein and/or using any of a number of techniques well known in the art.
[0956] A polypeptide "variant," as the term is used herein, is a polypeptide that typically differs from a polypeptide specifically disclosed herein in one or more substitutions, deletions, additions and/or insertions. Such variants may be naturally occurring or may be synthetically generated, for example, by modifying one or more of the above polypeptide sequences of the invention and evaluating one or more biological activities of the polypeptide as described herein and/or using any of a number of techniques well known in the art.
[0957] Modifications may be made in the structure of the polynucleotides and polypeptides of the present invention and still obtain a functional molecule that encodes a variant or derivative polypeptide with desirable characteristics. When it is desired to alter the amino acid sequence of a polypeptide to create an equivalent, or even an improved, variant or portion of a polypeptide of the invention, one skilled in the art will typically change one or more of the codons of the encoding DNA sequence.
[0958] For example, certain amino acids may be substituted for other amino acids in a protein structure without appreciable loss of its ability to bind other polypeptides (e.g., antigens) or cells. Since it is the binding capacity and nature of a protein that defines that protein's biological functional activity, certain amino acid sequence substitutions can be made in a protein sequence, and, of course, it's underlying DNA coding sequence, and nevertheless obtain a protein with like properties. It is thus contemplated that various changes may be made in the peptide sequences of the disclosed compositions, or corresponding DNA sequences that encode said peptides without appreciable loss of their biological utility or activity.
[0959] In many instances, a polypeptide variant will contain one or more conservative substitutions. A "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged.
[0960] In making such changes, the hydropathic index of amino acids may be considered. The importance of the hydropathic amino acid index in conferring interactive biologic function on a protein is generally understood in the art (Kyte and Doolittle, 1982). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like. Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics (Kyte and Doolittle, 1982). These values are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); seine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (
3.9); and arginine (-4.5).
[0961] It is known in the art that certain amino acids may be substituted by other amino acids having a similar hydropathic index or score and still result in a protein with similar biological activity, i.e. still obtain a biological functionally equivalent protein. In making such changes, the substitution of amino acids whose hydropathic indices are within ±2 is preferred, those within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred. It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. U. S. Patent 4,554,101 states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein.
[0962] As detailed in U. S. Patent 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0 ± 1); glutamate
(+3.0 ± 1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (-0.4);
proline (-0.5 ± 1); alanine (-0.5); histidine (-0.5); cysteine (-1.0); methionine (-1.3); valine (
1.5); leucine (-1.8); isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5); tryptophan (-3.4). It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still obtain a biologically equivalent, and in particular, an immunologically equivalent protein. In such changes, the substitution of amino acids whose hydrophilicity values are within
±2 is preferred, those within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred.
[0963] As outlined above, amino acid substitutions are generally therefore based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary substitutions that take various of the foregoing characteristics into consideration are well known to those of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.
[0964] Amino acid substitutions may further be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; and serine, threonine, phenylalanine and tyrosine. Other groups of amino acids that may represent conservative changes include: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his. A variant may also, or alternatively, contain nonconservative changes. In a preferred embodiment, variant polypeptides differ from a native sequence by substitution, deletion or addition of five amino acids or fewer. Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the immunogenicity, secondary structure and hydropathic nature of the polypeptide.
[0965] Polypeptides may comprise a signal (or leader) sequence at the N-terminal end of the protein, which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.
[0966] When comparing polynucleotide and polypeptide sequences, two sequences are said to be "identical" if the sequence of nucleotides or amino acids in the two sequences is the same when aligned for maximum correspondence, as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.
[0967] Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M.O. (1978) A model of evolutionary change in proteins Matrices for detecting distant relationships. In Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenes pp. 626-645 Methods in Enzymology vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) CABIOS 5:151-153; Myers, E.W. and Muller W. (1988) CABIOS 4:11-17; Robinson, E.D. (1971) Comb. Theor 11:105; Santou, N. Nes, M. (1987) Mol. Biol. Evol. 4:406-425; Sneath, P.H.A. and Sokal, R.R. (1973) Numerical Taxonomy - the Principlesand Practice of Numerical
Taxonomy, Freeman Press, San Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) Proc. Na. Acad., Sci. USA 80:726-730.
[0968] Alternatively, optimal alignment of sequences for comparison may be conducted by the local identity algorithm of Smith and Waterman (1981) Add. APL. Math 2:482, by the identity alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity methods of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. USA 85: 2444, by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, WI), or by inspection.
[0969] One preferred example of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1977) Nucl. Acids Res. 25:3389-3402 and Altschul et al. (1990) J. Mot. Biol. 215:403-410, respectively. BLAST and BLAST 2.0 can be used, for example with the parameters described herein, to determine percent sequence identity for the polynucleotides and polypeptides of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information.
[0970] In one illustrative example, cumulative scores can be calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915) alignments, (B) of 50, expectation (E) of 10, M=5, N=-4 and a comparison of both strands.
[0971] For amino acid sequences, a scoring matrix can be used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment.
[0972] In one approach, the "percentage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e., gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residues occur in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e., the window size) and multiplying the results by 100 to yield the percentage of sequence identity.
[0973] "Homology" refers to the percentage of residues in the polynucleotide or polypeptide sequence variant that are identical to the non-variant sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology. In particular embodiments, polynucleotide and polypeptide variants have at least 70%, at least 75%, at least %, at least 90%, at least 95%, at least 98%, or at least 99% polynucleotide or polypeptide homology with a polynucleotide or polypeptide described herein.
[0974] "Vector" includes shuttle and expression vectors. Typically, the plasmid construct will also include an origin of replication (e.g., the ColEl origin of replication) and a selectable marker (e.g., ampicillin or tetracycline resistance), for replication and selection, respectively, of the plasmids in bacteria. An "expression vector" refers to a vector that contains the necessary control sequences or regulatory elements for expression of the antibodies including antibody fragment of the invention, in bacterial or eukaryotic cells. Suitable vectors are disclosed below. As used in this specification and the appended claims, the singular forms "a, ".an"and "the" include plural references unless the content clearly dictates otherwise.
[0975] The invention also includes nucleic acid sequences encoding part or all of the light and heavy chains and CDRs of the present invention. Due to redundancy of the genetic code, variants of these sequences will exist that encode the same amino acid sequences.
[0976] Variant antibodies are also included within the scope of the invention. Thus, variants of the sequences recited in the application are also included within the scope of the invention.
Further variants of the antibody sequences having improved affinity may be obtained using methods known in the art and are included within the scope of the invention. For example, amino acid substitutions may be used to obtain antibodies with further improved affinity. Alternatively, codon optimization of the nucleotide sequence may be used to improve the efficiency of translation in expression systems for the production of the antibody.
[0977] Preferably, such variant antibody sequences will share 70% or more (i.e. 80, 85, 90, , 97, 98, 99% or more) sequence identity with the sequences recited in the application. Preferably such sequence identity is calculated with regard to the full length of the reference sequence (i.e. the sequence recited in the application). Preferably, percentage identity, as referred to herein, is as determined using BLAST version 2.1.3 using the default parameters specified by the NCBI (the National Center for Biotechnology Information; http://www.ncbi.nlm.nih.gov/)
[Blosum 62 matrix; gap open penalty=1 1 and gap extension penalty= 1].
[0978] Further included within the scope of the invention are vectors such as expression vectors, comprising a nucleic acid sequence according to the invention. Cells transformed with such vectors are also included within the scope of the invention.
[0979] As will be understood by the skilled artisan, general description of antibodies herein and methods of preparing and using the same also apply to individual antibody polypeptide constituents and antibody fragments.
[0980] The antibodies of the present invention may be polyclonal or monoclonal antibodies. However, in preferred embodiments, they are monoclonal. In particular embodiments, antibodies of the present invention are human antibodies. Methods of producing polyclonal and monoclonal antibodies are known in the art and described generally, e.g., in U.S. Patent No. 6,824,780.
[0981] Typically, the antibodies of the present invention are produced recombinantly, using vectors and methods available in the art, as described further below. Human antibodies may also be generated by in vitro activated B cells (see U.S. Pat. Nos. 5,567,610 and 5,229,275).
[0982] Human antibodies may also be produced in transgenic animals (e.g., mice) that are capable of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array into such germ-line mutant mice results in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, :2551 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggemann et al., Year in Immuno., 7:33 (1993); U.S. Pat. Nos. 5,545,806, 5,569,825, 5,591,669 (all of GenPharm); U.S. Pat. No. 5,545,807; and WO 97/17852. Such animals may be genetically engineered to produce human antibodies comprising a polypeptide of the present invention.
[0983] In certain embodiments, antibodies of the present invention are chimeric antibodies that comprise sequences derived from both human and non-human sources. In particular embodiments, these chimeric antibodies are humanized or primatizedTM. In practice, humanized antibodies are typically human antibodies in which some hypervariable region residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
[0984] In the context of the present invention, chimeric antibodies also include human antibodies wherein the human hypervariable region or one or more CDRs are retained, but one or more other regions of sequence have been replaced by corresponding sequences from a non human animal.
[0985] The choice of non-human sequences, both light and heavy, to be used in making the chimeric antibodies is important to reduce antigenicity and human anti-non-human antibody responses when the antibody is intended for human therapeutic use. It is further important that chimeric antibodies retain high binding affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, chimeric antibodies are prepared by a process of analysis of the parental sequences and various conceptual chimeric products using three-dimensional models of the parental human and non-human sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three dimensional conformational structures of selected candidate immunoglobulin sequences.
[0986] Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the hypervariable region residues are directly and most substantially involved in influencing antigen binding.
[09871 As noted above, antibodies (or immunoglobulins) can be divided into five different classes, based on differences in the amino acid sequences in the constant region of the heavy chains. All immunoglobulins within a given class have very similar heavy chain constant regions. These differences can be detected by sequence studies or more commonly by serological means (i.e. by the use of antibodies directed to these differences). Antibodies, or fragments thereof, of the present invention may be any class, and may, therefore, have a gamma, mu, alpha, delta, or epsilon heavy chain. A gamma chain may be gamma 1, gamma 2, gamma 3, or gamma 4; and an alpha chain may be alpha 1 or alpha 2.
[0988] In a preferred embodiment, an antibody of the present invention, or fragment thereof, is an IgG. IgG is considered the most versatile immunoglobulin, because it is capable of carrying out all of the functions of immunoglobulin molecules. IgG is the major Ig in serum, and the only class of Ig that crosses the placenta. IgG also fixes complement, although the IgG4 subclass does not. Macrophages, monocytes, PMN's and some lymphocytes have Fc receptors for the Fc region of IgG. Not all subclasses bind equally well: IgG2 and IgG4 do not bind to Fc receptors. A consequence of binding to the Fc receptors on PMN's, monocytes and macrophages is that the cell can now internalize the antigen better. IgG is an opsonin that enhances phagocytosis. Binding of IgG to Fc receptors on other types of cells results in the activation of other functions. Antibodies of the present invention may be of any IgG subclass.
[0989] In another preferred embodiment, an antibody, or fragment thereof, of the present invention is an IgE. IgE is the least common serum Ig since it binds very tightly to Fc receptors on basophils and mast cells even before interacting with antigen. As a consequence of its binding to basophils and mast cells, IgE is involved in allergic reactions. Binding of the allergen to the IgE on the cells results in the release of various pharmacological mediators that result in allergic symptoms. IgE also plays a role in parasitic helminth diseases. Eosinophils have Fc receptors for IgE and binding of eosinophils to IgE-coated helminths results in killing of the parasite. IgE does not fix complement.
[0990] In various embodiments, antibodies of the present invention, and fragments thereof, comprise a variable light chain that is either kappa or lambda. The lamba chain may be any of subtype, including, e.g., lambda 1, lambda 2, lambda 3, and lambda 4.
[0991] As noted above, the present invention further provides antibody fragments comprising a polypeptide of the present invention. In certain circumstances there are advantages of using antibody fragments, rather than whole antibodies. For example, the smaller size of the fragments allows for rapid clearance, and may lead to improved access to certain tissues, such as solid tumors. Examples of antibody fragments include: Fab, Fab', F(ab')2 and Fv fragments; diabodies; linear antibodies; single-chain antibodies; and multispecific antibodies formed from antibody fragments.
[0992] Various techniques have been developed for the production of antibody fragments. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., Journal of Biochemical and Biophysical Methods 24:107-117 (1992); and Brennan et al., Science, 229:81 (1985)). However, these fragments can now be produced directly by recombinant host cells. Fab, Fv and ScFv antibody fragments can all be expressed in and secreted from E. coli, thus allowing the facile production of large amounts of these fragments. Fab'-SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab') 2
fragments (Carter et al., Bio/Technology 10:163-167 (1992)). According to another approach, F(ab') 2 fragments can be isolated directly from recombinant host cell culture. Fab and F(ab')2 fragment with increased in vivo half-life comprising a salvage receptor binding epitope residues are described in U.S. Pat. No. 5,869,046. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner.
[0993] In other embodiments, the antibody of choice is a single chain Fv fragment (scFv). See WO 93/16185; U.S. Pat. Nos. 5,571,894; and 5,587,458. Fv and sFv are the only species with intact combining sites that are devoid of constant regions. Thus, they are suitable for reduced nonspecific binding during in vivo use. sFv fusion proteins may be constructed to yield fusion of an effector protein at either the amino or the carboxy terminus of an sFv. See Antibody Engineering, ed. Borrebaeck, supra. The antibody fragment may also be a "linear antibody", e.g., as described in U.S. Pat. No. 5,641,870 for example. Such linear antibody fragments may be monospecific or bispecific.
[0994] In certain embodiments, antibodies of the present invention are bispecific or multi specific. Bispecific antibodies are antibodies that have binding specificities for at least two different epitopes. Exemplary bispecific antibodies may bind to two different epitopes of a single antigen. Other such antibodies may combine a first antigen binding site with a binding site for a second antigen. Alternatively, an anti- HIV 1 arm may be combined with an arm that binds to a triggering molecule on a leukocyte, such as a T-cell receptor molecule (e.g., CD3), or Fc receptors for IgG (FcyR), such as FcyRI (CD64), FcyRII (CD32) and FcyRIII (CD16), so as to focus and localize cellular defense mechanisms to the infected cell. Bispecific antibodies may also be used to localize cytotoxic agents to infected cells. These antibodies possess an HIV1 binding arm and an arm that binds the cytotoxic agent (e.g., saporin, anti-interferon-a, vinca alkaloid, ricin A chain, methotrexate or radioactive isotope hapten). Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g., F(ab') 2 bispecific antibodies). WO 96/16673 describes a bispecific anti-ErbB2/anti-FcyRIII antibody and U.S. Pat. No. 5,837,234 discloses a bispecific anti-ErbB2/anti-FcyRI antibody. A bispecific anti-ErbB2/Fcu antibody is shown in W098/02463. U.S. Pat. No. 5,821,337 teaches a bispecific anti-ErbB2/anti-CD3 antibody.
[0995] Methods for making bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the co-expression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al., Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).
[1000] According to a different approach, antibody variable regions with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. Preferably, the fusion is with an Ig heavy chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light chain bonding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host cell. This provides for greater flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yield of the desired bispecific antibody. It is, however, possible to insert the coding sequences for two or all three polypeptide chains into a single expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios have no significant affect on the yield of the desired chain combination.
[1001] In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).
[1002] According to another approach described in U.S. Pat. No. 5,731,168, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers that are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH 3 domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g., tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g., alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.
[1003] Bispecific antibodies include cross-linked or "heteroconjugate" antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques.
[1004] Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science, 229: 81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab') 2 fragments. These fragments are reduced in the presence of the dithiol complexing agent, sodium arsenite, to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.
[1005] Recent progress has facilitated the direct recovery of Fab'-SH fragments from E. coli, which can be chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med., 175: 217-225 (1992) describe the production of a humanized bispecific antibody F(ab') 2 molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.
[1006] Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol., 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a VH connected to a VL by a linker that is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary
VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber et al., J. Immunol., 152:5368 (1994).
[1007] Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147: 60 (1991). A multivalent antibody may be internalized (and/or catabolized) faster than a bivalent antibody by a cell expressing an antigen to which the antibodies bind. The antibodies of the present invention can be multivalent antibodies with three or more antigen binding sites (e.g., tetravalent antibodies), which can be readily produced by recombinant expression of nucleic acid encoding the polypeptide chains of the antibody. The multivalent antibody can comprise a dimerization domain and three or more antigen binding sites. The preferred dimerization domain comprises (or consists of) an Fe region or a hinge region. In this scenario, the antibody will comprise an Fc region and three or more antigen binding sites amino-terminal to the Fc region. The preferred multivalent antibody herein comprises (or consists of) three to about eight, but preferably four, antigen binding sites. The multivalent antibody comprises at least one polypeptide chain (and preferably two polypeptide chains), wherein the polypeptide chain(s) comprise two or more variable regions. For instance, the polypeptide chain(s) may comprise VD1-(X1)a -VD2-(X2)n -Fc, wherein VD1 is a first variable region, VD2 is a second variable region, FEc is one polypeptide chain of an Fc region, X1 and X2 represent an amino acid or polypeptide, and n is 0 or 1. For instance, the polypeptide chain(s) may comprise: VH-CH1-flexible linker-VH-CHT-Fc region chain; or VH-CH1-VH CH1-Fc region chain. The multivalent antibody herein preferably further comprises at least two (and preferably four) light chain variable region polypeptides. The multivalent antibody herein may, for instance, comprise from about two to about eight light chain variable region polypeptides. The light chain variable region polypeptides contemplated here comprise a light chain variable region and, optionally, further comprise a CL domain.
[1008] Antibodies of the invention further include single chain antibodies. In particular embodiments, antibodies of the invention are internalizing antibodies.
[1009] Amino acid sequence modification(s) of the antibodies described herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody. Amino acid sequence variants of the antibody may be prepared by introducing appropriate nucleotide changes into a polynucleotide that encodes the antibody, or a chain thereof, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of, residues within the amino acid sequences of the antibody. Any combination of deletion, insertion, and substitution may be made to arrive at the final antibody, provided that the final construct possesses the desired characteristics. The amino acid changes also may alter post-translational processes of the antibody, such as changing the number or position of glycosylation sites. Any of the variations and modifications described above for polypeptides of the present invention may be included in antibodies of the present invention.
[1010] A useful method for identification of certain residues or regions of an antibody that are preferred locations for mutagenesis is called "alanine scanning mutagenesis" as described by Cunningham and Wells in Science, 244:1081-1085 (1989). Here, a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with PSCA antigen. Those amino acid locations demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined. For example, to analyze the performance of a mutation at a given site, ala scanning or random mutagenesis is conducted at the target codon or region and the expressed anti- antibody variants are screened for the desired activity.
[1011] Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Examples of terminal insertions include an antibody with an N-terminal methionyl residue or the antibody fused to a cytotoxic polypeptide. Other insertional variants of an antibody include the fusion to the N- or C terminus of the antibody to an enzyme (e.g., for ADEPT) or a polypeptide that increases the serum half-life of the antibody.
[1012] Another type of variant is an amino acid substitution variant. These variants have at least one amino acid residue in the antibody molecule replaced by a different residue. The sites of greatest interest for substitutional mutagenesis include the hypervariable regions, but FR alterations are also contemplated. Conservative and non-conservative substitutions are contemplated.
[1013] Substantial modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.
[1014] Any cysteine residue not involved in maintaining the proper conformation of the antibody also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).
[1015] One type of substitutional variant involves substituting one or more hypervariable region residues of a parent antibody. Generally, the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated. A convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariable region sites (e.g., 6-7 sites) are mutated to generate all possible amino substitutions at each site. The antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e.g., binding affinity) as herein disclosed. In order to identify candidate hypervariable region sites for modification, alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding. Alternatively, or additionally, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact points between the antibody and an antigen or infected cell. Such contact residues and neighboring residues are candidates for substitution according to the techniques elaborated herein. Once such variants are generated, the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development.
[1016] Another type of amino acid variant of the antibody alters the original glycosylation pattern of the antibody. By altering is meant deleting one or more carbohydrate moieties found in the antibody, and/or adding one or more glycosylation sites that are not present in the antibody. Glycosylation of antibodies is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.
Addition of glycosylation sites to the antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original antibody (for O-linked glycosylation sites).
[1017] The antibody of the invention is modified with respect to effector function, e.g., so as to enhance antigen-dependent cell-mediated cyotoxicity (ADCC) and/or complement dependent cytotoxicity (CDC) of the antibody. This may be achieved by introducing one or more amino acid substitutions in an Fc region of the antibody. Alternatively or additionally, cysteine residue(s) may be introduced in the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med. 176:1191-1195 (1992) and Shopes, B. J. Immunol. 148:2918-2922 (1992). Homodimeric antibodies with enhanced anti infection activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et al., Cancer Research 53:2560-2565 (1993). Alternatively, an antibody can be engineered which has dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design 3:219-230 (1989). To increase the serum half-life of the antibody, one may incorporate a salvage receptor binding epitope into the antibody (especially an antibody fragment) as described in U.S. Pat. No. ,739,277, for example. As used herein, the term "salvage receptor binding epitope" refers to an epitope of the Fc region of an IgG molecule (e.g., IgG 1 , IgG 2 , IgG 3 , or IgG 4 ) that is responsible for increasing the in vivo serum half-life of the IgG molecule.
[1018] Antibodies of the present invention may also be modified to include an epitope tag or label, e.g., for use in purification or diagnostic applications. The invention also pertains to therapy with immunoconjugates comprising an antibody conjugated to an anti-cancer agent such as a cytotoxic agent or a growth inhibitory agent. Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above.
[1019] Conjugates of an antibody and one or more small molecule toxins, such as a calicheamicin, maytansinoids, a trichothene, and CC 1065, and the derivatives of these toxins that have toxin activity, are also contemplated herein.
[1020] In one preferred embodiment, an antibody (full length or fragments) of the invention is conjugated to one or more maytansinoid molecules. Maytansinoids are mitototic inhibitors that act by inhibiting tubulin polymerization. Maytansine was first isolated from the east African shrub Maytenus serrata (U.S. Pat. No. 3,896,111). Subsequently, it was discovered that certain microbes also produce maytansinoids, such as maytansinol and C-3 maytansinol esters (U.S. Pat. No. 4,151,042). Synthetic maytansinol and derivatives and analogues thereof are disclosed, for example, in U.S. Pat. Nos. 4,137,230; 4,248,870; 4,256,746; 4,260,608; 4,265,814; 4,294,757; 4,307,016; 4,308,268; 4,308,269; 4,309,428; 4,313,946; 4,315,929; 4,317,821; 4,322,348; 4,331,598; 4,361,650; 4,364,866; 4,424,219; 4,450,254; 4,362,663; and 4,371,533.
[1021] In an attempt to improve their therapeutic index, maytansine and maytansinoids have been conjugated to antibodies specifically binding to tumor cell antigens. Immunoconjugates containing maytansinoids and their therapeutic use are disclosed, for example, in U.S. Pat. Nos. ,208,020, 5,416,064 and European Patent EP 0 425 235 Bl. Liu et al., Proc. Natl. Acad. Sci. USA 93:8618-8623 (1996) described immunoconjugates comprising a maytansinoid designated DM1 linked to the monoclonal antibody C242 directed against human colorectal cancer. The conjugate was found to be highly cytotoxic towards cultured colon cancer cells, and showed antitumor activity in an in vivo tumor growth assay.
[1022] Antibody-maytansinoid conjugates are prepared by chemically linking an antibody to a maytansinoid molecule without significantly diminishing the biological activity of either the antibody or the maytansinoid molecule. An average of 3-4 maytansinoid molecules conjugated per antibody molecule has shown efficacy in enhancing cytotoxicity of target cells without negatively affecting the function or solubility of the antibody, although even one molecule of toxin/antibody would be expected to enhance cytotoxicity over the use of naked antibody. Maytansinoids are well known in the art and can be synthesized by known techniques or isolated from natural sources. Suitable maytansinoids are disclosed, for example, in U.S. Pat. No. ,208,020 and in the other patents and nonpatent publications referred to hereinabove. Preferred maytansinoids are maytansinol and maytansinol analogues modified in the aromatic ring or at other positions of the maytansinol molecule, such as various maytansinol esters.
[1023] There are many linking groups known in the art for making antibody conjugates, including, for example, those disclosed in U.S. Pat. No. 5,208,020 or EP Patent 0 425 235 B1, and Chari et al., Cancer Research 52: 127-131 (1992). The linking groups include disufide groups, thioether groups, acid labile groups, photolabile groups, peptidase labile groups, or esterase labile groups, as disclosed in the above-identified patents, disulfide and thioether groups being preferred.
[1024] Immunoconjugates may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP), succinimidyl-4-(N maleimidomethyl)cyclohexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p azidobenzoyl)hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl) ethylenediamine), diisocyanates (such as toluene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). Particularly preferred coupling agents include N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP) (Carlsson et al., Biochem. J. 173:723-737 [1978]) and N-succinimidyl-4-(2-pyridylthio) pentanoate (SPP) to provide for a disulfide linkage. For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science 238: 1098 (1987). Carbon- 14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See W094/11026. The linker may be a "cleavable linker" facilitating release of the cytotoxic drug in the cell. For example, an acid-labile linker, Cancer Research 52: 127-131 (1992); U.S. Pat. No. 5,208,020) may be used.
[1025] Another immunoconjugate of interest comprises an antibody conjugated to one or more calicheamicin molecules. The calicheamicin family of antibiotics is capable of producing double-stranded DNA breaks at sub-picomolar concentrations. For the preparation of conjugates of the calicheamicin family, see U.S. Pat. Nos. 5,712,374, 5,714,586, 5,739,116, 5,767,285, ,770,701, 5,770,710, 5,773,001, 5,877,296 (all to American Cyanamid Company). Another drug that the antibody can be conjugated is QFA which is an antifolate. Both calicheamicin and QFA have intracellular sites of action and do not readily cross the plasma membrane. Therefore, cellular uptake of these agents through antibody mediated internalization greatly enhances their cytotoxic effects.
[1026] Examples of other agents that can be conjugated to the antibodies of the invention include BCNU, streptozoicin, vincristine and 5-fluorouracil, the family of agents known collectively LL-E33288 complex described in U.S. Pat. Nos. 5,053,394, 5,770,710, as well as esperamicins (U.S. Pat. No. 5,877,296).
[1027] Enzymatically active toxins and fragments thereof that can be used include, e.g., diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin and the tricothecenes. See, for example, WO 93/21232.
[1028] The present invention further includes an immunoconjugate formed between an antibody and a compound with nucleolytic activity (e.g., a ribonuclease or a DNA endonuclease such as a deoxyribonuclease; DNase).
[1029] For selective destruction of infected cells, the antibody includes a highly radioactive atom. A variety of radioactive isotopes are available for the production of radioconjugated anti 211 131 125 90 186 188 153 212 32 21 PSCA antibodies. Examples include At , I , I , Y , Re , Rc , Sm , Bi , P , Pbm and radioactive isotopes of Lu. When the conjugate is used for diagnosis, it may comprise a radioactive atom for scintigraphic studies, for example tc99m or I123, or a spin label for nuclear magnetic resonance (NMR) imaging (also known as magnetic resonance imaging, mri), such as iodine-123, iodine-131, indium-111, fluorine-19, carbon-13, nitrogen-15, oxygen-17, gadolinium, manganese or iron.
[1030] The radio- or other label is incorporated in the conjugate in known ways. For example, the peptide may be biosynthesized or may be synthesized by chemical amino acid synthesis using suitable amino acid precursors involving, for example, fluorine-19 in place of 99m 123 186 188 111 hydrogen. Labels such as tc or I , Re , Re and In can be attached via a cysteine residue in the peptide. Yttrium-90 can be attached via a lysine residue. The IODOGEN method (Fraker et al (1978) Biochem. Biophys. Res. Commun. 80: 49-57 can be used to incorporate iodine-123. "Monoclonal Antibodies in Immunoscintigraphy" (Chatal, CRC Press 1989) describes other methods in detail.
[1031] Alternatively, a fusion protein comprising the antibody and cytotoxic agent is made, e.g., by recombinant techniques or peptide synthesis. The length of DNA may comprise respective regions encoding the two portions of the conjugate either adjacent one another or separated by a region encoding a linker peptide which does not destroy the desired properties of the conjugate. The antibodies of the present invention are also used in antibody dependent enzyme mediated prodrug therapy (ADET) by conjugating the antibody to a prodrug-activating enzyme which converts a prodrug (e.g., a peptidyl chemotherapeutic agent, see W081/01145) to an active anti-cancer drug (see, e.g., WO 88/07378 and U.S. Pat. No. 4,975,278).
[1032] The enzyme component of the immunoconjugate useful for ADEPT includes any enzyme capable of acting on a prodrug in such a way so as to convert it into its more active, cytotoxic form. Enzymes that are useful in the method of this invention include, but are not limited to, alkaline phosphatase useful for converting phosphate-containing prodrugs into free drugs; arylsulfatase useful for converting sulfate-containing prodrugs into free drugs; cytosine deaminase useful for converting non-toxic 5-fluorocytosine into the anti-cancer drug, 5 fluorouracil; proteases, such as serratia protease, thermolysin, subtilisin, carboxypeptidases and cathepsins (such as cathepsins B and L), that are useful for converting peptide-containing prodrugs into free drugs; D-alanylcarboxypeptidases, useful for converting prodrugs that contain D-amino acid substituents; carbohydrate-cleaving enzymes such as p-galactosidase and neuraminidase useful for converting glycosylated prodrugs into free drugs; p-lactamase useful for converting drugs derivatized with j-lactams into free drugs; and penicillin amidases, such as penicillin V amidase or penicillin G amidase, useful for converting drugs derivatized at their amine nitrogens with phenoxyacetyl or phenylacetyl groups, respectively, into free drugs. Alternatively, antibodies with enzymatic activity, also known in the art as "abzymes", can be used to convert the prodrugs of the invention into free active drugs (see, e.g., Massey, Nature 328: 457-458 (1987)). Antibody-abzyme conjugates can be prepared as described herein for delivery of the abzyme to a infected cell population.
[1033] The enzymes of this invention can be covalently bound to the antibodies by techniques well known in the art such as the use of the heterobifunctional crosslinking reagents discussed above. Alternatively, fusion proteins comprising at least the antigen binding region of an antibody of the invention linked to at least a functionally active portion of an enzyme of the invention can be constructed using recombinant DNA techniques well known in the art (see, e.g., Neuberger et al., Nature, 312: 604-608 (1984).
[1034] Other modifications of the antibody are contemplated herein. For example, the antibody may be linked to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol. The antibody also may be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules), or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Oslo, A., Ed., (1980).
[1035] The antibodies disclosed herein are also formulated as immunoliposomes. A "liposome" is a small vesicle composed of various types of lipids, phospholipids and/or surfactant that is useful for delivery of a drug to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82:3688 (1985); Hwang et al., Proc. Natl Acad. Sci. USA, 77:4030 (1980); U.S. Pat. Nos. 4,485,045 and 4,544,545; and W097/38731 published Oct. 23, 1997. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556.
[1036] Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired a diameter. Fab' fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem. 257: 286-288 (1982) via a disulfide interchange reaction. A chemotherapeutic agent is optionally contained within the liposome. See Gabizon et al., J. National Cancer Inst. 81(19)1484 (1989). Antibodies of the present invention, or fragments thereof, may possess any of a variety of biological or functional characteristics. In certain embodiments, these antibodies are HIVi protein specific antibodies, indicating that they specifically bind to or preferentially bind to HIV1 as compared to a normal control cell.
[1037] In particular embodiments, an antibody of the present invention is an antagonist antibody, which partially or fully blocks or inhibits a biological activity of a polypeptide or cell to which it specifically or preferentially binds. In other embodiments, an antibody of the present invention is a growth inhibitory antibody, which partially or fully blocks or inhibits the growth of an infected cell to which it binds. In another embodiment, an antibody of the present invention induces apoptosis. In yet another embodiment, an antibody of the present invention induces or promotes antibody-dependent cell-mediated cytotoxicity or complement dependent cytotoxicity.
[1038] HIV1-expressing cells or virus described above are used to screen the biological sample obtained from a patient infected with HIV1 for the presence of antibodies that preferentially bind to the cell expressing HIV1 polypeptides using standard biological techniques. For example, in certain embodiments, the antibodies may be labeled, and the presence of label associated with the cell detected, e.g., using FMAT or FACs analysis. In particular embodiments, the biological sample is blood, serum, plasma, bronchial lavage, or saliva. Methods of the present invention may be practiced using high throughput techniques.
[1039] Identified human antibodies may then be characterized further. For example the particular conformational epitopes with in the HIV1 polypeptides that are necessary or sufficient for binding of the antibody may be determined, e.g., using site-directed mutagenesis of expressed HIV1 polypeptides. These methods may be readily adapted to identify human antibodies that bind any protein expressed on a cell surface. Furthermore, these methods may be adapted to determine binding of the antibody to the virus itself, as opposed to a cell expressing recombinant HIV 1 or infected with the virus.
[1040] Polynucleotide sequences encoding the antibodies, variable regions thereof, or antigen-binding fragments thereof may be subcloned into expression vectors for the recombinant production of human anti-HIV1 antibodies. In one embodiment, this is accomplished by obtaining mononuclear cells from the patient from the serum containing the identified HIV1 antibody was obtained; producing B cell clones from the mononuclear cells; inducing the B cells to become antibody-producing plasma cells; and screening the supernatants produced by the plasma cells to determine if it contains the HIV1 antibody. Once a B cell clone that produces an HIV1 antibody is identified, reverse-transcription polymerase chain reaction (RT-PCR) is performed to clone the DNAs encoding the variable regions or portions thereof of the HIV1 antibody. These sequences are then subcloned into expression vectors suitable for the recombinant production of human HIV1 antibodies. The binding specificity may be confirmed by determining the recombinant antibody's ability to bind cells expressing HIV1 polypeptide.
[1041] In particular embodiments of the methods described herein, B cells isolated from peripheral blood or lymph nodes are sorted, e.g., based on their being CD19 positive, and plated, e.g., as low as a single cell specificity per well, e.g., in 96, 384, or 1536 well configurations. The cells are induced to differentiate into antibody-producing cells, e.g., plasma cells, and the culture supernatants are harvested and tested for binding to cells expressing the infectious agent polypeptide on their surface using, e.g., FMAT or FACS analysis. Positive wells are then subjected to whole well RT-PCR to amplify heavy and light chain variable regions of the IgG molecule expressed by the clonal daughter plasma cells. The resulting PCR products encoding the heavy and light chain variable regions, or portions thereof, are subcloned into human antibody expression vectors for recombinant expression. The resulting recombinant antibodies are then tested to confirm their original binding specificity and may be further tested for pan specificity across various strains of isolates of the infectious agent.
[1042] Thus, in one embodiment, a method of identifying HIV1 antibodies is practiced as follows. First, full length or approximately full length HIV1 cDNAs are transfected into a cell line for expression of HIV1 polypeptides. Secondly, individual human plasma or sera samples are tested for antibodies that bind the cell-expressed HIVi polypeptides. And lastly, MAbs derived from plasma- or serum-positive individuals are characterized for binding to the same cell-expressed HIV1 polypeptides. Further definition of the fine specificities of the MAbs can be performed at this point.
[1043] Polynucleotides that encode the HIV1 antibodies or portions thereof of the present invention may be isolated from cells expressing HIV1 antibodies, according to methods available in the art and described herein, including amplification by polymerase chain reaction using primers specific for conserved regions of human antibody polypeptides. For example, light chain and heavy chain variable regions may be cloned from the B cell according to molecular biology techniques described in WO 92/02551; U.S. Patent No. 5,627,052; or Babcook et al., Proc. Natl. Acad. Sci. USA 93:7843-48 (1996). In certain embodiments, polynucleotides encoding all or a region of both the heavy and light chain variable regions of the IgG molecule expressed by the clonal daughter plasma cells expressing the HIViantibody are subcloned and sequenced. The sequence of the encoded polypeptide may be readily determined from the polynucleotide sequence.
[1044] Isolated polynucleotides encoding a polypeptide of the present invention may be subcloned into an expression vector to recombinantly produce antibodies and polypeptides of the present invention, using procedures known in the art and described herein.
[10451 Binding properties of an antibody (or fragment thereof) to HIV1 polypeptides or Hlvlinfected cells or tissues may generally be determined and assessed using immunodetection methods including, for example, immunofluorescence-based assays, such as immuno histochemistry (IHC) and/or fluorescence-activated cell sorting (FACS). Immunoassay methods may include controls and procedures to determine whether antibodies bind specifically to HIV1 polypeptides from one or more specific clades or strains of HIV, and do not recognize or cross react with normal control cells.
[1046] Following pre-screening of serum to identify patients that produce antibodies to an infectious agent or polypeptide thereof, e.g., HIV1, the methods of the present invention typically include the isolation or purification of B cells from a biological sample previously obtained from a patient or subject. The patient or subject may be currently or previously diagnosed with or suspect or having a particular disease or infection, or the patient or subject may be considered free or a particular disease or infection. Typically, the patient or subject is a mammal and, in particular embodiments, a human. The biological sample may be any sample that contains B cells, including but not limited to, lymph node or lymph node tissue, pleural effusions, peripheral blood, ascites, tumor tissue, or cerebrospinal fluid (CSF). In various embodiments, B cells are isolated from different types of biological samples, such as a biological sample affected by a particular disease or infection. However, it is understood that any biological sample comprising B cells may be used for any of the embodiments of the present invention.
[1047] Once isolated, the B cells are induced to produce antibodies, e.g., by culturing the B cells under conditions that support B cell proliferation or development into a plasmacyte, plasmablast, or plasma cell. The antibodies are then screened, typically using high throughput techniques, to identify an antibody that specifically binds to a target antigen, e.g., a particular tissue, cell, infectious agent, or polypeptide. In certain embodiments, the specific antigen, e.g., cell surface polypeptide bound by the antibody is not known, while in other embodiments, the antigen specifically bound by the antibody is known.
[1048] According to the present invention, B cells may be isolated from a biological sample, e.g., a tumor, tissue, peripheral blood or lymph node sample, by any means known and available in the art. B cells are typically sorted by FACS based on the presence on their surface of a B cell specific marker, e.g., CD19, CD138, and/or surface IgG. However, other methods known in the art may be employed, such as, e.g., column purification using CD19 magnetic beads or IgG specific magnetic beads, followed by elution from the column. However, magnetic isolation of B cells utilizing any marker may result in loss of certain B cells. Therefore, in certain embodiments, the isolated cells are not sorted but, instead, phicol-purified mononuclear cells isolated from tumor are directly plated to the appropriate or desired number of specificities per well.
[1049] In order to identify B cells that produce an infectious agent-specific antibody, the B cells are typically plated at low density (e.g., a single cell specificity per well, 1-10 cells per well, -100 cells per well, 1-100 cells per well, less than 10 cells per well, or less than 100 cells per well) in multi-well or microtiter plates, e.g., in 96, 384, or 1536 well configurations. When the B cells are initially plated at a density greater than one cell per well, then the methods of the present invention may include the step of subsequently diluting cells in a well identified as producing an antigen-specific antibody, until a single cell specificity per well is achieved, thereby facilitating the identification of the B cell that produces the antigen-specific antibody. Cell supernatants or a portion thereof and/or cells may be frozen and stored for future testing and later recovery of antibody polynucleotides.
[1050] In certain embodiments, the B cells are cultured under conditions that favor the production of antibodies by the B cells. For example, the B cells may be cultured under conditions favorable for B cell proliferation and differentiation to yield antibody-producing plasmablast, plasmacytes, or plasma cells. In particular embodiments, the B cells are cultured in the presence of a B cell mitogen, such as lipopolysaccharide (LPS) or CD40 ligand. In one specific embodiment, B cells are differentiated to antibody-producing cells by culturing them with feed cells and/or other B cell activators, such as CD40 ligand.
[1051] Cell culture supernatants or antibodies obtained therefrom may be tested for their ability to bind to a target antigen, using routine methods available in the art, including those described herein. In particular embodiments, culture supernatants are tested for the presence of antibodies that bind to a target antigen using high- throughput methods. For example, B cells may be cultured in multi-well microtiter dishes, such that robotic plate handlers may be used to simultaneously sample multiple cell supernatants and test for the presence of antibodies that bind to a target antigen. In particular embodiments, antigens are bound to beads, e.g., paramagnetic or latex beads) to facilitate the capture of antibody/antigen complexes. In other embodiments, antigens and antibodies are fluorescently labeled (with different labels) and FACS analysis is performed to identify the presence of antibodies that bind to target antigen. In one embodiment, antibody binding is determined using FMATTM analysis and instrumentation (Applied Biosystems, Foster City, CA). FMATTM is a fluorescence macro-confocal platform for high throughput screening, which mix-and-read, non-radioactive assays using live cells or beads.
[1052] In the context of comparing the binding of an antibody to a particular target antigen (e.g., a biological sample such as infected tissue or cells, or infectious agents) as compared to a control sample (e.g., a biological sample such as uninfected cells, or a different infectious agent), in various embodiments, the antibody is considered to preferentially bind a particular target antigen if at least two-fold, at least three-fold, at least five-fold, or at least ten-fold more antibody binds to the particular target antigen as compared to the amount that binds a control sample.
[1053] Polynucleotides encoding antibody chains, variable regions thereof, or fragments thereof, may be isolated from cells utilizing any means available in the art. In one embodiment, polynucleotides are isolated using polymerase chain reaction (PCR), e.g., reverse transcription PCR (RT-PCR) using oligonucleotide primers that specifically bind to heavy or light chain encoding polynucleotide sequences or complements thereof using routine procedures available in the art. In one embodiment, positive wells are subjected to whole well RT-PCR to amplify the heavy and light chain variable regions of the IgG molecule expressed by the clonal daughter plasma cells. These PCR products may be sequenced.
[1054] The resulting PCR products encoding the heavy and light chain variable regions or portions thereof are then subcloned into human antibody expression vectors and recombinantly expressed according to routine procedures in the art (see, e.g., US Patent No. 7,112,439). The nucleic acid molecules encoding a tumor-specific antibody or fragment thereof, as described herein, may be propagated and expressed according to any of a variety of well-known procedures for nucleic acid excision, ligation, transformation, and transfection. Thus, in certain embodiments expression of an antibody fragment may be preferred in a prokaryotic host cell, such as Escherichia coli (see, e.g., Pluckthun et al., Methods Enzymol. 178:497-515 (1989)). In certain other embodiments, expression of the antibody or an antigen-binding fragment thereof may be preferred in a eukaryotic host cell, including yeast (e.g., Saccharomyces cerevisiae, Schizosaccharomycespombe, and Pichiapastoris); animal cells (including mammalian cells); or plant cells. Examples of suitable animal cells include, but are not limited to, myeloma, COS, CHO, or hybridoma cells. Examples of plant cells include tobacco, corn, soybean, and rice cells.
By methods known to those having ordinary skill in the art and based on the present disclosure, a nucleic acid vector may be designed for expressing foreign sequences in a particular host system, and then polynucleotide sequences encoding the tumor-specific antibody (or fragment thereof) may be inserted. The regulatory elements will vary according to the particular host.
[1055] One or more replicable expression vectors containing a polynucleotide encoding a variable and/or constant region may be prepared and used to transform an appropriate cell line, for example, a non-producing myeloma cell line, such as a mouse NSO line or a bacterium, such as E.coli, in which production of the antibody will occur. In order to obtain efficient transcription and translation, the polynucleotide sequence in each vector should include appropriate regulatory sequences, particularly a promoter and leader sequence operatively linked to the variable region sequence. Particular methods for producing antibodies in this way are generally well known and routinely used. For example, molecular biology procedures are described by Sambrook et al. (MolecularCloning, A LaboratoryManual, 2nd ed., Cold Spring Harbor Laboratory, New York, 1989; see also Sambrook et al., 3rd ed., Cold Spring Harbor Laboratory, New York, (2001)). While not required, in certain embodiments, regions of polynucleotides encoding the recombinant antibodies may be sequenced. DNA sequencing can be performed as described in Sanger et al. (Proc. Natl. Acad. Sci. USA 74:5463 (1977)) and the Amersham International plc sequencing handbook and including improvements thereto.
[1056] In particular embodiments, the resulting recombinant antibodies or fragments thereof are then tested to confirm their original specificity and may be further tested for pan-specificity, e.g., with related infectious agents. In particular embodiments, an antibody identified or produced according to methods described herein is tested for cell killing via antibody dependent cellular cytotoxicity (ADCC) or apoptosis, and/or well as its ability to internalize.
[1057] The present invention, in other aspects, provides polynucleotide compositions. In preferred embodiments, these polynucleotides encode a polypeptide of the invention, e.g., a region of a variable chain of an antibody that binds to HIV1. Polynucleotides of the invention are single-stranded (coding or antisense) or double-stranded DNA (genomic, cDNA or synthetic) or RNA molecules. RNA molecules include, but are not limited to, HnRNA molecules, which contain introns and correspond to a DNA molecule in a one-to-one manner, and mRNA molecules, which do not contain introns. Alternatively, or in addition, coding or non-coding sequences are present within a polynucleotide of the present invention. Also alternatively, or in addition, a polynucleotide is linked to other molecules and/or support materials of the invention. Polynucleotides of the invention are used, e.g., in hybridization assays to detect the presence of an HIVI antibody in a biological sample, and in the recombinant production of polypeptides of the invention. Further, the invention includes all polynucleotides that encode any polypeptide of the present invention.
[1058] In other related embodiments, the invention provides polynucleotide variants having substantial identity to the sequences of 1443C16 (PG16) (TCN- 116), 1503 H05 (PG16) (TCN 119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 _13 (PG16) (TCN 120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_D15 (PGT-122), 4858P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HO1 (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345_01 (PGT-137), 4993_K13 (PGT-141), 4995E20 (PGT-142), 4980N08 (PGT-143), 4970K22 (PGT-144), 4995_P16 (PGT-145), 4835F12 (PGT-124), 4869-KI5 (PGT-133), 4876M06 (PGT-134), 5131_A17 (PGT-132), 5138G07 (PGT-138), 5120_N10 (PGT-139), 6831_A21 (PGT-151), 6889_117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and/or 6881_NO5 (PGT 158), for example those comprising at least 70% sequence identity, preferably at least 75%, 80%, %, 90%, 95%, 96%, 97%, 98%, or 99% or higher, sequence identity compared to a polynucleotide sequence of this invention, as determined using the methods described herein, (e.g., BLAST analysis using standard parameters). One skilled in this art will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning, and the like.
[1059] Typically, polynucleotide variants contain one or more substitutions, additions, deletions and/or insertions, preferably such that the immunogenic binding properties of the polypeptide encoded by the variant polynucleotide is not substantially diminished relative to a polypeptide encoded by a polynucleotide sequence specifically set forth herein.
[1060] In additional embodiments, the present invention provides polynucleotide fragments comprising various lengths of contiguous stretches of sequence identical to or complementary to one or more of the sequences disclosed herein. For example, polynucleotides are provided by this invention that comprise at least about 10, 15, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500 or 1000 or more contiguous nucleotides of one or more of the sequences disclosed herein as well as all intermediate lengths there between. As used herein, the term "intermediate lengths" is meant to describe any length between the quoted values, such as 16, 17, 18, 19, etc.; 21, 22, 23, etc.; 30, 31, 32, etc.; 50, 51, 52, 53, etc.; 100, 101, 102, 103, etc.; 150, 151, 152, 153, etc.; including all integers through 200-500; 500-1,000, and the like.
[1061] In another embodiment of the invention, polynucleotide compositions are provided that are capable of hybridizing under moderate to high stringency conditions to a polynucleotide sequence provided herein, or a fragment thereof, or a complementary sequence thereof. Hybridization techniques are well known in the art of molecular biology. For purposes of illustration, suitable moderately stringent conditions for testing the hybridization of a polynucleotide of this invention with other polynucleotides include prewashing in a solution of 5 X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50*C-60'C, 5 X SSC, overnight; followed by washing twice at 65"C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS. One skilled in the art will understand that the stringency of hybridization can be readily manipulated, such as by altering the salt content of the hybridization solution and/or the temperature at which the hybridization is performed. For example, in another embodiment, suitable highly stringent hybridization conditions include those described above, with the exception that the temperature of hybridization is increased, e.g., to 60-65C or 65-70C.
[1062] In preferred embodiments, the polypeptide encoded by the polynucleotide variant or fragment has the same binding specificity (i.e., specifically or preferentially binds to the same epitope or HIV strain) as the polypeptide encoded by the native polynucleotide. In certain preferred embodiments, the polynucleotides described above, e.g., polynucleotide variants, fragments and hybridizing sequences, encode polypeptides that have a level of binding activity of at least about 50%, preferably at least about 70%, and more preferably at least about 90% of that for a polypeptide sequence specifically set forth herein.
[1063] The polynucleotides of the present invention, or fragments thereof, regardless of the length of the coding sequence itself, may be combined with other DNA sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. A nucleic acid fragment of almost any length is employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol. For example, illustrative polynucleotide segments with total lengths of about 10,000, about 5000, about 3000, about 2,000, about 1,000, about 500, about 200, about 100, about 50 base pairs in length, and the like, (including all intermediate lengths) are included in many implementations of this invention.
[1064] It will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are multiple nucleotide sequences that encode a polypeptide as described herein. Some of these polynucleotides bear minimal homology to the nucleotide sequence of any native gene. Nonetheless, polynucleotides that encode a polypeptide of the present invention but which vary due to differences in codon usage are specifically contemplated by the invention. Further, alleles of the genes including the polynucleotide sequences provided herein are within the scope of the invention. Alleles are endogenous genes that are altered as a result of one or more mutations, such as deletions, additions and/or substitutions of nucleotides. The resulting mRNA and protein may, but need not, have an altered structure or function. Alleles may be identified using standard techniques (such as hybridization, amplification and/or database sequence comparison).
[1065] In certain embodiments of the present invention, mutagenesis of the disclosed polynucleotide sequences is performed in order to alter one or more properties of the encoded polypeptide, such as its binding specificity or binding strength. Techniques for mutagenesis are well-known in the art, and are widely used to create variants of both polypeptides and polynucleotides. A mutagenesis approach, such as site-specific mutagenesis, is employed for the preparation of variants and/or derivatives of the polypeptides described herein. By this approach, specific modifications in a polypeptide sequence are made through mutagenesis of the underlying polynucleotides that encode them. These techniques provides a straightforward approach to prepare and test sequence variants, for example, incorporating one or more of the foregoing considerations, by introducing one or more nucleotide sequence changes into the polynucleotide.
[1066] Site-specific mutagenesis allows the production of mutants through the use of specific oligonucleotide sequences include the nucleotide sequence of the desired mutation, as well as a sufficient number of adjacent nucleotides, to provide a primer sequence of sufficient size and sequence complexity to form a stable duplex on both sides of the deletion junction being traversed. Mutations are employed in a selected polynucleotide sequence to improve, alter, decrease, modify, or otherwise change the properties of the polynucleotide itself, and/or alter the properties, activity, composition, stability, or primary sequence of the encoded polypeptide.
[1067] In other embodiments of the present invention, the polynucleotide sequences provided herein are used as probes or primers for nucleic acid hybridization, e.g., as PCR primers. The ability of such nucleic acid probes to specifically hybridize to a sequence of interest enables them to detect the presence of complementary sequences in a given sample. However, other uses are also encompassed by the invention, such as the use of the sequence information for the preparation of mutant species primers, or primers for use in preparing other genetic constructions. As such, nucleic acid segments of the invention that include a sequence region of at least about a 15-nucleotide long contiguous sequence that has the same sequence as, or is complementary to, a 15 nucleotide long contiguous sequence disclosed herein is particularly useful. Longer contiguous identical or complementary sequences, e.g., those of about 20, 30, 40, , 100, 200, 500, 1000 (including all intermediate lengths) including full length sequences, and all lengths in between, are also used in certain embodiments.
[1068] Polynucleotide molecules having sequence regions consisting of contiguous nucleotide stretches of 10-14, 15-20, 30, 50, or even of 100-200 nucleotides or so (including intermediate lengths as well), identical or complementary to a polynucleotide sequence disclosed herein, are particularly contemplated as hybridization probes for use in, e.g., Southern and Northern blotting, and/or primers for use in, e.g., polymerase chain reaction (PCR). The total size of fragment, as well as the size of the complementary stretch (es), ultimately depends on the intended use or application of the particular nucleic acid segment. Smaller fragments are generally used in hybridization embodiments, wherein the length of the contiguous complementary region may be varied, such as between about 15 and about 100 nucleotides, but larger contiguous complementarity stretches may be used, according to the length complementary sequences one wishes to detect.
[1069] The use of a hybridization probe of about 15-25 nucleotides in length allows the formation of a duplex molecule that is both stable and selective. Molecules having contiguous complementary sequences over stretches greater than 12 bases in length are generally preferred, though, in order to increase stability and selectivity of the hybrid, and thereby improve the quality and degree of specific hybrid molecules obtained. Nucleic acid molecules having gene complementary stretches of 15 to 25 contiguous nucleotides, or even longer where desired, are generally preferred.
[1070] Hybridization probes are selected from any portion of any of the sequences disclosed herein. All that is required is to review the sequences set forth herein, or to any continuous portion of the sequences, from about 15-25 nucleotides in length up to and including the full length sequence, that one wishes to utilize as a probe or primer. The choice of probe and primer sequences is governed by various factors. For example, one may wish to employ primers from towards the termini of the total sequence.
[1071] Polynucleotide of the present invention, or fragments or variants thereof, are readily prepared by, for example, directly synthesizing the fragment by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer. Also, fragments are obtained by application of nucleic acid reproduction technology, such as the PCRTM technology of U. S. Patent 4,683,202, by introducing selected sequences into recombinant vectors for recombinant production, and by other recombinant DNA techniques generally known to those of skill in the art of molecular biology.
[1072] The invention provides vectors and host cells comprising a nucleic acid of the present invention, as well as recombinant techniques for the production of a polypeptide of the present invention. Vectors of the invention include those capable of replication in any type of cell or organism, including, e.g., plasmids, phage, cosmids, and mini chromosomes. In various embodiments, vectors comprising a polynucleotide of the present invention are vectors suitable for propagation or replication of the polynucleotide, or vectors suitable for expressing a polypeptide of the present invention. Such vectors are known in the art and commercially available.
[1073] Polynucleotides of the present invention are synthesized, whole or in parts that are then combined, and inserted into a vector using routine molecular and cell biology techniques, including, e.g., subcloning the polynucleotide into a linearized vector using appropriate restriction sites and restriction enzymes. Polynucleotides of the present invention are amplified by polymerase chain reaction using oligonucleotide primers complementary to each strand of the polynucleotide. These primers also include restriction enzyme cleavage sites to facilitate subcloning into a vector. The replicable vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, and one or more marker or selectable genes.
[1074] In order to express a polypeptide of the present invention, the nucleotide sequences encoding the polypeptide, or functional equivalents, are inserted into an appropriate expression vector, i.e., a vector that contains the necessary elements for the transcription and translation of the inserted coding sequence. Methods well known to those skilled in the art are used to construct expression vectors containing sequences encoding a polypeptide of interest and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described, for example, in Sambrook, J., et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., and Ausubel, F. M. et al. (1989) Current Protocols in Molecular Biology, John Wiley & Sons, New York. N.Y.
[1075] A variety of expression vector/host systems are utilized to contain and express polynucleotide sequences. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus); plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.
[1076] Within one embodiment, the variable regions of a gene expressing a monoclonal antibody of interest are amplified from a hybridoma cell using nucleotide primers. These primers are synthesized by one of ordinary skill in the art, or may be purchased from commercially available sources (see, e.g., Stratagene (La Jolla, California), which sells primers for amplifying mouse and human variable regions. The primers are used to amplify heavy or light chain variable regions, which are then inserted into vectors such as ImmunoZAPTM H or ImmunoZAPTM L (Stratagene), respectively. These vectors are then introduced into E. coli, yeast, or mammalian based systems for expression. Large amounts of a single-chain protein containing a fusion of the
VH and VL domains are produced using these methods (see Bird et al., Science 242:423-426 (1988)).
[1077] The "control elements" or "regulatory sequences" present in an expression vector are those non-translated regions of the vector, e.g., enhancers, promoters, 5' and 3' untranslated regions, that interact with host cellular proteins to carry out transcription and translation. Such elements may vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, are used.
[1078] Examples of promoters suitable for use with prokaryotic hosts include the phoa promoter, f-lactamase and lactose promoter systems, alkaline phosphatase promoter, a tryptophan (trp) promoter system, and hybrid promoters such as the tac promoter. However, other known bacterial promoters are suitable. Promoters for use in bacterial systems also usually contain a Shine-Dalgarno sequence operably linked to the DNA encoding the polypeptide. Inducible promoters such as the hybrid lacZ promoter of the PBLUESCRIPT phagemid (Stratagene, La Jolla, Calif.) or PSPORT1 plasmid (Gibco BRL, Gaithersburg, MD) and the like are used.
[1079] A variety of promoter sequences are known for eukaryotes and any are used according to the present invention. Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CNCAAT region where N may be any nucleotide. At the 3' end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3' end of the coding sequence. All of these sequences are suitably inserted into eukaryotic expression vectors.
[1080] In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are generally preferred. Polypeptide expression from vectors in mammalian host cells are controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus (e.g., Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus (CMV), a retrovirus, hepatitis-B virus and most preferably Simian Virus (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, and from heat-shock promoters, provided such promoters are compatible with the host cell systems. If it is necessary to generate a cell line that contains multiple copies of the sequence encoding a polypeptide, vectors based on SV40 or EBV may be advantageously used with an appropriate selectable marker. One example of a suitable expression vector is pcDNA-3.1 (Invitrogen, Carlsbad, CA), which includes a CMV promoter.
[10811 A number of viral-based expression systems are available for mammalian expression of polypeptides. For example, in cases where an adenovirus is used as an expression vector, sequences encoding a polypeptide of interest may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome may be used to obtain a viable virus that is capable of expressing the polypeptide in infected host cells (Logan, J. and Shenk, T. (1984) Proc. Natl. Acad. Sci. 81:3655-3659). In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.
[1082] In bacterial systems, any of a number of expression vectors are selected depending upon the use intended for the expressed polypeptide. For example, when large quantities are desired, vectors that direct high level expression of fusion proteins that are readily purified are used. Such vectors include, but are not limited to, the multifunctional E. coli cloning and expression vectors such as BLUESCRIPT (Stratagene), in which the sequence encoding the polypeptide of interest may be ligated into the vector in frame with sequences for the amino terminal Met and the subsequent 7 residues of p-galactosidase, so that a hybrid protein is produced; pIN vectors (Van Heeke, G. and S. M. Schuster (1989) J. Biol. Chem. 264:5503 5509); and the like. pGEX Vectors (Promega, Madison, WI) are also used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione agarose beads followed by elution in the presence of free glutathione. Proteins made in such systems are designed to include heparin, thrombin, or factor XA protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.
[1083] In the yeast, Saccharomyces cerevisiae, a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH are used. Examples of other suitable promoter sequences for use with yeast hosts include the promoters for 3 phosphoglycerate kinase or other glycolytic enzymes, such as enolase, glyceraldehyde-3 phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6 phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. For reviews, see Ausubel et al. (supra) and Grant et al. (1987) Methods Enzymol. 153:516-544. Other yeast promoters that are inducible promoters having the additional advantage of transcription controlled by growth conditions include the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3 -phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657. Yeast enhancers also are advantageously used with yeast promoters.
[1084] In cases where plant expression vectors are used, the expression of sequences encoding polypeptides are driven by any of a number of promoters. For example, viral promoters such as the 35S and 19S promoters of CaMV are used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311. Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters are used (Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J., et al. (1991) Results Probl. Cell Differ. 17:85-105). These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. Such techniques are described in a number of generally available reviews (see, e.g., Hobbs, S. or Murry, L. E. in McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York, N.Y.; pp. 191-196).
[1085] An insect system is also used to express a polypeptide of interest. For example, in one such system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae. The sequences encoding the polypeptide are cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of the polypeptide-encoding sequence renders the polyhedrin gene inactive and produce recombinant virus lacking coat protein. The recombinant viruses are then used to infect, for example, S. frugiperda cells or Trichoplusia larvae, in which the polypeptide of interest is expressed (Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. 91 :3224-3227).
[1086] Specific initiation signals are also used to achieve more efficient translation of sequences encoding a polypeptide of interest. Such signals include the ATG initiation codon and adjacent sequences. In cases where sequences encoding the polypeptide, its initiation codon, and upstream sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a portion thereof, is inserted, exogenous translational control signals including the ATG initiation codon are provided. Furthermore, the initiation codon is in the correct reading frame to ensure correct translation of the inserted polynucleotide. Exogenous translational elements and initiation codons are of various origins, both natural and synthetic.
[1087] Transcription of a DNA encoding a polypeptide of the invention is often increased by inserting an enhancer sequence into the vector. Many enhancer sequences are known, including, e.g., those identified in genes encoding globin, elastase, albumin, -fetoprotein, and insulin. Typically, however, an enhancer from a eukaryotic cell virus is used. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv, Nature 297:17-18 (1982) on enhancing elements for activation of eukaryotic promoters. The enhancer is spliced into the vector at a position 5' or 3' to the polypeptide-encoding sequence, but is preferably located at a site 5' from the promoter.
[1088] Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) typically also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding anti-PSCA antibody. One useful transcription termination component is the bovine growth hormone polyadenylation region. See W094/11026 and the expression vector disclosed therein.
[10891 Suitable host cells for cloning or expressing the DNA in the vectors herein are the prokaryote, yeast, plant or higher eukaryote cells described above. Examples of suitable prokaryotes for this purpose include eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceaesuch as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published 12 Apr. 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. One preferred E. coli cloning host is E. coli 294 (ATCC 31,446), although other strains such as E. coli B, E. coli X1776 (ATCC 31,537), and E. coli W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting.
[10901 Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and used herein, such as Schizosaccharomyces pombe; Kluyveromyces hosts such as, e.g., K lactis, K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris. (EP 183,070); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa; Schwanniomyces such as Schwanniomyces occidentalis; and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts such as A. nidulans and A. niger.
[1091] In certain embodiments, a host cell strain is chosen for its ability to modulate the expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation. glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing that cleaves a "prepro" form of the protein is also used to facilitate correct insertion, folding and/or function. Different host cells such as CHO, COS, HeLa, MDCK, HEK293, and W138, which have specific cellular machinery and characteristic mechanisms for such post-translational activities, are chosen to ensure the correct modification and processing of the foreign protein.
[1092] Methods and reagents specifically adapted for the expression of antibodies or fragments thereof are also known and available in the art, including those described, e.g., in U.S. Patent Nos. 4816567 and 6331415. In various embodiments, antibody heavy and light chains, or fragments thereof, are expressed from the same or separate expression vectors. In one embodiment, both chains are expressed in the same cell, thereby facilitating the formation of a functional antibody or fragment thereof.
[1093] Full length antibody, antibody fragments, and antibody fusion proteins are produced in bacteria, in particular when glycosylation and FEc effector function are not needed, such as when the therapeutic antibody is conjugated to a cytotoxic agent (e.g., a toxin) and the immunoconjugate by itself shows effectiveness in infected cell destruction. For expression of antibody fragments and polypeptides in bacteria, see, e.g., U.S. Pat. Nos. 5,648,237, 5,789,199 , and 5,840,523, which describes translation initiation region (TIR) and signal sequences for optimizing expression and secretion. After expression, the antibody is isolated from the E. coli cell paste in a soluble fraction and can be purified through, e.g., a protein A or G column depending on the isotype. Final purification can be carried out using a process similar to that used for purifying antibody expressed e.g., in CHO cells.
[1094] Suitable host cells for the expression of glycosylated polypeptides and antibodies are derived from multicellular organisms. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopicius (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified. A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses are used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells. Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco are also utilized as hosts.
[1095] Methods of propagation of antibody polypeptides and fragments thereof in vertebrate cells in culture (tissue culture) are encompassed by the invention. Examples of mammalian host cell lines used in the methods of the invention are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod. 23:243 251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TR1 cells (Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).
[1096] Host cells are transformed with the above-described expression or cloning vectors for polypeptide production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
[1097] For long-term, high-yield production of recombinant proteins, stable expression is generally preferred. For example, cell lines that stably express a polynucleotide of interest are transformed using expression vectors that contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells are allowed to grow for 1-2 days in an enriched media before they are switched to selective media. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells that successfully express the introduced sequences. Resistant clones of stably transformed cells are proliferated using tissue culture techniques appropriate to the cell type.
[1098] A plurality of selection systems are used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler, M. et al. (1977) Cell 11:223-32) and adenine phosphoribosyltransferase (Lowy, I. et al. (1990) Cell 22:817-23) genes that are employed in tk- or aprt- cells, respectively. Also, antimetabolite, antibiotic or herbicide resistance is used as the basis for selection; for example, dhfr, which confers resistance to methotrexate (Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-70); npt, which confers resistance to the aminoglycosides, neomycin and G-418 (Colbere-Garapin, F. et al.(1981) J. Mol. Biol. 150:1-14); and als or pat, which confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Murry, supra). Additional selectable genes have been described. For example, trpB allows cells to utilize indole in place of tryptophan, and hisD allows cells to utilize histinol in place of histidine (Hartman, S. C. and R. C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-51). The use of visible markers has gained popularity with such markers as anthocyanins, beta-glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, being widely used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes, C. A. et al. (1995) Methods Mol. Biol. 55:121-131).
[1099] Although the presence/absence of marker gene expression suggests that the gene of interest is also present, its presence and expression is confirmed. For example, if the sequence encoding a polypeptide is inserted within a marker gene sequence, recombinant cells containing sequences are identified by the absence of marker gene function. Alternatively, a marker gene is placed in tandem with a polypeptide-encoding sequence under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
[1100] Alternatively, host cells that contain and express a desired polynucleotide sequence are identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations and protein bioassay or immunoassay techniques which include, for example, membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein.
[1101] A variety of protocols for detecting and measuring the expression of polynucleotide encoded products, using either polyclonal or monoclonal antibodies specific for the product are known in the art. Nonlimiting examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on a given polypeptide is preferred for some applications, but a competitive binding assay may also be employed. These and other assays are described, among other places, in Hampton, R. et al. (1990; Serological Methods, a Laboratory Manual, APS Press, St Paul. Minn.) and Maddox, D. E. et al. (1983; J. Exp. Med. 158:1211-1216).
[1102] Various labels and conjugation techniques are known by those skilled in the art and are used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides include oligolabeling, nick translation, end-labeling or PCR amplification using a labeled nucleotide. Alternatively, the sequences, or any portions thereof are cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and are used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures are conducted using a variety of commercially available kits. Suitable reporter molecules or labels, which are used include, but are not limited to, radionucleotides, enzymes, fluorescent, chemiluminescent, or chromogenic agents as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
[1103] The polypeptide produced by a recombinant cell is secreted or contained intracellularly depending on the sequence and/or the vector used. Expression vectors containing polynucleotides of the invention are designed to contain signal sequences that direct secretion of the encoded polypeptide through a prokaryotic or eukaryotic cell membrane.
[1104] In certain embodiments, a polypeptide of the invention is produced as a fusion polypeptide further including a polypeptide domain that facilitates purification of soluble proteins. Such purification-facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Amgen, Seattle, WA). The inclusion of cleavable linker sequences such as those specific for Factor XA or enterokinase (Invitrogen. San Diego, CA) between the purification domain and the encoded polypeptide are used to facilitate purification. An exemplary expression vector provides for expression of a fusion protein containing a polypeptide of interest and a nucleic acid encoding 6 histidine residues preceding a thioredoxin or an enterokinase cleavage site. The histidine residues facilitate purification on IMIAC (immobilized metal ion affinity chromatography) as described in Porath, J. et al. (1992, Prot. Exp. Purif. 3:263-281) while the enterokinase cleavage site provides a means for purifying the desired polypeptide from the fusion protein. A discussion of vectors used for producing fusion proteins is provided in Kroll, D. J. et al. (1993; DNA Cell Biol. 12:441-453).
[1105] In certain embodiments, a polypeptide of the present invention is fused with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. The heterologous signal sequence selected preferably is one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell. For prokaryotic host cells, the signal sequence is selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders. For yeast secretion, the signal sequence is selected from, e.g., the yeast invertase leader, factor leader (including Saccharomyces and Kluyveromyces factor leaders), or acid phosphatase leader, the C. albicans glucoamylase leader, or the signal described in WO 90/13646. In mammalian cell expression, mammalian signal sequences as well as viral secretory leaders, for example, the herpes simplex gD signal, are available.
[1106] When using recombinant techniques, the polypeptide or antibody is produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the polypeptide or antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et al., Bio/Technology 10:163-167 (1992) describe a procedure for isolating antibodies that are secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min. Cell debris is removed by centrifugation. Where the polypeptide or antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. Optionally, a protease inhibitor such as PMSF is included in any of the foregoing steps to inhibit proteolysis and antibiotics are included to prevent the growth of adventitious contaminants.
[1107] The polypeptide or antibody composition prepared from the cells are purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique. The suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the polypeptide or antibody. Protein A is used to purify antibodies or fragments thereof that are based on human YI, Y2, or y4 heavy chains (Lindmark et al., J. Immunol. Meth. 62:1-13 (1983)). Protein G is recommended for all mouse isotypes and for human 73 (Guss et al., EMBO J. 5:15671575 (1986)). The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the polypeptide or antibody comprises a CH 3 domain, the Bakerbond ABXTM resin (J. T. Baker, Phillipsburg, N.J.) is useful for purification. Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSETM chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the polypeptide or antibody to be recovered.
[1108] Following any preliminary purification step(s), the mixture comprising the polypeptide or antibody of interest and contaminants are subjected to low pH hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5-4.5, preferably performed at low salt concentrations (e.g., from about 0-0.25M salt).
[1109] The invention further includes pharmaceutical formulations including a polypeptide, antibody, or modulator of the present invention, at a desired degree of purity, and a pharmaceutically acceptable carrier, excipient, or stabilizer (Remingion's Pharmaceutical
Sciences 16th edition, Osol, A. Ed. (1980)). In certain embodiments, pharmaceutical formulations are prepared to enhance the stability of the polypeptide or antibody during storage, e.g., in the form of lyophilized formulations or aqueous solutions.
[1110] Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include, e.g., buffers such as acetate, Tris, phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; tonicifiers such as trehalose and sodium chloride; sugars such as sucrose, mannitol, trehalose or sorbitol; surfactant such as polysorbate; salt-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants such as TWEENTM, PLURONICSTM or polyethylene glycol (PEG). In certain embodiments, the therapeutic formulation preferably comprises the polypeptide or antibody at a concentration of between 5 200 mg/ml, preferably between 10-100 mg/ml.
[1111] The formulations herein also contain one or more additional therapeutic agents suitable for the treatment of the particular indication, e.g., infection being treated, or to prevent undesired side-effects. Preferably, the additional therapeutic agent has an activity complementary to the polypeptide or antibody of the resent invention, and the two do not adversely affect each other. For example, in addition to the polypeptide or antibody of the invention, an additional or second antibody, anti-viral agent, anti-infective agent and/or cardioprotectant is added to the formulation. Such molecules are suitably present in the pharmaceutical formulation in amounts that are effective for the purpose intended.
[1112] The active ingredients, e.g., polypeptides and antibodies of the invention and other therapeutic agents, are also entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin microcapsules and polymethylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remingion's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980).
[1113] Sustained-release preparations are prepared. Suitable examples of sustained-release preparations include, but are not limited to, semi-permeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Nonlimiting examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and y ethyl-L-glutamate, non degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOTTM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxyburyric acid.
[1114] Formulations to be used for in vivo administration are preferably sterile. This is readily accomplished by filtration through sterile filtration membranes.
[1115] Antibodies of the invention can be coupled to a drug for delivery to a treatment site or coupled to a detectable label to facilitate imaging of a site comprising cells of interest, such as cells infected with HIV. Methods for coupling antibodies to drugs and detectable labels are well known in the art, as are methods for imaging using detectable labels. Labeled antibodies may be employed in a wide variety of assays, employing a wide variety of labels. Detection of the formation of an antibody-antigen complex between an antibody of the invention and an epitope of interest (an HIV epitope) can be facilitated by attaching a detectable substance to the antibody. Suitable detection means include the use of labels such as radionucleotides, enzymes, coenzymes, fluorescers, chemiluminescers, chromogens, enzyme substrates or co-factors, enzyme inhibitors, prosthetic group complexes, free radicals, particles, dyes, and the like. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, 13 galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material is luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin; and examples of suitable radioactive material include 1I, 1I, . 35S, or 3H. Such labeled reagents may be used in a variety of well-known assays, such as radioimmunoassays, enzyme immunoassays, e.g., ELISA, fluorescent immunoassays, and the like.
[1116] The antibodies are tagged with such labels by known methods. For instance, coupling agents such as aldehydes, carbodiimides, dimaleimide, imidates, succinimides, bid-diazotized benzadine and the like are used to tag the antibodies with the above-described fluorescent, chemiluminescent, and enzyme labels. An enzyme is typically combined with an antibody using bridging molecules such as carbodiimides, periodate, diisocyanates, glutaraldehyde and the like. Various labeling techniques are described in Morrison, Methods in Enzymology 32b, 103 (1974), Syvanen et al., J. Biol. Chem. 284, 3762 (1973) and Bolton and Hunter, Biochem J. 133, 529(1973).
[1117] An antibody according to the invention may be conjugated to a therapeutic moiety such as a cytotoxin, a therapeutic agent, or a radioactive metal ion or radioisotope. Examples of radioisotopes include, but are not limited to, 1-131, 1-123, 1-125, Y-90, Re-188, Re-186, At-211, Cu-67, Bi-212, Bi-213, Pd-109, Tc-99, In-111, and the like. Such antibody conjugates can be used for modifying a given biological response; the drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin.
[1118] Techniques for conjugating such therapeutic moiety to antibodies are well known. See, for example, Amon et al. (1985) "Monoclonal Antibodies for Immunotargeting of Drugs in Cancer Therapy," in Monoclonal Antibodies and Cancer Therapy, ed. Reisfeld et al. (Alan R. Liss, Inc.), pp. 243-256; ed. Hellstrom et al. (1987) "Antibodies for Drug Delivery," in Controlled Drug Delivery, ed. Robinson et al. (2d ed; Marcel Dekker, Inc.), pp. 623-653; Thorpe (1985) "Antibody Carriers of Cytotoxic Agents in Cancer Therapy: A Review," in Monoclonal Antibodies '84: Biological and Clinical Applications, ed. Pinchera et al. pp. 475-506 (Editrice Kurtis, Milano, Italy, 1985); "Analysis, Results, and Future Prospective of the Therapeutic Use of Radiolabeled Antibody in Cancer Therapy," in Monoclonal Antibodies for Cancer Detection and Therapy, ed. Baldwin et al. (Academic Press, New York, 1985), pp. 303-316; and Thorpe et al. (1982) Immunol. Rev. 62:119-158.
[1119] Diagnostic methods generally involve contacting a biological sample obtained from a patient, such as, e.g., blood, serum, saliva, urine, sputum, a cell swab sample, or a tissue biopsy, with an HIV1 antibody and determining whether the antibody preferentially binds to the sample as compared to a control sample or predetermined cut-off value, thereby indicating the presence of infected cells. In particular embodiments, at least two-fold, three-fold, or five-fold more HIV1 antibody binds to an infected cell as compared to an appropriate control normal cell or tissue sample. A pre-determined cut-off value is determined, e.g., by averaging the amount of HIV1 antibody that binds to several different appropriate control samples under the same conditions used to perform the diagnostic assay of the biological sample being tested.
[1120] Bound antibody is detected using procedures described herein and known in the art. In certain embodiments, diagnostic methods of the invention are practiced using HIV1 antibodies that are conjugated to a detectable label, e.g., a fluorophore, to facilitate detection of bound antibody. However, they are also practiced using methods of secondary detection of the HIV1 antibody. These include, for example, RIA, ELISA, precipitation, agglutination, complement fixation and immuno-fluorescence.
[1121] HIVi antibodies of the present invention are capable of differentiating between patients with and patients without an HIV infection, and determining whether or not a patient has an infection, using the representative assays provided herein. According to one method, a biological sample is obtained from a patient suspected of having or known to have HIV1 infection. In preferred embodiments, the biological sample includes cells from the patient. The sample is contacted with an HIV1 antibody, e.g., for a time and under conditions sufficient to allow the HIV1 antibody to bind to infected cells present in the sample. For instance, the sample is contacted with an HIV1 antibody for 10 seconds, 30 seconds, 1 minute, 5 minutes, 10 minutes, minutes, 1 hour, 6 hours, 12 hours, 24 hours, 3 days or any point in between. The amount of bound HIV1 antibody is determined and compared to a control value, which may be, e.g., a pre determined value or a value determined from normal tissue sample. An increased amount of antibody bound to the patient sample as compared to the control sample is indicative of the presence of infected cells in the patient sample.
[1122] In a related method, a biological sample obtained from a patient is contacted with an HIV1 antibody for a time and under conditions sufficient to allow the antibody to bind to infected cells. Bound antibody is then detected, and the presence of bound antibody indicates that the sample contains infected cells. This embodiment is particularly useful when the HIV1 antibody does not bind normal cells at a detectable level.
[1123I Different HIV1 antibodies possess different binding and specificity characteristics. Depending upon these characteristics, particular HIV1 antibodies are used to detect the presence of one or more strains of HIV1. For example, certain antibodies bind specifically to only one or several strains of HIV1, whereas others bind to all or a majority of different strains of HIVI. Antibodies specific for only one strain of HIV1 are used to identify the strain of an infection.
[1124] In certain embodiments, antibodies that bind to an infected cell preferably generate a signal indicating the presence of an infection in at least about 20% of patients with the infection being detected, more preferably at least about 30% of patients. Alternatively, or in addition, the antibody generates a negative signal indicating the absence of the infection in at least about 90% of individuals without the infection being detected. Each antibody satisfies the above criteria; however, antibodies of the present invention are used in combination to improve sensitivity.
[1125] The present invention also includes kits useful in performing diagnostic and prognostic assays using the antibodies of the present invention. Kits of the invention include a suitable container comprising an HIV1 antibody of the invention in either labeled or unlabeled form. In addition, when the antibody is supplied in a labeled form suitable for an indirect binding assay, the kit further includes reagents for performing the appropriate indirect assay. For example, the kit includes one or more suitable containers including enzyme substrates or derivatizing agents, depending on the nature of the label. Control samples and/or instructions are also included.
[1126] Passive immunization has proven to be an effective and safe strategy for the prevention and treatment of viral diseases. (See Keller et al., Clin. Microbiol. Rev. 13:602-14 (2000); Casadevall, Nat. Biotechnol. 20:114 (2002); Shibata et al., Nat. Med. 5:204-10 (1999); and Igarashi et al., Nat. Med. 5:211-16 (1999), each of which are incorporated herein by reference)). Passive immunization using human monoclonal antibodies, provide an immediate treatment strategy for emergency prophylaxis and treatment of HIV 1.
[1127] HIV1 antibodies and fragments thereof, and therapeutic compositions, of the invention specifically bind or preferentially bind to infected cells, as compared to normal control uninfected cells and tissue. Thus, these HIV1 antibodies are used to selectively target infected cells or tissues in a patient, biological sample, or cell population. In light of the infection-specific binding properties of these antibodies, the present invention provides methods of regulating (e.g., inhibiting) the growth of infected cells, methods of killing infected cells, and methods of inducing apoptosis of infected cells. These methods include contacting an infected cell with an HIV1 antibody of the invention. These methods are practiced in vitro, ex vivo, and in vivo.
[1128] In various embodiments, antibodies of the invention are intrinsically therapeutically active. Alternatively, or in addition, antibodies of the invention are conjugated to a cytotoxic agent or growth inhibitory agent, e.g., a radioisotope or toxin that is used in treating infected cells bound or contacted by the antibody.
[1129] Subjects at risk for HIV1-related diseases or disorders include patients who have come into contact with an infected person or who have been exposed to HIV1 in some other way. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of HIV1 -related disease or disorder, such that a disease or disorder is prevented or, alternatively, delayed in its progression.
[1130] Methods for preventing an increase in HIV1 virus titer, virus replication, virus proliferation or an amount of an HIV1 viral protein in a subject are further provided. In one embodiment, a method includes administering to the subject an amount of an HIV1 antibody effective to prevent an increase in HIV1 titer, virus replication or an amount of an HIV1 protein of one or more HIV strains or isolates in the subject.
[1131] For in vivo treatment of human and non-human patients, the patient is usually administered or provided a pharmaceutical formulation including an HIV1 antibody of the invention. When used for in vivo therapy, the antibodies of the invention are administered to the patient in therapeutically effective amounts (i.e., amounts that eliminate or reduce the patient's viral burden). The antibodies are administered to a human patient, in accord with known methods, such as intravenous administration, e.g., as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerobrospinal, subcutaneous, intra articular, intrasynovial, intrathecal, oral, topical, or inhalation routes. The antibodies may be administered parenterally, when possible, at the target cell site, or intravenously. Intravenous or subcutaneous administration of the antibody is preferred in certain embodiments. Therapeutic compositions of the invention are administered to a patient or subject systemically, parenterally, or locally.
[1132] For parenteral administration, the antibodies are formulated in a unit dosage injectable form (solution, suspension, emulsion) in association with a pharmaceutically acceptable, parenteral vehicle. Examples of such vehicles are water, saline, Ringer's solution, dextrose solution, and 5% human serum albumin. Nonaqueous vehicles such as fixed oils and ethyl oleate are also used. Liposomes are used as carriers. The vehicle contains minor amounts of additives such as substances that enhance isotonicity and chemical stability, e.g., buffers and preservatives. The antibodies are typically formulated in such vehicles at concentrations of about 1 mg/ml to 10 mg/ml.
[1133] The dose and dosage regimen depends upon a variety of factors readily determined by a physician, such as the nature of the infection and the characteristics of the particular cytotoxic agent or growth inhibitory agent conjugated to the antibody (when used), e.g., its therapeutic index, the patient, and the patient's history. Generally, a therapeutically effective amount of an antibody is administered to a patient. In particular embodiments, the amount of antibody administered is in the range of about 0.1 mg/kg to about 50 mg/kg of patient body weight. Depending on the type and severity of the infection, about 0.1 mg/kg to about 50 mg/kg body weight (e.g., about 0.1-15 mg/kg/dose) of antibody is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. The progress of this therapy is readily monitored by conventional methods and assays and based on criteria known to the physician or other persons of skill in the art.
[1134] In one particular embodiment, an immunoconjugate including the antibody conjugated with a cytotoxic agent is administered to the patient. Preferably, the immunoconjugate is internalized by the cell, resulting in increased therapeutic efficacy of the immunoconjugate in killing the cell to which it binds. In one embodiment, the cytotoxic agent targets or interferes with the nucleic acid in the infected cell. Examples of such cytotoxic agents are described above and include, but are not limited to, maytansinoids, calicheamicins, ribonucleases and DNA endonucleases.
[1135] Other therapeutic regimens are combined with the administration of the HIV1 antibody of the present invention. The combined administration includes co-administration, using separate formulations or a single pharmaceutical formulation, and consecutive administration in either order, wherein preferably there is a time period while both (or all) active agents simultaneously exert their biological activities. Preferably such combined therapy results in a synergistic therapeutic effect.
[11361 In certain embodiments, it is desirable to combine administration of an antibody of the invention with another antibody directed against another antigen associated with the infectious agent.
[1137] Aside from administration of the antibody protein to the patient, the invention provides methods of administration of the antibody by gene therapy. Such administration of nucleic acid encoding the antibody is encompassed by the expression "administering a therapeutically effective amount of an antibody". See, for example, PCT Patent Application Publication W096/07321 concerning the use of gene therapy to generate intracellular antibodies.
[1138] In another embodiment, anti- HIV1 antibodies of the invention are used to determine the structure of bound antigen, e.g., conformational epitopes, the structure of which is then used to develop a vaccine having or mimicking this structure, e.g., through chemical modeling and SAR methods. Such a vaccine could then be used to prevent HIV1 infection.
[0996] Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined in the appended claims.
[00106] The present invention will be further illustrated in the following Examples which are given for illustration purposes only and are not intended to limit the invention in any way.
EXAMPLES
Example 1: Selection of patient sample
[1000] Serum from approximately 1,800 HIV-1 infected donors from Asia, Australia, Europe, North America and sub-Saharan African countries were screened for neutralization activity and donors who exhibit among the broadest and most potent neutralizing serum activity observed to date were identified. (Simek, M.D., J Virol (2009)). Monoclonal antibodies were generated from these donors using different approaches.
[1001] A patient was selected based upon the patient's eligibility for enrollment, which was defined as: male or female at least 18 years of age with documented HIV infection for at least three years, clinically asymptomatic at the time of enrollment, and not currently receiving antiretroviral therapy. (Simek, M.D., J Virol (2009 Jul) 83(14):7337-48). Selection of individuals for monoclonal antibody generation was based on a rank-order high throughput analytical screening algorithm. The volunteer was identified as an individual with broad neutralizing serum based on broad and potent neutralizing activity against a cross-clade pseudovirus panel.
[1002] A novel high-throughput strategy was used to screen IgG-containing culture supernatants from approximately 30,000 activated memory B cells from a clade A infected donor for recombinant, monomeric gp120JR-CSF and gp41'HxB2 (Env) binding as well as neutralization activity against HIV-1JR-CSF and HIV-1SF162 as shown in Table 1. The memory B cells were
cultured at near clonal density such that the authentic antibody heavy and light chain pair could be reconstituted from each culture well.
Example 2: Generationof Monoclonal Antibodies
[1003] The human monoclonal antibody discovery platform utilized a short term B cell culture system to interrogate the memory B cell repertoire. 30,300 CD19* and surface IgG expressing memory B cells were isolated from ten million peripheral blood mononuclear cells (PBMC) of the HIV-1 infected donor. CD19*/sIgG4 B cells were then seeded in 384-well microtiter plates at an average of 1.3 cells/well under conditions that promoted B cell activation, proliferation, terminal differentiation and antibody secretion. Culture supernatants were screened in a high throughput format for binding reactivity to recombinant gp120 and gp4l indirectly and directly immobilized on ELISA plates, respectively. In parallel, the culture supernatants were also screened for neutralization activity in a high throughput micro-neutralization assay.
[1004] Heavy and light variable regions were isolated from lysates of selected neutralizing hits by RT-PCR amplification using family-specific primer sets. From positive family-specific PCR reactions, pools of the VH or VL-region clones were cloned into an expression vector upstream to human IgG1 constant domain sequence. Minipreps (QIAGEN, Valencia, CA) of these DNA pools, derived from suspension bacterial cultures, were combined in all possible heavy and light chain family-specific pairs and used to transiently transfect 293 cells. All transfectant supernatants containing secreted recombinant antibodies were screened in ELISA and neutralization assays. For B-cell wells that contained more than one B cell clone per culture well, multiple VH and VL domain sequences were isolated. ELISA (for B-cell wells positive for ELISA) and neutralization screens identified the heavy and light chain combination pools that reconstituted the binding and neutralizing activity as observed for the B-cell well. DNA sequences of the heavy and light chain variable regions for all neutralizing mAbs were confirmed by multiple sequencing reactions using purified DNA from maxipreps (QIAGEN).
Example 3: Screening of Monoclonal Antibodies for Binding to Recombinantgp120 and gp4J by ELISA assay
[1005] Recombinant gpl20 with sequence derived from gpl20 of primary HIV-1 isolate JR CSF and expressed in insect cells was obtained from JAVI NAC repository. Recombinant gp4l generated with sequences derived from HxB2 clone of HIV- 1 and expressed in Pichiapastoris was manufactured by Vybion, Inc., obtained from JAVI NAC repository Sheep anti-gpl20 antibodies used as capturing agent to indirectly immobilize gpl20 on ELISA plates was purchased from Aalto Bio Reagents (Dublin, Ireland). All ELISA assays were conducted at 25 pL/well on MaxiSorp plates from Nunc.
[1006] In anti-gpl20 ELISA, recombinant gpl20 (0.5 Vg/ml) was captured on 384 well ELISA plates pre-coated (at 40 C overnight) with goat anti-gpl20 (5 g/ml) in BSA-containing assay buffer (PBS with 0.05% Tween-20) for 1 hr at room temperature. After excess gpl20 was removed and plates were washed thrice with assay buffer, B cell culture supernatants diluted 5 fold was added to incubate for 1 hr at room temperature. Following three washes in assay buffer, secondary HRP-conjugated goat anti-human Ig Fc in BSA-containing assay buffer was added and incubated for about 1 hr at room temperature. 3,3',5,5'-tetramethylbenzidine (TMB) substrate was used to develop the colorimetric readouts after washing the ELISA plates 3 times.
[1007] For anti-gp4l ELISA, recombinant gp4l was directly immobilized on 384 well ELISA plates by adding 1 pg/ml and incubating at 4' C overnight, followed by blocking with BSA-containing assay buffer. The rest of the assay protocol was similar to that for anti-gpl20 ELISA.
[1008] Hits from the ELISA assay were identified in a singlet screen based on optical density (OD) values above 3x assay background. A serial titration standard curve of control antibody was included on each plate.
Example 4: NeutralizationAssay for Screening Antibodies againstPseudotypedHIV Viruses
[1009] The neutralization assay approach has been described previously (Binley JM, et al., (2004). Comprehensive Cross-Clade Neutralization Analysis of a Panel of Anti-Human Immunodeficiency Virus Type 1 Monoclonal Antibodies. J. Virol. 78: 13232-13252) and was modified and standardized for implementation in 384-well format.
[1010] Neutralization by monoclonal antibodies and patient sera was performed using a single round of replication pseudovirus assay. (Richman, D.D., et al. Proc Natl Acad Sci USA
100, 4144-4149 (2003)). Pseudovirus neutralization assays were performed using HIV-lJR-CSF alanine mutants as described in Pantophlet, R., et al. J Virol 77, 642-658 (2003). Neutralization activity was measured as a reduction in viral infectivity compared to an antibody-free control using a TZM-BL assay. (Li, M., et al.. J Virol 79, 10108-10125 (2005)). Monoclonal antibody neutralization assays using phytohaemgglutinin-activated peripheral blood mononuclear cells (PBMC) isolated from three healthy human donors as target cells were performed as described in Scarlatti, G. et al, (1993) J. Infect. Dis. 168:207-210; Polonis, V. et al, (2001) AIDS Res. Hum. Retroviruses 17:69-79. Memory B cell supernatants were screened in a micro-neutralization assay against HIV-1SF1 62 , HIV-lJR-CSF, and SIVmac239 (negative control). This assay was based on the 96-well pseudotyped HIV-1 neutralization assay (Monogram Biosciences) and was modified for screening 15 pl B cell culture supernatants in a 384-well format.
[1011] Pseudotyped virus from SF162 and JR-CSF isolates of HIV-1 and SIV mac239 (control virus) were generated by co-transfecting Human Embryonic Kidney 293 cells (293 cells) with 2 plasmids encoding the Envelope cDNA sequence and the rest of the HIV genome separately. In the HIV genome encoding vector, the Env gene was replaced by the firefly luciferase gene. Transfectant supernatants containing pseudotyped virus were co-incubated overnight (18 hours) with B cell supernatants derived from activation of an infected donor's primary peripheral blood mononuclear cells (PBMCs). U87 cells stably transfected with and expressing CD4 plus the CCR5 and CXCR4 coreceptors were added to the mixture and incubated for 3 days at 37' C. Infected cells were quantified by luminometry. SIVmac239 was used as the negative control virus.
[10121 The neutralization index was expressed as the ratio of normalized relative luminescence units (RLU) of the test viral strain to that of the control virus SIVmac239 derived from the same test B cell culture supernatant. The cut-off values used to distinguish neutralizing hits were determined by the neutralization index of a large number of "negative control wells" containing B cell culture supernatants derived from healthy donors. The false positive rate using the cut-off value of 1.5 was very low (1-3%; Figure 5A), and it was reduced to zero if the cut-off value of 2.0 was used (Figure 5B).
[1013] Figure 5 summarizes the screening results from which B cell cultures were selected for antibody rescue and the monoclonal antibodies 1496_C09 (PG9), 1443_C16 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), and 1495_C14 (PGC14) were derived. The results reveal that the majority of neutralizing B cell culture supernatants did not have binding reactivity to soluble recombinant gpl20 or gp4l proteins.
[1014] Table 15 shows the screening results of the monoclonal antibodies 1496_C09 (PG9), 1443_C16 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), and 1495_C14 (PGC14) during the course of their identification in the method described in this invention. The neutralization activity of each antibody and its corresponding binding reactivity to soluble recombinant gp120 or gp 4 1, in the context of B cell culture supernatant and recombinant transfectant supernatants are illustrated.
N N4 N N N . N
. .. .. .... .. .. 2 2. . . : I
2 ~~~ ~~~ ~~~~ g,0N 0 0 0 - 0T 0 0 . ... ......... ... NX' 0 0 0 .. X ..... .. .. . .. .. . .. . 6.6. 6. .. .. .. . .. . .. ... .. .6.6.6. ...........
... .. . .. . .. . .. . .. . .
~31
* ~ 0 900 o
,C 00000--.
a
2) o 0 C dcr
~U -z 0 00 0
C de O :3 )
CL 0 CL C)
4-C ON e O :Q
CLe
-0 E U a/)
.7 m E U U 't E c 0a) - -n ~0c c -o
./ ~-~oEb 0 4 -- 90 D- o
a d i*Z nU n o ao
-C:31U
D u -c 0
-Do a C CA
31C
[10151 The purified monoclonal antibodies 1496_C09 (PG9), 1443_C16 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), and 1495_C14 (PGC14) were tested for neutralization of 6 additional HIV strains from clades A (94UG103), B (92BR020, JR-CSF), C (931N905, IAVIC22), and CRF01_AE (92TH021) (Table 16). The antibodies 1496_C09 (PG9), 1443_C16 (PG16) and 1495_C14 (PGC14) showed neutralization profile similar to that obtained with the donor sera neutralization profile. The pseudoviruses were preincubated with each monoclonal antibody for 1 hour or 18 hours prior to the infection of target cells. IC50 values derived from 1 or 18 hours preincubation were similar. Therefore, in further neutralization assays testing purified monoclonal antibodies, 1 hour of preincubation was used.
[1016] Table 17A shows the neutralization profiles for the 5 monoclonal antibodies 1496_C09 (PG9), 1443_C16 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), and 1495_C14 (PGC14) in IC50 values on an extended panel of 16 pseudoviruses, together with known cross clade neutralizing antibodies b12, 2G12, 2F5 and 4E10.
[1017] Table 17B shows the IC 90 of two monoclonal antibodies, 1443C16 (PG16) and 1496C09 (PG9) on the same expanded diverse panel of 16 HIV pseudoviruses from different clades, together with known cross-clade neutralizing antibodies b12, 2G12, 2F5 and 4E10. Figure 4 shows neutralization activity of monoclonal antibodies 1443C16 (PG16) and 1496C09 (PG9) to 3 other pseudoviruses not included in Table 16. Table 16. Neutralizing Antibody Assay: IC50 Summary
IC50 (gimL) Except Where Noted
sSF2 940J103 92BR20 31lNN5 IA C22 92TH21 JRCSF N43 aMLV
Iahour 4U 6 5C >5 GI50 1I hour 1443e 5 0 >513 50E0 >5,
18,hour 1466P20 50 >50 US >D 5 -5. I hoUr 146-K- '5 0 0 > 50 >D P -5K '18 ham Ur G14 >50 >5'5 S 50 >5-3
19 hour 149K 5C4 15 S 50 :5K hour 14969 >5 >50 >
I Hour Z-23 1Vdlii <1..... 1 1 hOem Z23 (i dfn)b10
" flat Mimnt curve - probably <0U025 with Platsau -IVey 1 ng. Rhalow 0pe "'plateaus with Very lng, 1afowi ope to cume
Table 17A. Neutralization Profile on a Diverse Panel of Viruses: IC50 Values PG9 PG16 PGC14 PGG14 PG20 b12 2G12 2F5 4E10 94UG103 >50 >50 >50 & = >50 Clade A 2 2... 5 >5 93UG077 >5 50 >50 >50 >50 >50 92BRO20 >0 >50 $$ >50 >50 )>50 APV-13 >0 >50 >50 >50 >50 >25 Clade B APV-17 50 >50 >50 >50 >25 >50
93|N905 >50 >50 >05
Ps C IAVI-C18 >50 >505 Ca e a>50 MAvi-C22 >0 50:>50 1AVI-03 50 >50 >5050>5 CaeD 92UG024 >50 >50 >50 >50 i 92UGOOS >50 >50 >50 >50 >50 >50 1 >50 CR0 E 92TH021 >50 >50 >50 >50 -- CMU02 >50 >50 >50 >50 >50 >50
Neg C aMLV >50 >50 >50 >50 >50 >50 1>50 1 >50 >50
NA - Not Applicable IC50 : Inhibitory concentration to inhibit 50% of the virus
Chide C>50>5 Table 17B. Neutralization Profile on a Diverse Panel of Viruses: IC90 Values for mAbs ChdeCF PG9 and PG16. xf50 >OU~S5 >5
PIG9 PG16 M2 2G12 2F5 4E10
Clade A 31350 92BR.2 >WS >05 >50 APV-43 >Z,0: ,& NEG0 WA NA NWA CdeB APV-17 50o >G aN/wMA >50 NMA NRA
AP-C3 >M 0 513 >IA NA N.-,A
Cla..de D " kA2-G.05 >50: >0 0 >5q0 >5_0&>00
Pos C N4 -,SA >150 >&O@ R
Nog C aMLV -50; A 60 >!R0 -R" >6
NA - Not Applicable IC90: Inhibitory concentration to inhibit 90% of the virus ***Plateau effect
Example 5: Binding Specificity of Monoclonal Antibodies for HIV gp]20 by ELISA assay
[1018] The purified anti-gp120 monoclonal antibodies, 1456_P20 (PG20), 1460_G14 (PGG14), and 1495_C14 (PGC14), were confirmed for binding reactivity to gp120 in ELISA assays. When titrated in serial dilutions, all three antibodies exhibited similar binding profiles that suggest significantly higher relative avidity than control anti-gp120 (bl2). MAb b12 is directed against an epitope overlapping the CD4 binding site. (Burton DR et al. 1994. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266:1024-1027).
[1019] Figure 5 shows dose response curves of 1456P20 (PG20), 1460_G14 (PGG14), and 1495_C14 (PGC14) binding to recombinant gp120 in ELISA as compared to control anti-gp120 (bl2). Data shown represented average OD values of triplicate ELISA wells obtained on the same plate.
[1020] The monoclonal antibodies 1443_C16 (PG16) and 1496_C09 (PG9) were tested for binding to soluble recombinant envelope proteins derived from several HIV strains in ELISA assay. ELISA assays were performed as described in Pantophlet, R., et al. J Virol 77, 642-658 (2003). For antigen binding ELISAs, serial dilutions of PG9 were added to antigen coated wells and binding was probed with alkaline phosphatase-conjugated goat anti-human immunoglobulin G (IgG) F(ab')2 Ab (Pierce). For competition ELISAs, competitor mAbs were added to ELISA wells and incubated for 15 min prior to adding 15 pg/mL biotinylated PG9 to each well. Biotinylated PG9 was detected using alkaline phosphatase conjugated streptavidin (Pierce) and visualized using p-nitrophenol phosphate substrate (Sigma). HIV-HXB2 gp120 was used for competition ELISA assays.
[1021] Figure 6 shows results from ELISA binding assays of monoclonal antibodies 1443C16 (PG16) and 1496_C09 (PG9) to HIV-1 YU2 gp140, JR-CSFgp120, membrane proximal external regions (MPER) peptide of gp 4 l and V3 polypeptide. Specificity of the monoclonal antibodies 1443_C16 (PG16) and 1496_C09 (PG9) for gpl20 was then confirmed, but it was noted that the binding to soluble envelope glycoprotein was weak.
Example 6: Binding reactivity of monoclonal antibodies 1443_C16 (PG16) and 1496_C09 (PG9) to envelope proteins expressed on transfected cell surface and competition by soluble CD4 (sCD4).
[1022] MAb cell binding assays were performed as described in Pancera, M. & Wyatt, R. Virology 332, 145-156 (2005). Titrating amounts of PG9 and PG16 were added to HIV-1 Env transfected 293T cells, incubated for 1 hr at 4'C, washed with FACS buffer, and stained with goat anti-human IgG F(ab') 2 conjugated to phycoerythin. For competition assays, competitor antibodies were added to the cells 15 min prior to adding 0.1 [Ig/mL biotinylated PG9 or PG16. For sCD4 inhibition assays, 40 [lg/mL sCD4 was added to the cells and incubated for 1 h at 4'C prior to adding titrating amounts of antibodies. Binding was analyzed using flow cytometry, and binding curves were generated by plotting the mean fluorescence intensity of antigen binding as a function of antibody concentration.
[10231 Ninety-six-well ELISA plates were coated overnight at 4'C with 50 pL PBS containing 100 ng gp120 or gp140 per well. The wells were washed four times with PBS containing 0.025% Tween 20 and blocked with 3% BSA at room temperature for 1 h. Serial dilutions of PG9 were added to antigen coated wells, incubated for 1 h at room temperature, and washed 4x with PBS supplemented with 0.025% Tween 20. Binding was probed with alkaline phosphatase-conjugated goat anti-human immunoglobulin G (IgG) F(ab')2 Ab (Pierce) diluted 1:1000 in PBS containing 1% BSA and 0.025% Tween 20. The plate was incubated at room temperature for 1 h, washed four times, and the plate was developed by adding 50 PL of alkaline phosphatase substrate (Sigma) to 5 mL alkaline phosphatase staining buffer (pH 9.8), according to the manufacturer's instructions. The optical density at 405 nm was read on a microplate reader (Molecular Devices). For competition ELISAs, competitor mAbs were added to gp120HxB2 or gp140yu2 coated ELISA wells and incubated for 15 min prior to adding 15 Vg/mL biotinylated PG9 to each well. Biotinylated PG9 was detected using alkaline phosphatase conjugated streptavidin (Pierce) and visualized using p-nitrophenol phosphate substrate (Sigma). For sCD4 inhibition ELISAs, 5 pg/mL sCD4 was added to antigen-coated wells and incubated for 15 min at room temperature prior to adding titrating amounts of PG9. A FACSArrayTM plate reader (BD Biosciences, San Jose, CA) was used for flow cytometric analysis and FlowJoTM software was used for data interpretation.
[1024] HIV gpl60 derived from YU2 was transfected in 293 cells. Binding of monoclonal antibodies 1443_C16 (PG16) and 1496_C09 (PG9) were detected in transfected cells (Figure 7).
The preincubation of transfected cells with soluble CD4 (sCD4) partially inhibited binding of monoclonal antibody for 1496_C09 (PG9), and for 1443C16 (PG16) suggesting that antibody binding is effected by the presence of sCD4. Binding is inhibited by at least 15%, at least 20%, at least 25%, or at least 30%. Binding of monoclonal antibodies 1443C16 (PG16) and 1496_C09 (PG9) to 293 cells transfected with gp160 derived from JR-CSF and ADA strains was also detected (Figure 8). The binding of both monoclonal antibodies 1443C16 (PG16) and 1496C09 (PG9) to JR-CSF transfected cells was blocked by sCD4. Results further confirm that binding activities of monoclonal antibodies 1443_C16 (PG16) and 1496_C09 (PG9) are affected by the presence of sCD4.
Example 7: Binding reactivity of monoclonal antibodies1443_C16 (PG16) and 1496_C09 (PG9) to pseudoviruses.
[1025] In vitro virus capture assay was used to test if monoclonal antibodies 1443_C16 (PG16) and 1496_C09 (PG9) bind to intact entry competent pseudoviruses. The monoclonal antibodies 1443C16 (PG16) and 1496_C09 (PG9) were coated at the bottom of 96-well plate via anti-human Fc. JR-CSF pseudovirus was added and captured by the monoclonal antibody 1443_C16 (PG16) or 1496C09 (PG9) in a dose dependent manner. Target cells were added to initiate infection. Infection measured in RLU then represented the binding and capture activity of monoclonal antibodies 1443_C16 (PG16) and 1496C09 (PG9). Figure 9 shows the binding and capture of JR-CSF pseudovirus by both monoclonal antibodies 1443C16 (PG16) and 1496C09 (PG9) in a dose dependent manner, which is similar or better than another known broad and potent neutralizing antibody 2G12.
Example 8: Monoclonal antibodies 1443_C16 (PG16) and 1496_C09 (PG9) cross-compete with each other and with sCD4 in binding to JR-CSF pseudovirus.
[1026] In a competition version of virus capture assay where JR-CSF pseudovirus was captured by monoclonal antibodies 1443_C16 (PG16), competition of the capture by either monoclonal antibodies 1443_C16 (PG16), 1496_C09 (PG9) and sCD4 was measured. Figure B shows that binding of monoclonal antibody 1443C16 (PG16) to JR-CSF pseudovirus was blocked by itself, monoclonal antibody 1496C09 (PG9) and sCD4 in a dose dependent manner. In a corresponding manner, Figure 10B shows that binding of monoclonal antibody 1496_C09 (PG9) to JR-CSF pseudovirus was blocked by itself, monoclonal antibody 1443C16 (PG16) and sCD4 in a dose dependent manner. Results indicated that the monoclonal antibodies 1443_C16
(PG16) and 1496_C09 (PG9) bind to closely related epitopes on gp120 and their binding is affected by the presence of sCD4 presumably due to conformational changes induced on HIV-1 envelope by sCD4.
Example 9: Antigen bindingpropertiesof PG9 and PGJ6.
[1027] Antigen binding properties of PG9 and PG16 were determined by ELISA assays as shown in Figure 1lA-B. Binding of PG9 and PG16 to monomeric gp120 and artificially trimerized gp140 constructs were determined (Fig 11A). Binding of PG9 and PG16 to Env expressed on the surface of 293T cells as determined by flow cytometry. (Fig. 11B). b12 was used as a control for ELISA assays. The bNAb b12 and the non-neutralizing antibody b6 were included in the cell surface binding assays to show the expected percentages of cleaved and uncleaved Env expressed on the cell surface.
Example 10: Binding of PG9 and PGJ6to cleavage-defective HIV-iyu2 trimers.
[1028] Binding of PG9 and PG16 to cleavage-defective HIV-lyu 2 trimers was determined by flow cytometry. PG9 and PG16 bind with high affinity to cleavage-defective HIV-lyu 2 trimers as shown in Figure 12. Binding curves were generated by plotting the mean fluorescence intensity (MFI) of antigen binding as a function of antibody concentration.
Example 11: Mapping the PG9 and PG16 epitopes.
[1029] Mapping the epitopes of PG9 and PG16 epitopes was performed by a competitive binding assay as shown in Figure 13. PG9 and PG16 competed with each other for cell surface Env binding and neither antibody competed with the CD4bs antibody b12 for Env binding. Competitor antibody is indicated at the top of each graph. (Fig. 13A). Ligation of cell surface Env with sCD4 diminished binding of PG9 and PG16. 2G12 was included to control for CD4 induced shedding of gp120. (Fig. 13B). sCD4 inhibited binding of PG9 to artificially trimerized gp140JR-CSF as determined by ELISA. (Fig. 13C). PG9 competed with 10/76b (anti-V2), F425/b4e8 (anti-V3) and X5 (CD4i) for gp120 binding in competition ELISA assays. (Fig. 13D). PG9 and PG16 failed to bind variable loop deleted HIV- 1JR-CSF variants expressed on the surface of 293T cells. 2G12 was included to control for cell surface Env expression. (Fig. 13E).
Example 12: Competition ELISA assays using PG9.
[1030] When competition ELISA assays using PG9 were performed, PG9 competed with c108g (anti-V2) and partially competed with 17b (CD4i). No competition was observed with A32 (anti-C1/C2/C4/CD4i), ClI (Cl), 2G12 (glycan shield), b6 (CD4bs), b3 (CD4bs) or 23b (C1/C5) for gp120HxB2 binding as shown in Figure 14.
Example 13: Binding of PG9 and PGJ6 to HIV-IJR-FL El 68K.
[1031] Antibody binding to HIV-1JR-FLACT E168K Env expressed on the surface of 293T cells as determined by flow cytometry is shown in Figure 15. A cytoplasmic tail deleted construct was used to increase cell surface expression. The bNAb b12 and the non-neutralizing antibody b6 were included in the cell surface binding assays to show the expected percentages of cleaved and uncleaved Env expressed on the cell surface. (Pancera M., et al. Virology 332:145 (2005). HIV-1JR-FL E168K was generated by site-directed mutagenesis. Binding curves were generated by plotting the MFI of antigen binding as a function of antibody concentration.
Example 14: PG9 binding to deglycosylated gp120.
[1032] gp1 2 0DU422 was treated with 40 mU/pg Endoglycosidase H (Endo H, New England Biolabs) in sodium acetate buffer for 24 hr at 37 'C. Mock treated gpl20 was treated under same conditions, but the enzyme was omitted from the reaction. Binding of PG9 and b6 to EndoH treated and mock treated gp120 was determined by ELISA as shown in Figure 16.
Example 15: Neutralization activity againstHIV-i SF162 K160N
[1033] Neutralization activity of PG9 and PG16 against HIV-1SF16 2 and HIV-1SF162 K160N was determined using a single-round replication luciferase reporter assay of pseudotyped virus. HIV-1SF162 KJ6ON was generated by site-directed mutagenesis as shown in Figure 17.
Example 16: Binding of PG9 and PG16 to mixed trimers
[1034] Alanine substitutions at positions 160 and 299 were introduced into HIV-1yu2 Env to abolish binding of PG9 and PG16. An alanine substitution at position 295 was also introduced into the same construct to abrogate binding of 2G12. Co-transfection of 293T cells with WT and mutant plasmids in a 1:2 ratio resulted in the expression of 29% mutant homotrimers, 44% heterotrimers with two mutant subunits, 23% heterotrimers with one mutant subunit, and 4% wild-type homotrimers. These proportions were calculated using the formula described in Yang,
X., Kurteva, S., Lee, S., and J. Sodroski, J Virol 79(6):3500-3508 (Mar 2005), and assumes that mutant and wild-type gp120s mix randomly to form trimers. Binding of mAbs to Env trimers was determined by flow cytometry as shown in Figure 18. b12 was included as control for Env cell surface expression.
Example 17: PG9 or PG16 neutralizationactivity on HIV with alanine mutations within gpl20.
[1035] Alanine mutations within gp120 of HIV decrease PG9 or PG16 neutralization activity as shown in Table 21. In the table, amino acid numbering is based on the sequence of HIV-lHxB2 Boxes are color coded as follows: white, the amino acid is identical among 0 to 49% of all HIV 1 isolates; light grey, the amino acid is identical among 50 to 90% of isolates; dark grey, the amino acid is identical among 90 to 100% of isolates. Amino acid identity was determined based on a sequence alignment of HIV-1 isolates listed in the HIV sequence database at hiv web.lanl.gov/content/hiv-db/mainpage.html. C refers to constant domains and V refers to variable loops. Neutralization activity is reported as fold increase in IC50 value relative to WT JR-CSF and was calculated using the equation (IC50 mutant / IC5 WT). Boxes are color coded as follows: white, substitutions which had a negative effect on neutralization activity; light grey, 4 9 fold IC50 increase; medium grey, 10 - 100 fold IC5 o increase; dark grey, >100 fold IC5 o increase. Experiments were performed in triplicate and values represent an average of at least three independent experiments.
Table 18A
Ckad.g V:I.ru., ICSO IC50 (14N-I., n:.)b bI.2 2GI2 2F5 E10 PGS PG-46 PG-,CA4 Dot -or Serum: MGIRM-A-031 >50 >50 -150 > M R-M-A-M >50 .-650 >50 4 ............... MUIRMA-00. %-50 .37 5 4 2Q 15KUI I'DO .50 >50 -100 SU.. ........... .................. ..... .. ................. MORMA-005 .0.1,6.-.4 w 5n.7 I 4"f",-e KJAI t 7.:k MG ................ ............................................. MORN A-01:0 > I :VAGAV wb W UIRMA-0 I 1 4 C %150 >50 2,t A(j't MORM-A-01 2 5.,'3 >50 2..,33 412, MUIRM -A-0 13 7 f-)4 cm-5,5 1,41.-, YGRM -01-4 1.74 tm k.:.WTW,,:F .:D.** A: --a, a'4UGLIG'. 1.91 4 92RWO20 >50 4,54- 282 ZY11,
93RW@29 ';xS >50' 1K 25i 92RWO09 >50 ................... 52UGG31. 'K31 4 3 Ci 9 25R 9 A,2RWO26: YSO 6.S3 A , 364 ...... ....... a2UGG37 92RWOOS 9-4t 92RVY021' 3k 01",* , .................. 'VLGC A-i >550 >11 f 4,511 ... .. .5 ............ .....................17 .- TOM M,,,. 75D 7-5c" I "T22 &U
Table 18B
(lade MUMrs rn&0 §G0 tso I' b12 2G12 2F5 4EIG PGS PG1 6 PG&1 4 fhnor Ser-um 9,535_3{AISe 13 2 613 1)f A; M6 322f :iut9 11 40 50 &3 A2P fl N f.5 >150, 16 P10.4 iAcu'.P >All U8 w'5a ,W,A .1 54 5 TRKMlI 'Actft& >0f 0 120.3tL >50 222 GAAN.,A2:fAc,_te k >AM NO s, W ~ 3 6.3 >. T 50 -loci ThRC,. I fAetfle S12 >51 0 !6S FVJK f34 ::5ll(' ON
B' B:R . 0 t 12? 140 -,. nO 4_ P
AFV 13 >1L iW321,73>0 5 s! .6
Table 18C
-Clide v Ic
776M-77=77 b12 -1GI 7; 7 :727yls L ru z":IjS-61i Fuz >Ra i: " FGC,:,4 = GIN 777te'rum 7 TA NVGRI,I-C: -06 .4 4Jq C I LS :zSO MIGRIUILC: -00f MiGRM-C-06 ,0 _'-4 4S ... ...... ... .. ..... .. .. .. .. ... . Ty MGRAf-C-Off &ft- :T-11
I'MR-M-C-0.12 ISGR-M-C-013 :-ASS >so FAM:Z2..Tj 1 >F j -0 11GRII-C-014 :zr-SO "'S*
XICMM-C-011 7 . ... . ......... 11GRA-1-CABO :-54 >50 M: 77T- -77T
XMR3A-C-Oil .: ......... ..... .......... .......... .. ...............
MMRIAM. A XIGKIS-C' -024 4M It dGI-C- a2... ':'M U LNIP ,F, "!Ip I "i L 23 ...................... ... .............................. IANY: FO 7 A.U' C-12 --f'! "f' 4, Wt ............. .......
SIS 191 11-:17777 Bc 7 T- HE 7H 4' 16
Table 18D
Glade VMrS 105 .sgrn IC5C d(DwkTj
D1 2G12t'61 2FS 4ECl 4A15 3fl6 CI4Dno eu
MGW N 1%.i, 7 >0 aC0 A"t * ms,&ID ,0. >.5 - j 2A
MO M 0 >5 2.0 f E '5
MGM-D-05 >523
Table 18E
bi2 2G12 2F% 4E-V0 PG9 PG16 PGC14 Donor Serumi RGRM-AE-0,1 I w TM 2 3 2 9 7 33 3 <0 RIGRMAE497 . : ..5.3.3.2.A.5.6.3
lGRM-AE-0.4 >5M >W" G38.2 .27 M1 5 CRF01_AE MGRM-AEMN.5 5Ml 0 4 -7qll 22t33 MGCR.MAE-0S >50 M.01 23A 5 15-1 MiGRIMAE427 >50 552 17% 6A'.1 5 kMGRM-AE4MM >50 >11 250 TY35 1 RZ21,H121 MA. 'A,-0 NA v. l? !Q I.ts 15) A CMUG2 13 as0*.q*-W 1--*;v 2 7 69 ID 1 . 5.9. MGIRMAG-00 0 7 tl 13G E 4 MGRM-AG-002 02 0#,5d 049 K5 MGRM-AG-OD3 >50 1s W 1 ::V4 971 T eI W 101 MGRM-A G-05 >513 5021 2 S CRF AG MGRMAG406 >50, 3. ;, S L, s o 5 9
- MGRM-AG-001 25 150 07 S 77 7 M@4
MrTF kG4&01 >50 >AR 4. 2.4 OA6 .tG39 0 MGRMt-G-M -5 >5: >5C, A7 >0>0 2 MGRM G- 5 > 133 1.23? 9L51 2. 42Q>2 M-GRMNG4f9O >5M >50 7.21 .3 4.t0 0 7 1M 41>0 MG|i 501.16 k.4.1cjAM M>t61 +30 353 - 5 50 S -OWN,5 < MSRM/G4014 :-5 >19 eRM E26M 5 t G M-GR~mG-1 5 >50 459 lA-4 1.37 l as -. a >je -:0 MM-G4016 A5D yq50 1- 9.2O 5 MG~FMI -4U >3 >5 060 A 4 &z z45 MGRU-G-cl 3 ?77 , 6.53i Q,7 1-2, .. s50 10 M.GRUMi42 28 5 1.07 1.57 M4 3 MGRM.-G42'5 -505 1 SC . >5 :fs 6 0
Table 18F
CMade Virus WC5S (pg mi, ICS0 (iInr Do S uer~m or .1 6P G C 14 2 G 21I:2 F 64 E 1 0PG 9 P G 2MbI .............................. F<
M3RM-Fi42 >50 ' 1Z1 1.87 >5O 5 ,1 M'GRM-FiaO >50 >50 4.26 1.11 KGaQM O5 246 MGR-F142r >50 S.23 4.8 84 >5 250 a50) p ne.contro aMLV >50 >50 >50 >50 '55 n50 '50 <z100
a White squares indicate an IC50 of >50 pg/mL, black squares indicate 50 pg/mL > IC50 > 27 C5 lightest 10 gg/mL, grey:27 5 squares indicate 10 pg/mL .4 > IC50 > 1 pg/mL, 51 medium grey 5 squares indicate 1 ~g/mL > IC50 > 0.1 pg/mL, darker grey squares indicate IC50 < 0.01 pg/mL. N.D., not done. bWhite squares indicate an IC50 of < 1:100 dilution, darkest grey squares indicate 1:50 > IC50 > 1:150, lightest grey squares indicate 1:150 > IC50 > 1:500, medium grey squares indicate 1:500 > IC50 > 1:1000, darker grey squares indicate IC50 > 1:1000 dilution.
Table 19A. Neutralization Potency.
Clade 0" # viruses b12 2G12 2F5 4E10 PG9 PG16 PGC14 A 27 : 17.77 :: I. 0.99 0.81 >50 B 31 2.30 4.65 :; |||||~ t |||||||j||jni |||||ji 94
D 25 12.68 8.76 9.02 0.34 1,44 >50 CRF01_AE 10 12.68 >50 |8.14 |12.95 |0.36 1L51 >50 CRFAG 10 16.97 7.04 |13.49 |15.78 |0.28 1.86 >50 G 15 >50 |17.54 |16.67 |1.91 1.96 >50 F 15 >50 21.49 17.77 7.64 |0.25 0.55 >50 total 162 I 13.27 17.54 0.36 1.16 9.45
White boxes indicate a medium potency of >50 pg/mL, darkest grey between 20 and 50 pg/mL, lightest grey between 2 and 20 g/mL, medium grey between 0.2 and 2 pg/mL, and darker grey < 0.2 tg/mL.
CRF_07BC and CRF_08BC viruses not included in the clade analysis because there was only one virus tested from each of these clades.
Table 19B. Neutralization Breadth.
% viruses neutralized with an IC90 <50 pg/ml Clade" # viruses b12 2G12 2F5 4E10 PG9 PG16 PGC1 -4 A 27 - 33 74 41 0 B 31 45 52 45 42 C 27 0 41 52 41 0 D 25 6 I 44 36 0 CRF01_AE 10 0 67 70 60 60 0 CRFAG 10 I I 70 60 40 40 0 G 15 0 53 53 47 0 F 15 0 47 43 47 'M 0
% viruses neutralized with an IC90 <1. gm Clade " # viruses b12 2G12 2F5 4E10 PG9 PG16 PGC1 4 A 27 0 0 0 0 360 B 31 00 C 27 0 0000 D 25 0 0 320 0 CRF01_AE 10 0 0 0 0 40 1 0 CRFAG 10 0 0 0 0 I 0 G 15 0 0 0 00 F 15 0 1 0 0 0 330 total 162 0 0 <
White boxes indicate that no viruses were neutralized, darkest grey indicate 1 to 30% of viruses were neutralized, lightest grey indicate 30 to 60% of viruses were neutralized, medium grey indicate 60 to 90% of viruses were neutralized, and darker grey indicate 90 to 100% of viruses were neutralized. CRF_07BC and CRF_08BC viruses not included in the clade analysis because there was only one virus tested from each of these clades.
Table 20. Neutralization activity of PG9 and PG16 against JR-CSF pseudovirus containing alanine point mutations. M12h FICk imaaer rdlatin to MIsNir :12l Fdd Kdncren: rt e tV. aik domairl ndM-tyk dean-f E* FOP PIMO PGA
C
7ja, :T
(tp tam.... ........... t.. ... .. ... .. .. .. ..
3C C C F4D
N3434A v 5 ifi C.. FU,
[-...A...( ... ...... m. ... .. . Ci........(....
V2 V95A ( p4
V2F T320A (CA
E...A. ....... ..... ...... .......... r. 72 .. . :.. . .. . . ... .. V2 mmc4 v4 N....A..C.. v......... .. F.C C..... .......... v2......A... .............. .. ..... ..... ... 3 .. . . .. . . . . . . . . .. . . .. . . . . . m. .......... ....... ............. .. N. A. 4. ........... . ..............
C2 C4 .
C2 M
aAmino acid number is based on the sequence of HIV-1HxB2 b White boxes indicate that the amino acid is identical among 0 to 49% of all HIV isolates, light grey boxes indicate that the amino acid is identical among 50-90% of all HIV isolates, and dark grey boxes indicate that the amino acid is identical among 90-100% of all HIV isolates. Amino acid identity was determined based upon a sequence alignment of HIV-1 isolates listed in the HIV sequence database at http://hiv-gov/content/hiv db/mainpage.html. C refers to constant domains and V refers to variable loops. d Neutralization activity is reported as fold increase in IC50 value relative to WT JR-CSF and was calculated using the equation (IC50 mutant / IC50 WT). White: substitutions which had a negligible effect on neutralization activity, lightest grey: 4-9 fold IC50 increase, dark grey: 10-100 fold IC50 increase, darkest grey: >100 fold IC50 increase. Experiments were performed in triplicate and values represent an average of at least three independent experiments.
Table 21. Alanine mutations that decrease PG9 and PG16 neutralization activity.
Mutation ' gp120 domain Fold IC50 increase relative to wild-typed PG9 PG16
N134A V1 23
C1 (V1N2 stem)
Y173AV2 K3eA V3 m 5. V11 ~V2
1307A V2 (tip) 1 1309A V3 (tip) 9...
F317A V3 (tip) 3 Y318A V3 (tip) 2 232 9V4 7 23 |....|..C4.9 11 I423A C4 40 14
a Amino acid numbering is based on the sequence of HIV-1'HxB2 bBoxes are color coded as follows: white, the amino acid is identical among 0 to 49% of all HIV-1 isolates; light grey, the amino acid is identical among 50 to 90% of isolates; dark grey, the amino acid is identical among 90 to 100% of isolates. Amino acid identity was determined based on a sequence alignment of HIV-1 isolates listed in the HIV sequence database at http ://hiv-web .lanl.gov/content/hiv-db/mainpage.html.
c C refers to constant domains and V refers to variable loops. d Neutralization activity is reported as fold increase in IC 5 value relative to WT JR-CSF and was calculated using the equation (IC 50 mutant / IC50 WT). Boxes are color coded as follows: white, substitutions which had a negative effect on neutralization activity; light grey, 4 - 9 fold IC50 increase; medium grey, 10 - 100 fold IC50 increase; dark grey, >100 fold IC 50 increase. Experiments were performed in triplicate and values represent an average of at least three independent experiments.
Example 18: Identification of 14443 C16 (PG16) sister clones
[1036] 1443 C16 sister clones were identified by screening clonal transfection of rescued variable region genes for JR-CSR neutralization. Thus, antibodies that were identified as sister clones of 1443 C16 (PG16) have the similar HIV neutralization profiles as the human monoclonal 1443 C16 (PG16). Moreover, the nucleic acid or amino acid sequences of the sister clone antibodies are at least 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, 100% or any percentage point in between, identical to those of 1443 C16 (PG16). Table 22
1443 C16 Antibody JRCSF Sister mAbs Gamma Chain Clone Light Chain Clone concentration Neutralization (pg/ml) Index 1456 A12 L2 01 023 0.006 0.90 1456_A12_G3_01_002 1456_A12 L2_01_036 0.012 0.82 1456_A12_L2_01_040 0.016 2.79 1456 A12 1456 A12 L2 01 023 <0.005 1.00 1456_A12_G3_01_004 1456_A12 L2 01 036 <0.005 1.02 1456_A12_L2_01_040 0.005 6.95 1469 M23 G3 01 005 2.624 215.74 1469 M23 1469_M23_3006149M 1469_M23_G3_01_006 - _L2_01_001 --- 0.0 0.000 10.0 5 1480 108 G3 01 012 <0.005 10.34 1480 108 G3 01 016 10 223.14 1480_08L201005 <0.005 2.98 1480108 1480_108_G3_01_021 1480_108_G3_01_032 <0.005 3.83 1480 108 G3 01 037 34 1.36 1480_108_G3_01_055 <0.005 1.16 1489 113 G3 01 003 0.0000 2.02 1489113 1489_113 G3 01_004 1489_113_L2_01_007 0.0009 22.86 1489 113 G3 01 007 1.455 139.35 1503 H05 G1 01 001 0.013 0.96 0.000 3.75 1503 H05 1503 H05 G1 01 006 1503H05L201021 1503 H05 G3 01 005 1.108 91.41 1503 H05 G3 01 007 0.567 155.54
Note that the constant region of the 1456_A12 heavy chain clones used in transfection contains an error generated during the cloning process that lead to no full-length IgG production.
Example 19: 1443 C16 (PGJ6)Antibody Sister Clones and the 1443 C16 (PG]6) Antibody Exhibit SimilarNeutralization Specificity
[1037] Antibodies 1456 A12, 1503 H05, 1489 113 and 1469 M23 were tested for neutralization activity against several pseudoviruses containing distinct mutations that map the reactivity epitope of 1443 C16 (PG16) on gpl20 in a standard TZM-bl assay (Table 23). Like 1443 C16 (PG16), which does not bind or neutralize wild-type JR-FL, but instead, neutralizes JR-FL with the E168K mutation, all 1443 C16 (PG16) sister clones neutralize JR-FL(E168K) with low IC50 values. Similarly, all 1443 C16 (PG16) sister clones do not neutralize the Y318A mutants and 1309A mutants of JR-CSF, where the part of the putative binding epitope is mapped on the V3 tip. Table 23. Neutralization specificity of 1443 C16 (PG16) sister clones as shown with specific mutations on gp120.
mAb _IC50 (ug/ml) JR-CSF JR-CSF(Y318A) JR-CSF(1309A) JR-FL(E168K) ADA 92RWO20 1503 H05 0.001 >1.0 >1.0 0.002 0.003 0.020 1456 A12 0.001 >1.0 >1.0 0.003 0.005 0.050 1469 M23 0.002 >1.0 >1.0 0.005 0.005 0.050 1489 113 0.002 >1.0 >1.0 0.005 0.008 0.030 1443 C16 0.001 >1.0 >1.0 0.006 0.004 0.090 1496 C09 0.006 0.001 0.001 0.020 0.200 0.100
Example 20: 1443 C16 (PGJ6) Sister Clones Exhibit Similar NeutralizationBreadth and Potency as 1443 C16 (PG]6)for Clade B and Clade C Viruses
[1038] The antibodies 1456 A12, 1503 H05, 1489 113 and 1469 M23 exhibit neutralization activity against a panel of clade B and clade C pseudoviruses with similar breadth as does 1443 C16 (PG16) in a standard TZM-bl assay (Table 24). The neutralization potency of each sister clone for each pseudovirus is comparable to that for 1443 C16 (PG16). When the IC50 value is determined, the value for the sister clone is within a 0.5 log range from that for 1443 C16 (PG16).
Table 24. Neutralization breadth and potency of 1443 C16 (PG16) sister clones.
Virus _IC50 (ug/ml) Virus 1443 C16 1456 A12 1469 M23 1503 H05 1489 113 CAAN 6.37 10.61 17.72 13.46 24.87 REJ04541 <0.01 <0.01 0.39 0.22 0.34 THRO.18 2.19 2.08 7.01 4.12 7.41 PVO.4 12.3 10.42 21.25 11.01 20.57 TRO.11 3.61 3.05 7.52 4.30 10.94 AC10 <0.01 <0.01 <0.01 <0.01 <0.01 DU156 <0.01 <0.01 <0.01 <0.01 <0.01 DU422 0.59 0.36 0.97 0.71 1.87 Du172 <0.01 <0.01 <0.01 <0.01 <0.01 Clade C ZM214 >25 >25 >25 >25 >25 ZM233 <0.01 <0.01 <0.01 <0.01 <0.01 CAP45 <0.01 <0.01 <0.01 <0.01 <0.01 ZM249 <0.01 <0.01 <0.01 <0.01 <0.01 Control MuLV >25 >25 >25 >25 >25
Example 21: Primary and Confirmatory Screening Results for Selected Antibodies Isolatedfrom B-Cell Cultures Establishedfrom Human Donors.
[1039] The screening strategy used in the isolation of the monoclonal antibodies PGT-121
(corresponding to clones 4838_L06 and 4873_E03), PGT-122 (corresponding to clone 4877_D15), PGT-123 (corresponding to clone 4858_P08), PGT-125 (corresponding to clone 5123_A06), PGT-126 (corresponding to clone 5141_B17), PGT-130 (corresponding to clone 5147_N06), PGT-135 (corresponding to clones 5343_B08 and 5344_E16), and PGT-136 (corresponding to clones 5329_C19 and 5366_P21) is the same as the PG9 and PG16 mAbs, except that functional neutralization was the only primary screening assay used (i.e. no ELISA was used to screen these antibodies).
[1040] Moreover, the strategy use to identify these mAbs following reverse transcription polymerase chain reaction (RT-PCR) rescue differs from previous protocols. Specifically, in addition to performing a primary neutralization screening step, a confirmatory screening step
was performed for some of the positive hits identified from the primary screening step (Tables
-27). The confirmatory screening step was performed using the same assay as the primary
screening step. Following functional screening, the B cell culture lysates were subjected to variable gene family-specific RT-PCR, as performed previously to identify the PG9 and PG16 mAbs. However, instead of directly cloning into IgG1 expression vector, the PCR products representing the rescued heavy and light chains were subjected to deep sequencing, which is also known as "next-generation sequencing", "454 sequencing" or "pyrosequencing."
[1041] In the process of deep sequencing, a B cell well location-specific sequence tag was built into the second round of PCR to enable the identification of B cell well origin of each sequence determined in the subsequent pooled sequencing reaction. One or more consensus variable gene sequences were generated from each B cell culture well by an informatics algorithm. The consensus sequences from an individual B cell well were then compared among all consensus sequences generated from other B cell culture wells. Similar heavy chains or light chain sequences were "clustered" because similar mAbs may be derived from the same precursor B cell. Selected variable genes were then cloned into an IgG1 expression vector to produce and purify monoclonal antibodies. Unlike the previous rescue strategy, polyclonal transfection was not performed to screen for neutralization activity to identify potential variable genes from the PCR product pool prior to proceeding to monoclonal transfection.
[1042] The similarity among variable genes that were "clustered" is apparent in the alignment of nucleotide and amino acid sequence alignments (Tables 28-31). For instance, all three mAbs from donor 517, i.e. PGT-121, PGT-122 and PGT-123 are in the same cluster. Donor 196 provided two distantly related clusters of mAbs, with one cluster including PGT-125 and PGT-126, and another including PGT-130. Donor 039 provided two distantly related clusters of mAbs, each including PGT-135 or PGT-136. Table 25.
Donor 517 Confirmatory B Cell Primary Neutralization Index Neutralization Index mAb ID Culture Range Well ID MGRM- MR--2 92BR020 94UG103 JRCSF C-26 MGRM-C-026 4838_L06 4.9 1.4 3.2 996.3 high >50 4873_E03 3.6 0.8 2.2 371.4 high >50 N/A 4869_K15 3.9 1.5 2.1 103.9 high >50 PGT-122 4877_D15 5.4 1.3 2.3 37.5 moderate 10-50 PGT-123 4858_P8 2.8 1.1 1.6 33.8 moderate 10-50 N/A 4834 C11 2.5 1.1 2.0 28.3 moderate 10-50
Table 26.
Donor 196 Primary Neutralization Confirniatory Polyclonal
B Cell Index Neutralization NeutransfectatIndex mAb ID Culture IG Well ID 92TH021 JRCSF MGRM- Virus Index 92TH0 JRCSF RM C-26 Range 21 C 026 PGT-125 5123_A high 6 133.0 1727.6 511.5 JRCSF >50 50.65 118.60 88.31 high 102.4 PGT-126 5141_BI 7 2.3 1410.1 653.9 JRCSF >50 2.74 101.51 1 PGT-127 5145_BI MGRM high 4 1.0 31.1 86.9 -C-026 >50 0.94 1.61 2.62 PGT-128 5114_A high 19 6.6 77.5 17.1 JRCSF >50 10.02 136.49 32.19 PGT-130 5147_N 92TH02 high 6 538.2 19.3 3.0 1 >50 4.20 1.24 1.05 PGT-131 5136_H 92TH02 high 1 354.0 6.2 1.2 1 >50 PGT-132 5113_D 92TH02 high 22 51.0 3.0 6.0 1 >50 PGT-133 5117_E2 92TH02 high 12 42.5 3.6 3.4 1 >50 1 1 1
Table 27.
__________Donor 039 PrinaryNeuraliatin IdexConfirmatory mAb ID B Cell Culture Primary Neutralization Index Well ID 931N905 JRCSF CGRM- Virus Index Range PGT-135 5343_B8 43.0 1.8 6.5 931N905 moderate 10-50 PGT-37 54511MGRM-C PGT-137 5 3.3 1.1 11.3 026 moderate 10-50 5366_P21 MGRM-C 5.5 1.1 6.2 026 mod low 5-10 PGT-136 5329_19 MGRM-C 5.6 0.9 6.0 026 mod low 5-10 PGT-15 534EI6MGRM-C PGT-135 5344_E16 2.3 1.5 3.6 026 low 1.5-5
K,':: N! X
-~.,,,,. A,
M W~f /
-w-x
P'l'
.......... 4
..............-..
Br4ll RM
......... 00444k /~. A ' x-,.-.
.. .. ... ..... "4 4i
.. ...... .. .. . . . .
334.
Z -7Z
,..........
.4.,.... .'.....'
.,.. 21'/ ........ '
......
~"E - - ------
4NO
0 .~~~~~ .............. ,4.
5", .'..'........... ..
f. z/4
, '.f .... . .... ."~' 'Wg 'g/'5 u2' ,
~ ~/ ~ 44...............
. . . . . . . . Li f: ' . 4 ", 4 4 R, 4 4 R4F
4 1
4/~ ~~4 ~ ~ ...... 2.,,
M J. J
. .... ..... ------ ,~ -- --44 / . . . ' " i
. ...........
~$ . 4 ;~ . . 4 ......... .,4 ,.-,. 4 ..... 4 ........
,z4-' 's u v v'2/42Ivv4q/v, v V
' 2444 4" 44~2444 44-4 3364-4
. ......
ef
4 4 ........ ....
Qe ('1 R
W, Wi
"M MM 4,4,',mom
E~P F. 'I;.
1'44 337
Example 22: Neutralization Values (IC 50, IC 80, IC90, and IC 95 ) Against 23 HIV Viruses for Selected Antibodies Isolatedfrom B-Cell Cultures Establishedfrom Human Donors.
[1043] Table 32 shows neutralization profiles (IC 50 values) of monoclonal antibodies PGT 121, PGT 122, PGT 123, PGT 125, PGT 126, PGT 130, PGT 135, PGT 136, and PG9 on a diverse panel of 23 HIV viruses from different clades (A, B, C, D, AE, and AG). PGT 121, PGT 122, PGT 123, PGT 125, PGT 126, PGT 130, PGT 135, and PGT 136 all neutralize virus in clades A, B, C, and D. Moreover, PGT 121, PGT 122, and PGT 123 also neutralize virus in clade AG. PGT 125 neutralizes clades A, B, C, D, AE, whereas PGT 126 and PGT 130 neutralize all clades, i.e. A, B, C, D, AE, and AG.
[1044] Table 33 shows IC 50 , IC 80 , IC 90, and IC 95 values of the PGT 121 monoclonal antibody on the same panel of viruses shown in Table 32. The results shown on this table recapitulate those shown on Table 32 for the PGT 121 monoclonal antibody. This table further demonstrates that the PGT 121 monoclonal antibody neutralizes HIV virus from clades A, B, C, and D strongly, as evidenced by low IC 9 5 values shown for these clades.
[1045] Table 34 shows IC 50 , IC 8o, IC 90 , and IC 95 values of the PGT 122 monoclonal antibody on the same panel of viruses shown in Table 32. The results shown on this table recapitulate those shown on Table 32 for the PGT 122 monoclonal antibody. This table further demonstrates that the PGT 122 monoclonal antibody neutralizes HIV virus from clades A, B, C, and D strongly, as evidenced by low IC 95 values shown for these clades.
[1046] Table 35 shows IC 50 , IC 8o, IC 90 , and IC 95 values of the PGT 123 monoclonal antibody on the same panel of viruses shown in Table 32. The results shown on this table recapitulate those shown on Table 32 for the PGT 123 monoclonal antibody. This table further demonstrates that the PGT 123 monoclonal antibody neutralizes HIV virus from clades A, B, C, and D strongly, as evidenced by low IC 9 5 values shown for these clades.
[1047] Table 36 shows IC 50 , IC 80 , IC 90, and IC 95 values of the PGT 125 monoclonal antibody on the same panel of viruses shown in Table 32. The results shown on this table recapitulate those shown on Table 32 for the PGT 125 monoclonal antibody. This table further demonstrates that the PGT 125 monoclonal antibody neutralizes HIV virus from clades A, B, C, D, and AE strongly, as evidenced by low IC 95 values shown for these clades.
[1048] Table 37 shows IC 50 , IC80 , IC 90, and IC 95 values of the PGT 126 monoclonal antibody on the same panel of viruses shown in Table 32. The results shown on this table recapitulate those shown on Table 32 for the PGT 126 monoclonal antibody. This table further demonstrates that the PGT 126 monoclonal antibody neutralizes HIV virus from clades A, B, C, and D strongly, as evidenced by low IC 9 5 values shown for these clades.
[1049] Table 38 shows IC 50 , IC80 , IC 90, and IC 95 values of the PGT 130 monoclonal antibody on the same panel of viruses shown in Table 32. The results shown on this table recapitulate those shown on Table 32 for the PGT 130 monoclonal antibody. This table further demonstrates that the PGT 130 monoclonal antibody neutralizes HIV virus from clades A, B, C, and AE strongly, as evidenced by low IC 95 values shown for these clades.
[1050] Table 39 shows IC 50 , IC 8o, IC 90 , and IC 95 values of the PGT 135 monoclonal antibody on the same panel of viruses shown in Table 32. The results shown on this table recapitulate those shown on Table 32 for the PGT 135 monoclonal antibody. This table further demonstrates that the PGT 135 monoclonal antibody neutralizes HIV virus from clades B, C, and D strongly, as evidenced by low IC 9 5 values shown for these clades.
[1051] Table 40 shows IC 50 , IC 8o, IC 90 , and IC 95 values of the PGT 136 monoclonal antibody on the same panel of viruses shown in Table 32. The results shown on this table recapitulate those shown on Table 32 for the PGT 136 monoclonal antibody. This table further demonstrates that the PGT 136 monoclonal antibody neutralizes HIV virus from clades C and D strongly, as evidenced by low IC 95 values shown for these clades.
[1052] Table 41 shows IC50 , IC80 , IC 90 , and IC95 values of the PG9 monoclonal antibody on the same panel of viruses shown in Table 32. The results shown on this table recapitulate those shown on Table 32 for the PG9 monoclonal antibody. This table further demonstrates that the PG9 monoclonal antibody neutralizes HIV virus from clades A, B, C, D, and AE strongly, as evidenced by low IC 9 5 values shown for these clades.
[1053] For Tables 32-41, the following color-coding scheme applies regarding the concentration of the appropriate antibody:
1ngml 100 ng/l 1000 ng/mI 1000-10,000 ng/ml Negative = >10
... . . . . . . .
r- ouoo r o c enmcc 0 Tr- 00 el eAZ e 1) zZ 0 0z C V 1fze r N nc Amr lqTI v0 T r)r nr "mr
00t -N nt n z n0 n qTt Qk en r" 00cnC000 t0 n C ANI- 00
Q 0!f~ OC
SA A A A" A AA A~ A A AA ........... 0 0 .... ... ... . . . 0f
.... ........ * A
~~~ A0 ~ A A A
eA .. .. . . .. .
z I r) r C--r r-=340 r
V A
vA A A
A A A A A A A C AA
I34
Table 33. Neutralization Values for PGT-121.
Neutralization by PGT-121 (ug/ml) Clade Virus IC50 IC80 IC90 IC95 Overall 92RW020 00.63 M0.0188.. 0.0361 0.0671 P 93UG077 0.0459 0.1716 0.3691 0.7402 P A 94UG103 1.3778 8.8543 >10.0000 >10.0000 P MGRM-A-010 2.6078 >10.0000 >10.0000 >10.0000 P 92BR020 0.0177 '00532 0.111 0.1828 P APV13 0.3157 1.3067 2.7989 5.1522 P APV17 f.0950 0.3707 0.7991 1.5541 P B APV6 00423 0.447 0.2960 0.5688 P JRFL 0.0276 0.0806 0.1506 0.2674 P JRCSF f.0343 01119 0.2226 0.4169 P NL43 >10.0000 >10.0000 >10.0000 >10.0000 N 931N905 ". 82".. 0.302 0.0645 ff1298 P MGRM-C-026 A0034. 0.0140' ~0.0320. 0.0687 P C MGRM-C-027 40W094- 0.f0829, 0.3739 3.1 434 P MGRM-C-028 1.1929 4.9098 >10.0000 >10.0000 P 92UG005 >10.0000 >10.0000 >10.0000 >10.0000 N D 92UG024 >10.0000 >10.0000 >10.0000 >10.0000 N D MGRM-D-001 0.42 32881 6.2560 9.3894 P MGRM-D-018 "||||iiili" 0444" 'f71" P AE 92TH021 >10.0000 >10.0000 >10.0000 >10.0000 N AE CMUO2 >10.0000 >10.0000 >10.0000 >10.0000 N MGRM-AG AG 005 1.1719 >10.0000 >10.0000 >10.0000 P aMLV >10.0000 >10.0000 >10.0000 >10.0000 N
Table 34. Neutralization Values for PGT- 122.
Neutralization by PGT-122 (ug/ml) Clade Virus IC50 IC80 IC90 IC95 Overall 92RW020 0.0f72' '0,0407 0,1127" 0.2891 P A 93UG077 ff1913 0.9312 2.0994 3.8823 P A 94UG103 1.4643 6.5793 >10.0000 >10.0000 P MGRM-A-010 1.6836 >10.0000 >10.0000 >10.0000 P 92BR020 0.0337' 0.929 0.1680 0.2895 P APV13 0.9923 4.1434 8.6010 >10.0000 P APV17 0.5220 1.7580 3.5831 6.9228 P B APV6 A00851 0.3508 0.7787 1.5492 P JRFL 0.0471 0.655 0.3422 0.6590 P JRCSF 0.0727 0.2455 0.4945 0.9261 P NL43 >10.0000 >10.0000 >10.0000 >10.0000 N
93IN905 |.13 |0.55 .18 0272 P
92G2 >10.0000 >10.00 .... >.0000.. >10.0000.....N MGRM-D-001 0.863 4.495 >10.0000 >10.0000 P MGRM-C-028 2.60>0.0 000SS>0.00040>10.000 P 92TH021 >10.0000 >10.0000 >10.0000 >10.0000 N AE 92UGO24 >10.0000 >10.0000 >10.0000 >10.0000 N
MGRM-AG AG 005 >10.0000 >10.0000 >10.0000 >10.0000 N aMLV >10.0000 >10.0000 >10.0000 >10.0000 N
Table 35. Neutralization Values for PGT- 123.
Neutralization by PGT-123 (ug/mil) Clade Virus IC50 IC80 IC90 IC95 Overall 92RW020 f0038 9, .0106. 0, '0,0194' .0,Q343~ P A 93UG077 9030~3 0. 0.1433 0.3504 0.7798 P A 94UG103 0.8461 3.2922 8.5552 >10.0000 P MGRM-A-010 0.4921 2.7917 6.4406 >10.0000 P 92BR020 >10.0130 >10.0390 >10.0741' 0.1339 P APV13 0.2215 0.8787 1.8718 3.5039 P APV17 0.1798 0.5389 1.0082 1.7530 P B APV6 f0328 0. 0.1447 ' 0.3394 0.7264 P JRFL '. f0283 ~'0.0904 0.1782 0.3318 P JRCSF 441423 0.1428 0.2890 0.5467 P NL43 >10.0000 >10.0000 >10.0000 >10.0000 N 93IN905 ' .0071 ' 0.0281 ' 0.0625' 0.1306 P MGRM-C-026 ' ,0031 ' .0094 0.0183 0.335 P C MGRM-C-027 '0.06149 ~'0.1495 >10.0000 >10.0000 P ____MGRM-C-028 0.4433 2.8001 7.1057 >10.0000 P 92UG005 2.4924 >10.0000 >10.0000 >10.0000 P 92UG024 >10.0000 >10.0000 >10.0000 >10.0000 N D MGRM-D-001 0.2154 0.6779 1.3056 2.3279 P Tabe 3MGRM-D-018 0.0047 .0175 .038t o.r79 P AE 92TH021 >10.0000 >10.0000 >10.0000 >10.0000 N AE CMUO2 >10.0000 >10.0000 >10.0000 >10.0000 N AG MGRM-AG-005us 0.1D6 12780 6.3844 >10.0000 P aMLV >10.0000 >10.0000 >10.0000 >10.0000 N
Table 36. Neutralization Values for PGT-125.
Neutralization by PGT-125 (ug/ml) Clade Virus IC50 IC80 IC90 IC95 Overall 92RW020 0.0028 0,0248 00524 A0.0110 P A 93UG077 0N0262 0.0924 0.2057 0.4866 P 94UG103 0.0124 0.0373 0.0710 0.1287 P MGRM-A-010 0.0055 '0.0240 0.0575 0.1313 P 92BR020 '00214 '0.0738 0.1557 0.3228 P APV13 '0,0128 0.0414 '0.0821 0.1543 P APV17 7.3065 >10.0000 >10.0000 >10.0000 P B APV6 ,0.035~9 0,1330 0.2885 0.5974 P JRFL 0.0156 0.0462 0.0873 0.1571 P JRCSF '0060 0.0196 '0,0392 0.0741 P NL43 >10.0000 >10.0000 >10.0000 >10.0000 N 93IN905 "0.0137 '0.0494 0.1056 '0.2165 P MGRM-C-026 0.0106K 0.0350 0.0705 0.1342 P C MGRM-C-027 >10.0000 >10.0000 >10.0000 >10.0000 N MGRM-C-028 5.7772 >10.0000 >10.0000 >10.0000 P 92VG005 >10.0000 >10.0000 >10.0000 >10.0000 N D92VG024 >10.0000 >10.0000 >10.0000 >10.0000 N D MGRM-D-001 2.3116 >10.0000 >10.0000 >10.0000 P MGRM-D-018 "0.0382 0.1440 0.3389 0.8924 P AE 92TH021 '0,0066 0,0292 '0.0701 0.1572 P AE CMUO2 >10.0000 >10.0000 >10.0000 >10.0000 N AG MGRM-AG-005 >10.0000 >10.0000 >10.0000 >10.0000 N aMLV >10.0000 >10.0000 >10.0000 >10.0000 N
Table 37. Neutralization Values for PGT- 126.
Neutralization by PGT-126 (ug/ml) Clade Virus IC50 IC80 IC90 IC95 Overall 92RW020 "0.0046 " &0168 '0.0359 0.0728~ P A93UG077 "0.0256 0,1015 0.2385 0.5771 P A94UG103 0.0091 '0.0316 0.0655 0.1280 P MGRM-A-010 0.0033 0.0137 0.0316 0.0687 P 92BR020 0.0163 1.0457 0 0.0846 0.1521 P APV13 0.0120 0.0411 &.0840 0.1621 P APV17 0.5013 4.4290 >10.0000 >10.0000 P B APV6 0.0249 0.0681 0.1230 0.2134 P JRFL . 0.0140 '0,0454 '0.0900 0.1688 P JRCSF '.0061 .0.0180 0.33 0.0608 P _____ NL43 >10.0000 >10.0000 >10.0000 >10.0000 N C 93IN905 0014 007 0.04 021 P
MGRM-C-026 0.0074 0.0345 0.0831 0.1849 P MGRM-C-027 1.1404 >10.0000 >10.0000 >10.0000 P MGRM-C-028 02827 2.6247 >10.0000 >10.0000 P 92UG005 0,0181 0.1455 0.5529 2.4508 P 92UG024 >10.0000 >10.0000 >10.0000 >10.0000 N MGRM-D-001 0.0639 0.3334 0.8321 1.7951 P MGRM-D-018 0.0093 0.0391 0.0918 0.2053 P 92TH021 0.1147 1.6162 6.9070 >10.0000 P CMU02 >10.0000 >10.0000 >10.0000 >10.0000 N AG MGRM-AG-005 1.3488 >10.0000 >10.0000 >10.0000 P aMLV >10.0000 >10.0000 >10.0000 >10.0000 N
Table 38. Neutralization Values for PGT-130.
Neutralization by PGT-130 (ug/ml) Clade Virus IC50 IC80 IC90 IC95 Overall 92RW020 0.0140 0.5079 3.6823 >10.0000 P >10.0000 >10.0000 >10.0000 >10.0000 N A 93UG077 94UG103 0.6355 >10.0000 >10.0000 >10.0000 P MGRM-A-010 0,0054 0.0251 0.0643 4.1642 P 92BR020 1.1242 >10.0000 >10.0000 >10.0000 P APV13 0.0345 0.5731 2.8823 >10.0000 P APV17 >10.0000 >10.0000 >10.0000 >10.0000 N B APV6 >10.0000 >10.0000 >10.0000 >10.0000 N JRFL 0346 0.7510 5.7157 >10.0000 P JRCSF 0,0089 0.0317 0.0669 0.1341 P NL43 >10.0000 >10.0000 >10.0000 >10.0000 N 93IN905 0.0182 0.2716 1.3069 5.4770 P MGRM-C-026 0.0173 0.2629 1.3244 6.1260 P MGRM-C-027 0,A052 0.0318 0.1061 0.4638 P MGRM-C-028 >10.0000 >10.0000 >10.0000 >10.0000 N 92UG005 0.4741 >10.0000 >10.0000 >10.0000 P >10.0000 >10.0000 >10.0000 >10.0000 N D 92UG024 MGRM-D-001 >10.0000 >10.0000 >10.0000 >10.0000 N MGRM-D-018 0.0378 0.2892 2.3096 >10.0000 P 92TH021 0.0082 0.0261 0.0513 0.0%3 P CMU02 >10.0000 >10.0000 >10.0000 >10.0000 N AG MGRM-AG-005 0.9466 >10.0000 >10.0000 >10.0000 P aMLV >10.0000| >10.0000 >10.0000 >10.0000 N
Table 39. Neutralization Values for PGT-135.
Neutralization by PGT-135 (ug/ml) Clade Virus IC50 IC80 IC90 IC95 Overall 92RW020 3.4582 >10.0000 >10.0000 p >10.0000 >10.0000 >10.0000 >10.0000 N A 93UG077 94UG103 >10.0000 >10.0000 >10.0000 >10.0000 N MGRM-A-010 >10.0000 >10.0000 >10.0000 >10.0000 N 92BR020 0.1043 0.2526 0.4298 0.7203 P APV13 0.5452 >10.0000 >10.0000 >10.0000 P APV17 >10.0000 >10.0000 >10.0000 >10.0000 N B APV6 >10.0000 >10.0000 >10.0000 >10.0000 N JRFL >10.0000 >10.0000 >10.0000 >10.0000 N JRCSF 0;131 0.5033 1.4664 8.2996 P NL43 6.7910 >10.0000 >10.0000 >10.0000 P 931N905 0.0183 0.0648 0.1356 0.2677 P MGRM-C-026 0.0123 0,0562 0.1390 0.3312 P C MGRM-C-027 >10.0000 >10.0000 >10.0000 >10.0000 N MGRM-C-028 2.1608 >10.0000 >10.0000 >10.0000 P 92UG005 >10.0000 >10.0000 >10.0000 >10.0000 N 92UG024 0.0139 0.0540 0,1220 0.2673 P MGRM-D-001 >10.0000 >10.0000 >10.0000 >10.0000 N MGRM-D-018 0.0433 0.1999 >10.0000 >10.0000 P 92TH021 >10.0000 >10.0000 >10.0000 >10.0000 N AE CMU02 >10.0000 >10.0000 >10.0000 >10.0000 N AG MGRM-AG-005 >10.0000 >10.0000 >10.0000 >10.0000 N aMLV >10.0000 >10.0000 >10.0000 >10.0000 N
Table 40. Neutralization Values for PGT-136.
Neutralization by PGT-136 (ug/ml) Clade Virus IC50 IC80 IC90 IC95 Overall 92RW020 0.7383 >10.0000 >10.0000 >10.0000 p >10.0000 >10.0000 >10.0000 >10.0000 N A 93UG077 94UG103 >10.0000 >10.0000 >10.0000 >10.0000 N MGRM-A-010 >10.0000 >10.0000 >10.0000 >10.0000 N 92BR020 >10.0000 >10.0000 >10.0000 >10.0000 N APV13 >10.0000 >10.0000 >10.0000 >10.0000 N APV17 >10.0000 >10.0000 >10.0000 >10.0000 N B APV6 >10.0000 >10.0000 >10.0000 >10.0000 N JRFL >10.0000 >10.0000 >10.0000 >10.0000 N JRCSF >10.0000 >10.0000 >10.0000 >10.0000 N NL43 >10.0000 >10.0000 >10.0000 >10.0000 N 931N905 0.1 036 0.3791 P
MGRM-C-026 0.0065 0.0285 0.9687 0.1590 P MGRM-C-027 >10.0000 >10.0000 >10.0000 >10.0000 N MGRM-C-028 >10.0000 >10.0000 >10.0000 >10.0000 N 92UG005 >10.0000 >10.0000 >10.0000 >10.0000 N 92UG024 0.091| 0.6193 1.9558 5.9700 P D MGRM-D-001 >10.0000 >10.0000 >10.0000 >10.0000 N MGRM-D-018 >10.0000 >10.0000 >10.0000 >10.0000 N AE 92TH021 >10.0000 >10.0000 >10.0000 >10.0000 N AE 9CMU02 >10.0000 >10.0000 >10.0000 >10.0000 N AG MGRM-AG-005 >10.0000 >10.0000 >10.0000 >10.0000 N aMLV >10.0000 >10.0000 >10.0000 >10.0000 N
Table 41. Neutralization Values for PG9.
Neutralization by PG9 (ug/ml) Clade Virus IC50 IC80 IC90 IC95 Overall 92RW020 0.1614 1.0383 3.4024 >10.0000 P 93UG077 >10.0000 >10.0000 >10.0000 >10.0000 N 94UG103 0.3098 1.9524 5.5354 >10.0000 P MGRM-A-010 0.0375 0.1215 0.2418 0.4561 P 92BR020 >10.0000 >10.0000 >10.0000 >10.0000 N APV13 >10.0000 >10.0000 >10.0000 >10.0000 N APV17 >10.0000 >10.0000 >10.0000 >10.0000 N B APV6 0.2139 1.1316 3.2130 9.6532 P JRFL >10.0000 >10.0000 >10.0000 >10.0000 N JRCSF 0.0048 0.0181 0.0391 0.0798 P NL43 0.6871 >10.0000 >10.0000 >10.0000 P 931N905 00480 0.3077 0.9807 3.3063 P MGRM-C-026 0.1130 >10.0000 >10.0000 >10.0000 P MGRM-C-027 2.4538 >10.0000 >10.0000 >10.0000 P MGRM-C-028 0.1211 0.6455 1.6522 3.7075 P 92UG005 >10.0000 >10.0000 >10.0000 >10.0000 N 1.9142 >10.0000 >10.0000 >10.0000 P D 92UG024 MGRM-D-001 >10.0000 >10.0000 >10.0000 >10.0000 N MGRM-D-018 0,0444 0,1805 0.4300 1.0466 P 92TH021 0.1026 0.4475 1.0694 2.4256 P CMU02 >10.0000 >10.0000 >10.0000 >10.0000 N AG MGRM-AG-005 >10.0000 >10.0000 >10.0000 >10.0000 N aMLV >10.0000 >10.0000 >10.0000 >10.0000 N
Example 23: Heavy and Light Chain Usage for Selected Antibodies Isolatedfrom B-Cell Cultures Establishedfrom Human Donors.
[1054] Monoclonal antibodies PGT-121 (corresponding to clones 4838_L06 and 4873_E03), PGT-122 (corresponding to clone 4877_D15), PGT-123 (corresponding to clone 4858_P08), PGT-125 (corresponding to clone 5123_A06), PGT-126 (corresponding to clone 5141_B17), PGT-130 (corresponding to clone 5147_N06), PGT-135 (corresponding to clones 5343_B08 and 5344_E16), and PGT-136 (corresponding to clones 5329_C19 and 5366_P21) are derived from related germline genes.
[1055] The similarity of the variable genes is apparent based on the gene usage (Tables 42 and 43). Although the exact gene alleles used may not be definitive, the alleles that are most likely used are provided with the percentage identity to the germline gene noted. Table 42. Heavy Chain Germline Gene Usage for PGT-121, PGT-122, PGT-123, PGT-125, PGT-126, PGT-130, PGT-135, and PGT-136.
mAb Clone Germline V- Identity to Germline J- Identity to Heavy chain CDR3 gene allele V-gene gene allele J-gene IGHV4-59*01 80,35% or IGHV4- (229/285 nt) 59*07 8226% TLHGRRIYGIVAFNE PGT-121 IGHV4-59*02 IGHJ6*03 51/62 nt) WFTYFYMDV (SEQ or IGHV4- 80,00% ID NO: 143) 59*03 or (228/285 nt) IGHV4-61*08 IGHV4-61*08 80,35% (229/285 nt) TKHGRRIYGVVAFK PGT-122 IGHV4-59*02 80,00% IGHJ6*03 83,87% EWFTYFYMDV (SEQ (228/285 nt) (52/62 nt) ID NO: 262) IGHV459*01 79,'65% IGHV4-59*01 (227/285 nt) IGHV459*03 77,54% IGHV4-59*03 (221/285 nt)
IGHV4-59*01 77819% ALHGKRIYGIVALG PGT-123 (220/285 nt) IGHJ6*03 52 ELFTYFYMDV (SEQ IGHV4-59*02 (52/62 nt) ID NO: 171) or IGHV4- 76,84% 59*07 or (219/285 nt) IGHV4-61*08
IGHV4-b*02 80,21% IGHJ5*02 66,67% FDGEVLVYNHWPKP PGT-125 (231/288 nt) (34/51 nt) AWVDL (SEQ ID NO: IGHV4-b*01 (33/51 nt) 187)
IGHV4-39*07 79,38% IGHJ4*03 62,50% _________________(231/291 nt) _______(30/48 nt)__________
IGHV4-b*02 82,29% IGHJ5*02 72,55% (237/288 nt) (37/51 nt) FDGEVLVYHDWPKP PGT-126 IGHV4-39*07 81291 IGHJ5*01 68,6 n AWVDL (SEQ ID NO: (238/291 nt) .(35/51 nt) 23 IGHV4-b*01 81994% IGHJ4*03 64,58% 203) IGHV4-b*0(236/288 nt) (31/48 nt) IGHV4-39*07 79,38% IGHJ5*02 72,55% SGGDILYYYEWQKP PGT-130 (231/291 nt) (37/51 nt) HWFSP (SEQ ID NO: IGHV4-59*04 80500% IGHJ5*01 68,63% 219) _________(228/285 nt) (35/51 nt) 29 IGHV4-39*07 82,46% IGHJ5*02 72,55 HRHHDVFMLVPIAG PGT-135 (235/285 nt) (37/51 nt) WFDV (SEQ ID NO: IGHV4-39*03 82, 04% IGHJ5*01 7059% t 235) _________________(233/284 nt) _______(36/51 nt) 25 IGHV4-39*07 83986% IGHJ5*02 78,43% HKYDIFRVVPVAG PGT-136 (239/285 nt) (40/51 nt) WFDP (SEQ ID NO: IGHV4-39*03 2324 IGHJ5*01 3851 nt) 252) ______ __ __ ___ __ _ 1(237/284 nt) 1 I(3851*01 Table 43. Light Chain Germline Gene Usage for PGT-121, PGT-122, PGT-123, PGT-125, PGT-126, PGT-130, PGT-135, and PGT-136.
mAb Clone Germline V- Identity to Germline J- Identity Light chain CDR3 gene allele V-gene gene allele to J-gene IGLV3-21*01 81,01% HIWDSRVPTKW PGT-121 or IGLV3- 209/258 IGLJ3*02 86,49% V (SEQ ID NO: 21*02 or (2925 GL30 (32/37 nt) 152) IGLV3-21*03 82,56% IGLV3-21*02 (213/258 HIWDSRRPTNW PGT-122 nt) IGLJ3*02 81,08% V (SEQ ID NO: IGLV3-21*01 82,17% (30/37 nt) 164) or IGLV3- (212/258 21*03 nt) IGLV3-21*01 76,74% HIYDARGGTNW PGT-123 or IGLV- 198/258 IGLJ3*02 83,78% V (SEQ ID NO: 21*02 or (1825 GL30 (31/37 nt) 10 IGLV3-21*03 nt) 180) 84,62% IGLJ2*01 86,49% GSLVGNWDVI PGT-125 IGLV2-8*01 (231/273 or 32/37 nt) (SEQ ID NO: 196) nt) IGLJ3*01
84,25% IGLV2-8*02 (230/273 nt) 91,21% IGLV2-8*01 (249/273 IGLJ2*01 PGT-126 nt) or 89,19% SSLVGNWDVI 90,84% IGLJ3*01 (33/37 nt) (SEQ ID NO: 212) IGLV2-8*02 (248/273 nt) 88,19% IGLV2-8*01 (254/288 IGLJ2*01 PGT-130 nt) or 89,19% SSLFGRWDVV 87,85% IGLJ3*01 (33/37 nt) (SEQ ID NO: 228) IGLV2-8*02 (253/288 nt) 82,44% IGKV3-15*01 (230/279 PGT-135 nt) IGKJ1*01 94,44% QQYEEWPRT 82,08% (34/36 nt) (SEQ ID NO: 245) IGKV3D- 15*01 (229/279 nt) 86,38% IGKV3-15*01 (241/279 PGT-136 nt) IGKJ1*01 97,22% QQYEEWPRT 86,02% (35/36 nt) (SEQ ID NO: 245) IGKV3D- 15*01 (240/279 nt)
Example 24: Heavy and Light Chain Usage for Selected Antibodies Isolatedfrom B-Cell Cultures Establishedfrom Human Donors.
[1056] Monoclonal antibodies PGT-141 (corresponding to clones 4964_G22 and 4993_K13), PGT-142 (corresponding to clone 4995_E20), PGT-143 (corresponding to clone 4980_N08), and PGT-144 (corresponding to clone 4970K22) are derived from related germline genes.
[1057] The similarity of the variable genes is apparent based on the gene usage (Tables 44 and 45). Although the exact gene alleles used may not be definitive, the alleles that are most likely used are provided with the percentage identity to the germline gene noted.
Table 44: Heavy Chain Germline Gene Usage for PGT-141, PGT-142, PGT-143, and PGT-144.
Germline Identity Germline Identity mAb Clone V-gene to V- J-gene to J-gene Heavy chain CDR3 allele gene allele IGHV1- 84,03% 74,19% 8*01 (242/28 IGHJ6*02 (46/62 PGT-141 8 nt) IGHJ6*01 nt) GSKHRLRDYVLYDDYGLINYQEW (496G22; IGH - 81,60% or 72,58% NDYLEFLDV (SEQ ID NO: 279) 4993K I3)2*02 or (235/28 IGHJ6*03 (45/62 IGH - 8 nt) or nt) 2*04 IGHJ6*04
IGHV1- 83,68% 74,19% 8*01 (241/28 IGHJ6*02 (46/62 8 nt) nt) PGT-142 IGHV1- IGHJ6*01 GSKHRLRDYVLYDDYGLINYQEW (4995E20) 2*02 or 81,60% or 72,58% NDYLEFLDV (SEQ ID NO: 279) IGHV1- (235/28 IGHJ6*03 (45/62 8 nt) or nt) 2*04 IGHJ6*04 IGHV1- 84,03% 74,19% 8*01 (242/28 IGHJ6*02 (46/62 8 nt) nt) PGT-143 IGHJ6*01 GSKHRLRDYVLYDDYGLINYQEW (4980_N08) 2*02 81,60% or 72,58% NDYLEFLDV (SEQ ID NO: 279) IGHV1- (235/28 IGHJ6*03 (45/62 2*04 8 nt) or nt) IGHJ6*04 IGHV1- 83,33% IGHJ6*02 74,19% 8*01 (240/28 or (46/62 PGT-144 8 nt) IGHJ6*01 nt) GSKHRLRDYVLYDDYGLINQQEW (4970-K22) 2G2 80,90% IGHJ6*03 72,58% NDYLEFLDV (SEQ ID NO: 308) IGHV1- (233/28 or (45/62 2*04 8 nt) IGHJ6*04 nt)
Table 45. Light Chain Germline Gene Usage for PGT-141, PGT-142, PGT-143, and PGT-144.
Germnline mAb Clone Germline V- Identity to Gene Identity to Light chain CDR3 gene allele V-gene allele
PGT-141 IGKV2-28*01 86,05% 89,19% MQGLNRPWT (4964_G22; or IGKV2D- (253/294 nt) IGKJ1*01 (33/37 nt) (SEQ ID NO: 288) 4993_K13) 28*01
PGT-142 IGKV2-28*01 86,05% 89,19% MQGLNRPWT (4995_E20) or IGKV2D- (253/294 nt) IGKJ (*01 33/37 nt) (SEQ ID NO: 288) I28*01 605 GK10 PGT-143 IGKV2-28*01 86,05% 89,19% MQGLNRPWT (4980_N08) or IGKV2D- (253/294 nt) IGKJ1*01 (33/37 nt) (SEQ ID NO: 288)
PGT-144 IGKV2-28*01 86,73% 86,49% MQGLNRPWT (4970_K22) or IGKV2D- (255/294 nt) IGKJ1*01 (32/37 nt) (SEQ ID NO: 288)
Example 25: Heavy and Light Chain Alignments for Selected Antibodies (PGT-141, PGT-142, PGT-143, and PGT-144).
[1058] Alignments of the genes (nucleic acid sequences) and proteins (amino acid sequence) for variable regions of both the heavy and light chains of the PGT-141, PGT-142, PGT-143, and PGT-144 antibodies are provided in Tables 46-49.
[1059] Moreover, gene relationship trees that depict the relatedness of either the heavy or light chains of these antibodies to one another are provided in Figures 25 and 26, respectively.
A t4
$4 . ~* ~4 - 41 ~jr~ss1~yf rz 14U 41~ 4
9,4%~~ --'9-1$$ -'*59 -19 -$ ~~-'--4-'~~R r 1 ttIRA tz2
p'551 nci ) 4'IK S ~ 144 44P
W, kA 40 i< 543k 4 1'~ 4 '
V4'' .4 944 ly34*
$ -C 994~ 4 1 ~i~:00 4 s~i353-
~~* 'AA
af r T7
CsU
/ A;4
$35
0% M0* i$ -cd ,i |00 Rfp 0.0 S0 s-tn -E~ 15-'5S ME - -.
L 4a CPZA~ .~.z-W
- o 0aS. #0S0 2$ 44 - 6 eA
f 4 1-, -2 4
44 ~ ~ ~ ~ O Ol4*4 40$ v'* - 434 4 ~ 0 4-4, WO 0, *O 0 4-~ 4~ ~$ ~ 4 -l 0
W 44 e 4 'o* 442 Y -4 % 4 1 k-- -- 4 0-
0 4 A
V -4 0044 $44~~~Of J0$-l5 ~ **$ '5
- s4$ 4 44 $ s$ .' $4 2
iwi
Mdr yda
no a n-n11 an-rn n
t-ad a a * s- a
- M IW in
eerLtt t
Wi*
-.
lIS i Ill
66t--e t
y 1 -- ;;t .
as356
Example 26: High Through-put FunctionalScreening of Activated B Cells From 4 African Elite Neutralizers Yields a Panel of Novel Broadly NeutralizingAntibodies
[1060] Antibodies PGT-121, PGT-122, PGT-123, PGT-125, PGT-126, PGT-130, PGT-135, PGT-136, PGT-141, PGT-142, PGT-143, and PGT-144 were generated according to the I STARTM Human bNAb (broadly Neutralizing Antibody) Discovery Platform depicted in Figure 28. The isolation process involves identifying multiple neutralizing hits from IgG' Memory B cells (as shown in Figure 29). Once the recombinant monoclonal antibody is generated, then the neutralizing ability of the monoclonal antibody is confirmed. As a consequence of these methods, the recombinant antibodies of the invention are highly related (as shown in Examples 21-24). Moreover, these methods identify clusters of related sequences with increased neutralization activity. Furthermore, the antibodies of the invention bind to highly conserved regions of the HIV viral spike (Figures 30 and 31).
[1061] Thirteen new monoclonal antibodies were isolated from 4 Protocol G elite neutralizers. Table 50 provides information regarding characteristics of each antibody.
[1062] Preliminary mapping indicates that the antibodies from donors 17, 36 and 39 provided in Table 50 define a collection of overlapping and highly conserved epitopes at the viral spike. Evidence of the overlapping nature of these epitopes is provided by, for instance, the results of competition studies (Table 54). As an example, PGT-121 and PGT-125 demonstrate strong competition for binding to the spatially overlapping epitopes. Table 50
Donor Cluster Mabs HCDR3 Length Identity to V-gene 17 #1 3 (PGT-121-3) 24 77-80% 36 #1 2 (PGT-125-6) 19 79-82% #2 2 (PGT-130-1) 19 80% 39 #1 1 (PGT-135) 18 82% #2 1 (PGT-136) 18 83% 84 #1 4 (PGT-141-4) 32 83-84%
Table 51: IAVI Protocol G: elite neutralizers score >2.5
Rank SoeCutr 94G0 2RJC V 31N9 92T02 core02 SFI C22 05 TH2 ..1 3.....6 vr Cos 9090 2. 3 Zambia. 30 30 300.........
3 .83 Ivory Coast 300..... 90 900....... .100.. 5..2.83..Kenya...300 .. 900..900..9.. .. 300 5..2.83..South..Africa..300. 900..900...00 2.8 5...... Rwanda..... 30 90..<.0
10 2.6 Zambia 9030 00 300 1000
2.53 Ivory Coast 300 9000 0 900 90 30
15 2.53 ZambiCas 300 < ..00 900 30 ~ ~
[1063]~~52......... ~~Table. poie.uniaie.ausfrtenutaiigatvt. ....... o ahm ncoa antibody~~~.. isoate.frm.te.4proocl.Gelie.nutrlizrs
358 .................
~A A A AA A AA A~ AoAA A
LO co
At A A AAA AAA AA
o wn
C) N)
(.2
C59
Table 53: Preliminary mapping of Mabs isolated from donors 17, 36, and 39: Cross competition (1) Donor Cluster mAb ID sCD4 b12 2G1 2 F425/b4e8 X5 PG9 121 .............. 17 1 122
322
39
++± Strong competition; ++ Moderate competition, + Weak Competition; -none
Table 54:
133 1
Example 26: PGT Monoclonal Anti-HIV Antibody Potency
[1064] The potency of monoclonal anti-HIV antibodies PGT-121, PGT-122, PGT-123, PGT 125, PGT-126, PGT-127, PGT-128, PGT-130, PGT-131, PGT-135, PGT-136, PGT-137, PGT 141, PGT-142, PGT-143, PGT-144, PGT-145, and PG9 was determined against a 162 virus panel. Figure 32 shows that the median concentration required to inhibit the activity, or neutralize, half of the virus in each panel (i.e, the half maximal inhibitory concentration (ICso), expressed in g/ml, the mean depicted by the black bar in each column) for each antibody of the PGT group is either comparable or superior to the PG9 control.
Example 27: Isolation of Anti-HIV antibodies PGT-127, PGT-128, PGT-131, PGT-137, and PGT-145
[1065] Antibodies of the invention may be isolated from from memory B cells in circulation as described in Walker L.M. et al, 2009, Science 326: 285-9. Specifically, surface IgG* B cells seeded at near clonal density in 384-well microplates were activated in short-term culture. Supernatants were screened for neutralization activity against 2-4 pseudotyped viruses for which neutralization activity was detected at higher titers in the donor serum. Heavy and light chain variable regions were isolated from B cell lysates of selected neutralizing hits by reverse transcription from RNA followed by multiplex PCR amplification using family-specific V-gene primer sets. Amplicons from each lysate were uniquely tagged with multiplex identifier (MID) sequences and 454 sequencing regions (Roche). A normalized pooling of gamma, kappa and lambda chains was performed based on agarose gel image quantitation and the pool was analyzed by 454 Titanium@ sequencing. Consensus sequences of the VH and VL chains were generated using the Amplicon Variant Analyzer (Roche) and assigned to specific B cell culture wells by decoding the MID tags. Clonally related sequences were identified by Clustal analysis. Selected VH and VL chains were synthesized and cloned in expression vectors with the appropriate IgGI, IgK or IgL constant domain. Monoclonal antibodies were reconstituted by transient transfection in HEK293 cells followed by purification from serum-free culture supernatants.
[1066] Table 55 provides the gene usage data for the heavy chains of monoclonal anti-HIV antibodies PGT-127, PGT-128, PGT-131, PGT-137, and PGT- 145.
Table 55.
Donor mAb Clone Germline V- Identity to Germline J- Identity to Heavy chain gene allele V-gene gene allele J-gene CDR3 IGHV4-39*07 84,'19% - (245/291 nt) IGHJ5*02 68,63% IGHV4-39*03 83 45% (35/51 nt) FGGEVLVYRD PGT-127 (242/290 nt) WPKPAWVDL (5145_B14) IGHV4-39*06 83,51% (SEQ ID NO: (243/291 nt) IGHJ5*01 64,71% 322) IGHV4-b*02 83,68% (33/51 nt) (241/288 nt) JGHV4-39*07 7,3 (232/291 nt) IGHJ5*02 74,51% IGHV4-b*0 79'86% (38/51 nt) FGGEVLRYTD PGT-128 (230/288 nt) WPKPAWVDL (5114_A19) IGHV4-39*03 79'31% (SEQ ID NO: 196 (230/290 nt) IGHJ5*01 70,59% 336) IGHV4-b*02 79,51% (36/51 nt) (229/288 nt) IGHV4-39*07 78,69% - (229/29 1 nt) IGHJ5*02 76,47% (39/51 nt) IGHV4-28*05 78,69% (229/291 nt) SGGDILYYIEW PGT-131 IGHV4-39*03 78,62% QKPHWFYP (5136_HO1) (228/290 nt) (SEQ ID NO: IH43*678,35% GJ*1 72,55% 350) IGHV4-39*06 (2821n)GHJ5*01 (37/ (228/29 1 ilt) (75 51 nt) 30
IGHV4-59*04 78,95% (225/285 nt) -
IGHV4-39*03 77,46% IGHJ5*02 78,00% - (220/284 nt) (39/50 nt) HKYHDIVMVV PGT-137 IGHV4-39*01 PIAGWFDP 039 (5345_01) or IGHV4- 77,19% GHJ5*01 74,00% (SEQ ID NO: 39*02 or (220/285 nt) (37/50 nt) 366) IGHV4-39*07 IGHJ3*01 73,47% IGHV1-8*01 83,33% (36/49 nt) GSKHRLRDYFL (240/288 nt) IGHJ6*02 66,13% YNEYGPNYEE 584 PGT-145 (41/62 nt) \GDYLATLDV (4995_P16) IGHV1-46*01 IGHJ3*02 71,43% (SEQ ID NO: or IGHV1- 80,21% (35/49 nt) 380) 46*02 or (231/288 nt) IGHJ6*01 or 64,52% 1__ __IGHV1-46*03 _IGHJ6*04 (40/62 nt) I
Example 28: Broad neutralizationcoverage of HIV by multiple high potent antibodies
[1067] Broadly cross-reactive neutralizing antibodies (bnMAbs) against highly variable viral pathogens are much sought-after to treat or protect against global circulating viruses. The neutralizing antibody repertoires of four HIV-infected donors with remarkably broad and potent neutralizing responses were probed and 17 new monoclonal antibodies (mAbs) were rescued that neutralize broadly across clades. Many of these new monoclonal anti-HIV antibodies are almost -fold more potent than the PG9, PG16, and VRC01 bnMAbs and 100-fold more potent than the original prototype bnMAbs (Wu, X., et al. Science 329, 856-861 (2010); Walker, L.M., et al. Science 326, 285-289 (2009); Binley, J.M., et al. J Virol 78, 13232-13252 (2004)). The MAbs largely recapitulate the neutralization breadth and potency found in the corresponding donor serum and many recognize previously undescribed epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV bnMAbs now available reveals that certain combinations of antibodies provide significantly more favorable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV bnMAbs, from several donors, that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.
[1068] Most successful anti-viral vaccines elicit neutralizing antibodies as a correlate of protection (Amanna, I.J., et al. Hum Vaccin 4, 316-319 (2008); Plotkin, S.A. Pediatr Infect Dis J , 63-75 (2001)). For highly variable viruses, such as HIV, HCV and, to a lesser extent influenza, vaccine design efforts have been hampered by the difficulties associated with eliciting neutralizing antibodies that are effective against the enormous diversity of global circulating isolates (i.e. broadly neutralizing antibodies, also referred to as bnAbs) (Barouch, D.H. Nature 455, 613-619 (2008); Karlsson Hedestam, G.B., et al. Nat Rev Microbiol 6, 143-155 (2008)). However, for HIV for example, 10-30% of infected individuals do, in fact, develop broadly neutralizing sera, and protective bnMAbs have been isolated from infected donors (Wu, X., et al. Science 329, 856-861 (2010); Walker, L.M., et al. Science 326, 285-289 (2009); Stamatatos, L., et al. Nat Med 15, 866-870 (2009); Trkola, A., et al. J Virol 69, 6609-6617 (1995); Stiegler, G., et al. AIDS Res Hum Retroviruses 17, 1757-1765 (2001); Burton, D.R., et al. Science 266, 1024 1027 (1994); Kwong, P.D. & Wilson, I.A. Nat Immunol 10, 573-578 (2009)). It has been suggested that, given the appropriate immunogen, it should be possible to elicit these types of responses by vaccination (Schief, W.R., et al. Curr Opin HIV AIDS 4, 431-440 (2009)) and understanding the properties of bnMAbs has become a major thrust in research on highly variable viruses.
[1069] Sera from approximately 1,800 HIV-1 infected donors was previously screened for neutralization breadth and potency, designating the top 1% as "elite neutralizers", based on a score incorporating both breadth and potency (Simek, M.D., et al. J Virol 83, 7337-7348 (2009)). In this study, bnMAbs were isolated from the top four elite neutralizers (Tables 56) by screening antibody-containing memory B cell supernatants for broad neutralizing activity using a recently described high-throughput functional approach (Walker, L.M., et al. Science 326, 285-289 (2009)). Antibody variable genes were rescued from B cell cultures that displayed cross-clade neutralizing activity and expressed as full-length IgGs. Analysis of the sequences revealed that all of the mAbs isolated from each individual donor belong to a distant, but clonally related cluster of antibodies (Table 57). Since it has been proposed that antibodies from HIV-1 infected patients are often polyreactive (Haynes, B.F., et al. Science 308, 1906-1908 (2005).; Mouquet, H., et al. Nature 467, 591-595 (2010)), the new mAbs were tested for binding to a panel of antigens and showed that they were not polyreactive (Fig. 36). Table 56. Serum neutralizing activity of selected donors.
Clade A Clade B Clade C CRF01...AE Donor presumed clade Score 94UG103 92BRO20 JRCSF MGRM-C26 931N905 92THO21 #36 CRF02_AG 3.67 ....... . #84 A orD 3.00 300 3 300 #17 A 2.83 3,00 S$<0 was e 2.sa300 ...... |||..|||||.||.|||||||
Table 61. Neutralization activity of the newly identified PGT antibodies.
Median ic P*nt vruses neiutrarrted 0 SQ9 1t0pg/m k~o> I ipgn/m C i t3pgmi PGE2 HOEIS M112! PGT122 PGIT123 &X0X t2
PGT126 4 PGT127 PGT128 XX PGT130 9N22 PGT1 8011 23. % P0i130 >8 at1 PGT341: 3 PGT142 02> PGTI43 tu PGT144 0Q
VRC012 PGVO4 20 ONU- 2EOMEE
2G12 V:2 4E10 X N 1||& ta
Median neutralization potency against viruses neutralized with an IC50 < 50 pig/mi is color coded as follows: green, 20 - 50 pig/ml; yellow, 2 - 20 pg/ml; orange, 0.2 - 2 ptg/ml; red, < 0.2 jig/ml. Neutralization breadth is color-coded as follows: green, 1%to 30%; yellow, % to 60%; orange, 60% to 90%; red, > 90%.
' g t,- - 2
V;
.4 ' 8.82I
ar 21e
Z?
'Ac (4>94 5$5 ,:>'099 4$.., A $>-9' eW a>> O ZIS 4$5.4'" C$4".5>'"'"' oIf8M'' ' 04 - -,M g$Z>>, -. ''$O Ay$AV $0$'4 $ ; A - .>
r sm S .. ."'366 u~reensse> ." '-a P %$5 5 4$w"wy ('4A$-..$'&4454A9$4 A...6 <4(9 3 44 A..4 <44:.-: 5< - A ('4,N '$~ $ 4 :9'A ".
a 4., .4 . u4
a 4
4%
a 4'>4'8C
'A" 9 R - 4' IA.s4 4'
U) &2%0858%%3%Z A 'As99
4-.-'.2222 2222222222 x S.; 'an99
U36
[1070] The potency and breadth of the mAbs were next assessed on a 162-pseudovirus panel representing all major circulating HIV-1 subtypes (Table 58A-E and Table 61) (Walker, L.M., et al. Science 326, 285-289 (2009)). All of the mAbs exhibited cross-clade neutralizing activity, but more strikingly, several displayed exceptional potency. The median IC5 s and IC 90s of PGTs 121-123 and 125-128 were almost 10-fold lower (i.e. more potent) than the recently described PG9, PG16, VRC01, and PGV04 bnMAbs (Wu, X., et al. Science 329, 856-861 (2010); Walker, L.M., et al. Science 326, 285-289 (2009)) and approximately 100-fold lower than other bnMAbs described earlier (Table 61). At concentrations less than 0.1 [ig/ml, these mAbs still neutralized 27% to 50% of viruses in the panel (Table 61 and Figure 33b). Although PGTs 135, 136, and 137 displayed a lesser degree of overall neutralization breadth relative to the other mAbs, they all still neutralized over 30% of the clade C viruses on the panel (Figure 36 and Table 58A). These results are significant considering that HIV-1 clade C predominates in sub-Saharan Africa and accounts for more than 50% of all HIV-1 infections worldwide.
.. .. .. ...... ."X X.: .. .. . .. .. ... . .... .. . . .. . . . . ... .. . .. .. .. .. .
...... ... .... ~ .. . . . .. . . . .
.. . . .. . . .. . .....
. . .. . . 0 .....
j .. .. .. . ..
....... .
.... ... 36.
9 .... ....
.... . . . . . . ..
4 .. .. 4 .. .. ... . . . . ,
.." A ........ ~
... 7. . .. A'...
... .. ..... ...' ...0 . .....
.. .. . .. . . . .
~3' 4'44.... ...'9 .' ..
~ ' / ~ r. z' ... '7 ,. 3............
... . ... ... .. .. ...... ' .. .....
xx ... [.. .. .. ... 1 ....... ...[... ...
.... r........
.. ........ 9 lip8 i O io
Sa va wa MI
11 oi a a to q I asms8m s tso A :at5 11 1 s we- t t w s e 1 a Te8.11 11 l 1
:" to - s 1a
1 a o
4 -x
Ia -p 'Imp
Awl T Top!.
'~ c Ind",
i371
- . . . . .
r~f x:
gp 3
rA i 3 8.4i -l-n
:14 F , -.
- e
...... ....... .............. ....... ...... p....... ....... ...... ...... ....... ....... ...... ...... ....... ...... ....... ...... ....... ...... ... ....... ........ ............. ....... ....... ............... ...... .............. ....... ...... ....... ...... ....... ... : ....... ...... ....... .... ....... ....... ....... ....... ............... ....... .............. ....... -I:--,:-::-: ............... ::.:...:...:. ....... .................................................................................... .............................. ...... ....... ....... ....... ....... ............... ............... ....... ....... ...... ....... .... ...... ....... ....... ........ ...... ...... ........ ...... ...... .... ......... ..... ....... ........ ...... ....... .............. ...... .... .. ....... ....... ...... ....... . ...... ........ ... ....... ..... ...... ....... ....... ....... ....... ........... ...... .. ... ....... ....... ............... ...... ....... ....... ............. ....... ....... ....... ....... ....... ....... ............... ....... ....... ....... ....... ............... ....... ........... ...... .... ....... .... .... ...... ...... ............... ....... ....... ...... ....... ...... ........ ............ ....... ...... ....... ....... ....... ....... ...... ....... ...... ................... ............. ....... ....... ....... ..... .. ............. .... .............. ...... ..... ...... ........ ...... ....... ....... ....... ...... ....... ....... ..... ....... ....... ...... .............. ...... ....... ............... ...... .. .... ............... ....... ... ... ....... ...... ....... ...... ....... ....... ........................................................... ....... ....... ...... ....... ...... ......... ...... ...... ....... ....... ...... ... ...... ........ ...... ............... ....... ....... ..... ..... ... ....... ..... .. ....... ...... ....... ...... ....... .............. ...... ....... .............. ....... ...................... ...... ........ ............... ............... .................................................................................... ....... ....... ... . ...... ....... ....... ....... ..... ....... ... ............ ...... ..... ....... ....... ................ ..... ........................... ....... ...... ...... ....... ....... .... .. ....... ...... ..... ....... ....... ........ ....... ............... ...... . ........ .. ........ ....... ..... ....... ....... ........ ............... ...... ....... .............. ....... ...... .... .. ....... ...... ....... ......... .... ....... ....... ...... .............. ...... ..... ....... ........... ......... ....... ...... .............. ....... ....... .............. ....... ...... ...... ...... .... ....... ....... .............. .. ........ . ....... .. .............. ......... ....... ...... .............. ....... . . ........ ........ ...... ...... ....... ....... ...... ...... ....... ....... ....... ....... ..... ....... ....... ...... ....... ....... .... ........ ....... .... ....... ........ ...... ....... ......... ...... ......... ....... ......... ...... ...... ..... ....... .. .... ...... ...... ....... ..... . .. ........ Q -T .. ....... ...... ...... .. ....... ....... A.T. ..... ............... ....... ....... ..... ....... ...... ....... ....... ............... ........... ....... ....... ....... ........ ....... ....... ....... .... ....... ...... ....... ....... ....... ... ....... ....... .............. ...................... ....... ............. .................... ....... ..... ....... ....... ...................... ....... .. ............ :w ....... ....... .............. ..............
.............. .............. .............. UJ
.............. .............. .............. ............ LL ....... ....... .............. ....... ....... Q C. c
r- :N m ka to fl- COO T- W ko
o I-D
x CL
[10711 Many of the clonally related mAbs exhibited differing degrees of overall neutralization potency. For example, the median IC5 os of PGTs 131, 136, 137, and 144 were approximately 10- to 50-fold higher than those of their somatically-related sister clones (Table 61). Also, in some cases, the somatically-related mAbs exhibited similar neutralization potency, but differing degrees of neutralization breadth, against the panel of viruses tested (Tables 58A-E and Table 61). For example, PGT-128 neutralized with comparable overall potency but significantly greater neutralization breadth than the clonally related PGT-125, -126, and -127 mAbs (Tables 58A-E and Table 61). Overall, these observations suggest that serum neutralization breadth may develop from the successive selection of somatic mutants that bind to a modified epitope or a slightly different envelope (Env) conformation expressed on virus escape variants. Additionally, these results indicate that the full serum neutralization breadth and potency may be mediated by a small number of sequentially selected mAbs that bind to distinct, but overlapping, epitopes differentially expressed on various isolates. In this respect, antibody somatic variants could in effect "slide" around the Env spike surface. Comparison of the neutralization profiles of the mAbs isolated from a given donor with the profiles from the sera revealed that the mAbs isolated could largely recapitulate the corresponding serum neutralization breadth and potency (Figs. 33a and 37).
[1072] The epitopes recognized by the newly isolated bnMAbs were determined. ELISA binding assays indicated that PGTs 121-123, 125-128, 130, 131, and 135-137 bound to monomeric gp120 (Table 59). In contrast, the PGT 141-145 bnMAbs exhibited a strong preference for membrane-bound, trimeric HIV-1 Env (Figure 38). Based on this result, it was postulated that these bnMAbs bound to quaternary epitopes similar to those of the recently described PG9 and PG16 bnMAbs (Walker, L.M., et al. Science 326, 285-289 (2009)). Indeed, this hypothesis was confirmed by competition studies, N160K sensitivity, and, for PGTs 141 144, an inability to neutralize JR-CSF pseudoviruses expressing homogenous Man9GlcNAc 2 glycans (Walker, L.M., et al. PLoS Pathog 6(2010)) (Fig. 39).
[1073] To define the epitopes recognized by the remaining PGT antibodies, competition ELISA assays were carried out with a panel of well-characterized neutralizing and non neutralizing antibodies (Fig. 34a). Unexpectedly, all of the remaining antibodies (PGTs 121-123, 125-128, 130, 131, 135-137) competed with the glycan-specific bnMAb 2G12. This result was surprising given that 2G12 had previously formed its own unique competition group. All of the mAbs except for PGTs 135, 136 and 137 also competed with a V3 loop-specific mAb and failed to bind to gp120 AV3, suggesting their epitopes were in proximity to or contiguous with the V3 loop (Fig. 34a and Table 59). Deglycosylation of gp120 with Endo H abolished binding by all the mAbs, indicating that certain oligomannose glycans were important for epitope recognition (Table 59). Competition of these mAbs with 2G12 and lack of binding to deglycosylated gp120 prompted us to investigate whether these antibodies contacted glycans directly. Glycan array analysis revealed that PGTs 125-128, and 130 bound specifically to both Man 8GlcNAc 2 and Man 9 GlcNAc 2 , whereas the remaining antibodies showed no detectable binding to high-mannose glycans (Fig. 34b). Interestingly, the binding of PGTs 125-128, 130 to gp120 was competed by Man 9 but, unlike 2G12, was not competed by monomeric mannose or Man 4 (D1 arm of Man 9 GlcNAc 2) (Fig. 34c and 34d), suggesting a different mode of glycan recognition. Furthermore, in contrast to 2G12, no evidence was found for domain exchange and monomeric Fab fragments exhibited potent neutralizing activity (Fig. 41).
[1074] To further define the epitopes recognized by the mAbs, neutralizing activity against a large panel of HIV-lJR-CSF variants incorporating single alanine substitutions was assessed using a single round of replication pseudovirus assay (Table 60). In the panel of mutants, the N-linked glycans at positions 332 and/or 301 were important for neutralization by PGTs 125-128, 130, and 131 suggesting their direct involvement in epitope formation. The apparent dependency on so few glycans suggests that, although PGTs 125-128, 130, and 131 contact Man8 _9GlcNAc 2 glycans directly, their arrangement in the context of gp120 is critical for high affinity glycan recognition and neutralization potency. This is further highlighted by the inability of PGT Mabs to neutralize SIVmac239, HIV-2 or HCV, which display a high level of glycosylation. Although PGTs 121-123 failed to exhibit detectable binding to high-mannose glycans and be competed by mannose sugars (Fig. 40), the only substitutions that completely abolished neutralization by these mAbs were those that resulted in removal of the glycan at position 332. Although structural studies will be required to fully define the epitopes recognized by these antibodies, the above result suggests either that the PGT 121-123 mabs bind to a protein epitope along the gpl20 polypeptide backbone that is conformationally dependent on the N332 glycan or that the glycan contributes more strongly to binding in the context of the intact protein.
Table 60A. Neutralizing activity of PGT mAbs against a panel of JR-CSF alanine mutants.
Mutation- gpI2Odrnmin' PG-- 122 PGT lfl2 PGT In PGT-1253 POT 12e POT -2s POT 2 PGT130 PGT13- P0T135 VI 4A X .... .t..... 10 04 NO0 ~~2OAN 24 q: 10:...... .... 0 4 $ 4 42 Of 2 27 4 I4 I ...... 0 10 2t.ZT 09,,**** 2** :* M0 .... .$..... ... ... ... ... A ....... .................... ... .. .............1....... .......... ... 9.... ..... ........ ... ....... NIBO*(XI: ti.,X: 04 x1X0 4 4 XI9X1 X .2 ... .. .... .. ........ ........a4 t1 2. -21, 4 .................. ..... ........ - .1% ... ........ 74 -.- .... Oft..
V'12A 2..........1 12......
9.0 14w 1 0 0 1 t 0 SIVS A C2V12xsxn . .1 . .1................ . ...... 2....... ... .1 2 0 0... 04... 4 I t ... .. .... .7 . .. ..I......X *X...
?6S2 .v........:..:...... .0 ..10.1 4.1. 04..1... NZTs 102 56A 7:4 9 0 0 0 1 0
A ....... 77. ............... .. .... .......... ...
Table 60B.
Outffian, gp I'a dpvn-xilntl PGT_ 2 FIC", I - 123 sIf"I - 115 SIG, _17i, PG _1 1 PG - I 2?i Pi T - t 34 pf,'T 31 N, -!'4 ....... ... ....... VMA A :...... ..... ...... ..... ...... ....... .. ... x....... . x ....... ........ x X .. ..... . ... x x .. .. .. ...... ....... ............. ..... ........ .. . -Xxx. .... ...... ................ ................. . I........ :.:X-.x:.: ._................... -X,................... ...... .................. -MA.x ...... OX ........ .................. .................. .................. T207A X.: I -.:::.::X X X-- 0, X-0 ...... ...... ...... -*-:-* .........O."..I.XX P294A ..... ...... .... ...... .... ..... ..... ....... .... ...... ........ ...... ...... ..... ...... ... .................. :. ................... - -..... .................. .................. .................. .................. ................... ............... 4'.-XXXA. N301A ...... ..... .................. .................. ................... ........... ......... .... ................... N1302A ....... ...... .: .V ........ ......... X...-i X..xxx ....... ... . ........... ...... ................... 0 ...... ...... ...... ...... v ..... ...... T303A .XX .................. .............. ....................... .................. ............... ................... .- :::::::x x: . ...... .. ...... ,.z ...... :.:*..:..O .................. ................... .................. ....... .................. .................. ................... ............... .. . ......... .... .. ... ..... ..... .... .. ... ......... .. .... . X ......... .... ...... IOX .0 S306A XX 05. ... ....... ...................................................................................................................................................................................... S $1,:-::: ...... ...... ............. :-..M..... ....... . ...... ....... 130TA ..... ............ :.:A ....... ..... .............. X*,-:::::::::-*::.6 .................. ... ...... ..... P31 3A x..... .- ....... ...... .... .. ..... ...... .............. .. X. ......... ........ ....... . .......... ........... X.: ...... ............. . ..... ...................................... . .............. V3 .................. .............. X. ....... .X v*:-* .. A . X14. ...... k4 UXXX ..4 ........ .... F317A . X .................. xM.,I..x.- .::-: . ................... .................. xS.:-: : XXxx-O, :*:T*:*:*: .................. .................. ..... ............... .................. T311M XI.::I-:::::I:. .................. X. .................. S.............. ................... ... .................-NOX....: .................. ........................ ....... ........ ........ ...... ....... ... ....... -4 ..... ................................. T320A .......... ..... ..... .......... ...... ...... ...... ..... ..... :...... W.:...... ..... A :--:.*- XX*: .AA...... .... ..... ... ...... .... :.A 'C " ...... . W.X-* :1 :::..... ...... ...... .. .44:: ... . ...... ... ............ ............... .... ....... 't......... ...... - ,. ........... .. ......... .. .... ... ........... -- -... ...... ............... ................ ................... ..... ... :,X,. ::::. .......... .. ...................................... .................. .................. ................... ......... ::.44:xX.. ... ...-............. ... ... ........ ....... - ................... ................... X-XX X-XXxX : .. .. --. ... ... - - :X: :A *. : ..... X :* . :::.: ...... ...... *-*x X.:::::: xA , ....... ..... . ................... .................. ................... .................. ........................ .......... .................................... .................. DUM ::_AAM ........... ................ .........I.. ... ...................... .............. ............ ..... ................... ................. C X.. X.- 9c: ................... xxx ............. ................ ........ . ................... ... ............. .................. ................... .................. :2 . x ...... ..... . -:-X-'.-: R327A .................. x .................. .... ... ....... ..................................... .............. ................ .................... ........... .: ..... .................. H330A T:,::::: ::W;5...:x : ::: . ...... ......... .................. ....... ... ........................ ............ . - :... ..- P A-::*:: sA:::::: .. .................. .. ......................................................... ... -. .:.:**: ... ..................................... .................. N332A ... .... ..... ....... ........... ....... :,n\ . ......... , A.:::: S334A '0 .................. . ............................... ................. A. X: . ...... 0337A, t .................. .................. ....... ......... ............... ................ ...................................... A: ...................................... ....... .................. ................... .... ... ...... ..... ..... ........ x...... ..... ...... x-aA xx...... xlx .... W : ...... xxx .................. .................. .................. ................. .................. ................. .................. ............. ...... X-X-::: .: xxx. X-.._...... ......m .... Xf.. X ... Xxx . ...... ....... ..... ...... ............. T341 A ...............:*x::x*.-*.x,.A.S ...................... . ................ ...................... ................... ... .*.*.*.*::::x .................. :::: - .................. ................. ...... .................. ...... .................. .... .................. ................... ...... .................. .................. .............. ..... . ..... ...... ........... . . ................ ........... ... ..... ...... .............. .. .. ........... .. ........ .... .. ...... ....... ..... ....... ..... ...... ...... ....... RWA 0-1 ..... ...... :............. .................. ..... D. X: ................... ............ -.i:*.:j::::: . .....xi:- ....... X. ........ .. ........ .......... ...... ........... ..... x: X ................... .. .................. .................. A. ...................................... ...... .......... ...... ..... ................... .................. ......... ... ...... ............. m -:::::X-- .................. . ..... ................... ...... ... ......... .................. ................... .................. ................... ................. .................... .................. .................. ............................ NM A ......X .-IXx . &a**.. - .&.g.x..... .... ... ....... ....... ..... .... .... .. ........................................................................................................................................................................................ ..... ................................................................................................................................................................................... X M, S387A XI.-:I.-:-V:* nx ig. ... ..... -XX .................. :x:**:'A.. X- v : : .................. :.................. : . -X-X-:-xXX, .... R X: :-:XXI-3 .... .................. ................... X: --X-:-X ................... .................. XXXI"A : .................. .......................... ....... TMA .. xX. .......... . ....... V ................ ................. .... A .................. .................. .........................................
Table 60C.
FoCd tC, incmase "atv e tMype 414 s10 4tnkl U-1r21 WAGt> PUT'4123 iG'ur hS INP P1 PGTi 1W PUT UIPUT51 N4392Q 03 10 tO *2 1,0 14 09 12 0A4 i S393A 04 0, 04 0 01 0 t 1A 01 | L 0: W395A 41 04 |4 04 1306 i 04 41 00 A0 N36AA 1i i12 to il 2A 0* 1,0 | 1 1 r4 IA V 0C 04 0.4 03 Dtt 03 10 41 |0* I.2 T413A 05 04 |04 01 03 ±1 10t 46 | A .3 14AM 03 1.4 011 03 ItA 2, 11 t3 1.0 1O
D 417A DJ_, |_ 0 1 _ ,5 10 13_ R4 9A IA 0-0 07 1. 12 2.5 0,3 26 .7 >3A 1 .......... .. - ....... ... 1...1.9 74 190
M24 1 D,* |1. 0 DA 13 13t 41 4 4
PS470A 14 21 41 in 2.7 O 0o *A10 Qe D 474 V5 1 14 04 1O 14 1 0> 2.0 44 02 commonl achieve or.. measles 3A 909 %efiay(lti. Vacie (Elsevie Health... 0477A (HBV). 1 9 24 0 11 04 04 1 1 ,
P4TSA 0$ 0<1 0* 15 17 t2 44 V2 10 04 R474A VS 1 13 14U 3 2 0 , 1 3.0 15 1A 165-6 ( H G.A.. e. Vc 25 1 1 ( 0 H v fa d
antibodiies agcruain pathogens, ie.thelo antiodynia divertysuc asl hepatitial Bforush degree or eficacy omctveonl ahive prophylaxfisacyproaches. Vaccites (Elsevite Hecet Scieces trailhadlphia, 2008)).atimiltarlyome inflenof protccin achievs HIV-may beffiacie yersughenxta-euralzine acicultinstrfanibodes wel-cheas (Bid-esend.,et cl.l-meated4
cooicte gobpagocytsiy th cicltrongs videesforprotectiontis matc beteenzing prophyladies
in non-human primate models using simian-human immunodeficiency virus (SHIV) challenge (Parren, P.W., et al. J Virol 75, 8340-8347 (2001); Nishimura, Y., et al. J Virol 76, 2123-2130
(2002); Hessell, A.J., et al. Nat Med 15, 951-954 (2009); Hessell, A.J., et al. PLoS Pathog 5, e1000433 (2009); Willey, R., et al. AIDS Res Hum Retroviruses 26, 89-98 (2010)).
[1076] Passive administration of neutralizing antibodies in animal models suggest that a serum titer of approximately or greater than 100 times the IC50 is often required to achieve a meaningful level of protection (Parren, P.W., et al. J Virol 75, 8340-8347 (2001); Nishimura, Y., et al. J Virol 76, 2123-2130 (2002); Hessell, A.J., et al. Nat Med 15, 951-954 (2009); Hessell, A.J., et al. PLoS Pathog 5, e1000433 (2009); Willey, R., et al. AIDS Res Hum Retroviruses 26, 89-98 (2010)). Therefore, if a vaccine elicits a serum bNAb concentration on the order of 10 pg/ml, and if an IC 5o: protective serum ratio of 1:100 is assumed, then protection would be then be achieved by bNAb ICso is lower than 0.1 Rg/ml. As a second conservative scenario, for an IC 50 : protective serum ratio of 1:500, protection would be achieved against viruses for which the bNAb ICso is lower than 0.02 pg/ml. As shown in Figure 33b-d, although various bnMAbs display breadth at high concentrations, viral coverage often drops sharply at lower concentrations. Therefore, if elicited or delivered singly, only the most potent Abs, such as 121 and 128, would be able to achieve a meaningful level of viral coverage, in particular at concentrations corresponding to the more conservative scenario given above. As bnMAbs display different and in some cases complementary breadth, we further looked at the coverage achieved by antibody combinations. For the two IC 50 : protective serum concentration ratios above, a combination of PGV04 and VRC01, the two most potent CD4bs bnMAbs, would provide protection against 50% and 3% of viruses, respectively (Fig. 33c). In contrast, for a vaccine eliciting antibodies with high potency and favorable non-overlapping breadth, such as 128 and 145, coverage would be achieved against 70% and 40% of viruses for the two scenarios (Fig 33d). Several combinations of two bnMAbs, including those directed to overlapping epitopes, can yield this degree of coverage (Figure 44). In addition, a combination of all of the bnMAbs would cover 89% and 62% of viruses, correspondingly. Coverage against such a large proportion of viruses would likely have an important impact on the pandemic.
[1077] In summary, an effective vaccine against HIV-1 may require the elicitation of a combination of complementary potent neutralizing antibodies. The demonstration that large numbers of potent and diverse bNAbs can be isolated from several different individuals provides grounds for renewed optimism that an antibody-based vaccine is achievable. Critically, the instant invention provides the required large number of potent and diverse bNAbs that comprise an antibody-based vaccine.
Methods Summary
[1078] Activated memory B cell supernatants were screened in a high throughput format for neutralization activity using a micro-neutralization assay, as described (Walker, L.M., et al. Science 326, 285-289 (2009)). Heavy and light chain variable regions were isolated from B cell lysates of selected neutralizing hits by reverse transcription from RNA followed by multiplex PCR amplification using family-specific V-gene primer sets. For some antibodies, traditional cloning methods were used for antibody isolation, as described (Walker, L.M., et al. Science 326, 285-289 (2009)). For other antibodies, amplicons from each lysate were uniquely tagged with multiplex identifier (MID) sequences and 454 sequencing regions (Roche). Single round of replication pseudovirus neutralization assays and cell surface binding assays were performed as described previously (Walker, L.M., et al. Science 326, 285-289 (2009); Pantophlet, R., et al. J Virol 77, 642-658 (2003); Li, M., et al. J Virol 79, 10108-10125 (2005)). Glycan reactivities were profiled on a printed glycan microarray (version 5.0 from the Consortium for Functional Glycomics (CFG)) as described previously (Blixt, 0., et al. Proc Natl Acad Sci U S A 101, 17033-17038 (2004)).
Antibodies and Antigens
[1079] The following antibodies and reagents were procured by the IAVI Neutralizing Antibody Consortium: antibody 2G12 (Polymun Scientific, Vienna, Austria), antibody F425/b4E8 (provided by Lisa Cavacini, Beth Israel Deaconess Medical Center, Boston, MA), soluble CD4 (Progenics, Tarrytown, NY), HxB2 gpl20, SF162 gpl20, BaL gpl20, JR-FL gp120, JR-CSF gp120 and YU2 gp120 (provided by Guillaume Stewart-Jones, Oxford University). Purified ADA gp120 was produced in the laboratory of Robert Doms, University of Pennsylvania. Fab X5 was expressed in E.coli and purified using an anti-human Fab specific affinity column. Deglycosylated gp120 JRFL was expressed in HEK 293S GnTI-'- cells and treated with Endo H (Roche).
Donors
[1080] The donors identified for this study were selected from the IAVI sponsored study, Protocol G (Simek, M.D., et al. J Virol 83, 7337-7348 (2009)). Eligibility for enrolment into
Protocol G was defined as: male or female at least 18 years of age with documented HIV infection for at least three years, clinically asymptomatic at the time of enrolment, and not currently receiving antiretroviral therapy. Selection of individuals for monoclonal antibody generation was based on a rank-order high throughput screening and analytical algorithm (Simek, M.D., et al. J Virol 83, 7337-7348 (2009)). Volunteers were identified as elite neutralizers based on broad and potent neutralizing activity against a cross-clade pseudovirus panel (Simek, M.D., et al. J Virol 83, 7337-7348 (2009)).
Isolation of MAbs
[1081] The method for isolating human MAbs from memory B cells in circulation has previously been described (Walker, L.M., et al. Science 326, 285-289 (2009)). Surface IgG' B cells seeded at near clonal density in 384-well microplates were activated in short-term culture. Supernatants were screened for neutralization activity against 2-4 pseudotyped viruses for which neutralization activity was detected at high titers in the donor serum. Heavy and light chain variable regions were isolated from B cell lysates of selected neutralizing hits by reverse transcription from RNA followed by multiplex PCR amplification using family-specific V-gene primer sets. Amplicons from each lysate were uniquely tagged with multiplex identifier (MID) sequences and 454 sequencing regions (Roche, Indianapolis, IN). A normalized pooling of gamma, kappa and lambda chains was performed based on agarose gel image quantitation and the pool was analysed by 454 Titanium@ sequencing. Consensus sequences of the VH and VL chains were generated using the Amplicon Variant Analyzer (Roche) and assigned to specific B cell culture wells by decoding the MID tags. Selected VH and VL chains were synthesized and cloned in expression vectors with the appropriate IgG1, IgG3 or IgG4 constant domain. Monoclonal antibodies were reconstituted by transient transfection in HEK293 cells followed by purification from serum-free culture supernatants. Table 62
Donor Antibody Chain Primer Sequence (Direction is 5'-3' for SEQ forward/sense or reverse/antisense ID NO: primers) 584 PGT-141 Heavy Forward - VH1 ACTATGGACTGGATTTGGAGGATC 585 584 PGT-142 Heavy Forward - VH1 ACTATGGACTGGATTTGGAGGATC 585 584 PGT-143 Heavy Forward - VH1 ACTATGGACTGGATTTGGAGGATC 585 584 PGT- 144 Heavy Forward - VH1 ACTATGGACTGGATTTGGAGGATC 585 584 PGT- 145 Heavy Forward - VH1 ACTATGGACTGGATTTGGAGGATC 585
517 PGT- 121 Heavy Forward -VH4 AACATGAAACACCTGTGGTTCTTCCT 586 517 PGT- 122 Heavy Forward - VH4 AACATGAAACACCTGTGGTTCTTCCT 586 517 PGT- 123 Heavy Forward - VH4 AACATGAAACACCTGTGGTTCTTCCT 586 517 PGT- 124 Heavy Forward - VH4 AACATGAAACACCTGTGGTTCTTCCT 586 517 PGT- 133 Heavy Forward - VH4 AACATGAAACACCTGTGGTTCTTCCT 586 517 PGT- 134 Heavy Forward - VH4 AACATGAAACACCTGTGGTTCTTCCT 586 196 PGT- 125 Heavy Forward - VH4 AACATGAAACACCTGTGGTTCTTCCT 586 196 PGT- 126 Heavy Forward - VH4 AACATGAAACACCTGTGGTTCTTCCT 586 196 PGT- 127 Heavy Forward - VH4 AACATGAAACACCTGTGGTTCTTCCT 586 196 PGT- 128 Heavy Forward - VH4 AACATGAAACACCTGTGGTTCTTCCT 586 196 PGT- 130 Heavy Forward - VH4 AACATGAAACACCTGTGGTTCTTCCT 586 196 PGT- 131 Heavy Forward - VH4 AACATGAAACACCTGTGGTTCTTCCT 586 196 PGT- 132 Heavy Forward - VH4 AACATGAAACACCTGTGGTTCTTCCT 586 196 PGT- 135 Heavy Forward - VH4 AACATGAAACACCTGTGGTTCTTCCT 586 196 PGT- 138 Heavy Forward - VH4 AACATGAAACACCTGTGGTTCTTCCT 586 196 PGT- 139 Heavy Forward - VH4 AACATGAAACACCTGTGGTTCTTCCT 586 039 PGT- 135 Heavy Forward - VH4 AACATGAAACACCTGTGGTTCTTCCT 586 039 PGT- 136 Heavy Forward - VH4 AACATGAAACACCTGTGGTTCTTCCT 586 039 PGT- 137 Heavy Forward - VH4 AACATGAAACACCTGTGGTTCTTCCT 586 584 PGT- 141 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 584 PGT- 142 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 584 PGT- 143 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 584 PGT- 144 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 584 PGT- 145 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 517 PGT- 121 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 517 PGT- 122 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 517 PGT- 123 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 517 PGT- 124 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 517 PGT-133 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 517 PGT-134 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 196 PGT- 125 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 196 PGT- 126 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 196 PGT- 127 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 196 PGT- 128 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 196 PGT-130 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 196 PGT-131 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 196 PGT-132 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 196 PGT-135 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 196 PGT-138 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 196 PGT-139 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 039 PGT-135 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 039 PGT-136 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 039 PGT-137 Heavy Reverse GGAAGTAGTCCTTGACCAGGCAGC 587 584 PGT- 141 Light Forward - VK2 ATGAGGCTCCCTGCTCAGCT 588 584 PGT- 142 Light Forward - VK2 ATGAGGCTCCCTGCTCAGCT 588
584 PGT- 143 Light Forward - VK2 ATGAGGCTCCCTGCTCAGCT 588 584 PGT- 144 Light Forward - VK2 ATGAGGCTCCCTGCTCAGCT 588 584 PGT- 145 Light Forward - VK2 ATGAGGCTCCCTGCTCAGCT 588 039 PGT-135 Light Forward -VK3 CCCCAGCTCAGCTTCTCTTCC 589 039 PGT-136 Light orward -VK3 CCCCAGCTCAGCTTCTCTTCC 589 039 PGT-137 Light Forward -VK3 CCCCAGCTCAGCTTCTCTTCC 589 584 PGT- 141 Light Reverse CCTTGGATAGAAGTTATTCAGC 590 584 PGT- 142 Light Reverse CCTTGGATAGAAGTTATTCAGC 590 584 PGT- 143 Light Reverse CCTTGGATAGAAGTTATTCAGC 590 584 PGT- 144 Light Reverse CCTTGGATAGAAGTTATTCAGC 590 584 PGT- 145 Light Reverse CCTTGGATAGAAGTTATTCAGC 590 039 PGT- 135 Light Reverse CCTTGGATAGAAGTTATTCAGC 590 039 PGT- 136 Light Reverse CCTTGGATAGAAGTTATTCAGC 590 039 PGT- 137 Light Reverse CCTTGGATAGAAGTTATTCAGC 590 196 PGT- 125 Light Forward -VL2 CATGGCCTGGGCTCTGCT 591 196 PGT- 126 Light Forward -VL2 CATGGCCTGGGCTCTGCT 591 196 PGT- 127 Light Forward -VL2 CATGGCCTGGGCTCTGCT 591 196 PGT- 128 Light Forward -VL2 CATGGCCTGGGCTCTGCT 591 196 PGT-130 Light Forward -VL2 CATGGCCTGGGCTCTGCT 591 196 PGT-131 Light Forward -VL2 CATGGCCTGGGCTCTGCT 591 196 PGT-132 Light Forward -VL2 CATGGCCTGGGCTCTGCT 591 196 PGT-135 Light Forward -VL2 CATGGCCTGGGCTCTGCT 591 196 PGT-138 Light Forward -VL2 CATGGCCTGGGCTCTGCT 591 196 PGT-139 Light Forward -VL2 CATGGCCTGGGCTCTGCT 591 517 PGT- 121 Light Forward -VL3 CCATGGCCTGGATCCCTCT 592 517 PGT- 122 Light Forward -VL3 CCATGGCCTGGATCCCTCT 592 517 PGT- 123 Light Forward -VL3 CCATGGCCTGGATCCCTCT 592 517 PGT- 124 Light Forward -VL3 CCATGGCCTGGATCCCTCT 592 517 PGT-133 Light Forward -VL3 CCATGGCCTGGATCCCTCT 592 517 PGT-134 Light Forward -VL3 CCATGGCCTGGATCCCTCT 592 196 PGT- 125 Light Reverse CCTTCATGCGTGACCTGGCAGC 593 196 PGT- 126 Light Reverse CCTTCATGCGTGACCTGGCAGC 593 196 PGT- 127 Light Reverse CCTTCATGCGTGACCTGGCAGC 593 196 PGT- 128 Light Reverse CCTTCATGCGTGACCTGGCAGC 593 196 PGT- 130 Light Reverse CCTTCATGCGTGACCTGGCAGC 593 196 PGT- 131 Light Reverse CCTTCATGCGTGACCTGGCAGC 593 196 PGT- 132 Light Reverse CCTTCATGCGTGACCTGGCAGC 593 196 PGT- 135 Light Reverse CCTTCATGCGTGACCTGGCAGC 593 196 PGT- 138 Light Reverse CCTTCATGCGTGACCTGGCAGC 593 196 PGT- 139 Light Reverse CCTTCATGCGTGACCTGGCAGC 593 517 PGT- 121 Light Reverse CCTTCATGCGTGACCTGGCAGC 593 517 PGT- 122 Light Reverse CCTTCATGCGTGACCTGGCAGC 593 517 PGT- 123 Light Reverse CCTTCATGCGTGACCTGGCAGC 593 517 PGT- 124 Light Reverse CCTTCATGCGTGACCTGGCAGC 593 517 PGT- 133 Light Reverse CCTTCATGCGTGACCTGGCAGC 593
517 >GT-134 eight everse CCTTCATGCGTGACCTGGCAGC 593
PGT antibody expression and purification
[1082] Antibody genes were cloned into an expression vector and transiently expressed with the FreeStyle 293 Expression System (Invitrogen, Carlsbad, CA). Antibodies were purified using affinity chromatography (Protein A Sepharose Fast Flow, GE Healthcare, UK). Purity and integrity were checked with SDS-PAGE.
Neutralization assays
[1083] Neutralization by monoclonal antibodies and donor sera was performed by Monogram Biosciences using a single round of replication pseudovirus assay as previously described (Richman, D. D.,et al. Proc Natl Acad Sci U S A 100, 4144-4149 (2003)). Briefly, pseudoviruses capable of a single round of infection were produced by co-transfection of HEK293 cells with a subgenomic plasmid, pHIV-llucu3, that incorporates a firefly luciferase indicator gene and a second plasmid, pCXAS that expressed HIV-1 Env libraries or clones. Following transfection, pseudoviruses were harvested and used to infect U87 cell lines expressing co-receptors CCR5 or CXCR4. Pseudovirus neutralization assays using HIV-lJR-CSF alanine mutants are fully described elsewhere (Walker, L.M., et al. Science 326, 285-289 (2009)). Neutralization activity of MAbs against HIV- 1 JR-CSF alanine mutants was measured using a TZM-BL assay, as described (Walker, L.M., et al. Science 326, 285-289 (2009)). Kifunensine-treated pseudoviruses were produced by treating 293T cells with 25 [pM kifunensine on the day of transfection. Memory B cell supernatants were screened in a micro-neutralization assay against a cross-clade panel of HIV-1 isolates and SIVmac239 (negative control). This assay was based on the 96- well pseudotyped HIV-1 neutralization assay (Monogram Biosciences) and was modified for screening 15 1iof B cell culture supernatants in a 384-well format.
Cell surface binding assays
[1084] Titrating amounts of antibodies were added to HIV-1 Env transfected 293T cells, incubated for 1 hr at 37'C, washed with FACS buffer, and stained with goat anti- human IgG F(ab') 2 conjugated to phycoerythin (Jackson ImmunoResearch, West Grove, PA). Binding was analyzed using flow cytometry, and binding curves were generated by plotting the mean fluorescence intensity of antigen binding as a function of antibody concentration. For competition assays, titrating amounts of competitor antibodies were added to the cells 30 min prior to adding biotinylated PGT MAbs at a concentration required to give EC50 .
ELISA assays
[1085] For antigen-binding ELISAs, serial dilutions of MAbs were added to antigen-coated wells and binding was probed with alkaline phosphatase-conjugated goat anti-human immunoglobulin G (JgG) F(ab') 2 Ab (Pierce, Rockford, IL). For competition ELISAs, titrating amounts of competitor MAbs were added to gp120-coated ELISA wells and incubated for 30 min prior to adding biotinylated PGT MAbs at a concentration required to give IC 70 . Biotinylated PGT MAbs were detected using alkaline phosphatase conjugated streptavidin (Pierce) and visualized using p-nitrophenol phosphate substrate (Sigma, St. Louis, MO).
Glycan Microarray Analysis
[1086] Monoclonal antibodies were screened on a printed glycan microarray version 5.0 from the Consortium for Functional Glycomics (CFG) as described previously (Blixt, 0., et al. Proc Natl Acad Sci U S A 101, 17033-17038 (2004)). Antibodies were used at a concentration of pLg/ml and were precomplexed with 15 pg/ml secondary antibody (goat-anti-human-Fc-rPE, Jackson Immunoresearch) before addition to the slide. Complete glycan array data sets for all antibodies may be found at www.functionalglycomics.org in the CFG data archive under "cfgrRequest_2250".
Oligomannose Dendron synthesis
[1087] The oligomannose dendrons (Man 4D and Man 9D) were synthesized by Cu(I) catalyzed alkyne-azide cycloaddition between azido oligomannose and the second generation of AB 3 type alkynyl dendron. Detailed procedures and characterization were previously reported (Wang, S.K., et al. Proc Natl Acad Sci U S A 105, 3690-3695 (2008)).
Fabrication of gp120 microarray
[1088] NHS-activated glass slides (Nexterion slide H, Schott North American) were printed with robotic pin (Arrayit 946) to deposit gp120 JRFL at concentrations of 750 or 250 ptg/ml in printing buffer (120 mM phosphate, pH 8.5; containing 5% glycerol and 0.01 % Tween 20). 12 replicates were used for each concentration. The printed slides were incubated in relative humidity 75% chamber overnight and treated with blocking solution (superblock blocking buffer in PBS, Thermo) at room temperature for 1 h. The slides were then rinsed with PBS-T (0.05% Tween 20) and PBS buffer, and centrifuged at 200 g to remove residual solution from slide surface.
Oligomannose dendron-gp120 competition assay with MAbs
[1089] Serial diluted oligomannose dendrons were mixed with MAb (40 pig/ml) in PBS-BT buffer (1% BSA and 0.05 % Tween 20 in PBS). The mixtures were applied directly to each sub array on slide. After incubation in a humidified chamber for 1 h at RT, the slides were rinsed sequentially with PBS-T and PBS buffer, and then centrifuged at 200 g. Each sub-array was then stained with Cy3 labeled goat anti-human Fc IgG (7.5 [tg/ml in PBSBT) for 1 h in a humidified chamber. The slides were then rinsed sequentially with PBS-T and demonized water and centrifuged at 200 g. The fluorescence of the final arrays was imaged at 10 tim resolution (Ex: 540 nm; Em: 595 nm) with an ArrayWorx microarray reader (Applied Precision).
Sequence Analysis
[1090] Germ line genes were predicted using the immunoglobulin sequence alignment tools IMGT/V-QUEST (Brochet, X., et al. Nucleic Acids Res 36, W503-508 (2008)) and SoDA2 (Munshaw, S. & Kepler, T. B. Bioinformatics 26, 867-872 (2010)). Clonally-related sequences were identified by common germ line V-genes and long stretches of identical N-nucleotides.
Statistical Analysis
[1091] Statistical analyses were done with Prism 5.0 for Mac (GraphPad, La Jolla, CA). Viruses that are not neutralized at an IC50 or IC90 < 50 pLg/ml were given a value of 50 ptg/ml for median calculations. For combinations of antibodies, a virus was counted as covered if at least one of the MAbs was neutralized depending on individual concentrations (IC 50 ). This approach does not take additivity into account and therefore underestimates the neutralization potency of antibody combinations.
[1092] Having thus described in detail preferred embodiments of the present invention, it is to be understood that the invention defined by the above paragraphs is not to be limited to particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope of the present invention.

Claims (163)

WHAT IS CLAIMED IS:
1. An isolated human monoclonal antibody, wherein said monoclonal antibody neutralizes HIV-1 virus in vitro, and further wherein said monoclonal antibody is obtained by a process comprising the steps of: (a) screening memory B cell cultures from a donor PBMC sample for broad neutralization activity against a plurality of HIV- 1 species; and then (b) rescuing the monoclonal antibody from a memory B cell culture that exhibits neutralization activity against a plurality of HIV-1 species.
2. The potent, broadly neutralizing monoclonal antibody of claim 1, wherein said antibody effectively neutralizes (a) an HIV-1 species belonging to at least two of clades A, B, C, D, AE, AG, G, or F; or (b) at least 60% of HIV-1 species selected from the group consisting of MGRM-A 001, MGRM-A-002, MGRM-A-003, MGRM-A-004, MGRM-A-005, MGRM-A-006, MGRM A-007, MGRM-A-008, MGRM-A-009, MGRM-A-010, MGRM-A-011, MGRM-A-012, MGRM-A-013, MGRM-A-014, 94UG103, 92RW020, 93UG077, 94KE105, 93RW029, 02RW009, 92UG031, 92RW026, 92UG037, 92RW008, 92RWO21, VLGCA1, 92RWO24, 6535.
3, QH0692.42, SC422661.8, PVO.
4, TRO.11, CAAN.A2, TRJ0.58, THRO.18, 92BR010, APV 13, APV 17, APV 6, 93TH305, VLGCB3, JRCSF, NL43, MGRM-Chronic-B-001, MGRM-Chronic-B-002, MGRM-Chronic-B-003, MGRM-Chronic-B-004, MGRM-Chronic-B 008, MGRM-Chronic-B-010, MGRM-Chronic-B-011, MGRM-Chronic-B-012, MGRM Chronic-B-017, MGRM-Chronic-B-018, MGRM-Chronic-B-020, MGRM-Chronic-B-023, MGRM-Chronic-B-024, JRFL, SF162, MGRM-C-001, MGRM-C-002, MGRM-C-003, MGRM C-004, MGRM-C-005, MGRM-C-006, MGRM-C-007, MGRM-C-008, MGRM-C-009, MGRM-C-010, MGRM-C-011, MGRM-C-012, MGRM-C-013, MGRM-C-014, MGRM-C-015, MGRM-C-016, MGRM-C-017, MGRM-C-018, MGRM-C-019, MGRM-C-020, MGRM-C-021, MGRM-C-022, MGRM-C-023, MGRM-C-024, MGRM-C-025, 921N905, IAVIC 18, IAVI C22, IAVI C3, 98IN022, 93MW959, 97ZA012, 98CN006, 98CN009, MGRM-D-001, MGRM-D 002, MGRM-D-003, MGRM-D-004, MGRM-D-005, MGRM-D-008, MGRM-D-011, MGRM D-012, MGRM-D-013, MGRM-D-014, MGRM-D-016, MGRM-D-018, MGRM-D-019, MGRM-D-020, MGRM-D-021, MGRM-D-022, MGRM-D-024, MGRM-D-026, MGRM-D
028, MGRM-D-029, 92UG024, 92UG005, 92UG046, 92UG001, 94UG114, MGRM-AE-001, MGRM-AE-002, MGRM-AE-003, MGRM-AE-004, MGRM-AE-005, MGRM-AE-006, MGRM-AE-007, MGRM-AE-008, 92TH021, CMU02, MGRM-AG-001, MGRM-AG-002, MGRM-AG-003, MGRM-AG-005, MGRM-AG-006, MGRM-AG-008, MGRM-AG-009, MGRM-AG-011, MGRM-AG-012, MGRM-AG-013, MGRM-G-001, MGRM-G-004, MGRM G-006, MGRM-G-009, MGRM-G-011, MGRM-G-013, MGRM-G-014, MGRM-G-015, MGRM-G-016, MGRM-G-017, MGRM-G-019, MGRM-G-024, MGRM-G-025, MGRM-G 027, MGRM-G-028, MGRM-F1-004, MGRM-F1-006, MGRM-F1-008, MGRM-F1-010, MGRM-F1-012, MGRM-F1-013, MGRM-F1-014, MGRM-F1-015, MGRM-F1-016, MGRM F1-017, MGRM-F1-018, MGRM-F1-020, MGRM-F1-021, MGRM-F1-022, MGRM-F1-023, and aMLV; and further wherein the potency of neutralization of said HIV-1 species is determined by an IC50 value of less than 0.2 pg/mL. 3. The antibody of claim 1, wherein said antibody is 1443C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_D15 (PGT-122), 4858_P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HO1 (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), or 4995_P16 (PGT-145). 4. The antibody of claim 1, wherein said antibody is 1443C16 (PG16) or a sister clone thereof.
5. The antibody of claim 4, wherein said antibody is 1443_C16 (PG16), 1469_M23 (PG16), 1456_A12 (PG16), 1503_HO5 (PG16), 1489113 (PG16), or 1480108 (PG16).
6. An antibody that binds the same epitope as 1443_C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_Di5 (PGT-122), 4858_P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14
(PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HO1 (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345_101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), or 4995_P16 (PGT-145).
7. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of KYGMH (SEQ ID NO: 88), LISDDGMRKYHSDSMWG (SEQ ID NO: 89), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSSDVGGFDSVS (SEQ ID NO: 97), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
8. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GFTFHK (SEQ ID NO: 266), LISDDGMRKY (SEQ ID NO: 267), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSSDVGGFDSVS (SEQ ID NO: 97), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
9. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of KYGMH (SEQ ID NO: 88), LISDDGMRKYHSDSMWG (SEQ ID NO: 89), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTRSDVGGFDSVS (SEQ ID NO: 92), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
10. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GFTFHK (SEQ ID NO: 266), LISDDGMRKY (SEQ ID NO: 267), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTRSDVGGFDSVS (SEQ ID NO: 92), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
11. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of KYGMH (SEQ ID NO: 88), LISDDGMRKYHSDSMWG (SEQ ID NO: 89), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSRDVGGFDSVS (SEQ ID NO: 93), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
12. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GFTFHK (SEQ ID NO: 266), LISDDGMRKY (SEQ ID NO: 267), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSRDVGGFDSVS (SEQ ID NO: 93), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
13. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of KYGMH (SEQ ID NO: 88), LISDDGMRKYHSNSMWG (SEQ ID NO: 98), and EAGGPIWHDDVKYYDFNDGYYNYHYMDV (SEQ ID NO: 6), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSSDVGGFDSVS (SEQ ID NO: 97), DVSHRPS (SEQ ID NO: 95), and SSLTDRSHRI (SEQ ID NO: 41).
14. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SYAFT (SEQ ID NO: 104), MVTPIFGEAKYSQRFEG (SEQ ID NO: 105), and DRRAVPIATDNWLDP (SEQ ID NO: 9), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQTINNYLN (SEQ ID NO: 107), GASNLQN (SEQ ID NO: 108), and QQSFSTPRT (SEQ ID NO: 42).
15. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GGTFSS (SEQ ID NO: 268), MVTPIFGEAK (SEQ ID NO: 269), and DRRAVPIATDNWLDP (SEQ ID NO: 9), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQTINNYLN (SEQ ID NO: 107), GASNLQN (SEQ ID NO: 108), and QQSFSTPRT (SEQ ID NO: 42).
16. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SYAFS (SEQ ID NO: 110), MITPVFGETKYAPRFQG (SEQ ID NO: 111), and DRRVVPMATDNWLDP (SEQ ID NO: 8), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQTIHTYLN (SEQ ID NO: 113), GASTLQS (SEQ ID NO: 114), and QQSYSTPRT (SEQ ID NO: 43).
17. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GGAFSS (SEQ ID NO: 270), MITPVFGETK (SEQ ID NO: 271), DRRVVPMATDNWLDP (SEQ ID NO: 8), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQTIHTYLN (SEQ ID NO: 113), GASTLQS (SEQ ID NO: 114), and QQSYSTPRT (SEQ ID NO: 43).
18. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of DYYLH (SEQ ID NO: 116), LIDPENGEARYAEKFQG (SEQ ID NO: 117), GAVGADSGSWFDP (SEQ ID NO: 10), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SGSKLGDKYVS (SEQ ID NO: 120), ENDRRPS (SEQ ID NO: 121), QAWETTTTTFVF (SEQ ID NO: 44).
19. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GYSFID (SEQ ID NO: 102), LIDPENGEAR (SEQ ID NO: 103),
GAVGADSGSWFDP (SEQ ID NO: 10), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SGSKLGDKYVS (SEQ ID NO: 120), ENDRRPS (SEQ ID NO: 121), QAWETTTTTFVF (SEQ ID NO: 44).
20. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of RQGMH (SEQ ID NO: 123), FIKYDGSEKYHADSVWG (SEQ ID NO: 124), and EAGGPDYRNGYNYYDFYDGYYNYHYMDV (SEQ ID NO: 7), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSNDVGGYESVS (SEQ ID NO: 126), DVSKRPS (SEQ ID NO: 127), and KSLTSTRRRV (SEQ ID NO: 45).
21. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GFDFSR (SEQ ID NO: 118), FIKYDGSEKY (SEQ ID NO: 272), and EAGGPDYRNGYNYYDFYDGYYNYHYMDV (SEQ ID NO: 7), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSNDVGGYESVS (SEQ ID NO: 126), DVSKRPS (SEQ ID NO: 127), and KSLTSTRRRV (SEQ ID NO: 45).
22. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of DSYWS (SEQ ID NO: 90), YVHKSGDTNYSPSLKS (SEQ ID NO: 265), TLHGRRIYGIVAFNEWFTYFYMDV (SEQ ID NO: 143), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of GEKSLGSRAVQ (SEQ ID NO: 150), NNQDRPS (SEQ ID NO: 151), HIWDSRVPTKWV (SEQ ID NO: 152).
23. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GASISD (SEQ ID NO: 144), YVHKSGDTN (SEQ ID NO: 145), TLHGRRIYGIVAFNEWFTYFYMDV (SEQ ID NO: 143), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of GEKSLGSRAVQ (SEQ ID NO: 150), NNQDRPS (SEQ ID NO: 151), HIWDSRVPTKWV (SEQ ID NO: 152).
24. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of DNYWS (SEQ ID NO: 261), YVHDSGDTNYNPSLKS (SEQ ID NO: 157), and TKHGRRIYGVVAFKEWFTYFYMDV (SEQ ID NO: 262), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of GEESLGSRSVI (SEQ ID NO: 162), NNNDRPS (SEQ ID NO: 163), and HIWDSRRPTNWV (SEQ ID NO: 164).
25. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GTLVRD (SEQ ID NO: 263), YVHDSGDTN (SEQ ID NO: 264), and TKHGRRIYGVVAFKEWFTYFYMDV (SEQ ID NO: 262), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of GEESLGSRSVI (SEQ ID NO: 162), NNNDRPS (SEQ ID NO: 163), and HIWDSRRPTNWV (SEQ ID NO: 164).
26. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of DAYWS (SEQ ID NO: 169), YVHHSGDTNYNPSLKR (SEQ ID NO: 170), and ALHGKRIYGIVALGELFTYFYMDV (SEQ ID NO: 171), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of GKESIGSRAVQ (SEQ ID NO: 178), NNQDRPA (SEQ ID NO: 179), and HIYDARGGTNWV (SEQ ID NO: 180).
27. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GASIND (SEQ ID NO: 172), YVHHSGDTN (SEQ ID NO: 173), and ALHGKRIYGIVALGELFTYFYMDV (SEQ ID NO: 171), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of GKESIGSRAVQ (SEQ ID NO: 178), NNQDRPA (SEQ ID NO: 179), and HIYDARGGTNWV (SEQ ID NO: 180).
28. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of ACTYFWG (SEQ ID NO: 185), SLSHCQSFWGSGWTFHNPSLKS (SEQ ID NO: 186), and FDGEVLVYNHWPKPAWVDL (SEQ ID NO: 187), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTATNFVS (SEQ ID NO: 194), GVDKRPP (SEQ ID NO: 195), and GSLVGNWDVI (SEQ ID NO: 196).
29. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GESTGACT (SEQ ID NO: 188), SLSHCQSFWGSGWTF (SEQ ID NO: 189), and FDGEVLVYNHWPKPAWVDL (SEQ ID NO: 187), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTATNFVS (SEQ ID NO: 194), GVDKRPP (SEQ ID NO: 195), and GSLVGNWDVI (SEQ ID NO: 196).
30. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of ACDYFWG (SEQ ID NO: 201), GLSHCAGYYNTGWTYHNPSLKS (SEQ ID NO: 202), and FDGEVLVYHDWPKPAWVDL (SEQ ID NO: 203), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TGTSNRFVS (SEQ ID NO: 210), GVNKRPS (SEQ ID NO: 211), and SSLVGNWDVI (SEQ ID NO: 212).
31. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GDSTAACD (SEQ ID NO: 204), GLSHCAGYYNTGWTY (SEQ ID NO: 205), and FDGEVLVYHDWPKPAWVDL (SEQ ID NO: 203), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TGTSNRFVS (SEQ ID NO: 210), GVNKRPS (SEQ ID NO: 211), and SSLVGNWDVI (SEQ ID NO: 212).
32. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of TGHYYWG (SEQ ID NO: 217), HIHYTTAVLHNPSLKS (SEQ ID NO:
218), and SGGDILYYYEWQKPHWFSP (SEQ ID NO: 219), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSSDIGGWNFVS (SEQ ID NO: 226), EVNKRPS (SEQ ID NO: 227), and SSLFGRWDVV (SEQ ID NO: 228).
33. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GESINTGH (SEQ ID NO: 220), HIHYTTAVL (SEQ ID NO: 221), and SGGDILYYYEWQKPHWFSP (SEQ ID NO: 219), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of NGTSSDIGGWNFVS (SEQ ID NO: 226), EVNKRPS (SEQ ID NO: 227), and SSLFGRWDVV (SEQ ID NO: 228).
34. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GGEWGDKDYHWG (SEQ ID NO: 233), SIHWRGTTHYKESLRR (SEQ ID NO: 234), and HRHHDVFMLVPIAGWFDV (SEQ ID NO: 235), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQNINKNLA (SEQ ID NO: 243), ETYSKIA (SEQ ID NO: 244), and QQYEEWPRT (SEQ ID NO: 245).
35. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GDSIRGGEWGDKD (SEQ ID NO: 236), SIHWRGTTH (SEQ ID NO: 237), and HRHHDVFMLVPIAGWFDV (SEQ ID NO: 235), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQNINKNLA (SEQ ID NO: 243), ETYSKIA (SEQ ID NO: 244), and QQYEEWPRT (SEQ ID NO: 245).
36. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GTDWGENDFHYG (SEQ ID NO: 250), SIHWRGRTTHYKTSFRS (SEQ ID NO: 251), HKYHDIFRVVPVAGWFDP (SEQ ID NO: 252), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQNVKNNLA (SEQ ID NO: 259), DASSRAG (SEQ ID NO: 260), QQYEEWPRT (SEQ ID NO: 245).
37. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GGSMRGTDWGEND (SEQ ID NO: 253), SIHWRGRTTH (SEQ ID NO: 254), HKYHDIFRVVPVAGWFDP (SEQ ID NO: 252), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQNVKNNLA (SEQ ID NO: 259), DASSRAG (SEQ ID NO: 260), QQYEEWPRT (SEQ ID NO: 245).
38. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of KYDVH (SEQ ID NO: 277), WMSHEGDKTESAQRFKG (SEQ ID NO: 278), and GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
39. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GNTFSK (SEQ ID NO: 280), WMSHEGDKTE (SEQ ID NO: 281), GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
40. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of KYDVH (SEQ ID NO: 277), WISHERDKTESAQRFKG (SEQ ID NO: 293), GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
41. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GNTFSK (SEQ ID NO: 280), WISHERDKTE (SEQ ID NO: 294), GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SSTQSLRHSNGANYLA (SEQ ID NO: 286), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
42. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of KYDVH (SEQ ID NO: 277), WMSHEGDKTESAQRFKG (SEQ ID NO: 278), and GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TSTQSLRHSNGANYLA (SEQ ID NO: 303), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
43. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GNTFSK (SEQ ID NO: 280), WMSHEGDKTE (SEQ ID NO: 281), GSKHRLRDYVLYDDYGLINYQEWNDYLEFLDV (SEQ ID NO: 279), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TSTQSLRHSNGANYLA (SEQ ID NO: 303), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
44. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of KYDVH (SEQ ID NO: 277), WMSHEGDKTESAQRFKG (SEQ ID NO: 278), GSKHRLRDYVLYDDYGLINQQEWNDYLEFLDV (SEQ ID NO: 308), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TSTQSLRHSNGANYLA (SEQ ID NO: 303), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
45. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GNTFRK (SEQ ID NO: 309), WMSHEGDKTE (SEQ ID NO: 281), and
GSKHRLRDYVLYDDYGLINQQEWNDYLEFLDV (SEQ ID NO: 308), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TSTQSLRHSNGANYLA (SEQ ID NO: 303), LGSQRAS (SEQ ID NO: 287), and MQGLNRPWT (SEQ ID NO: 288).
46. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of RCNYFWG (SEQ ID NO: 320), SLSHCRSYYNTDWTYHNPSLKS (SEQ ID NO: 321), and FGGEVLVYRDWPKPAWVDL (SEQ ID NO: 322), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TGTSNNFVS (SEQ ID NO: 325), EVNKRPS (SEQ ID NO: 227), and SSLVGNWDVI (SEQ ID NO: 212).
47. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GDSTGRCN (SEQ ID NO: 323), SLSHCRSYYNTDWTY (SEQ ID NO: 324), and FGGEVLVYRDWPKPAWVDL (SEQ ID NO: 322), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TGTSNNFVS (SEQ ID NO: 325), EVNKRPS (SEQ ID NO: 227), and SSLVGNWDVI (SEQ ID NO: 212).
48. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of ACNSFWG (SEQ ID NO: 326), SLSHCASYWNRGWTYHNPSLKS (SEQ ID NO: 335), and FGGEVLRYTDWPKPAWVDL (SEQ ID NO: 336), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TGTSNNFVS (SEQ ID NO: 325), (SEQ ID NO: 343), and (SEQ ID NO: 196).
49. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GDSTAACN (SEQ ID NO: 337), SLSHCASYWNRGWTY (SEQ ID NO: 338), and FGGEVLRYTDWPKPAWVDL (SEQ ID NO: 336), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of TGTSNNFVS (SEQ ID NO: 325), DVNKRPS (SEQ ID NO: 343), and GSLVGNWDVI (SEQ ID NO: 196).
50. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of TGHHYWG (SEQ ID NO: 348), HIHYNTAVLHNPALKS (SEQ ID NO: 349), and SGGDILYYIEWQKPHWFYP (SEQ ID NO: 350), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SGTGSDIGSWNFVS (SEQ ID NO: 357), EVNRRRS (SEQ ID NO: 358), and SSLSGRWDIV (SEQ ID NO: 359).
51. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GDSINTGH (SEQ ID NO: 351), HIHYNTAVL (SEQ ID NO: 352), and SGGDILYYIEWQKPHWFYP (SEQ ID NO: 350), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SGTGSDIGSWNFVS (SEQ ID NO: 357), EVNRRRS (SEQ ID NO: 358), and SSLSGRWDIV (SEQ ID NO: 359).
52. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GGEWGDSDYHWG (SEQ ID NO: 364), SIHWRGTTHYNAPFRG (SEQ ID NO: 365), and HKYHDIVMVVPIAGWFDP (SEQ ID NO: 366), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQSVKNNLA (SEQ ID NO: 372), DTSSRAS (SEQ ID NO: 373), and QQYEEWPRT (SEQ ID NO: 245).
53. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GGSIRGGEWGDSD (SEQ ID NO: 367), SIHWRGTTH (SEQ ID NO: 237), and HKYHDIVMVVPIAGWFDP (SEQ ID NO: 366), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of RASQSVKNNLA (SEQ ID NO: 372), DTSSRAS (SEQ ID NO: 373), and QQYEEWPRT (SEQ ID NO: 245).
54. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of NHDVH (SEQ ID NO: 378), WMSHEGDKTGLAQKFQG (SEQ ID NO: 379), and GSKHRLRDYFLYNEYGPNYEEWGDYLATLDV (SEQ ID NO: 380), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of KCSHSLQHSTGANYLA (SEQ ID NO: 387), LATHRAS (SEQ ID NO: 388), and MQGLHSPWT (SEQ ID NO: 389).
55. An isolated anti-HIV antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of GNSFSN (SEQ ID NO: 381), WMSHEGDKTG (SEQ ID NO: 382), and GSKHRLRDYFLYNEYGPNYEEWGDYLATLDV (SEQ ID NO: 380), and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of KCSHSLQHSTGANYLA (SEQ ID NO: 387), LATHRAS (SEQ ID NO: 388), and MQGLHSPWT (SEQ ID NO: 389).
56. An isolated anti-HIV antibody, wherein said antibody comprises a VH CDR1 region comprising the amino acid sequence of NYYWT (SEQ ID NO: 406); a VH CDR2 region comprising the amino acid sequence of YISDRETTTYNPSLNS (SEQ ID NO: 407); a VH CDR3 region comprising the amino acid sequence of ARRGQRIYGVVSFGEFFYYYYMDV (SEQ ID NO: 408); a VL CDR1 region comprising the amino acid sequence of GRQALGSRAVQ (SEQ ID NO: 415); a VL CDR2 region comprising the amino acid sequence of NNQDRPS (SEQ ID NO: 151); and a VL CDR3 region comprising the amino acid sequence of HMWDSRSGFSWS (SEQ ID NO: 416).
57. An isolated anti-HIV antibody, wherein said antibody comprises a VH CDR1 region comprising the amino acid sequence of GRFWS (SEQ ID NO: 421); a VH CDR2 region comprising the amino acid sequence of YFSDTDRSEYNPSLRS (SEQ ID NO: 422); a VH CDR3 region comprising the amino acid sequence of AQQGKRIYGIVSFGEFFYYYYMDA (SEQ ID NO: 423); a VL CDR1 region comprising the amino acid sequence of GERSRGSRAVQ (SEQ ID NO: 430); a VL CDR2 region comprising the amino acid sequence of NNQDRPA (SEQ ID NO: 179); and a VL CDR3 region comprising the amino acid sequence of HYWDSRSPISWI (SEQ ID NO: 431).
58. An isolated anti-HIV antibody, wherein said antibody comprises a VH CDR1 region comprising the amino acid sequence of GRFWS (SEQ ID NO: 421); a VH CDR2 region comprising the amino acid sequence of YFSDTDRSEYNPSLRS (SEQ ID NO: 422); a VH CDR3 region comprising the amino acid sequence of AQQGKRIYGIVSFGELFYYYYMDA (SEQ ID NO: 436); a VL CDR1 region comprising the amino acid sequence of GERSRGSRAVQ (SEQ ID NO: 430); a VL CDR2 region comprising the amino acid sequence of NNQDRPA (SEQ ID NO: 179); and a VL CDR3 region comprising the amino acid sequence of HYWDSRSPISWI (SEQ ID NO: 431).
59. An isolated anti-HIV antibody, wherein said antibody comprises a VH CDR1 region comprising the amino acid sequence of TGHHYWG (SEQ ID NO: 348); a VH CDR2 region comprising the amino acid sequence of HIHYNTAVLHNPALKS (SEQ ID NO: 349); a VH CDR3 region comprising the amino acid sequence of SGGDILYYNEWQKPHWFYP (SEQ ID NO: 445); a VL CDR1 region comprising the amino acid sequence of SGTASDIGSWNFVS (SEQ ID NO: 450); a VL CDR2 region comprising the amino acid sequence of EVNRRRS (SEQ ID NO: 358); and a VL CDR3 region comprising the amino acid sequence of SSLSGRWDIV (SEQ ID NO: 359).
60. An isolated anti-HIV antibody, wherein said antibody comprises a VH CDR1 region comprising the amino acid sequence of ACDYFWG (SEQ ID NO: 201); a VH CDR2 region comprising the amino acid sequence of SLSHCAGYYNSGWTYHNPSLKS (SEQ ID NO: 455); a VH CDR3 region comprising the amino acid sequence of FGGDVLVYHDWPKPAWVDL (SEQ ID NO: 456); a VL CDR1 region comprising the amino acid sequence of TGNINNFVS (SEQ ID NO: 458); a VL CDR2 region comprising the amino acid sequence of GVNKRPS (SEQ ID NO: 211); and a VL CDR3 region comprising the amino acid sequence of GSLAGNWDVV (SEQ ID NO: 459).
61. An isolated anti-HIV antibody, wherein said antibody comprises a VH CDR1 region comprising the amino acid sequence of GCDYFWG (SEQ ID NO: 464); a VH CDR2 region comprising the amino acid sequence of GLSHCAGYYNTGWTYHNPSLKS (SEQ ID NO: 202); a VH CDR3 region comprising the amino acid sequence of FDGEVLVYNDWPKPAWVDL (SEQ ID NO: 465); a VL CDR1 region comprising the amino acid sequence of TGTSNNFVS (SEQ ID NO: 325); a VL CDR2 region comprising the amino acid sequence of GVNKRPS (SEQ ID NO: 211); and a VL CDR3 region comprising the amino acid sequence of GSLVGNWDVI (SEQ ID NO: 196).
62. An isolated anti-HIV antibody, wherein said antibody comprises a VH CDR1 region comprising the amino acid sequence of KYPMY (SEQ ID NO: 475); a VH CDR2 region comprising the amino acid sequence of AISGDAWHVVYSNSVQG (SEQ ID NO: 476); a VH CDR3 region comprising the amino acid sequence of MFQESGPPRLDRWSGRNYYYYSGMDV (SEQ ID NO: 477); a VL CDR1 region comprising the amino acid sequence of KSSESLRQSNGKTSLY (SEQ ID NO: 484); a VL CDR2 region comprising the amino acid sequence of EVSNRFS (SEQ ID NO: 485); and a VL CDR3 region comprising the amino acid sequence of MQSKDFPLT (SEQ ID NO: 486).
63. An isolated anti-HIV antibody, wherein said antibody comprises a VH CDR1 region comprising the amino acid sequence of KYPMY (SEQ ID NO: 475); a VH CDR2 region comprising the amino acid sequence of AISADAWHVVYSGSVQG (SEQ ID NO: 491); a VH CDR3 region comprising the amino acid sequence of MFQESGPPRFDSWSGRNYYYYSGMDV (SEQ ID NO: 492); a VL CDR1 region comprising the amino acid sequence of KSSQSLRQSNGKTSLY (SEQ ID NO: 498); a VL CDR2 region comprising the amino acid sequence of EVSNRFS (SEQ ID NO: 485); and a VL CDR3 region comprising the amino acid sequence of (MQSKDFPLT (SEQ ID NO: 486).
64. An isolated anti-HIV antibody, wherein said antibody comprises a VH CDR1 region comprising the amino acid sequence of KRHMH (SEQ ID NO: 503); a VH CDR2 region comprising the amino acid sequence of VISSDAIHVDYASSVRG (SEQ ID NO: 504); a VH CDR3 region comprising the amino acid sequence of DRDGYGPPQIQTWSGRYLHLYSGIDA (SEQ ID NO: 505); a VL CDR1 region comprising the amino acid sequence of KSSQSLRQSNGKTYLY (SEQ ID NO: 512); a VL CDR2 region comprising the amino acid sequence of EVSIRFS (SEQ ID NO: 513); and a VL CDR3 region comprising the amino acid sequence of MQSKDFPLT (SEQ ID NO: 486).
65. An isolated anti-HIV antibody, wherein said antibody comprises a VH CDR1 region comprising the amino acid sequence of KYPMY (SEQ ID NO: 475); a VH CDR2 region comprising the amino acid sequence of AISADAWHVDYAASVKD (SEQ ID NO: 518); a VH CDR3 region comprising the amino acid sequence of NIEEFSVPQFDSWSGRSYYHYFGMDV (SEQ ID NO: 519); a VL CDR1 region comprising the amino acid sequence of
SSSESLGRGDGRTYLH (SEQ ID NO: 526); a VL CDR2 region comprising the amino acid sequence of EVSTRFS (SEQ ID NO: 527); and a VL CDR3 region comprising the amino acid sequence of MQSRDFPIT (SEQ ID NO: 528).
66. An isolated anti-HIV antibody, wherein said antibody comprises a VH CDR1 region comprising the amino acid sequence of EYPMY (SEQ ID NO: 533); a VH CDR2 region comprising the amino acid sequence of AISADAWHVDYAGSVRG (SEQ ID NO: 534); a VH CDR3 region comprising the amino acid sequence of DGEEHKVPQLHSWSGRNLYHYTGFDV (SEQ ID NO: 535); a VL CDR1 region comprising the amino acid sequence of KSSQSVRQSDGKTFLY (SEQ ID NO: 541); a VL CDR2 region comprising the amino acid sequence of EGSSRFS (SEQ ID NO: 542); and a VL CDR3 region comprising the amino acid sequence of LQTKDFPLT (SEQ ID NO: 543).
67. An isolated anti-HIV antibody, wherein said antibody comprises a VH CDR1 region comprising the amino acid sequence of QYPMY (SEQ ID NO: 548); a VH CDR2 region comprising the amino acid sequence of AISADAWHVDYPGSVRG (SEQ ID NO: 549); a VH CDR3 region comprising the amino acid sequence of DGEEHKVPQLHSWSGRNLYHYTGFDV (SEQ ID NO: 535); a VL CDR1 region comprising the amino acid sequence of KSSQTVRQSDGKTFLY (SEQ ID NO: 555); a VL CDR2 region comprising the amino acid sequence of EGSNRFS (SEQ ID NO: 556); and a VL CDR3 region comprising the amino acid sequence of LQTKDFPLT (SEQ ID NO: 543).
68. An isolated anti-HIV antibody, wherein said antibody comprises a VH CDR1 region comprising the amino acid sequence of QYPMY (SEQ ID NO: 548); a VH CDR2 region comprising the amino acid sequence of AISADAWHVDYAGSVRG (SEQ ID NO: 534); a VH CDR3 region comprising the amino acid sequence of DGEEHEVPQLHSWSGRNLYHYTGVDI (SEQ ID NO: 561); a VL CDR1 region comprising the amino acid sequence of KSSQSLRQSDGKTFLY (SEQ ID NO: 567); a VL CDR2 region comprising the amino acid sequence of EASNRFS (SEQ ID NO: 568); and a VL CDR3 region comprising the amino acid sequence of MQTKDFPLT (SEQ ID NO: 569).
69. An isolated anti-HIV antibody, wherein said antibody comprises a VH CDR1 region comprising the amino acid sequence of KYPMY (SEQ ID NO: 475); a VH CDR2 region comprising the amino acid sequence of AISADAWHVDYPGSVRG (SEQ ID NO: 549); a VH CDR3 region comprising the amino acid sequence of
DGEEHEVPQLHSWSGRNLYHYTGVDV (SEQ ID NO: 574); a VL CDR1 region comprising the amino acid sequence of KSSQSVRQSDGKTFLY (SEQ ID NO: 541); a VL CDR2 region comprising the amino acid sequence of EASKRFS (SEQ ID NO: 580); and a VL CDR3 region comprising the amino acid sequence of MQTKDFPLT (SEQ ID NO: 569).
70. An isolated fully human monoclonal anti-HIV antibody comprising: a) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 31 and a light chain sequence comprising amino acid sequence SEQ ID NO: 32, or b) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 33 and a light chain sequence comprising amino acid sequence SEQ ID NO: 34, or c) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 35 and a light chain sequence comprising amino acid sequence SEQ ID NO: 36, or d) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 37 and a light chain sequence comprising amino acid sequence SEQ ID NO: 38, or e) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 39 and a light chain sequence comprising amino acid sequence SEQ ID NO: 40, or f) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 140 and a light chain sequence comprising amino acid sequence SEQ ID NO: 96, or g) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 48 and a light chain sequence comprising amino acid sequence SEQ ID NO: 51, or h) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 54 and a light chain sequence comprising amino acid sequence SEQ ID NO: 57, or i) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 60 and a light chain sequence comprising amino acid sequence SEQ ID NO: 32, or j) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 79 and a light chain sequence comprising amino acid sequence SEQ ID NO: 149, or k) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 156 and a light chain sequence comprising amino acid sequence SEQ ID NO: 161, or 1) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 168 and a light chain sequence comprising amino acid sequence SEQ ID NO: 177, or m) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 184 and a light chain sequence comprising amino acid sequence SEQ ID NO: 193, or n) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 200 and a light chain sequence comprising amino acid sequence SEQ ID NO: 209, or o) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 216 and a light chain sequence comprising amino acid sequence SEQ ID NO: 225, or p) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 232 and a light chain sequence comprising amino acid sequence SEQ ID NO: 242 or q) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 249 and a light chain sequence comprising amino acid sequence SEQ ID NO: 258 or r) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 276 and a light chain sequence comprising amino acid sequence SEQ ID NO: 285 or s) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 292 and a light chain sequence comprising amino acid sequence SEQ ID NO: 285 or t) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 298 and a light chain sequence comprising amino acid sequence SEQ ID NO: 302 or u) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 307 and a light chain sequence comprising amino acid sequence SEQ ID NO: 313 or v) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 319 and a light chain sequence comprising amino acid sequence SEQ ID NO: 330 or w) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 334 and a light chain sequence comprising amino acid sequence SEQ ID NO: 393 or x) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 347 and a light chain sequence comprising amino acid sequence SEQ ID NO: 356 or y) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 363 and a light chain sequence comprising amino acid sequence SEQ ID NO: 397 or z) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 401 and a light chain sequence comprising amino acid sequence SEQ ID NO: 386. aa) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 405 and a light chain sequence comprising amino acid sequence SEQ ID NO: 414, or ab) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 420 and a light chain sequence comprising amino acid sequence SEQ ID NO: 429, or ac) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 435 and a light chain sequence comprising amino acid sequence SEQ ID NO: 440, or ad) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 444 and a light chain sequence comprising amino acid sequence SEQ ID NO: 449, or ae) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 454 and a light chain sequence comprising amino acid sequence SEQ ID NO: 584, or af) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 463 and a light chain sequence comprising amino acid sequence SEQ ID NO: 470, or ag) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 474 and a light chain sequence comprising amino acid sequence SEQ ID NO: 483, or ah) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 490 and a light chain sequence comprising amino acid sequence SEQ ID NO: 497, or ai) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 502 and a light chain sequence comprising amino acid sequence SEQ ID NO: 511, or aj) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 517 and a light chain sequence comprising amino acid sequence SEQ ID NO: 525, or ak) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 532 and a light chain sequence comprising amino acid sequence SEQ ID NO: 540, or al) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 547 and a light chain sequence comprising amino acid sequence SEQ ID NO: 554, or am) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 560 and a light chain sequence comprising amino acid sequence SEQ ID NO: 566.
71. An antibody as recited in claims 1-70 wherein the antibody is a human monoclonal antibody.
72. A composition comprising an isolated anti-HIV antibody of claim 1, 6, or 70.
73. A fragment of the antibody of any one of claims 1-70.
74. The fragment of claim 73, which is selected from the group consisting of the Fab, Fab', F(ab') 2, Fv, single chain Fv, diabody and domain antibody (dAb) fragments.
75. A nucleic acid molecule encoding the antibody of any one of claims 1-70, or a fragment thereof.
76. A vector comprising the nucleic acid molecule of claim 75.
77. A cell comprising the vector of claim 76.
78. An immortalized B cell clone expressing the antibody of any one of claims 1-70.
79. An epitope which binds to the antibody of any one of claims 1-70.
80. An immunogenic polypeptide or glycopeptide comprising the epitope of claim 79.
81. A pharmaceutical composition comprising at least one antibody or fragment as recited in claims 1-70, and a pharmaceutically acceptable carrier.
82. The pharmaceutical composition of claim 81, further comprising a first antibody or fragment specific for a first epitope, and a second antibody or fragment specific for a second epitope.
83. A pharmaceutical composition comprising the antibody fragment of claim 73, wherein said fragment is selected from the group consisting of the Fab, Fab', F(ab') 2 and Fv fragments of said antibody.
84. A method of immunizing or reducing the effect of an HIV infection or an HIV related disease comprising the steps of identifying a patient in need of such treatment and administering to said patient a therapeutically effective amount of at least one antibody as recited in any one of claims 1-70.
85. The method of claim 84, additionally comprising the administration of a second therapeutic agent.
86. The method as recited in claim 85, wherein said second therapeutic agent is an anti-viral agent.
87. A method of immunizing or reducing the effect of an HIV infection or an HIV related disease comprising the steps of identifying a patient in need of such treatment and administering to said patient a therapeutically effective amount of: a first antibody as recited in claims 1-70, or fragment thereof, specific for a first epitope which binds to said first antibody and a second antibody as recited in claims 1-70, or fragment thereof, specific for a second epitope which binds to said second antibody.
88. A method for preparing a recombinant mammalian cell, comprising the steps of: (i) sequencing nucleic acid from an immortalized B cell clone expressing an antibody as recited in claims 1-70; and (ii) using the sequence information from step (i) to prepare nucleic acid for inserting into an expression host in order to permit expression of the antibody of interest in that host.
89. The method as recited in claim 88, wherein the mammalian cell is a human cell.
90. A method for producing antibodies as recited in claim 1 comprising: (i) culturing an immortalized B cell clone expressing an antibody as recited in claim 1 and (ii) isolating antibodies.
91. A method of screening for polypeptides that can induce an immune response against HIV, comprising screening polypeptide libraries using the antibody of claim 1.
92. A method of monitoring the quality of anti-HIV vaccines, comprising the use of an antibody, or a fragment thereof, as recited in claim 1 to check that the antigen in said vaccine contains the correct epitope in the correct conformation.
93. A vaccine comprising an epitope which specifically binds to an antibody as recited in claim 1.
94. A purified, neutralizing human monoclonal antibody, or a fragment thereof, having at least one complementarity-determining region (CDR) which binds to an HIVI epitope.
95. A method for producing recombinant neutralizing antibody having high potency in neutralizing human immunodeficiency virus (HIV), or a fragment thereof, comprising the use of a nucleic acid molecule comprising a sequence selected from the variable region encoding sequences of the heavy chains selected from the group consisting of SEQ ID NO: 99, 101, 109, 115, 122, 128, 130, 132, 134, 136, 63, 154, 166, 182, 198, 214, 230, 247, 274, 290, 296, 305, 315, 317, 332, 345, 361, 399, 403, 418, 433, 442, 452, 461, 472, 488, 500, 515, 538, 552, 571, and the light chains selected from the group consisting of SEQ ID NO: 100, 106, 112, 119, 125, 129, 131, 133, 135, 136, 137, 147, 159, 175, 191, 207, 223, 239, 256, 283, 300, 311, 328, 391, 354,395,384,412,427,438,447,582,468,481,495,509,523,530,545,558,564,577.
96. An isolated human monoclonal antibody, wherein said monoclonal antibody binds HIV- 1 antigens and broadly and potently neutralizes HIV- 1 virus in vitro, and further wherein further wherein said monoclonal antibody is obtained by a process comprising the steps of: (a) screening memory B cell cultures from a donor PBMC sample for neutralization activity against either HIV- 1 strains belonging to at least two different clades, or at least 60% of HIV-1 species selected from the group consisting of MGRM-A 001, MGRM-A-002, MGRM-A-003, MGRM-A-004, MGRM-A-005, MGRM-A-006, MGRM A-007, MGRM-A-008, MGRM-A-009, MGRM-A-010, MGRM-A-011, MGRM-A-012, MGRM-A-013, MGRM-A-014, 94UG103, 92RW020, 93UG077, 94KE105, 93RW029,
02RW009, 92UG031, 92RW026, 92UG037, 92RW008, 92RWO21, VLGCA1, 92RWO24, 6535.3, QH0692.42, SC422661.8, PVO.4, TRO.11, CAAN.A2, TRJO.58, THRO.18, 92BR010, APV 13, APV 17, APV 6, 93TH305, VLGCB3, JRCSF, NL43, MGRM-Chronic-B-001, MGRM-Chronic-B-002, MGRM-Chronic-B-003, MGRM-Chronic-B-004, MGRM-Chronic-B 008, MGRM-Chronic-B-010, MGRM-Chronic-B-011, MGRM-Chronic-B-012, MGRM Chronic-B-017, MGRM-Chronic-B-018, MGRM-Chronic-B-020, MGRM-Chronic-B-023, MGRM-Chronic-B-024, JRFL, SF162, MGRM-C-001, MGRM-C-002, MGRM-C-003, MGRM C-004, MGRM-C-005, MGRM-C-006, MGRM-C-007, MGRM-C-008, MGRM-C-009, MGRM-C-010, MGRM-C-011, MGRM-C-012, MGRM-C-013, MGRM-C-014, MGRM-C-015, MGRM-C-016, MGRM-C-017, MGRM-C-018, MGRM-C-019, MGRM-C-020, MGRM-C-021, MGRM-C-022, MGRM-C-023, MGRM-C-024, MGRM-C-025, 921N905, IAVIC 18, IAVI C22, IAVI C3, 98IN022, 93MW959, 97ZA012, 98CN006, 98CN009, MGRM-D-001, MGRM-D 002, MGRM-D-003, MGRM-D-004, MGRM-D-005, MGRM-D-008, MGRM-D-011, MGRM D-012, MGRM-D-013, MGRM-D-014, MGRM-D-016, MGRM-D-018, MGRM-D-019, MGRM-D-020, MGRM-D-021, MGRM-D-022, MGRM-D-024, MGRM-D-026, MGRM-D 028, MGRM-D-029, 92UG024, 92UG005, 92UG046, 92UG001, 94UG114, MGRM-AE-001, MGRM-AE-002, MGRM-AE-003, MGRM-AE-004, MGRM-AE-005, MGRM-AE-006, MGRM-AE-007, MGRM-AE-008, 92TH021, CMU02, MGRM-AG-001, MGRM-AG-002, MGRM-AG-003, MGRM-AG-005, MGRM-AG-006, MGRM-AG-008, MGRM-AG-009, MGRM-AG-011, MGRM-AG-012, MGRM-AG-013, MGRM-G-001, MGRM-G-004, MGRM G-006, MGRM-G-009, MGRM-G-011, MGRM-G-013, MGRM-G-014, MGRM-G-015, MGRM-G-016, MGRM-G-017, MGRM-G-019, MGRM-G-024, MGRM-G-025, MGRM-G 027, MGRM-G-028, MGRM-F1-004, MGRM-F1-006, MGRM-F1-008, MGRM-F1-010, MGRM-F1-012, MGRM-F1-013, MGRM-F1-014, MGRM-F1-015, MGRM-F1-016, MGRM F1-017, MGRM-F1-018, MGRM-F1-020, MGRM-F1-021, MGRM-F1-022, MGRM-F1-023, and aMLV; (b) screening the memory B cell cultures for binding activity against HIV- 1 antigens; and then (c) rescuing the monoclonal antibody from a clonal memory B cell culture that exhibits neutralization activity against one or more HIV-1 species with an IC50 value of less than 0.2 pg/mL.
97. The neutralizing antibody of claim 96, which is effective in neutralizing a SF162 strain of HIV- 1.
98. The neutralizing antibody of claim 96, wherein said antibody is a monoclonal antibody selected from the group consisting of 1443_C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480_108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_D15 (PGT 122), 4858_P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT 127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HOl (PGT-131), 5343_B08 (PGT 135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT 141), 5345101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT 143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-KI5 (PGT 133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N10 (PGT 139), 6831 A21 (PGT-151), 6889117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881_NO5 (PGT-158).
99. A fragment of the antibody of claim 98.
100. A nucleic acid molecule encoding the antibody of claim 95.
101. A vector comprising a nucleic acid molecule as recited in claim 100.
102. A cell comprising a vector as recited in claim 101.
103. An immortalized B cell clone expressing the antibody of claim 100.
104. An epitope which binds to the antibody of claim 79.
105. An immunogenic polypeptide comprising the epitope as recited in claim 73.
106. The antibody according to any of claims 1-70 wherein the antibody either (a) neutralizes HIV-1 belonging to two or more clades selected from Clade A, Clade B, Clade C, Clade D, Clade AE, Clade AG, Clade G, and Clade F or (b) neutralizes at least 60% of HIV-1 species listed in selected from the group consisting of MGRM-A-001, MGRM-A-002, MGRM A-003, MGRM-A-004, MGRM-A-005, MGRM-A-006, MGRM-A-007, MGRM-A-008, MGRM-A-009, MGRM-A-010, MGRM-A-011, MGRM-A-012, MGRM-A-013, MGRM-A 014, 94UG103, 92RW020, 93UG077, 94KE105, 93RW029, 02RW009, 92UG031, 92RWO26, 92UG037, 92RW008, 92RWO21, VLGCA1, 92RW024, 6535.3, QH0692.42, SC422661.8, PVO.4, TRO.11, CAAN.A2, TRJO.58, THRO.18, 92BR010, APV 13, APV 17, APV 6,
93TH305, VLGCB3, JRCSF, NL43, MGRM-Chronic-B-001, MGRM-Chronic-B-002, MGRM Chronic-B-003, MGRM-Chronic-B-004, MGRM-Chronic-B-008, MGRM-Chronic-B-010, MGRM-Chronic-B-011, MGRM-Chronic-B-012, MGRM-Chronic-B-017, MGRM-Chronic-B 018, MGRM-Chronic-B-020, MGRM-Chronic-B-023, MGRM-Chronic-B-024, JRFL, SF162, MGRM-C-001, MGRM-C-002, MGRM-C-003, MGRM-C-004, MGRM-C-005, MGRM-C-006, MGRM-C-007, MGRM-C-008, MGRM-C-009, MGRM-C-010, MGRM-C-011, MGRM-C-012, MGRM-C-013, MGRM-C-014, MGRM-C-015, MGRM-C-016, MGRM-C-017, MGRM-C-018, MGRM-C-019, MGRM-C-020, MGRM-C-021, MGRM-C-022, MGRM-C-023, MGRM-C-024, MGRM-C-025, 921N905, IAVIC 18, IAVI C22, IAVI C3, 98IN022, 93MW959, 97ZA012, 98CN006, 98CN009, MGRM-D-001, MGRM-D-002, MGRM-D-003, MGRM-D-004, MGRM D-005, MGRM-D-008, MGRM-D-011, MGRM-D-012, MGRM-D-013, MGRM-D-014, MGRM-D-016, MGRM-D-018, MGRM-D-019, MGRM-D-020, MGRM-D-021, MGRM-D 022, MGRM-D-024, MGRM-D-026, MGRM-D-028, MGRM-D-029, 92UG024, 92UG005, 92UG046, 92UG001, 94UG114, MGRM-AE-001, MGRM-AE-002, MGRM-AE-003, MGRM AE-004, MGRM-AE-005, MGRM-AE-006, MGRM-AE-007, MGRM-AE-008, 92TH021, CMUO2, MGRM-AG-001, MGRM-AG-002, MGRM-AG-003, MGRM-AG-005, MGRM-AG 006, MGRM-AG-008, MGRM-AG-009, MGRM-AG-011, MGRM-AG-012, MGRM-AG-013, MGRM-G-001, MGRM-G-004, MGRM-G-006, MGRM-G-009, MGRM-G-011, MGRM-G 013, MGRM-G-014, MGRM-G-015, MGRM-G-016, MGRM-G-017, MGRM-G-019, MGRM G-024, MGRM-G-025, MGRM-G-027, MGRM-G-028, MGRM-F1-004, MGRM-F1-006, MGRM-F1-008, MGRM-F1-010, MGRM-F1-012, MGRM-F1-013, MGRM-F1-014, MGRM Fi-015, MGRM-F1-016, MGRM-F1-017, MGRM-F1-018, MGRM-F1-020, MGRM-F1-021, MGRM-F1-022, MGRM-F1-023, and aMLV, and further wherein the potency of neutralization of at least a plurality of HIV- 1 species is determined by an IC50 value of less than 0.2 P g/mL.
107. The antibody according to any of claims 1-70 wherein the antibody binds gp120.
108. The antibody according to any of claims 1-70 wherein the antibody does not bind gp4l, MPER peptide of gp4l or V3 peptide.
109. The antibody according to any of claims 1-70 wherein the antibody exhibit relatively stronger binding to trimeric forms of the HIV-1 Env (gpl60 and gp140) than to the monomeric gp120.
110. The antibody according to any of claims 1-70 wherein the antibody binds HIV-1 envelope transfected cells.
111. The antibody according to any of claims 1-70 wherein the antibody binds HIV-1 gp120 at a site different from those bound by b12 and 2G12.
112. The antibody according to any of claims 107-111 wherein the antibody is selected from the group consisting of PG16 and PG9.
113. A method for obtaining a broadly neutralizing human monoclonal antibody, the method comprising: (a) screening memory B cell cultures from a donor PBMC sample for a broad neutralization activity against a plurality of HIV-1 species; (b) cloning a memory B cell that exhibits broad neutralization activity; and then (c) rescuing the monoclonal antibody from the clonal memory B cell culture that exhibits broad neutralization activity.
114. The method of claim 113, wherein cloning the memory B cell culture comprises a method selected from the group consisting of B cell culture, hybridoma formation, EBV immortalization and electrofusion.
115. The method of claim 113, wherein the memory B cells are isolated from the PBMC of an HIV 1-positive donor whose plasma exhibits potent or broad neutralization activity.
116. The method of claim 113, further comprising screening the memory B cell cultures for binding activity against HIV- 1 antigens prior to cloning.
117. A method for treating an individual infected with HIV-1 comprising administering to the individual an effective amount of the antibody composition of claim 72.
118. The method of claim 116, wherein the antibody is administered in combination with other therapies.
119. The use of the antibody fragment of claim 73 or 99, or the nucleic acid molecule of claim 58 or 88 in the manufacture of an adjuvant formulation.
120. A method for treating an individual infected with HIV-1 comprising administering to the patient an effective amount of an antibody according to claims 1-70 or a fragment thereof wherein the antibody is administered as an adjuvant therapy.
121. The method of claim 111, wherein the antibody is administered as an adjuvant therapy in multiple doses.
122. The method of claim 111, wherein the antibody or the antibody fragment thereof is selected from the group consisting of monoclonal antibodies 1443_C16 (PG16) (TCN- 116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_D15 (PGT-122), 4858_P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HO1 (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-KI5 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N10 (PGT-139), 6831_A21 (PGT-151), 6889_117 (PGT-152), 6891 _F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881_NO5 (PGT-158), antigen binding fragments thereof such as Fab, Fab', F(ab') 2, Fv, single chain Fv, diabody, domain antibody (dAb), sFv, dsFv and chimerized, humanized and fully human variants thereof.
123. A method for treatment of HIV-1 infection in an individual, or post-exposure prophylaxis of an individual, comprising administering to the mammal an immunotherapeutically effective amount of an antibody according to claims 1-70 or a fragment thereof.
124. The method of claim 123, wherein the antibody or the antibody fragment thereof is selected from the group consisting of monoclonal antibodies 1443_C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_Di5 (PGT-122), 4858_P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HO1 (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-KI5 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138),
5120_N10 (PGT-139), 6831_A21 (PGT-151), 6889_117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881_N05 (PGT-158), antigen binding fragments thereof such as Fab, Fab', F(ab') 2, Fv, single chain Fv, diabody, domain antibody (dAb), sFv, dsFv and chimerized, humanized and fully human variants thereof.
125. A potent, broadly neutralizing antibody (bNAb) wherein the antibody neutralizes at least 60% of HIV-1 species listed in selected from the group consisting of MGRM-A-001, MGRM-A-002, MGRM-A-003, MGRM-A-004, MGRM-A-005, MGRM-A-006, MGRM-A 007, MGRM-A-008, MGRM-A-009, MGRM-A-010, MGRM-A-011, MGRM-A-012, MGRM A-013, MGRM-A-014, 94UG103, 92RW020, 93UG077, 94KE105, 93RW029, 02RW009, 92UG031, 92RW026, 92UG037, 92RW008, 92RWO21, VLGCA1, 92RW024, 6535.3, QH0692.42, SC422661.8, PVO.4, TRO.11, CAAN.A2, TRJ0.58, THRO.18, 92BR010, APV 13, APV 17, APV 6, 93TH305, VLGCB3, JRCSF, NL43, MGRM-Chronic-B-001, MGRM Chronic-B-002, MGRM-Chronic-B-003, MGRM-Chronic-B-004, MGRM-Chronic-B-008, MGRM-Chronic-B-010, MGRM-Chronic-B-011, MGRM-Chronic-B-012, MGRM-Chronic-B 017, MGRM-Chronic-B-018, MGRM-Chronic-B-020, MGRM-Chronic-B-023, MGRM Chronic-B-024, JRFL, SF162, MGRM-C-001, MGRM-C-002, MGRM-C-003, MGRM-C-004, MGRM-C-005, MGRM-C-006, MGRM-C-007, MGRM-C-008, MGRM-C-009, MGRM-C-010, MGRM-C-0 11, MGRM-C-0 12, MGRM-C-0 13, MGRM-C-0 14, MGRM-C-0 15, MGRM-C-0 16, MGRM-C-017, MGRM-C-018, MGRM-C-019, MGRM-C-020, MGRM-C-021, MGRM-C-022, MGRM-C-023, MGRM-C-024, MGRM-C-025, 921N905, IAVIC 18, IAVI C22, IAVI C3, 98IN022, 93MW959, 97ZA012, 98CN006, 98CN009, MGRM-D-001, MGRM-D-002, MGRM D-003, MGRM-D-004, MGRM-D-005, MGRM-D-008, MGRM-D-011, MGRM-D-012, MGRM-D-013, MGRM-D-014, MGRM-D-016, MGRM-D-018, MGRM-D-019, MGRM-D 020, MGRM-D-021, MGRM-D-022, MGRM-D-024, MGRM-D-026, MGRM-D-028, MGRM D-029, 92UG024, 92UG005, 92UG046, 92UG001, 94UG114, MGRM-AE-001, MGRM-AE 002, MGRM-AE-003, MGRM-AE-004, MGRM-AE-005, MGRM-AE-006, MGRM-AE-007, MGRM-AE-008, 92TH021, CMUO2, MGRM-AG-001, MGRM-AG-002, MGRM-AG-003, MGRM-AG-005, MGRM-AG-006, MGRM-AG-008, MGRM-AG-009, MGRM-AG-011, MGRM-AG-012, MGRM-AG-013, MGRM-G-001, MGRM-G-004, MGRM-G-006, MGRM-G 009, MGRM-G-011, MGRM-G-013, MGRM-G-014, MGRM-G-015, MGRM-G-016, MGRM
G-017, MGRM-G-019, MGRM-G-024, MGRM-G-025, MGRM-G-027, MGRM-G-028, MGRM-F1-004, MGRM-F1-006, MGRM-F1-008, MGRM-F1-010, MGRM-F1-012, MGRM F1-013, MGRM-F1-014, MGRM-F1-015, MGRM-F1-016, MGRM-F1-017, MGRM-F1-018, MGRM-F1-020, MGRM-F1-021, MGRM-F1-022, MGRM-F1-023, and aMLV, and further wherein the potency of neutralization of at least a plurality of the HIV- 1 species is determined by an IC50 value of less than 0.2 pg/mL.
126. A potent, broadly neutralizing antibody (bNAb) wherein the antibody neutralizes HIV-1 species belonging to two or more clades, and further wherein the potency of neutralization of at least one member of each clade is determined by an IC50 value of less than 0.2 pg/mL.
127. The antibody of claim 125 or 126 wherein the clades are selected from Clade A, Clade B, Clade C, Clade D, Clade AE, Clade AG, Clade G and Clade F.
128. The antibody of claim 127 wherein the HIV-1 belonging two or more clades are non-Clade B viruses.
129. The antibody of claim 125 or 126 wherein the antibody neutralizes at least one member of each clade with a potency greater than that of the bNAbs b12, 2G12, 2F5 and 4E10 respectively.
130. The antibody of claim 125 or 126 wherein the antibody binds or does not bind monomeric gp120 or gp4l proteins of the HIV-1 env gene.
131. The antibody of claim 125 or 126 wherein the antibody binds with higher affinity to trimeric forms of the HIV-1 Env expressed on a cell surface than to the monomeric gp120 or artificially trimerized gp 140.
132. The antibody of claim 131 wherein the antibody binds with high affinity to uncleaved HIV-1 gp160 trimers on a cell surface.
133. The antibody of any of claims 125, 126, 130, 131, or 132, wherein the antibody binds an epitope within the variable loop of gp120.
134. The antibody of claim 133, wherein the epitope comprises the conserved regions of V2 and V3 loops of gp120.
135. The antibody of claim 134, wherein the epitope comprises N-glycosylation site at residue Asn-160 within the V2 loop of gp120.
136. The antibody of claim 135, wherein the antibody does not neutralize the HIV-1 in the absence of N-glycosylation site at residue Asn-160 within the V2 loop of gp120.
137. The antibody of any of claims 125, 126, 130, 131, or 132, wherein the antibody binds an epitope presented by a trimeric spike of gp120 on a cell surface, wherein the epitope is not presented when gp120 is artificially trimerized.
138. The antibody according to any of claims 125-136 wherein the antibody is selected from the group consisting of monoclonal antibodies 1443_C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN-119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN-120), 1480_108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_Di5 (PGT-122), 4858_P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HOl (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345_101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-KI5 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N1O (PGT-139), 6831_A21 (PGT-151), 6889117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881_NO5 (PGT-158), antigen binding fragments thereof such as Fab, Fab', F(ab') 2, Fv, single chain Fv, diabody, domain antibody (dAb), sFv, dsFv and chimerized, humanized and fully human variants thereof.
139. The antibody according to any of claims 125-136 wherein the antibody is a human or humanized monoclonal antibody.
140. An antigen for producing a potent, broadly neutralizing antibody (bNAb) by an immune response, the antigen comprising an epitope within the variable loop of gp120, wherein the bNAb either (a) neutralizes HIV- 1 species belonging to two or more clades, or (b) neutralizes at least 60% of HIV-1 species listed in selected from the group consisting of MGRM-A-001, MGRM-A-002, MGRM-A-003, MGRM-A-004, MGRM-A-005, MGRM-A-006, MGRM-A 007, MGRM-A-008, MGRM-A-009, MGRM-A-010, MGRM-A-011, MGRM-A-012, MGRM A-013, MGRM-A-014, 94UG103, 92RW020, 93UG077, 94KE105, 93RW029, 02RW009, 92UG031, 92RW026, 92UG037, 92RW008, 92RWO21, VLGCA1, 92RW024, 6535.3,
QH0692.42, SC422661.8, PVO.4, TRO.11, CAAN.A2, TRJO.58, THRO.18, 92BR010, APV 13, APV 17, APV 6, 93TH305, VLGCB3, JRCSF, NL43, MGRM-Chronic-B-001, MGRM Chronic-B-002, MGRM-Chronic-B-003, MGRM-Chronic-B-004, MGRM-Chronic-B-008, MGRM-Chronic-B-010, MGRM-Chronic-B-011, MGRM-Chronic-B-012, MGRM-Chronic-B 017, MGRM-Chronic-B-018, MGRM-Chronic-B-020, MGRM-Chronic-B-023, MGRM Chronic-B-024, JRFL, SF162, MGRM-C-001, MGRM-C-002, MGRM-C-003, MGRM-C-004, MGRM-C-005, MGRM-C-006, MGRM-C-007, MGRM-C-008, MGRM-C-009, MGRM-C-010, MGRM-C-0 11, MGRM-C-0 12, MGRM-C-0 13, MGRM-C-0 14, MGRM-C-0 15, MGRM-C-0 16, MGRM-C-017, MGRM-C-018, MGRM-C-019, MGRM-C-020, MGRM-C-021, MGRM-C-022, MGRM-C-023, MGRM-C-024, MGRM-C-025, 921N905, IAVIC 18, IAVI C22, IAVI C3, 98IN022, 93MW959, 97ZA012, 98CN006, 98CN009, MGRM-D-001, MGRM-D-002, MGRM D-003, MGRM-D-004, MGRM-D-005, MGRM-D-008, MGRM-D-011, MGRM-D-012, MGRM-D-013, MGRM-D-014, MGRM-D-016, MGRM-D-018, MGRM-D-019, MGRM-D 020, MGRM-D-021, MGRM-D-022, MGRM-D-024, MGRM-D-026, MGRM-D-028, MGRM D-029, 92UG024, 92UG005, 92UG046, 92UG001, 94UG114, MGRM-AE-001, MGRM-AE 002, MGRM-AE-003, MGRM-AE-004, MGRM-AE-005, MGRM-AE-006, MGRM-AE-007, MGRM-AE-008, 92TH021, CMUO2, MGRM-AG-001, MGRM-AG-002, MGRM-AG-003, MGRM-AG-005, MGRM-AG-006, MGRM-AG-008, MGRM-AG-009, MGRM-AG-011, MGRM-AG-012, MGRM-AG-013, MGRM-G-001, MGRM-G-004, MGRM-G-006, MGRM-G 009, MGRM-G-011, MGRM-G-013, MGRM-G-014, MGRM-G-015, MGRM-G-016, MGRM G-017, MGRM-G-019, MGRM-G-024, MGRM-G-025, MGRM-G-027, MGRM-G-028, MGRM-F1-004, MGRM-F1-006, MGRM-F1-008, MGRM-F1-010, MGRM-F1-012, MGRM F1-013, MGRM-F1-014, MGRM-F1-015, MGRM-F1-016, MGRM-F1-017, MGRM-F1-018, MGRM-F1-020, MGRM-F1-021, MGRM-F1-022, MGRM-F1-023, and aMLV, and further wherein the potency of neutralization of at least a plurality of HIV- 1 species is determined by an IC50 value of less than 0.2 pg/mL.
141. The antigen of claim 140, wherein the epitope comprises the conserved regions of V2 and V3 loops of gp120.
142. The antigen of claim 141, wherein the epitope comprises N-glycosylation site at residue Asn-160 within the V2 loop of gp120.
143. The antigen of claim 142, wherein the epitope comprises an N-glycosylated residue at Asn-160 within the V2 loop of gp120.
144. The antigen according to any of claims 140-143, wherein the epitope is presented by a trimeric spike of gp120 on a cell surface, and the epitope is not presented when gp120 is monomeric or artificially trimerized.
145. An immunogenic polypeptide comprising an epitope according to any of claims 140-143.
146. A vaccine comprising the immunogenic polypeptide of claim 145.
147. The vaccine of claim 146, further comprising an adjuvant.
148. A method for immunizing an individual against a plurality of HIV-1 species, the method comprising: providing a potent, broadly neutralizing antibody (bNAb) wherein the bNAb either (a) neutralizes HIV-1 species belonging to two or more clades, or (b) neutralizes at least % of HIV-1 species listed in selected from the group consisting of MGRM-A-001, MGRM-A 002, MGRM-A-003, MGRM-A-004, MGRM-A-005, MGRM-A-006, MGRM-A-007, MGRM A-008, MGRM-A-009, MGRM-A-010, MGRM-A-011, MGRM-A-012, MGRM-A-013, MGRM-A-014, 94UG103, 92RW020, 93UG077, 94KE105, 93RW029, 02RW009, 92UG031, 92RW026, 92UG037, 92RW008, 92RWO21, VLGCA1, 92RW024, 6535.3, QH0692.42, SC422661.8, PVO.4, TRO.11, CAAN.A2, TRJ0.58, THRO.18, 92BR010, APV 13, APV 17, APV 6, 93TH305, VLGCB3, JRCSF, NL43, MGRM-Chronic-B-001, MGRM-Chronic-B-002, MGRM-Chronic-B-003, MGRM-Chronic-B-004, MGRM-Chronic-B-008, MGRM-Chronic-B 010, MGRM-Chronic-B-011, MGRM-Chronic-B-012, MGRM-Chronic-B-017, MGRM Chronic-B-018, MGRM-Chronic-B-020, MGRM-Chronic-B-023, MGRM-Chronic-B-024, JRFL, SF162, MGRM-C-001, MGRM-C-002, MGRM-C-003, MGRM-C-004, MGRM-C-005, MGRM-C-006, MGRM-C-007, MGRM-C-008, MGRM-C-009, MGRM-C-010, MGRM-C-011, MGRM-C-012, MGRM-C-013, MGRM-C-014, MGRM-C-015, MGRM-C-016, MGRM-C-017, MGRM-C-018, MGRM-C-019, MGRM-C-020, MGRM-C-021, MGRM-C-022, MGRM-C-023, MGRM-C-024, MGRM-C-025, 921N905, IAVIC 18, IAVI C22, IAVI C3, 98IN022, 93MW959, 97ZA012, 98CN006, 98CN009, MGRM-D-001, MGRM-D-002, MGRM-D-003, MGRM-D 004, MGRM-D-005, MGRM-D-008, MGRM-D-011, MGRM-D-012, MGRM-D-013, MGRM D-014, MGRM-D-016, MGRM-D-018, MGRM-D-019, MGRM-D-020, MGRM-D-021, MGRM-D-022, MGRM-D-024, MGRM-D-026, MGRM-D-028, MGRM-D-029, 92UG024,
92UG005, 92UG046, 92UG001, 94UG114, MGRM-AE-001, MGRM-AE-002, MGRM-AE 003, MGRM-AE-004, MGRM-AE-005, MGRM-AE-006, MGRM-AE-007, MGRM-AE-008, 92TH021, CMUO2, MGRM-AG-001, MGRM-AG-002, MGRM-AG-003, MGRM-AG-005, MGRM-AG-006, MGRM-AG-008, MGRM-AG-009, MGRM-AG-011, MGRM-AG-012, MGRM-AG-013, MGRM-G-001, MGRM-G-004, MGRM-G-006, MGRM-G-009, MGRM-G 011, MGRM-G-013, MGRM-G-014, MGRM-G-015, MGRM-G-016, MGRM-G-017, MGRM G-019, MGRM-G-024, MGRM-G-025, MGRM-G-027, MGRM-G-028, MGRM-F1-004, MGRM-F1-006, MGRM-F1-008, MGRM-F1-010, MGRM-F1-012, MGRM-F1-013, MGRM F1-014, MGRM-F1-015, MGRM-F1-016, MGRM-F1-017, MGRM-F1-018, MGRM-F1-020, MGRM-F1-021, MGRM-F1-022, MGRM-F1-023, and aMLV, and further wherein the potency of neutralization of at least a plurality of HIV-1 species is determined by an IC50 value of less than 0.2 pg/mL.
149. The method of claim 148, wherein the antibody is provided by passive immunization.
150. The method of claim 148, wherein the antibody is selected from the group consisting of monoclonal antibodies 1443_C16 (PG16) (TCN-116), 1503 H05 (PG16) (TCN 119), 1456 A12 (PG16) (TCN-117), 1469 M23 (PG16) (TCN-118), 1489 113 (PG16) (TCN 120), 1480108 (PG16), 1456_P20 (PG20), 1460_G14 (PGG14), 1495_C14 (PGC14), 1496_C09 (PG9) (TCN-109), 4838_L06 (PGT-121), 4873_E03 (PGT-121), 4877_D15 (PGT-122), 4858_P08 (PGT-123), 6123_A06 (PGT-125), 5141_B17 (PGT-126), 5145_B14 (PGT-127), 5114_A19 (PGT-128), 5147_N06 (PGT-130), 5136_HOl (PGT-131), 5343_B08 (PGT-135), 5344_E16 (PGT-135), 5329_C19 (PGT-136), 5366_P21 (PGT-136), 4964_G22 (PGT-141), 5345_101 (PGT-137), 4993_K13 (PGT-141), 4995_E20 (PGT-142), 4980_N08 (PGT-143), 4970_K22 (PGT-144), 4995_P16 (PGT-145), 4835_F12 (PGT-124), 4869-KI5 (PGT-133), 4876_M06 (PGT-134), 5131_A17 (PGT-132), 5138_G07 (PGT-138), 5120_N1O (PGT-139), 6831_A21 (PGT-151), 6889117 (PGT-152), 6891_F06 (PGT-153), 6843_G20 (PGT-154), 6892_D19 (PGT-155), 6808_B09 (PGT-156), 6892_C23 (PGT-157), and 6881_NO5 (PGT-158), antigen binding fragments thereof such as Fab, Fab', F(ab') 2 , Fv, single chain Fv, diabody, domain antibody (dAb), sFv, dsFv and chimerized, humanized and fully human variants thereof.
151. The method of claim 148, wherein the antibody is provided by active immunization with an antigen comprising an epitope within the variable loop of gp120.
152. The method of claim 151, wherein the epitope comprises the conserved regions of V2 and V3 loops of gp120.
153. The method of claim 152, wherein the epitope comprises an N-glycosylation site at residue Asn-160 within the V2 loop of gp120.
154. The method of claim 149, wherein the epitope is presented by a trimeric spike of gp120 on a cell surface, and the epitope is not presented when gp120 is monomeric or artificially trimerized.
155. The potent, broadly neutralizing antibody (bNAb) of any one of claims 1-70 wherein the bNAb neutralizes at least 70% of HiV-1 species selected from the group consisting of MGRM-A-001, MGRM-A-002, MGRM-A-003, MGRM-A-004, MGRM-A-005, MGRM-A 006, MGRM-A-007, MGRM-A-008, MGRM-A-009, MGRM-A-010, MGRM-A-011, MGRM A-0 12, MGRM-A-0 13, MGRM-A-0 14, 94UG 103, 92RW020, 93UG077, 94KE 105, 93RW029, 02RW009, 92UG031, 92RW026, 92UG037, 92RW008, 92RWO21, VLGCA1, 92RWO24, 6535.3, QH0692.42, SC422661.8, PVO.4, TRO.11, CAAN.A2, TRJ0.58, THRO.18, 92BR010, APV 13, APV 17, APV 6, 93TH305, VLGCB3, JRCSF, NL43, MGRM-Chronic-B-001, MGRM-Chronic-B-002, MGRM-Chronic-B-003, MGRM-Chronic-B-004, MGRM-Chronic-B 008, MGRM-Chronic-B-010, MGRM-Chronic-B-011, MGRM-Chronic-B-012, MGRM Chronic-B-017, MGRM-Chronic-B-018, MGRM-Chronic-B-020, MGRM-Chronic-B-023, MGRM-Chronic-B-024, JRFL, SF162, MGRM-C-001, MGRM-C-002, MGRM-C-003, MGRM C-004, MGRM-C-005, MGRM-C-006, MGRM-C-007, MGRM-C-008, MGRM-C-009, MGRM-C-010, MGRM-C-011, MGRM-C-012, MGRM-C-013, MGRM-C-014, MGRM-C-015, MGRM-C-016, MGRM-C-017, MGRM-C-018, MGRM-C-019, MGRM-C-020, MGRM-C-021, MGRM-C-022, MGRM-C-023, MGRM-C-024, MGRM-C-025, 921N905, IAVIC 18, IAVI C22, IAVI C3, 98IN022, 93MW959, 97ZA012, 98CN006, 98CN009, MGRM-D-001, MGRM-D 002, MGRM-D-003, MGRM-D-004, MGRM-D-005, MGRM-D-008, MGRM-D-011, MGRM D-012, MGRM-D-013, MGRM-D-014, MGRM-D-016, MGRM-D-018, MGRM-D-019, MGRM-D-020, MGRM-D-021, MGRM-D-022, MGRM-D-024, MGRM-D-026, MGRM-D 028, MGRM-D-029, 92UG024, 92UG005, 92UG046, 92UG001, 94UG114, MGRM-AE-001, MGRM-AE-002, MGRM-AE-003, MGRM-AE-004, MGRM-AE-005, MGRM-AE-006, MGRM-AE-007, MGRM-AE-008, 92TH021, CMUO2, MGRM-AG-001, MGRM-AG-002, MGRM-AG-003, MGRM-AG-005, MGRM-AG-006, MGRM-AG-008, MGRM-AG-009,
MGRM-AG-011, MGRM-AG-012, MGRM-AG-013, MGRM-G-001, MGRM-G-004, MGRM G-006, MGRM-G-009, MGRM-G-011, MGRM-G-013, MGRM-G-014, MGRM-G-015, MGRM-G-016, MGRM-G-017, MGRM-G-019, MGRM-G-024, MGRM-G-025, MGRM-G 027, MGRM-G-028, MGRM-F1-004, MGRM-F1-006, MGRM-F1-008, MGRM-F1-010, MGRM-F1-012, MGRM-F1-013, MGRM-F1-014, MGRM-F1-015, MGRM-F1-016, MGRM F1-017, MGRM-F1-018, MGRM-F1-020, MGRM-F1-021, MGRM-F1-022, MGRM-F1-023, and aMLV.
156. The potent, broadly neutralizing antibody (bNAb) of any one of claims 1-70 wherein the bNAb neutralizes at least 80% of HiV-1 species selected from the group consisting of MGRM-A-001, MGRM-A-002, MGRM-A-003, MGRM-A-004, MGRM-A-005, MGRM-A 006, MGRM-A-007, MGRM-A-008, MGRM-A-009, MGRM-A-010, MGRM-A-011, MGRM A-0 12, MGRM-A-0 13, MGRM-A-0 14, 94UG 103, 92RW020, 93UG077, 94KE 105, 93RW029, 02RW009, 92UG031, 92RW026, 92UG037, 92RW008, 92RWO21, VLGCA1, 92RWO24, 6535.3, QH0692.42, SC422661.8, PVO.4, TRO.11, CAAN.A2, TRJO.58, THRO.18, 92BR010, APV 13, APV 17, APV 6, 93TH305, VLGCB3, JRCSF, NL43, MGRM-Chronic-B-001, MGRM-Chronic-B-002, MGRM-Chronic-B-003, MGRM-Chronic-B-004, MGRM-Chronic-B 008, MGRM-Chronic-B-010, MGRM-Chronic-B-011, MGRM-Chronic-B-012, MGRM Chronic-B-017, MGRM-Chronic-B-018, MGRM-Chronic-B-020, MGRM-Chronic-B-023, MGRM-Chronic-B-024, JRFL, SF162, MGRM-C-001, MGRM-C-002, MGRM-C-003, MGRM C-004, MGRM-C-005, MGRM-C-006, MGRM-C-007, MGRM-C-008, MGRM-C-009, MGRM-C-010, MGRM-C-011, MGRM-C-012, MGRM-C-013, MGRM-C-014, MGRM-C-015, MGRM-C-016, MGRM-C-017, MGRM-C-018, MGRM-C-019, MGRM-C-020, MGRM-C-021, MGRM-C-022, MGRM-C-023, MGRM-C-024, MGRM-C-025, 921N905, IAVIC 18, IAVI C22, IAVI C3, 98IN022, 93MW959, 97ZA012, 98CN006, 98CN009, MGRM-D-001, MGRM-D 002, MGRM-D-003, MGRM-D-004, MGRM-D-005, MGRM-D-008, MGRM-D-011, MGRM D-012, MGRM-D-013, MGRM-D-014, MGRM-D-016, MGRM-D-018, MGRM-D-019, MGRM-D-020, MGRM-D-021, MGRM-D-022, MGRM-D-024, MGRM-D-026, MGRM-D 028, MGRM-D-029, 92UG024, 92UG005, 92UG046, 92UG001, 94UG114, MGRM-AE-001, MGRM-AE-002, MGRM-AE-003, MGRM-AE-004, MGRM-AE-005, MGRM-AE-006, MGRM-AE-007, MGRM-AE-008, 92TH021, CMUO2, MGRM-AG-001, MGRM-AG-002, MGRM-AG-003, MGRM-AG-005, MGRM-AG-006, MGRM-AG-008, MGRM-AG-009,
MGRM-AG-011, MGRM-AG-012, MGRM-AG-013, MGRM-G-001, MGRM-G-004, MGRM G-006, MGRM-G-009, MGRM-G-011, MGRM-G-013, MGRM-G-014, MGRM-G-015, MGRM-G-016, MGRM-G-017, MGRM-G-019, MGRM-G-024, MGRM-G-025, MGRM-G 027, MGRM-G-028, MGRM-F1-004, MGRM-F1-006, MGRM-F1-008, MGRM-F1-010, MGRM-F1-012, MGRM-F1-013, MGRM-F1-014, MGRM-F1-015, MGRM-F1-016, MGRM F1-017, MGRM-F1-018, MGRM-F1-020, MGRM-F1-021, MGRM-F1-022, MGRM-F1-023, and aMLV.
157. The potent, broadly neutralizing antibody (bNAb) of any one of claims 1-70 wherein the bNAb neutralizes at least 90% of HiV-1 species selected from the group consisting of MGRM-A-001, MGRM-A-002, MGRM-A-003, MGRM-A-004, MGRM-A-005, MGRM-A 006, MGRM-A-007, MGRM-A-008, MGRM-A-009, MGRM-A-010, MGRM-A-011, MGRM A-0 12, MGRM-A-0 13, MGRM-A-0 14, 94UG 103, 92RW020, 93UG077, 94KE 105, 93RW029, 02RW009, 92UG031, 92RW026, 92UG037, 92RW008, 92RWO21, VLGCA1, 92RWO24, 6535.3, QH0692.42, SC422661.8, PVO.4, TRO.11, CAAN.A2, TRJO.58, THRO.18, 92BR010, APV 13, APV 17, APV 6, 93TH305, VLGCB3, JRCSF, NL43, MGRM-Chronic-B-001, MGRM-Chronic-B-002, MGRM-Chronic-B-003, MGRM-Chronic-B-004, MGRM-Chronic-B 008, MGRM-Chronic-B-010, MGRM-Chronic-B-011, MGRM-Chronic-B-012, MGRM Chronic-B-017, MGRM-Chronic-B-018, MGRM-Chronic-B-020, MGRM-Chronic-B-023, MGRM-Chronic-B-024, JRFL, SF162, MGRM-C-001, MGRM-C-002, MGRM-C-003, MGRM C-004, MGRM-C-005, MGRM-C-006, MGRM-C-007, MGRM-C-008, MGRM-C-009, MGRM-C-010, MGRM-C-011, MGRM-C-012, MGRM-C-013, MGRM-C-014, MGRM-C-015, MGRM-C-016, MGRM-C-017, MGRM-C-018, MGRM-C-019, MGRM-C-020, MGRM-C-021, MGRM-C-022, MGRM-C-023, MGRM-C-024, MGRM-C-025, 921N905, IAVIC 18, IAVI C22, IAVI C3, 98IN022, 93MW959, 97ZA012, 98CN006, 98CN009, MGRM-D-001, MGRM-D 002, MGRM-D-003, MGRM-D-004, MGRM-D-005, MGRM-D-008, MGRM-D-011, MGRM D-012, MGRM-D-013, MGRM-D-014, MGRM-D-016, MGRM-D-018, MGRM-D-019, MGRM-D-020, MGRM-D-021, MGRM-D-022, MGRM-D-024, MGRM-D-026, MGRM-D 028, MGRM-D-029, 92UG024, 92UG005, 92UG046, 92UG001, 94UG114, MGRM-AE-001, MGRM-AE-002, MGRM-AE-003, MGRM-AE-004, MGRM-AE-005, MGRM-AE-006, MGRM-AE-007, MGRM-AE-008, 92TH021, CMUO2, MGRM-AG-001, MGRM-AG-002, MGRM-AG-003, MGRM-AG-005, MGRM-AG-006, MGRM-AG-008, MGRM-AG-009,
MGRM-AG-011, MGRM-AG-012, MGRM-AG-013, MGRM-G-001, MGRM-G-004, MGRM G-006, MGRM-G-009, MGRM-G-011, MGRM-G-013, MGRM-G-014, MGRM-G-015, MGRM-G-016, MGRM-G-017, MGRM-G-019, MGRM-G-024, MGRM-G-025, MGRM-G 027, MGRM-G-028, MGRM-F1-004, MGRM-F1-006, MGRM-F1-008, MGRM-F1-010, MGRM-F1-012, MGRM-F1-013, MGRM-F1-014, MGRM-F1-015, MGRM-F1-016, MGRM F1-017, MGRM-F1-018, MGRM-F1-020, MGRM-F1-021, MGRM-F1-022, MGRM-F1-023, and aMLV.
158. The potent, broadly neutralizing antibody (bNAb) any one of claims 1-70 wherein the bNAb neutralizes a HIV-1 strain with an IC50 value of less than 0.15 P g/mL.
159. The potent, broadly neutralizing antibody (bNAb) any one of claims 1-70 wherein the bNAb neutralizes a HIV- 1 strain with an IC50 value of less than 0.1 P g/mL.
160. The potent, broadly neutralizing antibody (bNAb) any one of claims 1-70 wherein the bNAb neutralizes a HIV- 1 strain with an IC50 value of less than 0.05 P g/mL.
161. The potent, broadly neutralizing antibody (bNAb) any one of claims 1-70 wherein the bNAb neutralizes a HIV- 1 strain with an IC 90 value of less than 2.0 P g/mL.
162. The potent, broadly neutralizing antibody (bNAb) any one of claims 1-70 wherein the bNAb neutralizes a HIV- 1 strain with an IC 90 value of less than 1.0 Pg/mL.
163. The potent, broadly neutralizing antibody (bNAb) any one of claims 1-70 wherein the bNAb neutralizes a HIV- 1 strain with an IC 90 value of less than 0.5 p g/mL.
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
This data, for application number 2011296065, is current as of 2016-04-11 21:00 AEST
AU2018200064A 2010-08-31 2018-01-04 Human immunodeficiency virus (HIV)-neutralizing antibodies Active AU2018200064B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2018200064A AU2018200064B2 (en) 2010-08-31 2018-01-04 Human immunodeficiency virus (HIV)-neutralizing antibodies
AU2020203853A AU2020203853C1 (en) 2010-08-31 2020-06-11 Human immunodeficiency virus (HIV)-neutralizing antibodies
AU2023237056A AU2023237056A1 (en) 2010-08-31 2023-09-26 Human immunodeficiency virus (HIV)-neutralizing antibodies

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US37860410P 2010-08-31 2010-08-31
US61/378,604 2010-08-31
US38694010P 2010-09-27 2010-09-27
US61/386,940 2010-09-27
US201161476978P 2011-04-19 2011-04-19
US61/476,978 2011-04-19
US201161515548P 2011-08-05 2011-08-05
US61/515,548 2011-08-05
PCT/US2011/049880 WO2012030904A2 (en) 2010-08-31 2011-08-31 Human immunodeficiency virus (hiv)-neutralizing antibodies
AU2011296065A AU2011296065B2 (en) 2010-08-31 2011-08-31 Human immunodeficiency virus (HIV)-neutralizing antibodies
AU2016202543A AU2016202543B2 (en) 2010-08-31 2016-04-21 Human immunodeficiency virus (hiv)-neutralizing antibodies
AU2018200064A AU2018200064B2 (en) 2010-08-31 2018-01-04 Human immunodeficiency virus (HIV)-neutralizing antibodies

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2016202543A Division AU2016202543B2 (en) 2010-08-31 2016-04-21 Human immunodeficiency virus (hiv)-neutralizing antibodies

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2020203853A Division AU2020203853C1 (en) 2010-08-31 2020-06-11 Human immunodeficiency virus (HIV)-neutralizing antibodies

Publications (2)

Publication Number Publication Date
AU2018200064A1 true AU2018200064A1 (en) 2018-01-25
AU2018200064B2 AU2018200064B2 (en) 2020-03-19

Family

ID=45773488

Family Applications (5)

Application Number Title Priority Date Filing Date
AU2011296065A Active AU2011296065B2 (en) 2010-08-31 2011-08-31 Human immunodeficiency virus (HIV)-neutralizing antibodies
AU2016202543A Active AU2016202543B2 (en) 2010-08-31 2016-04-21 Human immunodeficiency virus (hiv)-neutralizing antibodies
AU2018200064A Active AU2018200064B2 (en) 2010-08-31 2018-01-04 Human immunodeficiency virus (HIV)-neutralizing antibodies
AU2020203853A Active AU2020203853C1 (en) 2010-08-31 2020-06-11 Human immunodeficiency virus (HIV)-neutralizing antibodies
AU2023237056A Pending AU2023237056A1 (en) 2010-08-31 2023-09-26 Human immunodeficiency virus (HIV)-neutralizing antibodies

Family Applications Before (2)

Application Number Title Priority Date Filing Date
AU2011296065A Active AU2011296065B2 (en) 2010-08-31 2011-08-31 Human immunodeficiency virus (HIV)-neutralizing antibodies
AU2016202543A Active AU2016202543B2 (en) 2010-08-31 2016-04-21 Human immunodeficiency virus (hiv)-neutralizing antibodies

Family Applications After (2)

Application Number Title Priority Date Filing Date
AU2020203853A Active AU2020203853C1 (en) 2010-08-31 2020-06-11 Human immunodeficiency virus (HIV)-neutralizing antibodies
AU2023237056A Pending AU2023237056A1 (en) 2010-08-31 2023-09-26 Human immunodeficiency virus (HIV)-neutralizing antibodies

Country Status (9)

Country Link
US (5) US9464131B2 (en)
EP (6) EP4085924A1 (en)
AU (5) AU2011296065B2 (en)
CA (4) CA3059961C (en)
ES (2) ES2920140T3 (en)
PL (1) PL3556396T3 (en)
PT (1) PT3556396T (en)
SI (1) SI3556396T1 (en)
WO (1) WO2012030904A2 (en)

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI2340038T1 (en) 2008-10-10 2018-05-31 Children's Medical Center Corporation Biochemically stabilized hiv-1 env trimer vaccine
KR101787309B1 (en) 2008-12-09 2017-10-18 길리애드 사이언시즈, 인코포레이티드 Modulators of toll-like receptors
SI3260136T1 (en) * 2009-03-17 2021-05-31 Theraclone Sciences, Inc. Human immunodeficiency virus (hiv) -neutralizing antibodies
EP3578205A1 (en) 2010-08-06 2019-12-11 ModernaTX, Inc. A pharmaceutical formulation comprising engineered nucleic acids and medical use thereof
PT3556396T (en) 2010-08-31 2022-07-04 Scripps Research Inst Human immunodeficiency virus (hiv)-neutralizing antibodies
US20120237975A1 (en) 2010-10-01 2012-09-20 Jason Schrum Engineered nucleic acids and methods of use thereof
EP2691101A2 (en) 2011-03-31 2014-02-05 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
CA2850624A1 (en) 2011-10-03 2013-04-11 Moderna Therapeutics, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
KR20140102759A (en) 2011-12-16 2014-08-22 모더나 세라퓨틱스, 인코포레이티드 Modified nucleoside, nucleotide, and nucleic acid compositions
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9878056B2 (en) 2012-04-02 2018-01-30 Modernatx, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
CA2868398A1 (en) 2012-04-02 2013-10-10 Moderna Therapeutics, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
US20150239961A1 (en) * 2012-09-26 2015-08-27 Duke University Adcc-mediating antibodies, combinations and uses thereof
PL2908912T3 (en) 2012-10-18 2021-05-17 The Rockefeller University Broadly-neutralizing anti-hiv antibodies
JP6144355B2 (en) 2012-11-26 2017-06-07 モデルナティエックス インコーポレイテッドModernaTX,Inc. Chemically modified mRNA
EA030983B1 (en) 2013-01-07 2018-10-31 Бет Изрейэл Диконисс Медикал Сентер, Инк. STABILIZED HUMAN IMMUNODEFICIENCY VIRUS (HIV) ENVELOPE (Env) TRIMER VACCINES AND METHODS OF USING THE SAME
PL2968520T3 (en) 2013-03-14 2022-01-03 Macrogenics, Inc. Bispecific molecules that are immunoreactive with immune effector cells that express an activating receptor
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
AU2014296059B2 (en) * 2013-08-02 2020-12-10 The Regents Of The University Of California Engineering antiviral T cell immunity through stem cells and chimeric antigen receptors
EP2848937A1 (en) 2013-09-05 2015-03-18 International Aids Vaccine Initiative Methods of identifying novel HIV-1 immunogens
EP3052106A4 (en) 2013-09-30 2017-07-19 ModernaTX, Inc. Polynucleotides encoding immune modulating polypeptides
EP3052132B1 (en) * 2013-09-30 2020-07-29 Beth Israel Deaconess Medical Center, Inc. Antibody therapies for human immunodeficiency virus (hiv)
JP2016538829A (en) 2013-10-03 2016-12-15 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. Polynucleotide encoding low density lipoprotein receptor
WO2015051270A1 (en) 2013-10-04 2015-04-09 Beth Israel Deaconess Medical Center, Inc. Stabilized human immunodeficiency virus (hiv) clade c envelope (env) trimer vaccines and methods of using same
GB2540694A (en) * 2014-04-29 2017-01-25 Seattle Children's Hospital (Dba Seattle Children's Res Institute) CCR5 disruption of cells expressing anti-hiv chimeric antigen receptor (CAR) derived from broadly neutralizing antibodies
US10093720B2 (en) * 2014-06-11 2018-10-09 International Aids Vaccine Initiative Broadly neutralizing antibody and uses thereof
EP3160513B1 (en) 2014-06-30 2020-02-12 Glykos Finland Oy Saccharide derivative of a toxic payload and antibody conjugates thereof
US11116774B2 (en) 2014-07-11 2021-09-14 Gilead Sciences, Inc. Modulators of toll-like receptors for the treatment of HIV
WO2016037154A1 (en) 2014-09-04 2016-03-10 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Recombinant hiv-1 envelope proteins and their use
EA201790369A1 (en) 2014-09-16 2017-10-31 Джилид Сайэнс, Инк. SOLID FORMS OF THOUGH-RECEPTOR MODULATOR
CN112121160A (en) 2014-09-26 2020-12-25 贝斯以色列护理医疗中心有限公司 Methods and compositions for inducing protective immunity against human immunodeficiency virus infection
CN107108721B (en) 2014-09-29 2021-09-07 杜克大学 Bispecific molecules comprising an HIV-1 envelope targeting arm
WO2016054023A1 (en) * 2014-09-29 2016-04-07 Duke University Hiv-1 antibodies and uses thereof (adcc and bispecific abs)
WO2016191675A2 (en) * 2015-05-27 2016-12-01 La Jolla Biologics, Inc. Antibodies against glypican-3 and their uses in cancer diagnosis and treatment
MA42818A (en) 2015-09-15 2018-07-25 Gilead Sciences Inc TOLL-TYPE RECEPTOR MODULATORS FOR HIV TREATMENT
WO2017053906A1 (en) 2015-09-24 2017-03-30 Abvitro Llc Hiv antibody compositions and methods of use
US10730933B2 (en) 2015-12-05 2020-08-04 Centre Hospitalier Universitaire Vaudois HIV binding agents
SG11201804787UA (en) * 2015-12-15 2018-07-30 Gilead Sciences Inc Human immunodeficiency virus neutralizing antibodies
EP3390430B1 (en) 2015-12-15 2019-08-28 Janssen Vaccines & Prevention B.V. Human immunodeficiency virus antigens, vectors, compositions, and methods of use thereof
CN107022027B (en) * 2016-02-02 2022-03-08 中国疾病预防控制中心性病艾滋病预防控制中心 HIV-1 broad-spectrum neutralizing antibodies and uses thereof
CN107033241B (en) * 2016-02-03 2022-03-08 中国疾病预防控制中心性病艾滋病预防控制中心 HIV-1 broad-spectrum neutralizing antibodies and uses thereof
US20190069528A1 (en) * 2016-03-21 2019-03-07 The George Washington University Engineered human hookworms as a novel biodelivery system for vaccines and biologicals
WO2017189964A2 (en) 2016-04-29 2017-11-02 Voyager Therapeutics, Inc. Compositions for the treatment of disease
EP3448874A4 (en) 2016-04-29 2020-04-22 Voyager Therapeutics, Inc. Compositions for the treatment of disease
CN109219448B (en) 2016-06-16 2022-09-20 扬森疫苗与预防公司 HIV vaccine formulations
EP3474893A1 (en) 2016-06-27 2019-05-01 The U.S.A. as represented by the Secretary, Department of Health and Human Services Self-assembling insect ferritin nanoparticles for display of co-assembled trimeric antigens
US10307477B2 (en) 2016-09-02 2019-06-04 Janssen Vaccines & Prevention B.V. Methods for inducing an immune response against human immunodeficiency virus infection in subjects undergoing antiretroviral treatment
US10793607B2 (en) 2016-09-15 2020-10-06 Janssen Vaccines & Prevention B.V. Trimer stabilizing HIV envelope protein mutations
WO2018075564A1 (en) 2016-10-17 2018-04-26 University Of Maryland, College Park Multispecific antibodies targeting human immunodeficiency virus and methods of using the same
US11230572B2 (en) 2016-10-17 2022-01-25 Beth Israel Deaconess Medical Center, Inc. Signature-based human immunodeficiency virus (HIV) envelope (Env) trimer vaccines and methods of using the same
KR20200015759A (en) 2017-06-15 2020-02-12 얀센 백신스 앤드 프리벤션 비.브이. Poxvirus vectors encoding HIV antigens, and methods of using the same
CN110831965B (en) 2017-06-21 2023-03-07 吉利德科学公司 Multispecific antibodies targeting HIV GP120 and CD3
AU2018304502B2 (en) 2017-07-19 2022-03-31 Janssen Vaccines & Prevention B.V. Trimer stabilizing HIV envelope protein mutations
EP3697440A1 (en) 2017-10-16 2020-08-26 The United States of America, as represented by the Secretary, Department of Health and Human Services Recombinant hiv-1 envelope proteins and their use
RU2020122822A (en) 2017-12-12 2022-01-13 Макродженикс, Инк. BISPECIFIC CD16 BINDING MOLECULES AND THEIR USE IN THE TREATMENT OF DISEASES
US10555412B2 (en) 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
US11845788B2 (en) 2018-05-22 2023-12-19 Beth Israel Deaconess Medical Center, Inc. Antibody therapies for human immunodeficiency virus (HIV)
SG11202012043RA (en) 2018-07-03 2021-01-28 Gilead Sciences Inc Antibodies that target hiv gp120 and methods of use
WO2020012435A1 (en) 2018-07-13 2020-01-16 Lausanne University Hospital Hiv binding agents
CN109251246B (en) * 2018-09-14 2022-01-28 南开大学 HIV-1 broad-spectrum neutralizing antibodies and uses thereof
WO2020086782A1 (en) * 2018-10-24 2020-04-30 The Wistar Institute Of Anatomy And Biology Dna antibody constructs for use against hiv
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
WO2020106713A1 (en) * 2018-11-21 2020-05-28 Beth Israel Deaconess Medical Center, Inc. Antibody therapies for human immunodeficiency virus (hiv)
JP7451540B2 (en) 2019-01-22 2024-03-18 アプライド マテリアルズ インコーポレイテッド Feedback loop for controlling pulsed voltage waveforms
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
TWI762925B (en) * 2019-05-21 2022-05-01 美商基利科學股份有限公司 Methods of identifying hiv patients sensitive to therapy with gp120 v3 glycan-directed antibodies
EP3996815A2 (en) 2019-07-15 2022-05-18 Lausanne University Hospital Hiv binding agents
US11795210B2 (en) 2019-07-16 2023-10-24 Gilead Sciences, Inc. HIV vaccines and methods of making and using
US11462389B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Pulsed-voltage hardware assembly for use in a plasma processing system
KR20230054456A (en) 2020-08-25 2023-04-24 길리애드 사이언시즈, 인코포레이티드 Multispecific Antigen Binding Molecules Targeting HIV and Methods of Using The Same
TWI815194B (en) 2020-10-22 2023-09-11 美商基利科學股份有限公司 INTERLEUKIN-2-Fc FUSION PROTEINS AND METHODS OF USE
WO2022103758A1 (en) 2020-11-11 2022-05-19 Gilead Sciences, Inc. METHODS OF IDENTIFYING HIV PATIENTS SENSITIVE TO THERAPY WITH gp120 CD4 BINDING SITE-DIRECTED ANTIBODIES
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
CN116973566A (en) * 2021-02-03 2023-10-31 广东菲鹏生物有限公司 Method and reagent for identifying antibody combined with mutant antigen
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11776788B2 (en) 2021-06-28 2023-10-03 Applied Materials, Inc. Pulsed voltage boost for substrate processing
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
WO2024015741A1 (en) 2022-07-12 2024-01-18 Gilead Sciences, Inc. Hiv immunogenic polypeptides and vaccines and uses thereof
US20240083984A1 (en) 2022-08-26 2024-03-14 Gilead Sciences, Inc. Dosing and scheduling regimen for broadly neutralizing antibodies

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US3896111A (en) 1973-02-20 1975-07-22 Research Corp Ansa macrolides
US4151042A (en) 1977-03-31 1979-04-24 Takeda Chemical Industries, Ltd. Method for producing maytansinol and its derivatives
US4137230A (en) 1977-11-14 1979-01-30 Takeda Chemical Industries, Ltd. Method for the production of maytansinoids
FR2413974A1 (en) 1978-01-06 1979-08-03 David Bernard DRYER FOR SCREEN-PRINTED SHEETS
US4265814A (en) 1978-03-24 1981-05-05 Takeda Chemical Industries Matansinol 3-n-hexadecanoate
US4307016A (en) 1978-03-24 1981-12-22 Takeda Chemical Industries, Ltd. Demethyl maytansinoids
JPS5562090A (en) 1978-10-27 1980-05-10 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
US4256746A (en) 1978-11-14 1981-03-17 Takeda Chemical Industries Dechloromaytansinoids, their pharmaceutical compositions and method of use
JPS55164687A (en) 1979-06-11 1980-12-22 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
JPS5566585A (en) 1978-11-14 1980-05-20 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
JPS55102583A (en) 1979-01-31 1980-08-05 Takeda Chem Ind Ltd 20-acyloxy-20-demethylmaytansinoid compound
JPS55162791A (en) 1979-06-05 1980-12-18 Takeda Chem Ind Ltd Antibiotic c-15003pnd and its preparation
JPS55164685A (en) 1979-06-08 1980-12-22 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
JPS55164686A (en) 1979-06-11 1980-12-22 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
US4309428A (en) 1979-07-30 1982-01-05 Takeda Chemical Industries, Ltd. Maytansinoids
JPS5645483A (en) 1979-09-19 1981-04-25 Takeda Chem Ind Ltd C-15003phm and its preparation
EP0028683A1 (en) 1979-09-21 1981-05-20 Takeda Chemical Industries, Ltd. Antibiotic C-15003 PHO and production thereof
JPS5645485A (en) 1979-09-21 1981-04-25 Takeda Chem Ind Ltd Production of c-15003pnd
WO1981001145A1 (en) 1979-10-18 1981-04-30 Univ Illinois Hydrolytic enzyme-activatible pro-drugs
WO1982001188A1 (en) 1980-10-08 1982-04-15 Takeda Chemical Industries Ltd 4,5-deoxymaytansinoide compounds and process for preparing same
US4450254A (en) 1980-11-03 1984-05-22 Standard Oil Company Impact improvement of high nitrile resins
US4554101A (en) 1981-01-09 1985-11-19 New York Blood Center, Inc. Identification and preparation of epitopes on antigens and allergens on the basis of hydrophilicity
US4315929A (en) 1981-01-27 1982-02-16 The United States Of America As Represented By The Secretary Of Agriculture Method of controlling the European corn borer with trewiasine
US4313946A (en) 1981-01-27 1982-02-02 The United States Of America As Represented By The Secretary Of Agriculture Chemotherapeutically active maytansinoids from Trewia nudiflora
JPS57192389A (en) 1981-05-20 1982-11-26 Takeda Chem Ind Ltd Novel maytansinoid
US4485045A (en) 1981-07-06 1984-11-27 Research Corporation Synthetic phosphatidyl cholines useful in forming liposomes
NZ201705A (en) 1981-08-31 1986-03-14 Genentech Inc Recombinant dna method for production of hepatitis b surface antigen in yeast
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
DD266710A3 (en) 1983-06-06 1989-04-12 Ve Forschungszentrum Biotechnologie Process for the biotechnical production of alkaline phosphatase
US4544545A (en) 1983-06-20 1985-10-01 Trustees University Of Massachusetts Liposomes containing modified cholesterol for organ targeting
US4879231A (en) 1984-10-30 1989-11-07 Phillips Petroleum Company Transformation of yeasts of the genus pichia
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
GB8610600D0 (en) 1986-04-30 1986-06-04 Novo Industri As Transformation of trichoderma
US5567610A (en) 1986-09-04 1996-10-22 Bioinvent International Ab Method of producing human monoclonal antibodies and kit therefor
IL85035A0 (en) 1987-01-08 1988-06-30 Int Genetic Eng Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same
GB8705477D0 (en) 1987-03-09 1987-04-15 Carlton Med Prod Drug delivery systems
US4975278A (en) 1988-02-26 1990-12-04 Bristol-Myers Company Antibody-enzyme conjugates in combination with prodrugs for the delivery of cytotoxic agents to tumor cells
US5770701A (en) 1987-10-30 1998-06-23 American Cyanamid Company Process for preparing targeted forms of methyltrithio antitumor agents
US5606040A (en) 1987-10-30 1997-02-25 American Cyanamid Company Antitumor and antibacterial substituted disulfide derivatives prepared from compounds possessing a methyl-trithio group
US5053394A (en) 1988-09-21 1991-10-01 American Cyanamid Company Targeted forms of methyltrithio antitumor agents
GB8823869D0 (en) 1988-10-12 1988-11-16 Medical Res Council Production of antibodies
KR0184860B1 (en) 1988-11-11 1999-04-01 메디칼 리써어치 카운실 Single domain ligands receptors comprising said ligands methods for their production and use of said ligands
US5175384A (en) 1988-12-05 1992-12-29 Genpharm International Transgenic mice depleted in mature t-cells and methods for making transgenic mice
FR2646437B1 (en) 1989-04-28 1991-08-30 Transgene Sa NOVEL DNA SEQUENCES, THEIR APPLICATION AS A SEQUENCE ENCODING A SIGNAL PEPTIDE FOR THE SECRETION OF MATURE PROTEINS BY RECOMBINANT YEASTS, EXPRESSION CASSETTES, PROCESSED YEASTS AND PROCESS FOR PREPARING THE SAME
EP0402226A1 (en) 1989-06-06 1990-12-12 Institut National De La Recherche Agronomique Transformation vectors for yeast yarrowia
DE3920358A1 (en) 1989-06-22 1991-01-17 Behringwerke Ag BISPECIFIC AND OLIGO-SPECIFIC, MONO- AND OLIGOVALENT ANTI-BODY CONSTRUCTS, THEIR PRODUCTION AND USE
DE69029036T2 (en) 1989-06-29 1997-05-22 Medarex Inc SPECIFIC REAGENTS FOR AIDS THERAPY
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5208020A (en) 1989-10-25 1993-05-04 Immunogen Inc. Cytotoxic agents comprising maytansinoids and their therapeutic use
CA2026147C (en) 1989-10-25 2006-02-07 Ravi J. Chari Cytotoxic agents comprising maytansinoids and their therapeutic use
US7041293B1 (en) * 1990-04-03 2006-05-09 Genentech, Inc. HIV env antibodies
US5229275A (en) 1990-04-26 1993-07-20 Akzo N.V. In-vitro method for producing antigen-specific human monoclonal antibodies
JPH06500011A (en) 1990-06-29 1994-01-06 ラージ スケール バイオロジー コーポレイション Production of melanin by transformed microorganisms
CA2090126C (en) 1990-08-02 2002-10-22 John W. Schrader Methods for the production of proteins with a desired function
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
ES2246502T3 (en) 1990-08-29 2006-02-16 Genpharm International, Inc. TRANSGENIC NON-HUMAN ANIMALS ABLE TO PRODUCE HETEROLOGICAL ANTIBODIES.
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
EP0586505A1 (en) 1991-05-14 1994-03-16 Repligen Corporation Heteroconjugate antibodies for treatment of hiv infection
ES2206447T3 (en) 1991-06-14 2004-05-16 Genentech, Inc. HUMANIZED ANTIBODY FOR HEREGULINE.
US7018809B1 (en) 1991-09-19 2006-03-28 Genentech, Inc. Expression of functional antibody fragments
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
WO1993008829A1 (en) 1991-11-04 1993-05-13 The Regents Of The University Of California Compositions that mediate killing of hiv-infected cells
JPH07501451A (en) 1991-11-25 1995-02-16 エンゾン・インコーポレイテッド Multivalent antigen binding protein
AU675929B2 (en) 1992-02-06 1997-02-27 Curis, Inc. Biosynthetic binding protein for cancer marker
ZA932522B (en) 1992-04-10 1993-12-20 Res Dev Foundation Immunotoxins directed against c-erbB-2(HER/neu) related surface antigens
ATE149570T1 (en) 1992-08-17 1997-03-15 Genentech Inc BISPECIFIC IMMUNOADHESINS
CA2149329C (en) 1992-11-13 2008-07-15 Darrell R. Anderson Therapeutic application of chimeric and radiolabeled antibodies to human b lymphocyte restricted differentiation antigen for treatment of b cell lymphoma
AU6796094A (en) 1993-04-29 1994-11-21 Raymond Hamers Production of antibodies or (functionalized) fragments thereof derived from heavy chain immunoglobulins of (camelidae)
US5773001A (en) 1994-06-03 1998-06-30 American Cyanamid Company Conjugates of methyltrithio antitumor agents and intermediates for their synthesis
US5789199A (en) 1994-11-03 1998-08-04 Genentech, Inc. Process for bacterial production of polypeptides
US6214388B1 (en) 1994-11-09 2001-04-10 The Regents Of The University Of California Immunoliposomes that optimize internalization into target cells
AU4289496A (en) 1994-12-02 1996-06-19 Chiron Corporation Method of promoting an immune response with a bispecific antibody
US5840523A (en) 1995-03-01 1998-11-24 Genetech, Inc. Methods and compositions for secretion of heterologous polypeptides
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5641870A (en) 1995-04-20 1997-06-24 Genentech, Inc. Low pH hydrophobic interaction chromatography for antibody purification
US5739277A (en) 1995-04-14 1998-04-14 Genentech Inc. Altered polypeptides with increased half-life
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US5712374A (en) 1995-06-07 1998-01-27 American Cyanamid Company Method for the preparation of substantiallly monomeric calicheamicin derivative/carrier conjugates
US5837234A (en) 1995-06-07 1998-11-17 Cytotherapeutics, Inc. Bioartificial organ containing cells encapsulated in a permselective polyether suflfone membrane
US5714586A (en) 1995-06-07 1998-02-03 American Cyanamid Company Methods for the preparation of monomeric calicheamicin derivative/carrier conjugates
DE19544393A1 (en) 1995-11-15 1997-05-22 Hoechst Schering Agrevo Gmbh Synergistic herbicidal mixtures
US5922845A (en) 1996-07-11 1999-07-13 Medarex, Inc. Therapeutic multispecific compounds comprised of anti-Fcα receptor antibodies
US6824780B1 (en) 1999-10-29 2004-11-30 Genentech, Inc. Anti-tumor antibody compositions and methods of use
JP4773947B2 (en) 2003-01-09 2011-09-14 マクロジェニクス,インコーポレーテッド Dual expression vector system for antibody expression in bacterial and mammalian cells
EP1597280B2 (en) 2003-02-26 2016-08-24 Institute for Research in Biomedicine Monoclonal antibody production by ebv transformation of b cells
US20080279879A1 (en) * 2006-11-17 2008-11-13 New York University INDUCTION OF BROADLY REACTIVE NEUTRALIZING ANTIBODIES BY FOCUSING THE IMMUNE RESPONSE ON V3 EPITOPES OF THE HIV-1 gp120 ENVELOPE
CN102272158B (en) 2008-11-12 2014-05-07 乔治·K·刘易斯 Rapid expression cloning of human monoclonal antibodies from memory B cells
EP2398496B1 (en) * 2009-02-20 2015-08-05 International AIDS Vaccine Initiative Vesicular stomatitis virus vectors encoding hiv env epitopes
SI3260136T1 (en) 2009-03-17 2021-05-31 Theraclone Sciences, Inc. Human immunodeficiency virus (hiv) -neutralizing antibodies
PT3556396T (en) * 2010-08-31 2022-07-04 Scripps Research Inst Human immunodeficiency virus (hiv)-neutralizing antibodies

Similar Documents

Publication Publication Date Title
AU2020203853B2 (en) Human immunodeficiency virus (HIV)-neutralizing antibodies
US11584789B2 (en) Monoclonal antibodies directed against trimeric forms of the HIV-1 envelope glycoprotein with broad and potent neutralizing activity
AU2018200064A1 (en) Human immunodeficiency virus (HIV)-neutralizing antibodies
US20240132578A1 (en) Methods of treating hiv-1 infection utilizing broadly neutralizing human immunodeficiency virus type 1 (hiv-1) gp120-specific monoclonal antibodies