AU2017256180A1 - Complexes of Ivacaftor and its salts and derivatives, process for the preparation thereof and pharmaceutical compositions containing them - Google Patents

Complexes of Ivacaftor and its salts and derivatives, process for the preparation thereof and pharmaceutical compositions containing them Download PDF

Info

Publication number
AU2017256180A1
AU2017256180A1 AU2017256180A AU2017256180A AU2017256180A1 AU 2017256180 A1 AU2017256180 A1 AU 2017256180A1 AU 2017256180 A AU2017256180 A AU 2017256180A AU 2017256180 A AU2017256180 A AU 2017256180A AU 2017256180 A1 AU2017256180 A1 AU 2017256180A1
Authority
AU
Australia
Prior art keywords
complex
ivacaftor
recited
disease
vinylpyrrolidone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2017256180A
Inventor
Erzsébet Réka ANGI
Orsolya Basa-Dénes
Genovéva FILIPCSEI
Hristos Glavinas
Tamás Jordán
Richard Balázs Kárpáti
Gergö PATYI
Tamás SOLYMOSI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tavanta Therapeutics Hungary Inc
Original Assignee
Druggability Technologies IP Holdco Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Druggability Technologies IP Holdco Ltd filed Critical Druggability Technologies IP Holdco Ltd
Publication of AU2017256180A1 publication Critical patent/AU2017256180A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4747Quinolines; Isoquinolines spiro-condensed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/145Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1635Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/10Laxatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/04Artificial tears; Irrigation solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/12Drugs for disorders of the metabolism for electrolyte homeostasis
    • A61P3/14Drugs for disorders of the metabolism for electrolyte homeostasis for calcium homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/02Drugs for disorders of the endocrine system of the hypothalamic hormones, e.g. TRH, GnRH, CRH, GRH, somatostatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/48Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • C07D215/54Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen attached in position 3
    • C07D215/56Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen attached in position 3 with oxygen atoms in position 4

Abstract

The present invention relates to pharmaceutically acceptable complex formulations comprising complexes of Ivacaftor, or a salt, or derivatives thereof and complexation agents and pharmaceutically acceptable excipients, process for the preparation thereof and pharmaceutical compositions containing them. The complexes of the present invention possess instantaneous redispersibility, increased apparent solubility and permeability, no observable food effect which deliver the opportunity of precise dosing and ease of administration of the reconstituted complex Ivacaftor in solution form.

Description

FIELD OF THE INVENTION [001] The invention is directed to a stable complexes with controlled particle size, increased apparent solubility and increased dissolution rate comprising as active compound Ivacaftor, or its salts, or derivatives thereof, which is useful in the treatment of cystic fibrosis transmembrane conductance regulator (CFTR) mediated disease. More specifically, the complexes of the present invention possess instantaneous redispersibility, increased apparent solubility and permeability, no observable food effect which deliver the opportunity of precise dosing and ease of administration of the reconstituted complex in solution form. The invention also relates to methods of formulating and manufacturing complexes according to the invention, pharmaceutical compositions containing it, its uses and methods of treatment using the complex and its compositions.
BACKGROUND OF THE INVENTION [002] The active ingredient in KALYDECO tablets is Ivacaftor, which has the following chemical name: N-(2,4-di-tert-butyl-5-hydroxyphenyl)-l,4-dihydro-4-oxoquinoline-3carboxamide. Its molecular formula is C24H28N2O3 and its molecular weight is 392.49. Ivacaftor has the following structural formula:
Figure AU2017256180A1_D0001
Ivacaftor is a white to off-white powder that is practically insoluble in water (< 0.05 microgram/mL). Due to poor aqueous solubility, extensive formulation efforts were required and
WO 2017/187336
PCT/IB2017/052370 resulted in a spray-dried dispersion of Ivacaftor suitable for oral administration. KALYDECO containing the spray-dried dispersion of Ivacaftor is available as a light blue capsule-shaped, filmcoated tablet for oral administration containing 150 mg of Ivacaftor. Each tablet contains the inactive ingredients colloidal silicon dioxide, croscarmellose sodium, hypromellose acetate succinate, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and sodium lauryl sulfate. The tablet film coat contains carnauba wax, FD&C Blue #2, PEG 3350, polyvinyl alcohol, talc, and titanium dioxide. The printing ink contains ammonium hydroxide, iron oxide black, propylene glycol, and shellac.
[003] Ivacaftor is a potentiator of the CFTR protein. The CFTR protein is a chloride channel present at the surface of epithelial cells in multiple organs. Ivacaftor facilitates increased chloride transport by potentiating the channel-open probability (or gating) of the CFTR protein.
[004] After oral administration of a single 150 mg dose to healthy volunteers in a fed state, peak plasma concentrations (t^A occurred at approximately 4 hours, and the mean (+SD) for AUC and Cm„ were 10,600 (5260) ng*hr/mL and 768 (233) ng/mL, respectively. After every 12-hour dosing, steady-state plasma concentrations of Ivacaftor were reached by days 3 to 5, with an accumulation ratio ranging from 2.2 to 2.9.
[005] The exposure of Ivacaftor increased approximately 2-to 4-fold when given with food containing fat. Therefore, KALYDECO should be administered with fat-containing food. Examples of fat-containing foods include eggs, butter, peanut butter, and cheese pizza. The median (range) tmax is approximately 4.0 (3.0; 6.0) hours in the fed state.
[006] The mean apparent volume of distribution (Vz/F) of Ivacaftor after a single dose of 275 mg of KALYDECO in the fed state was similar for healthy subjects and patients with CF. After oral administration of 150 mg every 12 hours for 7 days to healthy volunteers in a fed state, the mean (+SD) for apparent volume of distribution was 353 (122) L.
[007] Ivacaftor is extensively metabolized in humans. In-vitro and clinical studies indicate that Ivacaftor is primarily metabolized by CYP3A. Ml and M6 are the two major metabolites of Ivacaftor in humans. Ml has approximately one-sixth the potency of Ivacaftor and is considered pharmacologically active. M6 has less than one-fiftieth the potency of Ivacaftor and is not considered pharmacologically active.
[008] Following oral administration, the majority of Ivacaftor (87.8%) is eliminated in the feces after metabolic conversion. The major metabolites Ml and M6 accounted for approximately 65%
WO 2017/187336
PCT/IB2017/052370 of the total dose eliminated with 22% as Ml and 43% as M6. There was negligible urinary excretion of Ivacaftor as unchanged parent. The apparent terminal half-life was approximately 12 hours following a single dose. The mean apparent clearance (CL/F) of Ivacaftor was similar for healthy subjects and patients with CF. The CL/F (SD) for the 150 mg dose was 17.3 (8.4) L/hr in healthy subjects.
[009] The main pharmacokinetic problem associated with the oral delivery of Ivacaftor is a significant positive food effect which renders the current tablet formulation to be taken with a high fat meal which results in variability of exposure and does not allow the precise dosing of the compound.
[0010] In order to overcome the problems associated with prior conventional Ivacaftor formulations and available drug delivery systems, novel complex formulations of Ivacaftor or its salts or its derivatives thereof and complexation agents and pharmaceutically acceptable excipients were prepared. The novel complexes of the present invention possess instantaneous redispersibility, increased apparent solubility and permeability, no observable food effect which deliver the opportunity of precise dosing and ease of administration of the reconstituted complex in solution form.
[0011] A variety of strategies have been used to attempt to overcome these issues, see for example WO/2014/118805, WO/2014/125506, WO/2015/070336, WO/2014/135096,
JP2014097964, CN104725314, US20150246031, US20150182517, WO2015160787, US20150246031, US20150182517, US20150246031, US20150182517, WO2015073231,
EP2872122, US20150024047, EP2826776, US20150010628, EP2819670, US20140255483, US20140221424, US20140163068, US7495103, US8324242, US8354427 and US8754224.
BRIEF DESCRIPTION OF THE INVENTION
1. A stable complex with improved physicochemical characteristics and enhanced biological performance comprising
i. Ivacaftor, or a salt or derivatives thereof;
ii. at least one complexation agent chosen from polyethylene glycol glycerides composed of mono-, di- and triglycerides and mono- and diesters of polyethylene glycol, hydroxypropylcellulose, poloxamers (copolymers of ethylene oxide and propylene oxide blocks), copolymers of vinylpyrrolidone and vinyl acetate, poly(2-ethyl-2-oxazoline),
WO 2017/187336
PCT/IB2017/052370 polyvinylpyrrolidone, poly(maleic acid/methyl vinyl ether), polyvinyl caprolactampolyvinyl acetate-polyethylene glycol graft copolymer, ethylene oxide/propylene oxide tetra functional block copolymer, and d-alpha tocopheryl polyethylene glycol 1000 succinate; and iii. optionally, pharmaceutically acceptable excipients;
wherein said complex has a particle size is between 10 nm and 600 nm, and possesses one or more among the following features:
a) is instantaneously redispersible in physiological relevant media;
b) is stable in solid form and in colloid solution and/or dispersion;
c) has an apparent solubility in water is of at least 1 mg/mL;
d) has a PAMPA permeability of at least 0.4x10'' cm/s when dispersed in distilled water, which does not decrease in time at least for 6 months;
e) exhibits no observable food effect.
2. The complex according to Point 1, wherein said complex has a particle size in the range between 10 nm and 600 nm.
3. The complex according to Point 2, wherein said complex has a particle size in the range between 10 nm and 400 nm.
4. The complex according to Point 1, wherein said complex exhibits X-ray amorphous character in the solid form.
5. The complex according to Point 1, wherein said complex possesses at least two of the properties described in a) — e).
6. The complex according to Point 5, wherein said complex possesses at least three of the properties described in a) — e).
7. The complex according to Point 6, wherein said complex possesses instantaneous redispersibility, has an apparent solubility in water of at least 1 mg/mL, exhibits no observable food effect which deliver the opportunity of precise dosing and ease of administration of the reconstituted complex Ivacaftor in solution form.
WO 2017/187336
PCT/IB2017/052370
8. The complex according to Point 6, wherein said complex possesses instantaneous redispersibility, has a PAMPA permeability of at least 0.4x10'' cm/s when dispersed in water, FaSSIF or FeSSIF biorelevant media, which does not decrease in time at least for 6 month, exhibits no observable food effect which deliver the opportunity of precise dosing and ease of administration of the reconstituted complex Ivacaftor in solution form.
9. The complex according to Point 5, wherein said complex has an apparent solubility in water of at least 1 mg/mL and a PAMPA permeability of at least 0.5x1 O'1 cm/s.
10. The complex according to Point 6, wherein said complex possesses instantaneous redispersibility, has an apparent solubility in water of at least 1 mg/mL, and has a PAMPA permeability of at least 0.5x10 6 cm/s.
11. The complex according to Point 1, wherein said complexation agent is selected from the group consisting of copolymers of vinylpyrrolidone and vinylacetate and poloxamers.
12. The complex according to Point 11, wherein said complexation agent is a copolymer of vinylpyrrolidone and vinylacetate.
13. The complex according to Point 1, wherein said pharmaceutically acceptable excipient is chosen from sodium deoxycolate, dioctyl sodium sulfosuccinate, sodium acetate, cetylpyridinium chloride, citric acid, meglumine and sodium lauryl sulfate.
14. The complex according to Point 13, wherein said pharmaceutically acceptable excipient is sodium lauryl sulfate.
15. The complex according to Point 1 comprising
a) Ivacaftor;
b) as complexation agent a copolymer of vinylpyrrolidone and vinylacetate, and optionally a poloxamer;
c) as an excipient sodium lauryl sulfate;
wherein said complex is characterized by infrared (ATR) spectrum having characteristic peaks at 588 cm'. 628 cm'. 767 cm', 842 cm . 962 cm . 1019 cm'. 1108 cm . 1148 cm', 1240 cm', 1343 cm , 1370 cm , 1425 cm , 1465 cm', 1525 cm , 1567 cm', 1666 cm and 1732 cm'; and is characterized by Raman shifts at 552 cm', 648 cm , 826 cm ,845 cm', 888 cm , 932 cm', 1026
WO 2017/187336
PCT/IB2017/052370 cm . 1062 cm . 1082 cm . 1129 cm1, 1140 cm . 1208 cm . 1233 cm'. 1262 cm . 1284 cm .
1295 cm'. 1361 cm'. 1450 cm'. 1528 cm . 1573 cm . 1618 cm . 1677 cm . 1738 cm'. 746 cm',
2884 cm' and 2936 cm'.
16. A complex according to either of Point 1 or Point 14 comprising a complexing agent which is selected from the group of copolymer of vinylpyrrolidone and vinylacetate and optionally poloxamers and pharmaceutically acceptable excipient which is sodium lauryl sulfate, in a total amount ranging from about 1.0 weight % to about 95.0 weight % based on the total weight of the complex.
17. A complex according to either of Point 1 or Point 14 comprising a complexation agent which is selected from the group of copolymer of vinylpyrrolidone and vinylacetate and optionally poloxamers and pharmaceutically acceptable excipient which is sodium lauryl sulfate, in a total amount ranging from about 50 weight % to about 95.0 weight % based on the total weight of the complex.
18. The complex according to Point 1, wherein said complex has an increased dissolution rate.
19. A process for the preparation of a stable complex according to Point 1, said process comprising the step of mixing a solution of Ivacaftor, and at least one complexation agent chosen from copolymers of vinylpyrrolidone and vinylacetate and optionally poloxamers, in a pharmaceutically acceptable solvent with an aqueous solution containing at least one pharmaceutically accepted excipient selected from the group of sodium deoxycholate, dioctyl sodium sulfosuccinate, sodium acetate, cetylpyridinium chloride, citric acid, meglumine and sodium lauryl sulfate.
20. The process according to Point 19, wherein said process is performed in a continuous flow instrument.
21. The process according to Point 20, wherein said continuous flow instrument is a micro fluidic flow instrument.
22. The process according to Point 19, wherein said pharmaceutically acceptable solvent is chosen from water, methanol, ethanol, isopropanol, n-propanol, acetone, acetonitrile, dimethylsulfoxide, tetrahydro furan, or combinations thereof.
23. The process according to Point 22, wherein said pharmaceutically acceptable solvent is tetrahydrofuran.
WO 2017/187336
PCT/IB2017/052370
24. The process according to Point 19, wherein said solvents are miscible with each other and the aqueous solution comprises 0.1 to 99.9% weight of the final solution.
25. A pharmaceutical composition comprising the stable complex according to Point 1 together with a pharmaceutically acceptable carrier.
26. The pharmaceutical composition according to Point 25, wherein said composition is suitable for oral, pulmonary, rectal, colonic, parenteral, intracistemal, intravaginal, intraperitoneal, ocular, otic, local, buccal, nasal, or topical administration.
27. The pharmaceutical composition according to Point 26, wherein said composition is suitable for oral administration.
28. The pharmaceutical composition comprising the complex according to Point 27, wherein said composition comprises fast dissolving granules of the complex formulation according to Point 1.
29. The pharmaceutical composition comprising the complex according to Point 28, wherein said granules are suitable for the preparation of sachet dosage form.
30. A complex according to Point 1 for use in the treatment of CFTR mediated diseases.
31. The use according to Point 30, wherein said CFTR mediated disease is selected from cystic fibrosis, asthma, smoke induced COPD, chronic bronchitis, rhinosinusitis, constipation, pancreatitis, pancreatic insufficiency, male infertility caused by congenital bilateral absence of the vas deferens (CBAVD), mild pulmonary disease, idiopathic pancreatitis, allergic bronchopulmonary aspergillosis (ΑΒΡΑ), liver disease, hereditary emphysema, hereditary hemochromatosis, coagulation-fibrinolysis deficiencies, such as protein C deficiency, Type 1 hereditary angioedema, lipid processing deficiencies, such as familial hypercholesterolemia, Type 1 chylomicronemia, abetalipoproteinemia, lysosomal storage diseases, such as I-cell disease/pseudo-Hurler, mucopolysaccharidoses, Sandhof/Tay-Sachs, Crigler-Najjar type II, polyendocrinopathy/hyperinsulemia, Diabetes mellitus, Laron dwarfism, myleoperoxidase deficiency, primary hypoparathyroidism, melanoma, glycanosis CDG type 1, congenital hyperthyroidism, osteogenesis imperfecta, hereditary hypofibrinogenemia, ACT deficiency, Diabetes insipidus (DI), neurophyseal DI, neprogenic DI, Charcot-Marie Tooth syndrome, Perlizaeus-Merzbacher disease, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, progressive supranuclear plasy, Pick's disease, several polyglutamine neurological disorders such as Huntington's, spinocerebullar ataxia type I,
WO 2017/187336
PCT/IB2017/052370 spinal and bulbar muscular atrophy, dentatorubal pallidoluysian, and myotonic dystrophy, as well as spongiform encephalopathies, such as hereditary Creutzfeldt-Jakob disease (due to prion protein processing defect), Fabry disease, Straussler-Scheinker syndrome, COPD, dry-eye disease, or Sjogren's disease, Osteoporosis, Osteopenia, bone healing and bone growth (including bone repair, bone regeneration, reducing bone resorption and increasing bone deposition), Gorham's Syndrome, chloride channelopathies such as myotonia congenita (Thomson and Becker forms), Bartter's syndrome type III, Dent's disease, hyperekplexia, epilepsy, lysosomal storage disease, Angelman syndrome, and Primary Ciliary Dyskinesia (PCD), a term for inherited disorders of the structure and/or function of cilia, including PCD with situs inversus (also known as ICartagener syndrome), PCD without situs inversus and ciliary aplasia.
32. A method of treatment of CFTR mediated diseases comprising administration of a therapeutically effective amount of the complex according to Point 1 or the pharmaceutical composition according to Point 25.
33. A stable complex comprising
a) 5 — 40% by weight of Ivacaftor, or its salt or derivatives thereof;
b) 20 — 80% by weight of a copolymer of vinylpyrrolidone and vinylacetate;
c) 5 — 40 % by weight of sodium lauryl sulfate; and
d) optionally 0 — 50 % by weight of a poloxamer;
wherein said complex has a controlled particle size in the range between 10 nm and 600 nm; and wherein said complex is not obtained via a milling process, high pressure homogenization process, encapsulation process or solid dispersion processes.
34. The complex according to Point 1, wherein said complex further comprises one or more additional active agents.
35. The complex according to Point 27, wherein said additional active agent Lumacaftor, Tezacaftor or chosen from agents used for the treatment of CFTR mediated diseases.
DESCRIPTION OF THE INVENTION
WO 2017/187336
PCT/IB2017/052370 [0012] Disclosed herein are stable complexes comprising as active compound Ivacaftor, or salts or derivatives thereof; and at least one complexation agent.
[0013] In an embodiment, said complex further comprises at least one pharmaceutically acceptable excipient.
[0014] We have found that only the selected combinations of complexation agents and pharmaceutically acceptable excipients disclosed in the present invention result in a stable complex formulations having improved physicochemical characteristics and enhanced biological performance.
[0015] The complexing agents themselves or together with the pharmaceutically acceptable excipients have the function to form a complex structure with an active pharmaceutical ingredient through non-covalent secondary interactions. The secondary interactions can form through electrostatic interactions such as ionic interactions, H-bonding, dipole-dipole interactions, dipole-induced dipole interactions, London dispersion forces, π-π interactions, and hydrophobic interactions.
[0016] In an embodiment, said stable complex with improved physicochemical characteristics and enhanced biological performance comprising
i. Ivacaftor, or a salt thereof or derivatives thereof;
ii. at least one complexation agent chosen from polyethylene glycol glycerides composed of mono-, di- and triglycerides and mono- and diesters of polyethylene glycol, hydroxypropylcellulose, poloxamers (copolymers of ethylene oxide and propylene oxide blocks), copolymers of vinylpyrrolidone and vinyl acetate, poly(2ethyl-2-oxazoline), polyvinylpyrrolidone, poly(maleic acid/methyl vinyl ether), polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, ethylene oxide/propylene oxide tetra functional block copolymer, and d-alpha tocopheryl polyethylene glycol 1000 succinate; and iii. optionally, pharmaceutically acceptable excipients;
wherein said complex has a particle size is between 10 nm and 600 nm, and possesses one or more among the following features:
a) is instantaneously redispersible in physiological relevant media;
WO 2017/187336
PCT/IB2017/052370
b) is stable in solid form and in colloid solution and/or dispersion;
c) has an apparent solubility in water is of at least 1 mg/mL;
d) has a PAMPA permeability of at least 0.4x1 O'1 cm/s when dispersed in distilled water, which does not decrease in time at least for 6 months; and
e) exhibits no observable food effect.
[0017] In an embodiment, said complexing agent is chosen from polyethylene glycol glycerides composed of mono-, di- and triglycerides and mono- and diesters of polyethylene glycol, hydroxypropylcellulose, poloxamers (copolymers of ethylene oxide and propylene oxide blocks), copolymer of vinylpyrrolidone and vinyl acetate, poly(2-ethyl-2-oxazoline), polyvinylpyrrolidone, poly(maleic acid/methyl vinyl ether), (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (e.g; Soluplus), polyoxyl 15 hydroxystearate, ethylene oxide/propylene oxide tetra functional block copolymer, and d-alpha tocopheryl polyethylene glycol 1000 succinate.
[0018] In an embodiment, said complexation agent is chosen from copolymers of vinylpyrrolidone and vinyl acetate and poloxamers.
[0019] In an embodiment, said complexation agent is copolymer of vinylpyrrolidone and vinyl acetate.
[0020] In an embodiment, said copolymer of vinylpyrrolidone and vinyl acetate has a 60:40 weight ratio of vinylpyrrolidone:vinyl acetate monomers.
[0021] In an embodiment, said poloxamer is poloxamer 338.
[0022] In an embodiment, said poloxamer is poloxamer 407.
[0023] In an embodiment, said pharmaceutically acceptable excipient is chosen from sodium lauryl sulfate (SDS), dioctyl sodium sulfosuccinate (DSS), cetylpyridinium chloride (CPC), sodium acetate (NaOAC), sodium deoxycolate (SDC), meglumine, D-mannitol, I<ollicoat-IR, citric acid, and lactose.
[0024] In an embodiment, said pharmaceutically acceptable excipient is chosen from sodium deoxycolate, dioctyl sodium sulfosuccinate, sodium acetate, cetylpyridinium chloride, citric acid, meglumine and sodium lauryl sulfate.
WO 2017/187336
PCT/IB2017/052370 [0025] In an embodiment, said pharmaceutically acceptable excipient is sodium lauryl sulfate.
[0026] In some embodiments, the compositions may additionally include one or more pharmaceutically acceptable excipients, auxiliary materials, carriers, active agents or combinations thereof.
[0027] In an embodiment, said complex has a particle size between 10 nm and 600 nm.
[0028] In an embodiment said complex has a particle size in the range between 10 nm and 400 nm.
[0029] In an embodiment, said complex is instantaneously redispersible in physiological relevant media.
[0030] In an embodiment, said complex has increased dissolution rate compared to the commercially available form of Ivacaftor (KALYDECO®).
[0031] In an embodiment, said complex is stable in solid form and in colloid solution and/or dispersion.
[0032] In an embodiment, said complex has apparent solubility in water is at least 1 mg/mL.
[0033] In an embodiment, said complex exhibits X-ray amorphous character in the solid form.
[0034] In an embodiment, said complex has a PAMPA permeability of at least 0.4x10'' cm/s when dispersed in distilled water, which does not decrease in time at least for 6 months.
[0035] In an embodiment, the variability of exposure of the complex is significantly reduced compared to the commercially available form (KALYDECO®).
[0036] In an embodiment, said complex has no observable food effect, which allows the opportunity of precise dosing and ease of administration of the reconstituted complex in solution form.
[0037] In an embodiment said complex containing copolymer of vinylpyrrolidone and vinylacetate and poloxamer and sodium lauryl sulfate or its pharmaceutical composition according to the invention characterized by the Raman spectrum shown in Figure 11 and ATR spectrum shown in Figure 12.
WO 2017/187336
PCT/IB2017/052370 [0038] In an embodiment, said complex is characterized by characteristic Raman shifts at 552 cm'1, 648 cm1, 826 cm ,845 cm . 888 cm . 932 cm1, 1026 cm'. 1062 cm . 1082 cm'. 1129 cm .
1140 cm'. 1208 cm'. 1233 cm . 1262 cm', 1284 cm . 1295 cm . 1361 cm'. 1450 cm'. 1528 cm , 1573 cm , 1618 cm , 1677 cm , 1738 cm', 746 cm', 2884 cm' and 2936 cm .
[0039] In an embodiment, said complex is characterized by ATR spectrum having characteristic peaks at 588 cm , 628 cm', 767 cm', 842 cm , 962 cm', 1019 cm , 1108 cm . 1148 cm . 1240 cm', 1343 cm', 1370 cm . 1425 cm . 1465 cm , 1525 cm , 1567 cm'. 1666 cm 1 and 1732 cm'.
[0040] In an embodiment said complex comprises
a) Ivacaftor; or a combination of active compounds including Ivacaftor;
b) a complexing agent which is a copolymer of vinylpyrrolidone and vinyl acetate;
c) and optionally poloxamers as a complexing agent; and
d) sodium lauryl sulfate as an excipient.
[0041] In an embodiment, said complex comprises a complexation agent chosen from copolymer of vinylpyrrolidone and vinyl acetate and poloxamer 407 or poloxamer 338 and a pharmaceutically acceptable excipient which is sodium lauryl sulfate, in a total amount comprising from about 1.0 weight % to about 95.0 weight % based on the total weight of the complex.
[0042] In an embodiment, said complex comprises a complexation agent chosen from copolymer of vinylpyrrolidone and vinyl acetate and poloxamer 407 or poloxamer 338 and a pharmaceutically acceptable excipient which is sodium lauryl sulfate, in a total amount comprising from about 50 weight % to about 95 weight % of the total weight of the complex.
[0043] In an embodiment, said complex comprises a complexation agent which is copolymer of vinylpyrrolidone and vinyl acetate and a pharmaceutically acceptable excipient which is sodium lauryl sulfate, in a total amount comprising from about 1.0 weight % to about 95.0 weight % based on the total weight of the complex.
[0044] In an embodiment, said complex comprises complexation agent which is a copolymer of vinylpyrrolidone and vinyl acetate and pharmaceutically acceptable excipient which is sodium
WO 2017/187336
PCT/IB2017/052370 lauryl sulfate in a total amount comprising from about 50 weight% to about 95 weight% of the total weight of the complex.
[0045] Further disclosed herein is a stable complex comprising
i. 5 — 40% by weight of Ivacaftor, or a salt or derivative thereof;
ii. 20 — 80% by weight of a copolymer of vinylpyrrolidone and vinyl acetate;
iii. 5 — 40 % by weight of sodium lauryl sulfate; and optionally iv. 0 — 50 % by weight of a poloxamer.
[0046] Disclosed herein is a process for the preparation of a stable complex of Ivacaftor, said process comprising the step of mixing a solution of the active agent and at least one complexing agent and optionally one or more pharmaceutically acceptable excipient in a pharmaceutically acceptable solvent with an aqueous solution containing optionally at least one pharmaceutically acceptable excipient.
[0047] In an embodiment, said process comprises the step of mixing a solution of Ivacaftor, and at least one complexation agent chosen from copolymers of vinylpyrrolidone and vinylacetate and poloxamers, in a pharmaceutically acceptable solvent with an aqueous solution containing at least one pharmaceutically accepted excipient selected from the group of sodium deoxycolate, dioctyl sodium sulfosuccinate, sodium acetate, cetylpyridinium chloride, citric acid, meglumine and sodium lauryl sulfate.
[0048] In an embodiment said complex is obtained via a mixing process.
[0049] In an embodiment said complex is obtained via a continuous flow mixing process.
[0050] In an embodiment said process is performed in a continuous flow instrument.
[0051] In an embodiment said continuous flow instrument is a micro fluidic flow instrument.
[0052] In an embodiment, said complex is not obtained via a milling process, high pressure homogenization process, encapsulation process and solid dispersion processes.
[0053] In an embodiment, said pharmaceutically acceptable solvent is chosen from water, methanol, ethanol, 1-propanol, 2-propanol, acetone, acetonitrile, dimethyl-sulfoxide, tetrahydrofuran, methyl-ethyl ketone or combinations thereof.
WO 2017/187336
PCT/IB2017/052370 [0054] In an embodiment, said pharmaceutically acceptable solvent is tetrahydro furan.
[0055] In an embodiment, said pharmaceutically acceptable solvent and said aqueous solvent are miscible with each other.
[0056] In solution. an embodiment, said aqueous solvent comprises 0.1 to 99.9% weight of the final
[0057] In solution. an embodiment, said aqueous solvent comprises 50 to 90% weight of the final
[0058] In solution. an embodiment, said aqueous solvent comprises 50 to 80% weight of the final
[0059] In solution. an embodiment, said aqueous solvent comprises 50 to 70% weight of the final
[0060] In solution. an embodiment, said aqueous solvent comprises 50 to 60% weight of the final
[0061] In solution. an embodiment, said aqueous solvent comprises 45 to 55% weight of the final
[0062] In an embodiment, said aqueous solvent comprises 50 % weight of the final solution.
[0063] In an embodiment, said aqueous solvent comprises 35 to 45 % weight of the final solution.
[0064] In an embodiment, said aqueous solvent comprises 25 to 35 % weight of the final solution.
[0065] In an embodiment, said aqueous solvent comprises 15 to 25 % weight of the final solution.
[0066] In an embodiment, said aqueous solvent comprises 5 to 15 % weight of the final solution.
[0067] In an embodiment, a pharmaceutical composition comprising the complex together with pharmaceutically acceptable carriers.
WO 2017/187336
PCT/IB2017/052370 [0068] In an embodiment, said composition is suitable for oral, pulmonary, rectal, colonic, parenteral, intracistemal, intravaginal, intraperitoneal, ocular, otic, local, buccal, nasal, or topical administration.
[0069] In an embodiment, said compositions are suitable for oral administration.
[0070] In an embodiment, said composition comprises fast dissolving granules of the complex Ivacaftor formulation.
[0071] In an embodiment, said granules are suitable for the preparation of sachet dosage form.
[0072] In an embodiment, said complexes are for use in the manufacture of a medicament for the treatment of CFTR mediated diseases.
[0073] In an embodiment, said complexes are used for the treatment of CFTR mediated diseases.
[0074] CFTR mediated disease is selected from cystic fibrosis, asthma, smoke induced COPD, chronic bronchitis, rhinosinusitis, constipation, pancreatitis, pancreatic insufficiency, male infertility caused by congenital bilateral absence of the vas deferens (CBAVD), mild pulmonary disease, idiopathic pancreatitis, allergic bronchopulmonary aspergillosis (ΑΒΡΑ), liver disease, hereditary emphysema, hereditary hemochromatosis, coagulation-fibrinolysis deficiencies, such as protein C deficiency, Type 1 hereditary angioedema, lipid processing deficiencies, such as familial hypercholesterolemia, Type 1 chylomicronemia, abetalipoproteinemia, lysosomal storage diseases, such as I-cell disease/pseudo-Hurler, mucopolysaccharidoses, Sandhof/Tay-Sachs, Crigler-Najjar type II, polyendocrinopathy/hyperinsulemia, Diabetes mellitus, Laron dwarfism, myleoperoxidase deficiency, primary hypoparathyroidism, melanoma, glycanosis CDG type 1, congenital hyperthyroidism, osteogenesis imperfecta, hereditary hypofibrinogenemia, ACT deficiency, Diabetes insipidus (DI), neurophyseal DI, neprogenic DI, Charcot-Marie Tooth syndrome, Perlizaeus-Merzbacher disease, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, progressive supranuclear plasy, Pick's disease, several polyglutamine neurological disorders such as Huntington's, spinocerebullar ataxia type I, spinal and bulbar muscular atrophy, dentatorubal pallidoluysian, and myotonic dystrophy, as well as spongiform encephalopathies, such as hereditary Creutzfeldt-Jakob disease (due to prion protein processing defect), Fabry disease, Straussler-Scheinker syndrome, COPD, dry-eye disease, or Sjogren's disease, Osteoporosis, Osteopenia, bone healing and bone growth (including bone repair, bone regeneration, reducing bone resorption and increasing bone deposition),
WO 2017/187336
PCT/IB2017/052370
Gorham's Syndrome, chloride channelopathies such as myotonia congenita (Thomson and
Becker forms), Bartter's syndrome type III, Dent's disease, hyperekplexia, epilepsy, lysosomal storage disease, Angelman syndrome, and Primary Ciliary Dyskinesia (PCD), a term for inherited disorders of the structure and/or function of cilia, including PCD with situs inversus (also known as ICartagener syndrome), PCD without situs inversus and ciliary aplasia.
[0075] In an embodiment, a method of treatment of CFTR mediated diseases comprises administration of a therapeutically effective amount of complexes or pharmaceutical compositions as described herein.
[0076] In an embodiment, a method for reducing the therapeutically effective dosage of Ivacaftor compared to commercially available KALYDECO® comprises oral administration of a pharmaceutical composition as described herein.
[0077] In an embodiment, said complexes further comprise one or more additional active agents.
[0078] In an embodiment, said additional active agent is Lumacaftor, Tezacaftor or chosen from agents used for the treatment of CFTR mediated diseases.
[0079] In an embodiment said complex comprises Ivacaftor; or a combination of active compounds including Ivacaftor; a complexing agent chosen from copolymers of vinylpyrrolidone and vinyl acetate and sodium lauryl sulfate as an excipient; said complex characterized in that they possess at least one of the following properties:
a) is instantaneously redispersable in physiological relevant media;
b) is stable in solid form and in colloid solution and/or dispersion;
c) has an apparent solubility in water of at least 1 mg/mL;
d) has a PAMPA permeability of at least 0.4x10 6 cm/s when dispersed in FaSSIF or FeSSIF biorelevant media, which does not decrease in time at least for 6 month;
e) exhibits no observable food effect.
[0080] In an embodiment, said complex possesses at least two of the properties described in a) —
e).
WO 2017/187336
PCT/IB2017/052370 [0081] In an embodiment, said complex possesses at least three of the properties described in a)
-e).
[0082] The novel complexes of the present invention possess instantaneous redispersibility, increased apparent solubility and permeability, no observable food effect which deliver the opportunity of precise dosing and ease of administration of the reconstituted complex in solution form.
[0083] The expression Ivacaftor is generally used for Ivacaftor, or its salts or its derivatives.
[0084] In an embodiment, said complexation agent is chosen from polyethylene glycol glycerides composed of mono-, di- and triglycerides and mono- and diesters of polyethylene glycol, hydroxypropylcellulose, poloxamers (copolymers of ethylene oxide and propylene oxide blocks), copolymer of vinylpyrrolidone and vinyl acetate, poly(2-ethyl-2-oxazoline), polyvinylpyrrolidone, poly(maleic acid/methyl vinyl ether), (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, polyoxyl 15 hydroxystearate, ethylene oxide/propylene oxide tetra functional block copolymer, and d-alpha tocopheryl polyethylene glycol 1000 succinate.
[0085] In an embodiment, said complexation agents are copolymer of vinylpyrrolidone and vinyl acetate and poloxamer and said pharmaceutically acceptable excipient is sodium lauryl sulfate, and
a) is characterized by infrared (ATR) spectrum having characteristic absorption peaks at 588 cm1, 628 cm', 767 cm', 842 cm , 962 cm', 1019 cm', 1108 cm , 1148 cm , 1240 cm', 1343 cm', 1370 cm', 1425 cm', 1465 cm , 1525 cm', 1567 cm , 1666 cm and 1732 cm ; and
b) has characteristic Raman shifts at 552 cm', 648 cm', 826 cm' ,845 cm', 888 cm', 932 cm', 1026 cm'. 1062 cm'. 1082 cm . 1129 cm', 1140 cm', 1208 cm . 1233 cm'. 1262 cm . 1284 cm 1, 1295 cm'. 1361 cm . 1450 cm'. 1528 cm', 1573 cm . 1618 cm . 1677 cm'. 1738 cm'. 746 cm \ 2884 cm' and 2936 cm'.
[0086] In some embodiments, the compositions may additionally include one or more pharmaceutically acceptable excipients, auxiliary materials, carriers, active agents or combinations thereof. In some embodiments, active agents may include agents useful for the treatment of CFTR mediated diseases.
[0087] Another aspect of the invention is the complex formulations of the Ivacaftor with complexation agents and pharmaceutically acceptable excipients in which the complexation
WO 2017/187336
PCT/IB2017/052370 agents and pharmaceutically acceptable excipients preferably are associated or interacted with the
Ivacaftor, such as the results of a mixing process or a continuous flow mixing process. In some embodiment, the structure of the complex Ivacaftor formulations is different from the core-shell type milled particle, precipitated encapsulated particles, micelles and solid dispersions.
[0088] The pharmaceutical composition of the invention can be formulated: (a) for administration selected from the group consisting of oral, pulmonary, rectal, colonic, parenteral, intracisternal, intravaginal, intraperitoneal, ocular, otic, local, buccal, nasal, and topical administration; (b) into a dosage form selected from the group consisting of liquid dispersions, gels, aerosols, ointments, creams, lyophilized formulations, tablets, capsules; (c) into a dosage form selected from the group consisting of controlled release formulations, fast melt formulations, delayed release formulations, extended release formulations, pulsatile release formulations, and mixed immediate release and controlled release formulations; or (d) any combination of (a), (b), and (c).
[0089] The compositions can be formulated by adding different types of pharmaceutically acceptable excipients for oral administration in solid, liquid, local (powders, ointments or drops), or topical administration, and the like.
[0090] In an embodiment, the dosage form of the invention is a solid dosage form, although any pharmaceutically acceptable dosage form can be utilized.
[0091] Solid dosage forms for oral administration include, but are not limited to, capsules, tablets, pills, powders (sachet), and granules. In such solid dosage forms, the complex formula of Ivacaftor is admixed with at least one of the following: one or more inert excipients (or carriers): (a) fillers or extenders, such as, lactose, sucrose, glucose, mannitol, sorbitol, dextrose, dextrates, dextrin, erythritol, fructose, isomalt, lactitol, maltitol, maltose, maltodextrin, trehalose, xylitol, starches, microcrystalline cellulose, dicalcium phosphate, calcium carbonate, magnesium carbonate, magnesium oxide; (b) sweetening, flavoring, aromatizing and perfuming agents such as saccharin, saccharin sodium, acesulfame potassium, alitame, aspartame, glycine, inulin, neohesperidin dihydrochalcone, neotame, sodium cyclamate, sucralose, tagatose, thaumatin, citric acid, adipic acid, fumaric acid, leucine, malic acid, menthol, propionic acid, tartaric acid; (c) binders, such as cellulose derivatives, acrylic acid derivatives, alginates, gelatin, polyvinylpyrrolidone, starch derivatives, dextrose, dextrates, dextrin, maltose, maltodextrin; (d) disintegrating agents, such as crospovidon, effervescent compositions, croscarmellose sodium and other cellulose derivatives, sodium starch glycolate and other starch derivatives, alginic acid,
WO 2017/187336
PCT/IB2017/052370 certain complex silicates and sodium carbonate; (e) solution retarders, such as acrylates, cellulose derivatives, paraffin; (f) absorption accelerators, such as quaternary ammonium compounds; (g) wetting agents, such as polysorbates, cetyl alcohol and glycerol monostearate; (h) lubricants such as talc, stearic acid and its derivatives, solid polyethylene glycols, sodium lauryl sulfate, glyceryl behenate, medium-chain triglycerides or mixtures thereof. For capsules, tablets, and pills, the dosage forms may also comprise buffering agents.
[0092] In an embodiment, the dosage form of the invention is a liquid dispersible granules in a sachet form.
[0093] In an embodiment, said liquid dispersible granules comprise the complex formulation of Ivacaftor of the present invention together with pharmaceutically acceptable excipients selected from the group of fillers or extenders, such as, lactose, sucrose, glucose, mannitol, sorbitol, dextrose, dextrates, dextrin, erythritol, fructose, isomalt, lactitol, maltitol, maltose, maltodextrin, trehalose, xylitol, starches, microcrystalline cellulose, dicalcium phosphate, calcium carbonate, magnesium carbonate, magnesium oxide.
[0094] In an embodiment, said liquid dispersible granules comprise the complex formulation of Ivacaftor of the present invention together with pharmaceutically acceptable excipients selected from the group of sweetening, flavoring, aromatizing and perfuming agents such as saccharin, saccharin sodium, acesulfame potassium, alitame, aspartame, glycine, inulin, neohesperidin dihydrochalcone, neotame, sodium cyclamate, sucralose, tagatose, thaumatin, citric acid, adipic acid, fumaric acid, leucine, malic acid, menthol, propionic acid, tartaric acid.
[0095] Further disclosed herein is a liquid dispersible granules comprising
a. 25 —95 % stable complex formulation of Ivacaftor of the present invention;
b. 5—75 % fillers or extenders;
c. 0.5 —25 % binders;
d. 0.1 —5 % sweetening, flavoring, aromatizing and perfuming agents;
wherein said liquid dispersible granules disperses within 3 min in liquid; and wherein said liquid dispersible granules obtained by wet or dry processes.
[0096] In an embodiment, said dispersion time is between 0.1 min and 10 min.
[0097] In an embodiment, said dispersion time is between 0.1 min and 5 min.
WO 2017/187336
PCT/IB2017/052370 [0098] In an embodiment, said dispersion time is between 0.1 min and 3 min.
[0099] In an embodiment, said dispersion time is between 0.1 min and 1 min.
[00100] In an embodiment, Hausner-ratio of the said liquid dispersible granules of complex Ivacaftor formulations is less than 1.25 more preferably 1.00-1.18 [00101] In an embodiment, Hausner-ratio of the said liquid dispersible granules of complex Ivacaftor formulations is between 1.00 and 1.18.
[00102] In an embodiment, the particle size (D(90)) of said solid aggregates of complex Ivacaftor formulations is less than 2000 micrometers.
[00103] In an embodiment, 60-99 % of the said solid aggregates of complex Ivacaftor formulations are in the size range of 160-1200 micrometers [00104] In an embodiment, said liquid is water, saliva, other physiologically or biologically acceptable fluid.
[00105] In an embodiment, the dosage form is chosen from a tablet and a capsule.
[00106] Advantages of the complex Ivacaftor formulations of the invention include, but are not limited to (1) physical and chemical stability, (2) instantaneous redispersibility, (3) stability in colloid solution or dispersion in the therapeutic time window, (4) increased apparent solubility and permeability compared to the conventional Ivacaftor formulation, (5) no observable food effect which deliver the opportunity of precise dosing and ease of administration of the reconstituted complex formulation in solution form, (6) good processability.
[00107] Beneficial features of the present invention are as follows: the good/instantaneous redispersibility of solid complex formulations of Ivacaftor in water, biologically relevant media,
e.g. physiological saline solution, pH=2.5 HC1 solution, FessiF and FassiF media and gastro intestinal fluids and adequate stability in colloid solutions and/or dispersion in the therapeutic time window.
[00108] In an embodiment, the complex Ivacaftor formulations of the present invention has increased apparent solubility and permeability. In some embodiments, the apparent solubility and permeability of the complex Ivacaftor formulae is at least 1 mg/mL and 0.5x10'' cm/s, respectively.
WO 2017/187336
PCT/IB2017/052370 [00109] In an embodiment, said complex possesses instantaneous redispersibility, has an apparent solubility in water of at least 1 mg/mL, and has a PAMPA permeability of at least
0.5x10 6 cm/s.
[00110] The complexes of the present invention possess instantaneous redispersibility, increased apparent solubility and permeability, no observable food effect which deliver the opportunity of precise dosing and ease of administration of the reconstituted solid.
[00111] The complexes of the present invention possess instantaneous redispersibility, has a PAMPA permeability of at least 0.4x10'' cm/s when dispersed in water, FaSSIF or FeSSIF biorelevant media, which does not decrease in time at least for 6 month, exhibits no observable food effect which deliver the opportunity of precise dosing and ease of administration of the reconstituted complex Ivacaftor in solution form.
BRIEF DESCRIPTION OF THE DRAWINGS [00112]The accompanying figures, which are incorporated and form part of the specification, merely illustrate certain embodiments of the present invention and should not be construed as limiting the invention. They are meant to serve to explain specific modes of the present invention to those skilled in the art.
Figure 1. Redispersibility of complex Ivacaftor compositions in ultrapurified water.
Figure 2. Redispersibility and PAMPA permeability of complex Ivacaftor compositions.
Figure 3. Redispersibility and PAMPA permeability of complex Ivacaftor compositions containing vinylpyrrolidone and vinylacetate copolymer (Kollidon VA 64) and poloxamer in different ratios.
Figure 4. Redispersibility and PAMPA permeability of complex Ivacaftor compositions containing vinylpyrrolidone and vinylacetate copolymer (Kollidon VA 64) itself and in combination with different poloxamers.
Figure 5. Physical appearance and stability of the produced complex Ivacaftor formula.
Figure 6. Physical appearance and stability of the produced complex Ivacaftor formula during the flow optimization.
WO 2017/187336
PCT/IB2017/052370
Figure 7. Ivacaftor dissolution from granulated complex Ivacaftor formulation.
Figure 8. PAMPA permeability of complex Ivacaftor formulation in biorelevant media.
Figure 9. PAMPA permeability of complex Ivacaftor formulations stored at different condition and measured at different time points.
Figure 10. SEM photo of complex Ivacaftor formulation.
Figure 11. Raman spectra of crystalline Ivacaftor (A), freeze-dried Ivacaftor (B), complex Ivacaftor formulation (C), Placebo sample (prepared in the absence of Ivacaftor) (D), copolymer of vinylpyrrolidone and vinyl acetate (Kollidon VA64) (E), sodium lauryl sulfate (F) and poloxamer 338 (Pluronic Fl 08) (G).
Figure 12. ATR spectra of crystalline Ivacaftor (A), amorphous Ivacaftor (B), complex Ivacaftor formulation (C), placebo (prepared in the lack of Ivacaftor) (D), copolymer of vinylpyrrolidone and vinyl acetate (Kollidon VA64) (E), sodium lauryl sulfate (F) and poloxamer 338 (Pluronic Fl08) (G).
Figure 13. XRD diffractogram of amorphous Ivacaftor and complex Ivacaftor.
Figure 14. PAMPA permeability of crystalline Ivacaftor, solid dispersion of Ivacaftor, complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (Kollidon VA 64), poloxamer 338 (Pluronic F108)and sodium lauryl sulfate, complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (Kollidon VA 64), poloxamer 407 (Lutrol Fl27) and sodium lauryl sulfate and complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (Kollidon VA 64) and sodium lauryl sulfate.
Figure 15. Comparative apparent solubility data of different Ivacaftor formulations.
Figure 16. Comparative dissolution tests of solid dispersion of Ivacaftor and complex Ivacaftor formulation.
Figure 17. Plasma concentrations of Ivacaftor following the oral administration of novel complex in the fasted and in the fed state to beagle dogs at 3 mg/kg dose (N=4).
Figure 18. Pharmacokinetic parameters following the oral administration of novel complex in the fasted and in the fed state to beagle dogs at 3 mg/kg dose (N=4).
WO 2017/187336
PCT/IB2017/052370
EXAMPLES [00113] Specific embodiments of the present invention will further be demonstrated by the following examples. It should be understood that these examples are disclosed only by way of illustration and should not be construed as limiting the scope of the present invention.
Selection of complex Ivacaftor formulations with improved material properties [00114] Several complexation agents and pharmaceutically acceptable excipients and their combinations were tested in order to select the formulations having instantaneous redispersibility as shown in Figure 1.
[00115] Examples that displayed an acceptable level of redispersibility was selected for further analysis.
[00116]PAMPA permeability of the selected formulations was measured in order to select the complex Ivacaftor formulation having the best in-vitro performance (Figure 2). PAMPA permeability measurements were performed as described by M. Kansi et al. (Journal of medicinal chemistry, 41, (1998) pp 1007) with modifications based on S. Bendels et al (Pharmaceutical research, 23 (2006) pp 2525). Permeability was measured in a 96-well plate assay across an artificial membrane composed of dodecane with 20% soy lecithin supported by a PVDF membrane (Millipore, USA). The receiver compartment was phosphate buffered saline (pH 7.0) supplemented with 1% sodium dodecyl sulfate. The assay was performed at room temperature; incubation time was 4 hours in ultrapurified water, FaSSIF and FeSSIF, respectively. The concentration in the receiver compartment was determined by UV-VIS spectrophotometry (VWR UV-3100PC Scanning Spectrophotometer).
[00117] Copolymer of vinylpyrrolidone and vinylacetate (ICollidon VA 64) itself and in combination with poloxamer 338 (Pluronic Fl08) or poloxamer 407 (Lutrol Fl27) were selected as complexation agents and sodium lauryl sulfate was selected as pharmaceutically acceptable excipient in order to prepare complex Ivacaftor formulations having improved material characteristics.
[00118] The ratio of the selected complexation agents and pharmaceutically acceptable excipients was optimized. Solid complexes of Ivacaftor were prepared by using different ratios of complexation agents and pharmaceutically acceptable excipients (Figure 3 and Figure 4).
WO 2017/187336
PCT/IB2017/052370
Production of complex Ivacaftor formulations [00119] In order to select the best complex formulation, a solution mixture of Ivacaftor complex formula was prepared. 100 mL Solution 1 was prepared by dissolving 100 mg Ivacaftor and 300 mg copolymer of vinylpyrrolidone and vinylacetate (Kollidon VA 64) and 200 mg poloxamer 338 (Plutonic Fl 08) in 100 mL tetrahydrofurane. The prepared Solution 1 was mixed with Solution 2 containing 25-100 mg sodium lauryl sulfate in 100 mL in order to produce complex Ivacaftor formulation. The appearance and stability of produced colloid solution were monitored. Based on the physical appearance and stability of the produced complex Ivacaftor formula in colloid solution, the best composition was selected for analytical investigations and further work (Figure 4 and Figure 5).
[00120] In order to select a complex formulation without poloxamer, a solution mixture of Ivacaftor complex formula was prepared. 100 mL Solution 1 was prepared by dissolving 100 mg Ivacaftor and 600 mg copolymer of vinylpyrrolidone and vinylacetate (Kollidon VA 64) in 100 mL tetrahydrofurane. The prepared Solution 1 was mixed with Solution 2 containing 300 mg sodium lauryl sulfate in 100 mL in order to produce complex Ivacaftor formulation. The composition was selected for analytical investigations and further work.
In order to select a complex formulation with poloxamer previously not mentioned, a solution mixture of Ivacaftor complex formula was prepared. 100 mL Solution 1 was prepared by dissolving 100 mg Ivacaftor and 300 mg copolymer of vinylpyrrolidone and vinylacetate (Kollidon VA 64) and 60-200 mg poloxamer 407 (Lutrol F127) in 100 mL tetrahydrofurane. The prepared Solution 1 was mixed with Solution 2 containing 60-100 mg sodium lauryl sulfate in 100 mL in order to produce complex Ivacaftor formulation.
Continuous flow production of complex Ivacaftor formulations [00121] In order to make the production process industrially feasible, flow production was needed and process intensification was performed by increasing the concentrations of the starting solutions. For the experiments, 1:1 Solvent 1: Solvent 2 ratio was used. A colloid solution of complex Ivacaftor formulation of the present invention was prepared by mixing process. Solution 1 containing 500 mg Ivacaftor and 1500 mg copolymer of vinylpyrrolidone and vinylacetate (Kollidon VA 64) and 1000 mg poloxamer 338 (Pluronic Fl08) in 100 mL tetrahydrofuran was mixed with aqueous Solution 2 containing 500 mg sodium lauryl sulfate in 100 mL ultrapurified water in different flow rates. The colloid solution of the complex Ivacaftor formulation was produced at atmospheric pressure and 20-50 °C temperature. The appearance
WO 2017/187336
PCT/IB2017/052370 and stability of the produced colloid solution were monitored. Based on the physical appearance and stability of the produced complex Ivacaftor formulation in colloid solution, the best composition was selected for spray-drying experiments. Figure 6 summarizes the results.
[00122]The solidification of the colloid solution was performed by spray-drying technique. 5 mg/mL Ivacaftor, 15 mg/mL copolymer of vinylpyrrolidone and vinylacetate (Kollidon VA 64) and 10 mg/mL poloxamer 338 (Plutonic F108) in tetrahydrofurane and 5 mg/mL sodium lauryl sulfate in water were chosen for starting concentrations. The ratio of the solutions was found to be optimal at 1:1 ratio. The colloid solution of the complex Ivacaftor formulation prepared by the optimal parameter sets was spray-dried (Yamato DL-410 / GAS410) in order to obtain solid powder. The spray-drying process was optimized. The optimal production parameters were found to be Tmlet=95 °C, ^7.=0.8 m3/min, Mm=18 mL/min, p=l bar, Tout= 57-60 °C.
[00123] The solidification of the colloid solution was performed by spray-drying technique. 5 mg/mL Ivacaftor, 30 mg/mL copolymer of vinylpyrrolidone and vinylacetate (Kollidon VA 64) in tetrahydrofurane and 15 mg/mL sodium lauryl sulfate in water were chosen for starting concentrations. The ratio of the solutions was found to be optimal at 1:1 ratio. The colloid solution of the complex Ivacaftor formulation prepared by the optimal parameter sets was spraydried (Yamato DL-410 / GAS410) in order to obtain solid powder. The spray-drying process was optimized. The optimal production parameters were found to be Tmlet=95 °C, νώ=0.8 m3/min, M,n=18 mL/min, p=l bar, Tout= 55-58 °C.
[00124]The solidification of the colloid solution was performed by spray-drying technique. 5 mg/mL Ivacaftor, 15 mg/mL copolymer of vinylpyrrolidone and vinylacetate (Kollidon VA 64) and 10 mg/mL poloxamer 407 (Lutrol F127) in tetrahydrofurane and 5 mg/mL sodium lauryl sulfate in water were chosen for starting concentrations. The ratio of the solutions was found to be optimal at 1:1 ratio. The colloid solution of the complex Ivacaftor formulation prepared by the optimal parameter sets was spray-dried (Yamato DL-410 / GAS410) in order to obtain solid powder. The spray-drying process was optimized. The optimal production parameters were found to be Tmlet=95 °C, νώ=0.8 m3/min, Mm=18 mL/min, p=l bar, Tout= 57-60 °C.
[00125] The solidification of the colloid solution was performed by spray-drying technique. 5 mg/mL Ivacaftor, 15 mg/mL copolymer of vinylpyrrolidone and vinylacetate (Kollidon VA 64) and 3 mg/mL poloxamer 407 (Lutrol Fl27) in tetrahydrofurane and 3 mg/mL sodium lauryl sulfate in water were chosen for starting concentrations. The ratio of the solutions was found to be optimal at 1:1 ratio. The colloid solution of the complex Ivacaftor formulation prepared by
WO 2017/187336
PCT/IB2017/052370 the optimal parameter sets was spray-dried (Yamato DL-410 / GAS410) in order to obtain solid powder. The spray-drying process was optimized. The optimal production parameters were found to be Tmlet=95 °C, νώ=0.85 m3/min, Mm=18 mL/min, p=l bar, Tout= 61 °C.
Preparation of liquid dispersible granules comprising complex Ivacaftor formulation [00126]Liquid dispersible granules comprising the complex Ivacaftor formulations of the present invention can be obtained by wet or dry granulation processes.
[00127]Dry granulation process includes, but not limited to the slugging or roll compaction of the powder formulation of complex Ivacaftor into compacts and breaking of the compacts into granules with appropriate mesh size. The obtained granules can be blended with pharmaceutically acceptable excipients.
[00128]Dry granulation technique can be also applied on the powder blend of complex Ivacaftor formulations. Powder blend consists of the powder formulation of complex Ivacaftor and pharmaceutically acceptable excipients and prepared by blending of the powders. Slugging or roll compaction are used to manufacture compacts from the powder blend. Then the compacts are broken into granules with appropriate mesh size.
[00129]Wet granulation process covers the moisturizing of the powder formulations of complex Ivacaftor (direct granulation) or moisturizing the pharmaceutically acceptable excipients with aqueous solution of pharmaceutically acceptable binders and blending it with the powder formulations of complex Ivacaftor (indirect granulation). The particle size of the granules can be controlled by physical impact before and after the drying step.
[00130]Liquid dispersible granules of complex Ivacaftor formulation of the present invention were prepared by compacting appropriate amount of complex Ivacaftor powder blend using 0.5 ton load. The powder blend comprised of the solid formulation of the complex of Ivacaftor and pharmaceutically acceptable excipients selected from the group of sweetening, flavouring, aromatizing and perfuming agents. The height of the compact was found to be optimal between 0.8-1.0 mm. The compacts were broken up by physical impact to form granulates. The particle size of the granules was controlled by sieving with appropriate mesh size to achieve 160-800 micrometres particle size.
Comparative solubility tests
WO 2017/187336
PCT/IB2017/052370 [00131] The apparent solubility of the granulated complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (Kollidon VA 64), poloxamer 338 (Plutonic Fl08) and sodium-lauryl-sulfate was measured by UV-VIS spectroscopy at room temperature. The solid complex Ivacaftor formulations were dispersed in ultrapurified water in 110 mg/mL Ivacaftor equivalent concentration range. The resulting solutions were filtered by 100 nm disposable syringe filter. The Ivacaftor content in the filtrate was measured by UV-Vis spectrophotometry and the apparent solubility was calculated. The filtrate may contain Ivacaftor complex particles which could not be filtrated out using 100 nm pore size filter.
[00132]The apparent solubility of complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (Kollidon VA 64) and sodium lauryl sulfate and poloxamer 338 of the present invention was 0.991; 2.356; 4.924 and 9.463 mg/mL, when 1; 2.5; 5; and 10 mg/mL Ivacaftor equivalent formulations were dispersed in ultrapurified water, respectively.
[00133]Apparent solubility of complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (Kollidon VA 64) and sodium lauryl sulfate and poloxamer 338 was 9.463 mg/mL.
[00134] The apparent solubility of complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (Kollidon VA 64), and sodium lauryl sulfate was measured by UV-VIS spectroscopy at room temperature. The solid complex Ivacaftor formulations were dispersed in ultrapurified water in 1 mg/mL Ivacaftor equivalent concentration range. The resulting solutions were filtered by 100 nm disposable syringe filter. The Ivacaftor content in the filtrate was measured by UV-Vis spectrophotometry and the apparent solubility was calculated. The filtrate may contain Ivacaftor complex particles which could not be filtrated out using 100 nm pore size filter.
[00135]The apparent solubility of complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (Kollidon VA 64) and sodium lauryl sulfate was 0.936 mg/mL when 1 mg/mL Ivacator equivalent formulation was dispersed in ultrapurified water.
[00136]Apparent solubility of complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (Kollidon VA 64) and sodium lauryl sulfate was 0.936 mg/mL.
[00137] The apparent solubility of complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (Kollidon VA 64), poloxamer 407 (Lutrol Fl27) and sodium-lauryl-sulfate was measured by UV-VIS spectroscopy at room temperature. The solid
WO 2017/187336
PCT/IB2017/052370 complex Ivacaftor formulations were dispersed in ultrapurified water in 1 mg/mL Ivacaftor equivalent concentration range. The resulting solutions were filtered by 100 nm disposable syringe filter. The Ivacaftor content in the filtrate was measured by UV-Vis spectrophotometry and the apparent solubility was calculated. The filtrate may contain Ivacaftor complex particles which could not be filtrated out using 100 nm pore size filter.
[00138]The apparent solubility of complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (Kollidon VA 64), poloxamer 407 and sodium lauryl sulfate was 0.944 mg/mL when 1 mg/mL Ivacator equivalent formulation was dispersed in ultrapurified water.
[00139]Apparent solubility of complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (Kollidon VA 64), poloxamer 407 and sodium lauryl sulfate was 0.944 mg/mL.
Dissolution test [00140] Ivacaftor dissolution was measured from the dry granulated formulation of the complex Ivacaftor containing copolymer of vinylpyrrolidone and vinyl acetate (Kollidon VA 64), poloxamer 338 (Plutonic Fl 08) and sodium lauryl sulfate. The dissolution test was performed by dispersing the granulated complex Ivacaftor formulation in purified water at 1 mg/mL concentrations. The dissolved amount was measured with UV-VIS spectrophotometry after filtration with 0.1 μιη pore size filter at different time points. Dissolution of Ivacaftor from the granulated complex formulation was instantaneous, within 10 minutes 95 % of the Ivacaftor dissolved from the granulated complex Ivacaftor formulation (Figure 7).
Comparative iil-vitro PAMPA assays [00141]PAMPA permeabilities of complex Ivacaftor formulations were measured in water, FaSSIF and FeSSIF media and were found to be above 0.4x106 cm/s in all tested media (Figure 8).
Stability of the solid formulation of complex Ivacaftor [00142] PAMPA permeability of the solid complex Ivacaftor formulations was used to monitor the physical stability of the formulation. PAMPA permeability was measured after storage of the complex Ivacaftor formulation at different conditions. 6 month storage at RT or
WO 2017/187336
PCT/IB2017/052370 °C relative humidity showed no significant decrease in the measured PAMPA permeability under any of the conditions tested (Figure 9).
Structural analysis [00143]Morphology of complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (IXollidon VA 64), poloxamer 338 (Plutonic Fl08) and sodium lauryl sulfate was investigated using FEI Quanta 3D scanning electron microscope. Complex Ivacaftor formulation of the present invention comprises spherical particles with particle size less than 50 nm (Figure 10).
[00144] Structural analysis was performed by using Vertex 70 FT-IR with ATR and HORTBA JobmYvon LabRAM HR LJ\ \4S NIR instruments.
[00145] Complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (ICollidon VA 64), poloxamer 338 (Plutonic Fl08) and sodium lauryl sulfate or its pharmaceutical composition according to the invention is characterized by the Raman spectrum shown in Figure 11 and ATR spectrum shown in Figure 12.
[00146] Complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (ICollidon VA 64), poloxamer 338 (Plutonic Fl08) and sodium lauryl sulfate or its pharmaceutical composition according to the invention is characterized by Raman shifts at 552 cm . 648 cm'. 826 cm ,845 cm . 888 cm . 932 cm1, 1026 cm'. 1062 cm . 1082 cm'. 1129 cm . 1140 cm4, 1208 cm4, 1233 cm4, 1262 cm4, 1284 cm4, 1295 cm4, 1361 cm4, 1450 cm4, 1528 cm . 1573 cm . 1618 cm . 1677 cm . 1738 cm4, 746 cm4, 2884 cm' and 2936 cm .
[00147] Complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (ICollidon VA 64), poloxamer 338 (Plutonic Fl08) and sodium lauryl sulfate or its pharmaceutical composition according to the invention is characterized by Raman shifts at 1082 cm . 1233 cm . 1284 cm . 1361 cm . 1528 cm'. 1618 cm and 1738 cm .
[00148] Complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (ICollidon VA 64), poloxamer 338 (Plutonic Fl08) and sodium lauryl sulfate or its pharmaceutical composition is characterized by infrared (ATR) spectrum having characteristic peaks at 588 cm4, 628 cm4, 767 cm . 842 cm , 962 cm . 1019 cm . 1108 cm4, 1148 cm4, 1240 cm . 1343 cm . 1370 cm . 1425 cm . 1465 cm'. 1525 cm . 1567 cm . 1666 cm and 1732 cm .
WO 2017/187336
PCT/IB2017/052370 [00149] Complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (ICollidon VA 64), poloxamer 338 (Plutonic Fl08) and sodium lauryl sulfate or its pharmaceutical composition is characterized by ATR spectrum having characteristic peaks at 628 cm . 767 cm'. 1108 cm'. 1370 cm'. 1465 cm and 1666 cm'.
[00150]The structure of the complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (Kollidon VA 64), poloxamer 338 (Plutonic Fl08) and sodium lauryl sulfate was investigated by powder X-ray diffraction (XRD) analysis (Philips PW1050/1870 RTG powder-diffractometer). The measurements showed that the Ivacaftor in the complex formulations was XRD amorphous (Figure 13). Characteristic reflections on the diffractograms of complex Ivacaftor formulation at 43 and 44 2Theta could be attributed to sample holder.
Comparative formulation study [00151] Ivacaftor is marketed in its solid dispersion form under the trade name of KALYDECO®. Manufacturing of solid dispersion of Ivacaftor is described in US 20140221424 Al patent application. Using the manufacturing method described in the patent application, solid dispersion of Ivacaftor was prepared for comparative analytical assays. A solvent system of methyl ethyl ketone (MEI<) and water in the ratio of 90 wt % MEI< : 10 wt % water was heated to 20-30° C in a reaction vessel equipped with a magnetic stirrer and thermal circuit. Into this solvent system, hypromellose acetate succinate polymer (HPMCAS), sodium lauryl sulfate and Ivacaftor were added in the ratio of 19.5 wt % hypromellose acetate succinate : 0.5 wt % SLS:80 wt % Ivacaftor. The resulting mixture was solid formulated by spray-drying method.
[00152] Comparative analytical assays were used to investigate the physicochemical properties of the formulation prepared by solid dispersion technology and continuous flow mixing of the present invention.
[00153]PAMPA permeability of the solid dispersion could not be detected in water and FaSSIF media, while it was 70 % of the permeability of the complex Ivacaftor formulation of the present invention in FeSSIF (Figure 14).
[00154] Comparative apparent solubility measurements showed that the apparent solubility of complex Ivacaftor formulation was at least 0.9 mg/mL, while apparent solubility of crystalline Ivacaftor, Ivacaftor in physical mixture, amorphous Ivacaftor in aqueous sodium lauryl sulfate solution and solid dispersion was below 0.1 mg/mL (Figure 15).
WO 2017/187336
PCT/IB2017/052370 [00155] Comparative dissolution tests performed in water showed that the dissolution of Ivacaftor from the granulated complex formulation containing copolymer of vinylpyrrolidone and vinyl acetate (ICollidon VA 64), poloxamer 338 (Pluronic Fl08) and sodium lauryl sulfate was instantaneous, within 10 minutes 90 % of the Ivacaftor dissolved from the granulated complex Ivacaftor formulation, while 0 % Ivacaftor dissolved from the solid dispersion in 60 minutes (Figure 16).
In-vivo pharmacokinetics
In-vivo PK test in large animals [00156]A beagle dog study using the granulated complex Ivacaftor formulation containing copolymer of vinylpyrrolidone and vinyl acetate (ICollidon VA 64), poloxamer 338 (Pluronic F108) and sodium lauryl sulfate of the present invention at a dose of 3 mg/kg was performed in the fasted and fed state. The granulated complex formulation was administered to the animals orally as reconstituted dispersion. Food effect was only 1.1-fold (food effect in humans is 2-4fold higher in the fed state, that is why the drug has to be taken after a high fat meal). Exposure was 1.25-times higher than the reference exposure. Cmax was somewhat lower for the complex Ivacaftor formulation, however, for the more important parameter, C24h, the complex Ivacaftor was 1.4-times higher (Figure 17 and Figure 18).
[00157] From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.

Claims (5)

1. A stable complex with improved physicochemical characteristics and enhanced biological performance comprising
i. Ivacaftor or a salt thereof;
ii. at least one complexing agent chosen from polyethylene glycol glycerides composed of mono-, di- and triglycerides and mono- and diesters of polyethylene glycol, hydroxypropylcellulose, poloxamers (copolymers of ethylene oxide and propylene oxide blocks), copolymers of vinylpyrrolidone and vinyl acetate, poly(2-ethyl-2-oxazoline), polyvinylpyrrolidone, poly(maleic acid/methyl vinyl ether), polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, ethylene oxide/propylene oxide tetra functional block copolymer, and d-alpha tocopheryl polyethylene glycol 1000 succinate; and iii. pharmaceutically acceptable excipients;
wherein said complex has a particle size is between 10 nm and 600 nm, and possesses one or more among the following features:
a) is instantaneously redispersible in physiological relevant media;
b) is stable in solid form and in colloid solution and/or dispersion;
c) has an apparent solubility in water is of at least 1 mg/mL;
d) has a PAMPA permeability of at least 0.4x10’’ cm/s when dispersed in distilled water, which does not decrease in time at least for 6 months;
e) exhibits no observable food effect.
2. The complex as recited in Claim 1, wherein said complex has a particle size in the range between 10 nm and 400 nm.
3. The complex as recited in Claim 1, wherein said complex exhibits X-ray amorphous character in the solid form.
4. The complex as recited in Claim 1, wherein said complex possesses at least two of the properties described in a) — e).
AMENDED SHEET (ARTICLE 19)
WO 2017/187336
PCT/IB2017/052370
5. The complex as recited in Claim 4, wherein said complex possesses at least three of the properties described in a) — e).
6. The complex as recited in Claim 5, wherein said complex possesses instantaneous redispersibility, has an apparent solubility in water of at least 1 mg/mL, exhibits no observable food effect which deliver the opportunity of precise dosing and ease of administration of the reconstituted complex Ivacaftor in solution form.
7. The complex as recited in Claim 5, wherein said complex possesses instantaneous redispersibility, has a PAMPA permeability of at least 0.4x10'' cm/s when dispersed in water, FaSSIF or FeSSIF biorelevant media, which does not decrease in time at least for 6 month, exhibits no observable food effect which deliver the opportunity of precise dosing and ease of administration of the reconstituted complex Ivacaftor in solution form.
8. The complex as recited in Claim 4, wherein said complex has an apparent solubility in water of at least 1 mg/mL and a PAMPA permeability of at least 0.5x1 O'1 cm/s.
9. The complex as recited in Claim 5, wherein said complex possesses instantaneous redispersibility, has an apparent solubility in water of at least 1 mg/mL, and has a PAMPA permeability of at least 0.5x10 6 cm/s.
10. The complex as recited in Claim 1, wherein said complexing agent is selected from the group consisting of copolymers of vinylpyrrolidone and vinylacetate and poloxamers.
11. The complex as recited in Claim 10, wherein said complexation agent is a copolymer of vinylpyrrolidone and vinylacetate.
12. The complex as recited in Claim 1, wherein said pharmaceutically acceptable excipient is chosen from sodium deoxycholate, dioctyl sodium sulfosuccinate, sodium acetate, cetylpyridinium chloride, citric acid, meglumine and sodium lauryl sulfate.
13. The complex as recited in Claim 12, wherein said pharmaceutically acceptable excipient is sodium lauryl sulfate.
14. The complex as recited in Claim 1 comprising
a) Ivacaftor;
AMENDED SHEET (ARTICLE 19)
WO 2017/187336
PCT/IB2017/052370
b) as complexing agent a copolymer of vinylpyrrolidone and vinylacetate, and optionally a poloxamer;
c) as an excipient sodium lauryl sulfate;
wherein said complex is characterized by infrared (ATR) spectrum having characteristic peaks at 588 cm . 628 cm'. 767 cm . 842 cm . 962 cm . 1019 cm'. 1108 cm . 1148 cm'. 1240 cm 1, 1343 cm'. 1370 cm . 1425 cm'. 1465 cm'. 1525 cm . 1567 cm . 1666 cm1 and 1732 cm ; and is characterized by Raman shifts at 552 cm . 648 cm'. 826 cm ,845 cm'. 888 cm . 932 cm . 1026 cm . 1062 cm'. 1082 cm . 1129 cm . 1140 cm'. 1208 cm'. 1233 cm . 1262 cm', 1284 cm1, 1295 cm1, 1361 cm1, 1450 cm1, 1528 cm1, 1573 cm1, 1618 cm1, 1677 cm1, 1738 cm , 746 cm', 2884 cm' and 2936 cm .
15. A complex according to either of Claims 1 or 13 comprising a complexation agent which is selected from the group of copolymer of vinylpyrrolidone and vinylacetate and optionally poloxamers and pharmaceutically acceptable excipient which is sodium lauryl sulfate, in a total amount ranging from about 1.0 weight % to about 95.0 weight % based on the total weight of the complex.
16. A complex according to either of Claims 1 or 13 comprising a complexation agent which is selected from the group of copolymer of vinylpyrrolidone and vinylacetate and optionally poloxamers and pharmaceutically acceptable excipient which is sodium lauryl sulfate, in a total amount ranging from about 50 weight % to about 95.0 weight % based on the total weight of the complex.
17. The complex as recited in Claim 1, wherein said complex has an increased dissolution rate.
18. A process for the preparation of a stable complex as recited in Claim 1, said process comprising the step of mixing a solution of Ivacaftor, and at least one complexing agent chosen from copolymers of vinylpyrrolidone and vinylacetate and optionally poloxamers, in a pharmaceutically acceptable solvent with an aqueous solution containing at least one pharmaceutically accepted excipient selected from the group of sodium deoxycholate, dioctyl sodium sulfosuccinate, sodium acetate, cetylpyridinium chloride, citric acid, meglumine and sodium lauryl sulfate.
19. The process as recited in Claim 18, wherein said process is performed in a continuous flow instrument.
AMENDED SHEET (ARTICLE 19)
WO 2017/187336
PCT/IB2017/052370
20. The process as recited in Claim 19, wherein said continuous flow instrument is a microfluidic flow instrument.
21. The process as recited in Claim 18, wherein said pharmaceutically acceptable solvent is chosen from water, methanol, ethanol, isopropanol, n-propanol, acetone, acetonitrile, dimethylsulfoxide, tetrahydro furan, or combinations thereof.
22. The process as recited in Claim 21, wherein said pharmaceutically acceptable solvent is tetrahydrofuran.
23. The process as recited in Claim 18, wherein said solvents are miscible with each other and the aqueous solution comprises 0.1 to 99.9% weight of the final solution.
24. A pharmaceutical composition comprising the stable complex as recited in Claim 1 together with a pharmaceutically acceptable carrier.
25. The pharmaceutical composition as recited in Claim 24, wherein said composition is suitable for oral, pulmonary, rectal, colonic, parenteral, intracistemal, intravaginal, intraperitoneal, ocular, otic, local, buccal, nasal, or topical administration.
26. The pharmaceutical composition as recited in Claim 25, wherein said composition is suitable for oral administration.
27. The pharmaceutical composition comprising the complex according to Claim 26, wherein said composition comprises fast dissolving granules of the complex formulation according to Claim 1.
28. The pharmaceutical composition comprising the complex according to Claim 27, wherein said granules are suitable for the preparation of sachet dosage form.
29. A complex according to Claim 1 for use in the treatment of CFTR mediated diseases.
30. The complex for use according to claim 29, wherein said CFTR mediated disease is selected from cystic fibrosis, asthma, smoke induced COPD, chronic bronchitis, rhinosinusitis, constipation, pancreatitis, pancreatic insufficiency, male infertility caused by congenital bilateral absence of the vas deferens (CBAVD), mild pulmonary disease, idiopathic pancreatitis, allergic bronchopulmonary aspergillosis (ΑΒΡΑ), liver disease, hereditary emphysema, hereditary hemochromatosis, coagulation-fibrinolysis deficiencies, such as protein C deficiency, Type 1
AMENDED SHEET (ARTICLE 19)
WO 2017/187336
PCT/IB2017/052370 hereditary angioedema, lipid processing deficiencies, such as familial hypercholesterolemia, Type 1 chylomicronemia, abetalipoproteinemia, lysosomal storage diseases, such as I-cell disease/pseudo-Hurler, mucopolysaccharidoses, Sandhof/Tay-Sachs, Crigler-Najjar type II, polyendocrinopathy/hyperinsulemia, Diabetes mellitus, Laron dwarfism, myleoperoxidase deficiency, primary hypoparathyroidism, melanoma, glycanosis CDG type 1, congenital hyperthyroidism, osteogenesis imperfecta, hereditary hypofibrinogenemia, ACT deficiency, Diabetes insipidus (DI), neurophyseal DI, neprogenic DI, Charcot-Marie Tooth syndrome, Perlizaeus-Merzbacher disease, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, progressive supranuclear plasy, Pick's disease, several polyglutamine neurological disorders such as Huntington's, spinocerebullar ataxia type I, spinal and bulbar muscular atrophy, dentatorubal pallidoluysian, and myotonic dystrophy, as well as spongiform encephalopathies, such as hereditary Creutzfeldt-Jakob disease (due to prion protein processing defect), Fabry disease, Straussler-Scheinker syndrome, COPD, dry-eye disease, or Sjogren's disease, Osteoporosis, Osteopenia, bone healing and bone growth (including bone repair, bone regeneration, reducing bone resorption and increasing bone deposition), Gorham's Syndrome, chloride channelopathies such as myotonia congenita (Thomson and Becker forms), Bartter's syndrome type III, Dent's disease, hyperekplexia, epilepsy, lysosomal storage disease, Angelman syndrome, and Primary Ciliary Dyskinesia (PCD), a term for inherited disorders of the structure and/or function of cilia, including PCD with situs inversus (also known as ICartagener syndrome), PCD without situs inversus and ciliary aplasia.
31. A method of treatment of CFTR mediated diseases comprising administration of a therapeutically effective amount of the complex according to Claim 1 or the pharmaceutical composition according to Claim 24.
32. A stable complex comprising
a) 5 — 40% by weight of Ivacaftor or salt thereof;
b) 20 — 80% by weight of a copolymer of vinylpyrrolidone and vinylacetate;
c) 5 — 40 % by weight of sodium-lauryl-sulfate; and
d) optionally 0 — 50 % by weight of a poloxamer;
wherein said complex has a controlled particle size in the range between 10 nm and 600 nm; and
AMENDED SHEET (ARTICLE 19)
WO 2017/187336
PCT/IB2017/052370 wherein said complex is not obtained via a milling process, high pressure homogenization process, encapsulation process or solid dispersion processes.
33. The complex as recited in Claim 1, wherein said complex further comprises one or more additional active agents.
5 34. The complex as recited in Claim 26, wherein said additional active agent Lumacaftor,
Tezacaftor or chosen from agents used for the treatment of CFTR mediated diseases.
AU2017256180A 2016-04-25 2017-04-25 Complexes of Ivacaftor and its salts and derivatives, process for the preparation thereof and pharmaceutical compositions containing them Abandoned AU2017256180A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
HU1600270A HUP1600270A2 (en) 2016-04-25 2016-04-25 Complexes of ivacaftor and its salts and derivatives, process for the preparation thereof and pharmaceutical compositions containing them
HUP1600270 2016-04-25
PCT/IB2017/052370 WO2017187336A1 (en) 2016-04-25 2017-04-25 Complexes of ivacaftor and its salts and derivatives, process for the preparation thereof and pharmaceutical compositions containing them

Publications (1)

Publication Number Publication Date
AU2017256180A1 true AU2017256180A1 (en) 2018-12-13

Family

ID=89992148

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2017256180A Abandoned AU2017256180A1 (en) 2016-04-25 2017-04-25 Complexes of Ivacaftor and its salts and derivatives, process for the preparation thereof and pharmaceutical compositions containing them

Country Status (8)

Country Link
EP (1) EP3448383A1 (en)
JP (1) JP2019515029A (en)
CN (1) CN109475548A (en)
AU (1) AU2017256180A1 (en)
CA (1) CA3021944A1 (en)
HU (1) HUP1600270A2 (en)
IL (1) IL262489A (en)
WO (1) WO2017187336A1 (en)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ME02970B (en) 2004-06-24 2018-07-20 Vertex Pharma Modulators of ATP-binding cassette transporters
US8354427B2 (en) 2004-06-24 2013-01-15 Vertex Pharmaceutical Incorporated Modulators of ATP-binding cassette transporters
LT1993360T (en) 2005-12-28 2017-06-12 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
PL3835297T3 (en) 2010-03-25 2023-09-11 Vertex Pharmaceuticals Incorporated Synthesis and intermediates of (r)-1(2,2 -difluorobenzo[d][1,3]dioxol-5yl)-n-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2yl)-1h-indol-5yl)cyclopropanecarboxamide
EP2608775A2 (en) 2010-08-27 2013-07-03 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
WO2013130669A1 (en) 2012-02-27 2013-09-06 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administration thereof
AU2013290444B2 (en) 2012-07-16 2018-04-26 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of (R)-1-(2,2-diflurorbenzo[d][1,3]dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl) cyclopropanecarboxamide and administration thereof
IL283276B1 (en) 2012-11-02 2024-01-01 Vertex Pharma Compositions comprising 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid and n-(5-hydroxy-2,4-ditert-butyl-phenyl)-4-oxo-1h-quinoline-3-carboxamide and uses thereof
JP6146990B2 (en) 2012-11-16 2017-06-14 コンサート ファーマシューティカルズ インコーポレイテッド Deuterated CFTR enhancer
US20140221424A1 (en) * 2013-01-30 2014-08-07 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for use in the treatment of cystic fibrosis
WO2014118805A1 (en) 2013-01-31 2014-08-07 Glenmark Pharmaceuticals Limited; Glenmark Generics Limited Process for the preparation of ivacaftor and solvates thereof
WO2014125506A2 (en) 2013-02-15 2014-08-21 Laurus Labs Private Limited A process for the preparation of ivacaftor and its intermediates
CN104030981A (en) 2013-03-06 2014-09-10 上海特化医药科技有限公司 Preparation method and intermediate of Ivacaftor
HUP1300646A2 (en) * 2013-11-12 2015-05-28 Druggability Technologies Ip Holdco Jersey Ltd Complexes of fulvestrant and its derivatives, process for the preparation thereof and pharmaceutical compositions containing them
PT3068392T (en) 2013-11-12 2021-05-14 Vertex Pharma Process of preparing pharmaceutical compositions for the treatment of cftr mediated diseases
HUP1300647A2 (en) * 2013-11-12 2015-05-28 Druggability Technologies Ip Holdco Jersey Ltd Complexes of cyclosporine a and its derivatives, process for the preparation thereof and pharmaceutical compositions containing them
WO2015071841A1 (en) * 2013-11-12 2015-05-21 Druggability Technologies Holdings Limited Complexes of dabigatran and its derivatives, process for the preparation thereof and pharmaceutical compositions containing them
WO2015070336A1 (en) 2013-11-13 2015-05-21 Apotex Inc. Solid forms of ivacaftor and processes for the preparation thereof
HUP1400075A2 (en) * 2014-02-14 2015-08-28 Druggability Technologies Ip Holdco Jersey Ltd Complexes of sirolimus and its derivatives, process for the preparation thereof and pharmaceutical composition containing them
PL3925607T3 (en) 2014-04-15 2023-10-30 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for the treatment of cystic fibrosis transmembrane conductance regulator mediated diseases
CN104725314A (en) 2015-03-23 2015-06-24 上海皓元化学科技有限公司 New crystal form of Ivacaftor and preparation method thereof
CA3021752A1 (en) * 2015-06-11 2016-12-15 Aizant Drug Research Solutions Private Limited Nanoparticulate ivacaftor formulations

Also Published As

Publication number Publication date
JP2019515029A (en) 2019-06-06
IL262489A (en) 2018-12-31
EP3448383A1 (en) 2019-03-06
CN109475548A (en) 2019-03-15
WO2017187336A4 (en) 2017-12-21
WO2017187336A1 (en) 2017-11-02
HUP1600270A2 (en) 2017-10-30
CA3021944A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
US10675277B2 (en) Complexes of ivacaftor and its salts and derivatives, process for the preparation thereof and pharmaceutical compositions containing them
US20210228489A1 (en) Compositions for treating cystic fibrosis
US20200022969A1 (en) Pharmaceutical combination composition comprising complex formulations of ivacaftor and lumacaftor and their salts and derivatives, process for their preparation thereof and pharmaceutical compositions containing them
TW201922730A (en) Crystalline Forms and compositions of CFTR modulators
US10688110B2 (en) Complexes of Celecoxib and its salts and derivatives, process for the preparation thereof and pharmaceutical compositions containing them
US20200061058A1 (en) Pharmaceutical formulation containing tadalafil
AU2017256184A1 (en) Pharmaceutical combination composition comprising complex formulations of ivacaftor and lumacaftor and their salts and derivatives, process for their preparation thereof and pharmaceutical compositions containing them
AU2006257428B2 (en) Oral solid pharmaceutical formulation of the tubulin inhibitor indibulin
US20190388408A1 (en) Complexes of lumacaftor and its salts and derivatives, process for the preparation thereof and pharmaceutical compositions containing them
AU2017256180A1 (en) Complexes of Ivacaftor and its salts and derivatives, process for the preparation thereof and pharmaceutical compositions containing them
CA3021941A1 (en) Complexes of lumacaftor and its salts and derivatives, process for the preparation thereof and pharmaceutical compositions containing them

Legal Events

Date Code Title Description
MK1 Application lapsed section 142(2)(a) - no request for examination in relevant period