AU2015258276A1 - Chitooligosaccharides and methods for use in enhancing soybean growth - Google Patents

Chitooligosaccharides and methods for use in enhancing soybean growth Download PDF

Info

Publication number
AU2015258276A1
AU2015258276A1 AU2015258276A AU2015258276A AU2015258276A1 AU 2015258276 A1 AU2015258276 A1 AU 2015258276A1 AU 2015258276 A AU2015258276 A AU 2015258276A AU 2015258276 A AU2015258276 A AU 2015258276A AU 2015258276 A1 AU2015258276 A1 AU 2015258276A1
Authority
AU
Australia
Prior art keywords
represents hydrogen
lco
soybean
seed
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2015258276A
Inventor
Ahsan Habib
R. Stewart Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novozymes BioAg AS
Novozymes Biologicals Inc
Original Assignee
Novozymes BioAg AS
Novozymes Biologicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2012312007A external-priority patent/AU2012312007B2/en
Application filed by Novozymes BioAg AS, Novozymes Biologicals Inc filed Critical Novozymes BioAg AS
Priority to AU2015258276A priority Critical patent/AU2015258276A1/en
Publication of AU2015258276A1 publication Critical patent/AU2015258276A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Pretreatment Of Seeds And Plants (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Disclosed are methods of enhancing growth of soybean plants, comprising treating soybean seed or the soybean plant that germinates from the seed with an effective amount of at least one chitooligosaccharide, wherein upon harvesting the soybean plant exhibits at least one of increased plant yield measured in terms of bushels/acre, increased root number, increased root length, increased root mass, increased root volume and increased leaf area, compared to untreated soybean plants or soybean plants harvested from untreated soybean seed.

Description

CHITOOLIGOSACCHARIDES AND METHODS FOR USE IN ENHANCING SOYBEAN GROWTH BACKGROUND OF THE INVENTION [0001] The present application is a divisional application of Australian Application No. 2012312007, which is incorporated in its entirety herein by reference. [0001a] The symbiosis between the gram-negative soil bacteria, Rhizobiaceae and Bradyrhizobiaceae, and legumes such as soybean, is well documented. The biochemical basis for these relationships includes an exchange of molecular signaling, wherein the plant-to-bacteria signal compounds include flavones, isoflavones and flavanones, and the bacteria-to-plant signal compounds, which include the end products of the expression of the bradyrhizobial and rhizobial nod genes, known as lipo-chitooligosaccharides (LCOs). The symbiosis between these bacteria and the legumes enables the legume to fix atmospheric nitrogen for plant growth, thus obviating a need for nitrogen fertilizers. Since nitrogen fertilizers can significantly increase the cost of crops and are associated with a number of polluting effects, the agricultural industry continues its efforts to exploit this biological relationship and develop new agents and methods for improving plant yield without increasing the use of nitrogen-based fertilizers. [0002] U.S. Patent 6,979,664 teaches a method for enhancing seed germination or seedling emergence of a plant crop, comprising the steps of providing a composition that comprises an effective amount of at least one lipo-chitooligosaccharide and an agriculturally suitable carrier and applying the composition in the immediate vicinity of a seed or seedling in an effective amount for enhancing seed germination of seedling emergence in comparison to an untreated seed or seedling. [0003] Further development on this concept is taught in WO 2005/062899, directed to combinations of at least one plant inducer, namely an LCO, in combination with a fungicide, insecticide, or combination thereof, to enhance a plant characteristic such as plant stand, growth, vigor and/or yield. The compositions and methods are taught to be applicable to both legumes and non-legumes, and may be used to treat a seed (just prior to planting), seedling, root or plant. -1- [0004] Similarly, WO 2008/085958 teaches compositions for enhancing plant growth and crop yield in both legumes and non-legumes, and which contain LCOs in combination with another active agent such as a chitin or chitosan, a flavonoid -la compound, or an herbicide, and which can be appiied to seeds and/or plants concomitantly or sequentially As in the case of the '899 Publication, the '958 Publication teaches treatment of seeds just prior to planting, [0005] More recently, Halford, "Smoke Signals, in Chem Eng. News (April 12, 2010), at pages 37-38, reports that karrikins or butenolides which are contained in smoke act as growth stimulants and sour seed germination after a forest fire, and can invigorate seeds such as com, tomatoes, lettuce and onions that had been stored. These molecules are the subject of US Patent 7,576,213 [0006] There is, however, still a need for systems for improving or enhancing plant growth. BRIEF SUMMARY OF THE INVENTION [0007] A first aspect of the present invention is directed to a method of enhancing growth of soybean plants, comprising a) treating (ag applying to) soybean seed or a soybean plant that germinates from the seed, with an effective amount of at least one chitcoigosaccharide (CO), wherein upon harvesting the soybean plant exhibits at least one of increased plant yield measured in terms of bushels/acre, increased root number, increased root length, increased root mass, increased root volume and increased leaf area, compared to untreated soybean plants or soybean plants harvested from untreated soybean seed. [0008] In some embodiments, at least two CO's are used. In some embodiments, treatment of the soybean seed includes direct application of the at least one CO onto the seed, which may then be planted or stored for a period of time prior to planting. Treatment of the soybean seed may also include indirect treatment such as by introducing the at least one CO into the soil (known in the art as in-furrow application), In yet other embodiments, the at least one CO may be applied to the plant that germinates from the seed, e.g., via foliar spray. The methods may further include use of other agronomically beneficial agents, such as micronutrients; fatty acids and derivatives thereof; plant signal molecules ((other than CO's), such as Iipo-chitooligosaccharides, chitinous compounds (other than COs) flavonoids, jasmonic acid and derivatives thereof, linoleic acid and derivatives thereof, linolenic acid and derivatives thereof, and karrikins and derivatives thereof); herbicides, fungicides and insecticides; phosphate-solubil izing microorganisms, diazotrophs (Rhizobial inoculants), and/or mycorrhizal fungi.
[0009] As demonstrated by the working examples, which summarize experiments conducted in both the greenhouse and in the fleld, the results achieved by the methods of the present invention show that application of at least one CO to soybean seed or a soybean plant that germinates from a seed, results in enhanced plant growth. These results are believed to be unexpected, particularly from the standpoint that COs were known to be involved in system acquired resistance (SAR) but not necessarily involved in the direct enhancement of plant growth, The results described herein show that in some cases, the inventive methods achieved a substantially equal effect or in some other cases, outperformed the enhancement of plant growth achieved by an LCO. The results obtained from the greenhouse experiments are particularly significant in this regard) in that they were conducted in substantially diseaseree conditions. BRIEF DESCRIPTION OF THE DRAWINGS [0010] Figs, Is and 2a show the chemical structures of chitooligosaccharide compounds (CO's) useful in the practice of the present invention. [0011] Figs. lb and 2b show the chemical structures of the lipo chitoogosaccharide compounds (LCO's) that correspond to the CO's in Figs, 1a and 2,a and which are also useful in the practice of the present invention, [0012] Figs. 3a and 4a show the chemical structures of other CO's useful in the practice of the present invention. [0013] Figs. 3b and 4b show the chemical structures of the Myc-factors that correspond to the COs in Figs. 3a and 3b, and which are also useful in the practice of the present invention. [0014] Fig. 5 is a bar graph that illustrates the effect of the CO illustrated in Fig, 2a, compared to the LCO illustrated in Fig, 2b, a mixture of CO's produced by chitinase, an isofiavonoid and a control, treated on soybean seed, expressed in terms of leaf surface area. [0015] Fig. 6 is a bar graph that illustrates the effect of the CO illustrated in Fig. 2a, the LCO illustrated in Fig. 1b, an isoflavonoid, and the mixture of the non inventive chitinous compounds (obtained from chitosan via an enzymatic process), treated on soybean seeds, expressed in terms of average dry weight of soybean plant, 3 - [0016] Fig, 7 is a bar graph that illustrates effect of the CO illustrated in Fig. 2a, alone or in combination with one of two different fatty acids, compared to the LCO illustrated in Fig, 1b, on soybean seed, expressed in terms of average radicle length. [0017] Fig, 8 is a bar graph that illustrates effect of the CO illustrated in Fig. 2a, compared to the LCO illustrated in Fig 1b, and a mixture of CO's produced by chitinase, treated on soybean plants, expressed in terms of average plant dry biomass. DETAILED DESCRIPTION Chiftooligosaceharides [0018] GOs are known in the art as 1~-i-4 linked N-acetyl glucosanine structures identified as chitin oligomers, also as N-acetylchitooligosaccharides. CO's have unique and different side chain decorations which make them different from chain molecules [(CgH-jN4)r, CAS No. 1398-61 41 and chitosan molecules [(C4H 11 NO4), CAS No. 9012-76-4]) See, e.g., Hamel, et al., Planta 232:787-806 (2010)(eg., Fig. 1 which shows structures of chitin chitosan, Nod factors (LCO's), and the corresponding COs (which would lack the 18C, 16C, or 200 acyl group)) The CO's of the present invention are also relatively water-soluble compared to chitin and chitosan, and in some embodiments, as described hereinbelow, are pentameric. Representative literature describing the structure and production of COs that may be suitable for use in the present invention is as follows: Muller, et a/, Plant Physiol, 124:733-9 (2000)(,g,, Fig. I therein); Van der Hoist, et al, Current Opinion in Structural Biology, 11:608-616 (2001) (e g Fig. 1 therein); Robina, et a., Tetrahedron 58521-530 (2002), D'Haeze. et at, Glycobiol. 12(6Y79R-105R (2002) Rouge, et al, Chapter 27, "The Molecular Immunology of Complex Carbohydrates" in Advances in Experimental Medicine and Biology, Springer Science; Wan, et al., Rant Cell 211053-69 (2009) PCT/F100/00803 (9/21/2000); and Demont-Caulet, et a, Plant Physiol 120(j)83-92 (1999), [0019] CO's differ from LCO's in terms of structure mainly in that they iack the pendant fatty acid chain. Rhizobia-derived CU's, and non-naturally occurring synthetic derivatives thereof, that may be useful in the practice of the present invention may be represented by the following formula: \\HO NN [0020) wherein R and R each independently represents hydrogen or metthylR represents hydrogen acetyl or carbamoyl; R represents hydrogen, acetyl or carbarnoyl; R, represents hydrogen, acetyl or carbamoyl; R represents hydrogen, arabinosyl fucosyk acetyl, sulfate ester, 3--S-24O-MeFuc. 2K0XMeFuc, and 4~0 AcFuc; R- represents hydrogen, mannosyl or glycerol; R represents hydrogen, methyl, or-CH 2 OH R represents hydrogen, arabinCosyi, or fucosy; Riy represents hydrogen, acetyl or fucosyl; and n represents 0, 1, 2 or 3. The structures of corresponding Rhizbial LCO's are described in D'Haeze, t a supra, (0021] Two CO's suitable for use in the present invention are illustrated in Figs. 1a and 2a. They correspond to LCO's produced by Bradyrhizobium japonicum and Rhizobium /eguminosarum bovar viciae respectively, which interact synibiotically with soybean and pea, respectively, but lack the fatty acid chains, The corresponding LCO's produced by these rhizobia (and which are also useful in the practice of the present invention) are illustrated in Figs. lb and 2b, [00221 The structures of yet other CO's that may be suitable for use in the practice of the present invention are easily derivable from LCOs obtained (ie., isolated and/or purified) from a mycorrhizal fungi, such as fungi of the group Glomerocycota, e.g., Gomus intraradices. SEo, eg, WO 2010/049751 and Maillet, et at, Nature 469:58-63 (2011) (the LCOs described therein also referred to as "Myc factors"). Representative mycorrhizal fungi-derived CO's are represented by the following structure: OH NOH H 0HN /oro wherein n I or 2; R, represents hydrogen or methyl; and R 2 represents hydrogen or SOH Two other CO's suitable for use in the present invention, one of which is sulfate and the other being non-sulfated, are illustrated in Figs, 3a and 4a respectively. They correspond to two different LCOs produced by the mycorrhizal fungi /omas intra radices which are illustrated in Figs. 3b and 4b (and which are also useful in the practice of the present invention). [0023] The COs may be synthetic or recombinant, Methods for preparation of synthetic COs are described, for example, in Robina, supro.., Methods for producing recombinant COs e.g., using E coli as a host, are known in the art. See, eg. Dumon, et a, ChemBioChem 7359-65 (2006), Samain, et a/, Carbohydrate Res. 302:3542 (1997! Cottaz, ot at. Meth, Eng 7(3)311-7 (2005) and Samain, t 4 Biotechnol. 72:33-47 (1999) (,g, Fig. I therein which shows structures of CO's that can be made recombinantly in E co/i harboring different combinations of genes nodBCHL), For purposes of the present invention, the at least one CO is structurally distinct from chitins, chitosans, and other chitooligosaccharides made enzymaticaliy using chitin as a starting material. [0024] For the purposes of the present invention, in embodiments in which the at least one CO is recombinant, the at least one recombinant CO is at least 60% pure, esg. at least 60% pure at least 65% pure, at least 70% pure, at least 75% pure, at least 80% pure, at least 85% pure, at least 90% pure, at least 91% pure, at least 92% pure, at least 93% pure, at least 94% pure, at least 95% pure, at least 96% pure, at least 97% pure, at least 98% pure, at least 99% pure, up to 100% pure, [0025] Soybean seeds may be treated with the at least one CO in several ways such as spraying or dripping. Spray and drip treatment may be conducted by formulating an effective amount of the at least one CO in an agriculturally acceptable carrier, typically aqueous in nature, and spraying or dripping the composition onto seed via a continuous treating system (which is calibrated to apply treatment at a predefined rate in proportion to the continuous flow of seed), such as a drum-type of theater. These methods advantageously employ relatively small volumes of carrier so as to allow for relatively fast drying of the treated seed, In this fashion, large volumes of seed can be efficiently treated Batch systems, in which a predetermined batch size of seed and signal molecule compositions are delivered into a mixer, may also be employed. Systems and apparatus for performing these processes are commercially available from numerous suppliers, e.g., Bayer CropScience (Gustafson). [0026] In another embodiment, the treatment entails coating soybean seeds with the at least one CO One such process involves coating the inside wall of a round container with the composition, adding seeds, then rotating the container to cause the seeds to contact the wall and the composition, a process known in the art as "container coating". Seeds can be coated by combinations of coating methods. Soaking typically entails use of an aqueous solution containing the plant growth enhancing agent. For example, seeds can be soaked for about 1 minute to about 24 hours (e,g., for at least I min, min, 10 min, 20 min, 40 min 80 min, 3 hr, 6 hr, 12 hr, 24 hr). Some types of seeds (e.g., soybean seeds) tend to be sensitive to moisture, Thus, soaking such seeds for an extended period of time may not be desirable, in which case the soaking is typically carried out for about I minute to about 20 minutes, [0027] In those embodiments that entail storage of soybean seed after application of the at least one CO, adherence of the CO to the seed over any portion of time of the storage period is not critical, Without intending to be bound by any particular theory of operation, Applicants believe that even to the extent that the treating may not cause the plant signal molecule to remain in contact with the seed surface after treatment and during any part of storage, the CO may achieve its intended effect by a phenomenon known as seed memory or seed perception. See, Macchiavelli, et at, J Exp. Bot. 55(408):1635-40 (2004). Applicants also believe that following treatment the CO diffuses toward the young developing radicle and activates symbiotic and developmental genes which results in a change in the root architecture of the plant. Notwithstanding, to the extent desirable, the compositions containing the CO may further contain a sticking or coating agent. For aesthetic purposes, the compositions may further contain a coating polymer and/or a colorant. [0028) The amount of the at east one CO is effective to enhance growth such that upon harvesting the soybean plant exhibits at least one of increased plant yield measured in terms of bushels/acre, increased root number, increased root length, increased root mass, increased root volume and increased leaf area, compared to untreated soybean plants or soybean plants harvested from untreated soybean seed (with either active). The effective amount of the at least one CO used to treat the soybean seed, expressed in units of concentration, generally ranges from about 10 to about 10' 14 M (molar concentration), and in some embodiments, from about 10; to about 10- M, and in some other embodiments from about 10 7 to about 0 M. Expressed in units of weight, the effect amount generally ranges from about 1 to about 400 pg/hundred weight (cwt) seed, and in some embodiments from about 2 to about 70 pg/cwt, and in some other embodiments, from about 2,5 to about 3,0 pg/cwt seed. [0029] For purposes of treatment of soybean seed indirectly, e in-furrow treatment, the effective amount of the at least one CO generally ranges from about 1 pg/acre to about 70 pg/acre, and in some embodiments, from about 50 pg/acre to about 60 pg/acre. For purposes of application to the plants, the effective amount of the GO generally ranges from about I pg/acre to about 30 pglacre, and in some embodiments, from about 11 pg/acre to about 20 pg/acre, [0030] Soybean seed may be treated with the at least one GO just prior to or at the time of planting, Treatment at the time of planting may include direct application to the seed as described above, or in some other embodiments, by introducing the actives into the solI known in the art as in-furrow treatment in those embodiments that entail treatment of seed followed by storage, the seed may be then packaged, e,g in 50-lb or 00-b bags, or bulk bags or containers, in accordance with standard techniques. The seed may be stored for at least 1, 2, 3, 4, 5, 6 7,8, 9, 10, 11, or 12 months (up till the next planting season) under appropriate storage conditions which are known in the art. Other Agronomically Beneficial Agents [0031] The present invention :may further include treatment of the soybean seed or the soybean plants that germinate from the seed with at least one agriculturally/agronomically beneficial agent, As used herein and in the art, the term agriculturally or agronomicaly beneficia" refers to agents that when applied to soybean seeds or plants results in enhancement (which may be statistically significant) of soybean plant characteristics such as plant stand, growth (e.g,, as defined in connection with CO's), or vigor in comparison to non-treated soybean seeds or plants, These agents may be formulated together wih the at least one CO or applied to the seed or plant via a separate formulation. Representative examples of such agents that may be useful in the practice of the present invention include micronutrients (egq, vitamins and trace minerals) fatty acids and derivatives thereof, plant signal molecules (other than CO's), herbicides, fungicides and insecticides, phosphate solubi iing microorganisms, diazotrophs (Rhizobial inoculants), and/or mycon11izal fungi. Micronutrients [0032] Representative vitamins that may be useful in the practice of the present invention include calcium pantothenate, folic acid, biotin, and vitamin C. Representative examples of trace minerals that may be useful in the practice of the present invention include boron, chlorine, manganese, iron, zinc, copper, molybdenum nickel, selenium and sodium. [0033] The amount of the at least one micronutrient used to treat the seed, expressed in units of concentration, generally ranges from 10 ppm to 100 ppm, and in some embodiments, from about 2 ppm to about 100 ppm. Expressed in units of weight, the effective amount generally ranges in one embodiment from about 180 pg to about 9 mg/hundred weight (cwt) seed, and in some embodiments from about 4 pg to about 200 pg/plant when applied on folage. In other words, for purposes of treatment of seed the effective amount of the at least one micronutrient generally ranges from 30 pglacre to about 1 .5 mg/acre, and in some embodiments, from about 120 mg/acre to about 6 g/acre when applied foliarly. Fatty acids [0034] Representative fatty acids that may be useful in the practice of the present invention include the fatty acids that are substituents on naturally occurring LCO's, such as stearic and palmitic acids, Other fatty acids that may be useful include saturated C12-18 fatty acids which (aside from palmitic and stearic acids) include lauric acid, and myristic acid, and unsaturated C12-18 fatty acids such as myristoleic acid, palmitoleic acid, sapienic acid, oleic acid elaidic acid, vaccenic acid, linoleic acid, inolenic acid, and linoelaidic acid, Linoleic acid and linolenic acid are produced in the course of the biosynthesis of jasmonic acid (which as described below, is also an agronomicaly beneficial agent for purposes of the present invention), Linoleic acid and linoleic acid (and their derivatives) are reported to be inducers of nod gene expression or LCO production by rhizobacteria. See, e,g, Mabood, Fazl, "Linoleic and linolenic acid induce the expression of nod genes in Bradyrhizcbiurnjaponicum USDA 3, May 17, 2001. 0035] Useful derivatives of fatty acids that may be useful in the practice of the present invention include esters, am ides, glycosides and salts. Representative esters are compounds in which the carboxyl group of the fatty acid, eg., linoleic acid and linoenic acid, has been replaced with a -- COR group, where R is an --OR, group, in which R1 is: an alkyl group, such as a Q-Cs unbranched or branched alkyl group, ag a methyl, ethyl or propyl group; an alkenyl group, such as a C 2 t unbranched or branched alkenyl group; an alkynyl group, such as a Cets unbranched or branched alkynyl group; an aryl group having, for example, 6 to 10 carbon atoms; or a heteroary group having, for example, 4 to 9 carbon atoms, wherein the heteroatons in the heteroaryl group can be, for example, N, 0, P, or S, Representative aides are compounds in which the carboxyl group of the fatty acid, e.g, inoleic acid and linolenic acid, has been replaced with a --COR group, where R is an NR R group, in which W and RJ are independently hydrogen;an alkyl group, such as a CCs unbranched or branched alkyl group, eg, a methyl, ethyl or propyl group; an alkenyl group, such as a C2-C unbranched or branched alkenyl group; an alkynyl group, such as a CrC unbranched or branched alkynyl group; an aryl group having, for example, 6 to 10 carbon atoms; or a heteroaryl group having, for example, 4 to 9 carbon atoms, wherein the heteroatoms in the heteroaryl group can be, for example, N, 0, P, or S. Esters may be prepared by known methods, such as acid-catalyzed nucleophilic addition, wherein the carboxylic acid is reacted with an alcohol in the presence of a catalytic amount of a mineral acid, Amides may also be prepared by known methods, such as by reacting the carboxylic acid with the appropriate amine in the presence of a coupling agent such as dicyclohexyl carbodiimide (DCC), under neutral conditions, Suitable salts of fatty acids, eg linoleic acid and linolenic acid, include e..g. base addition salts, The bases that may be used as reagents to prepare metabolically acceptable base salts of these compounds include those derived from cations such as alkali metal cations (e g., potassium and sodium) and alkaline earth metal nations (e.g., calcium and nagnesium). These salts may be readily prepared by mixing together a solution of the fatty acid with a solution of the base, The salt may be precipitated from solution and be colected by filtration or may be recovered by other means such as by evaporation of the solvent. [0036] The amounts of the fatty acid or derivative thereof used to treat the soybean seed or soybean plants are typicaly between about 10% to about 30%, and in some embodiments about 25% of the amount of the at least one CO. Plant signal molecules [0037] The present invention may also include treatment of the soybean seed or soybean plant with a plant signal molecule other than a CO. For purposes of the present invention, the term "plant signal molecule", which may be used interchangeably with "plant growth-enhancing agent" broadly refers to any agent, both naturally occurring in plants or microbes, and synthetic (and which may be non-naturally occurring) that directly or indirectly activates a plant biochemical pathway, resulting in increased soybean plant growth, measureable at least in terms of at least one of increased yield measured in terms of bushels/acre, increased root number, increased root length, increased root mass, increased root volume and increased leaf area, compared to untreated soybean plants or soybean plants harvested from untreated soybean seed. Representative examples of plant signal molecules that may be useful in the practice of the present invention include lipo chitooligosaccharides; chitinous compounds (other than COs); flavonoids; jasmonic acid, linoleic acid and linolenic acid and their derivatives (supra); and karrikins and their derivatives, [0038] Upo-chitooligosaccharide compounds (LCO's), also known in the art as symbiotic Nod signals or Nod factors, consist of an oligosaccharide backbone of i$44 inked N acetylw---lucosa:mine ("GcNAc") residues with an Nlinked fatty acyl chain condensed at the non-reducing end. LCO's differ in the number of GcNAc residues in the backbone, in the length and degree of saturation of the fatty acyl chain, and in the substitutions of reducing and non-reducing sugar residues. See, e.g., Denarie, et at, Ann. Rev. Biochem. 65.503-35 (1996), Hamel, et at, supra, Prome, ot aL, Pure & /opL Chern 7O(1) 5540 (1998). An example of an LCO is presented below as formula a 0/ Cz R CHOR, OR, >r in which G is a hexosamine which can be substituted, for example, by an acetyl group on the nitrogen, a sulfate group, an acetyl group and/or an ether group on an oxygen,
R
1 , R 2 , Ra, R, R 6 and :R 7 , which may be identical or different, represent H,
CH
5 CO---, C, t,, CO-- where x is an integer between 0 and 17, and y is an integer between I and 35, or any other acy group such as for example a carbarnoyl R4 represents a mono-, di- or triunsaturated aliphatic chain containing at least 12 carbon atoms, and n is an integer between i and 4. [0039] LCOs may be obtained (isolated and/or purified) from bacteria such as Rhizobia, eg., Rhizobun sp.,Bradyhizobium sp, Sinothizobium sp. and Azarozobium sp LCO structure is characteristic for each such bacterial species, and each strain may produce multiple LCO's with different structures. For example, specific LCOs from S, meioti have also been described in US, Patent 5,549,718 as having the formula I: NHi NHJ f 0 / HO HHi
K,
in which R represents H or CHt GO- and n is equal to 2 or 3. [0040] Even more specific LCOs include NodRM, NodRM-1, NodRM-3, When acetylated (the R=0H CO-), they become AcNod!RM-1, and AcNodRM-3, respectively (U,S. Patent 5,54518) [0041] LO~s from Bradyrhizobiun japonicur are described in US. Patents 5,175,149 and 5,321011 Broadly, they are pentasaccharide phytohormones comprising methylfucose, A number of these B japordcum-derived LCOs are described: BjNod-V (Cs ) BjNod-V (Ae, C%) BjNod-V (C) and BiNod-V (A(, Co) with "V" indicating the presence of five N-acetyiglucosamines; "Ac" an acetylation the number following the "C" indicating the number of carbons in the fatty acid side chain; and the number following the ": the number of double bonds. [0042] LCO's used in embodiments of the invention may be obtained (lea. isolated and/or purified) from bacterial strains that produce LCO's, such as strains of Azorhizobium, Bradyrhizobium (including B. japonicum), Mesorhizob/um, Rhizobium (including R, /egunosarum Sinorizobum (including S, melilot), and bacterial strains genetically engineered to produce LCO's j00433 LGCOs are the primary determinants of host specificity in legume symbiosis (Diaz, et aL, Molt Plant-Microbe Interactions 13:268-276 (2000)) Thus, within the legume family, specific genera and species of rhizobia develop a symbiotic nitrogenfixing relationship with a specific legurme host, These plant-host/bacteria combinations are described in Hungria et at Soi Biol Biochem, 29:819-830 (1997), Examples of these bacteria/legume symbiotic partnerships include S. meitoti/alfalfa and sweet clover; R eguminosarum bhovar vicae/peas and Jentils; R, legurminosarum biovar phaseo/dbeans; Bredyrhizobiur ]aponicum/soybeans; and R. leguminosarum biovar tfolhidred clover .Hungfia also lists the effective flavonoid Nod gene inducers of the rhizobal species, and the specific LCO structures that are produced by the different rhizobial species. However, LCO specificity is only required to establish nodulation in legumes. In the practice of the present invention, use of a given LCO is not limited to treatment of seed of its symbiotic legume partner, in order to achieve increased plant yield measured in terms of bushels/acre, increased root number, increased root length, increased root mass, increased root volume and increased leaf area, compared to plants harvested from untreated seed, or compared to plants harvested from seed treated with the signal molecule just prior to or within a week or less of planting. [0044] Thus, by way of further examples, LCO's and non-naturally occurring derivatives thereof that may be useful in the practice of the present invention are represented by the following formula, a- 0H wherein R- represents C140, 30H-C140, so~C15 0C16:0, 3-OH~Ci60, iso CicYO, 0161, 16:2, C16:3, iso170 iso C17:1, C8:0, SOH-C18:0, C18:0/3-OH, C181, 01-0181 018:2, C18:3, C18:4, C19:1 carbamoyl, C20:0, C20:1, 3-1 020:1 C201/3-OH, C20:2, C20:3, C22:1, and C18~26(l-1H (which according to DHaeze, et aof supra, includes C18, 20, 022, C24 and C26 hydroxyiated species and C16:1A9, C16:2 (A2,9) and C16:3 (A2,4,9)); R2 represents hydrogen or methyl; R1 represents hydrogen, acetyl or carbamoyl; R4 represents hydrogen, acetyl or carbamoy; R, represents hydrogen, acety! or carbamoyl; R 6 represents hydrogen, arabinosyl, fucosyl, acetyl: sulfate ester, 3-0-S-2-0-MeFuc, 2-0-MeFuc, and 4-0 AcFuc; F 7 represents hydrogen, marnnosyl or glycerol R represents hydrogen, methyl, or CHl1 2 0H; 2 represents hydrogen, arabinosylor fucosyI; Rm represents hydrogen, acetyl or fucosyl; and n represents 0, 1, 2 or 3. The structures of the naturally occurring Rhizobial LCO's embraced by this structure are described in DtHfaeze, et al, supra. [0045] By way of even further additional examples, an LCO obtained from B, japoncum, illustrated in Fig. lb, may be used to treat leguminous seed other than soybean and non-leguminous seed such as corn As another example, the LCO obtainable from R eguminosarum illustrated in Fig, 2b (designated LCO (C18:1), SP104) can be used to treat leguminous seed other than pea and non-legumes too. [0046] Also encompassed by the present invention is use of LCOs obtained (Le. isolated and/or purified) from a mycorrhizal fungi, such as fungi of the group Glomerocycota, e g., Glomus infrtairadices The structures of representative LCOs obtained from these fungi are described in WO 2010/049751 and WO 2010/049751 (the LCOs described therein also referred to as "Myc factors"), Representative mycorrhizal fungi-derived CO's and non-naturally occurring derivatives thereof are represented by the following structure OH OH NHHH w H C H O -wherein n I or 2; R., represents 01 6, C16:0, 016:1, 016:2, 018:0, 018:IA9Z or C181A11ZI; and R, represents hydrogen or SOH, In some embodiments, the LGO's are produced by the mycorrhizal fungi which are illustrated in Figs, 3b and 4b. [0047) Further encompassed by the present invention is use of synthetic LCO compounds, such as those described in WO 2005/063784, and recombinant LCO's produced through genetic engineering; The basic, naturally occurring LCO structure may contain modifications or substitutions found in naturally occurring LO's such as those described in Spain Crit, Rev Plant Sci, 54:257-288 (2000) and D'Haeze, ot at, Glycobiology 12:79R-105R (2002). Precursor ohlgosaccharide moLecules (COs, which as described below, are also useful as plant signal molecules in the present invention) for the construction of LCOs may also be synthesized by genetically engineered organisms, e.g., as described in Samain, ot at, Carbohydrate Res, 302:35-42 (1997); Cottaz, et al, Meth. Eng. 7(4)311-7 (2005) and Samain, et at, J Biotechnol. 72:33-47 (1999)(ag., Fig. I therein which shows structures of LGO's that can be made recombinantly in E coli harboring different combinations of genes nodBCHL). [0048] LCO'S may be utilized in various forms of purity and may be used alone or in the form of a culture of LCO-producing bacteria or fungi. For example, OPTIMIZE@ (commercially available from Novozymes BioAg Limited) contains a culture of B. japonicum that produces an LCO (LCO-V(C18:1 ,veFuc) MOR116) that is illustrated in Fig, 1b. Methods to provide substantially pure LCO's include sirmpy removing the microbia cells from a mixture of LCOs and the microbe, or continuing to isolate and purify the LCO molecules through LCO solvent phase separation followed by HPLC chromatography as described, for example, in U.S. Patent 5,549,718. Purification can be enhanced by repeated HPLC, and the purified LCO molecules can be freeze-dried for long-term storage. Chitooligosaccharides (COs) as described above, may be used as starting materials for the production of synthetic LCOs. For the purposes of tfhe present invention, recombinant LCO's are at least 60% pure, eg., at least 60% pure, at least 65% pure, at least 70% pure, at least 75% pure, at least 80% pure, at least 85% pure, at least 90% pure, at least 91% pure, at least 92% pure, at least 93% pure, at least 94% pure, at least 95% pure, at least 96% pure, at least 97% pure, at least 98% pure, at least 99% pure, up to 100% pure.
[0049] Chitins and chitosans, which are major components of the cell walls of fungi and the exoskeletons of insects and crustaceans, are also composed of GIcNAc residues. Chitinous compounds include chitin, (lUPAG N45[[3 a cetylam ino-4,5-d ihyd roxy~64(hydroxymethyl )oxa n-2ylim ethoxyrmeth yl]24[ 5 acetylamino-46-dihydroxy-2-(hydroxy methy)oxan-3-yl]methoxymethy].hydroxy 6~(hydroxymethyl)oxan4-ysjethanamide), and chitosan, (IUPAC: 5-amino-645 arnino-6-[5-arnino-4 ,6-dihydroxy-2 (hyd roxymethyl )oxan-3-ylioxy-4-hyd roxy-2~ (hydroxymethyl)oxan-3-ylloxy-2(hydroxymethy )oxane-34-d iol). These compounds nay be obtained commerciallyig, from Sigma-Aldrich, or prepared from insects, crustacean shells, or fungal cell walls. Methods for the preparation of chitin and chitosan are known in the art, and have been described, for example, in U.S. Patent 4,536,207 (preparation from crustacean shells), Pochanavanich, at a/, Lett. AppL Microbiol 3517-21 (2002) (preparation from fungal c walls), and US. Patent 5,965,545 (preparation from crab shells and hydrolysis of commercial chitosan). See a/so, Jung, et at. Carbohydrate Polymers 67:256-59 (2007); Khan, at al., Photosynthetica 40(4,621-4 (2002). Deacetylated chitins and chitosans may be obtained that range from less than 35% to greater than 90% deacetylation, and cover a broad spectrum of molecular weights, e.g, low molecular weight chitosan oligomers of less thar 15kD and chitin oligomers of 0.5 to 2kD; "practical grade" chitosan with a molecuIar weight of about 15OkD; and high molecular weight chitosan of up to 700kD, Chitin and chitosan compositions formulated for seed treatment are also commercially available. Commercial products include, for example, ELEXA@ (Plant Defense Boosters, Inc.) and BEYONDTM (Agrihouse, Inc.), [0050] Flavonoids are phenolic compounds having the general structure of two aromatic rings connected by a three-carbon bridge, Flavonoids are produced by plants and have many functions, eg., as beneficial signaling molecules, and as protection against insects, animals, fungi and bacteria. Classes of flavonoids include chalcones, anthocyanidins, coumarins, flavones, flavanols, flavonols, flavanones, and isoflavones. See, Jain, et at, J. Plant Biochem. & Biotechnol. 111-10 (2002); Shaw, et al, Environmental Microbiol, 111867-80 (2006), [0051] Representative flavonoids that may be useful in the practice of the present invention include genistein, daidzein, formononetin, naringenin, hesperetin, luteolin, and apigenin. Flavonoid comr pounds are commercially available, e~g., from Natland international Corp,, Research Triangle Park, NC; MP Biomedicals, Irvine, CA; LC Laboratories, Woburn MA, Flavonoid compounds may be isolated from plants or seeds, eg., as described in U.S. Patents 5702,752; 5,990,291; and 6,146,668. Favonoid compounds may also be produced by genetically engineered organisms such as yeast, as described in Ralston, et at, Plant Physiology 37"1375-88 (2005), [0052] Jasmonic acid (JA. {1 [12*B(Z)]]toxo2}pentenyl)cyclopentaneacetic acid) and its derivatives (which include linolec acd and lnOlenic acid (which are described above in connection with fatty acids and their derivatives), may be used in the practice of the present invention Jasmonic acid and its methyl ester, methyl jasmonate (MeJA), collectively known as jasmonates, are octadecanoid-based compounds that occur naturally in plants. Jasmonic acid is produced by the roots of wheat seedlings, and by fungal microorganisms such as Botyodipiodia theobomae and Gibbrella fujikuroi, yeast (Saccharomyces cerevisiae), and pathogenic and non-pathogenic strains of Escherichia coW Linoleic acid and finolenic acid are produced in the course of the biosynthesis of jasmonic acid, Like linoleic acid and linolenic acid, jasmonates (and their derivatives) are reported to be inducers of nod gene expression or LCO production by rhizobacteria, See, e.g., Mabood, Fazil, Jasmonates induce the expression of nod genes in BradyrhizoNun japonicum, May 17, 2001. [0053] Useful derivatives of jasmonic acid that may be useful in the practice of the present invention include esters, amides, glycosides and salts. Representative esters are compounds in which the carboxyl group of jasmonic acid has been replaced with a -COR group, where R is an -- OR. group, in which R' is: an aikyl group, such as a C C8 unbranched or branched aikyl group, eg., a methyl, ethyl or propyl group; an alkenyl group, such as a C2-C, unbranched or branched alkenyl group; an afynyl group, such as a 0
C
0 unbranched or branched alkynyl group; an aryl group having, for example, 6 to 10 carbon atoms; or a heteroaryl group having, for example, 4 to 9 carbon atoms, wherein the heteroatoms in the heteroaryl group can be, for example, N, 0, P, or S. Representative amides are compounds in which the carboxyl group of jasmonic acid has been replaced wiNh a --COR group, where R is an NR'R" group, in which R 2 and Ra are independently: hydrogen; an alkyl group, such as a C-C unbranched or branched aikyl group, e g, a methyl, ethyl or propyl group; an alkenyl group, such as a C 2 -C8 unbranched or branched alkenyl group; an alkynyl group, such as a CrCs unbranched or branched alkynyl group; an aryl group having, for exarnple, 6 to 10 carbon atoms; or a heteroaryl group having, for example, 4 to 9 carbon atoms, wherein the heteroatoms in the heteroaryl group can be, for example, N, 0, P, or S, Esters may be prepared by known methods, such as acid-catalyzed nucleophilic addition, wherein the carboxylic acid is reacted with an alcohol in the presence of a catalytic amount of a mineral acid, Amides may also be prepared by known methods, such as by reacting the carboxylic acid with the appropriate marine in the presence of a coupling agent such as dicyclohexyl carbodiimide (DCC), under neutral conditions, Suitable salts of jasmonic acid include eg., base addition salts, The bases that may be used as reagents to prepare metabolically acceptable base salts of these compounds include those derived from cations such as alkali metal cations (e.g., potassium and sodium) and alkaline earth metal cations - g calcium and magnesium) These salts may be readily prepared by mixing together a solution of linoleic acid, linolenic acid, or jasrnonic acid with a solution of the base, The salt may be precipitated from solution and be collected by filtration or may be recovered by other means such as by evaporation of the solvent [0054] Karrikins are vinylogous 4 H-pyrones e.g., 2H-furo(2,3-c]pyran-2-ones including derivatives and analogues thereof. Examples of these compounds are represented by the following structure: o/ R2 Rj wherein; Z is 0, S or NR 5 ; R., R 2 , R 3 . and R 4 are each independently H, alkyl, alkenylt alkynyl, phenyl, benzyl, hydroxy. hydroxyakyl alikoxy, phenyloxy, benzyloxy, CN, COR., COOR=, halogen, NR R,, or N0 2 ; and R 5 Rc, and R- are each independently H, alkyl or aikenyl, or a biologically acceptable salt thereof. Examples of biologically acceptable salts of these compounds may include acid addition salts formed with biologically acceptable acids, examples of which include hydrochloride, hydrobromide, sulphate or bisuiphate, phosphate or hydrogen phosphate, acetate, benzoate, succinate, fumarate, maleate, lactate, citrate, tartrate, gluconate; methanesulphonate, benzenesulphonate and ptoluenesulphonic acid. Additional biologically acceptable metal salts may include alkali metal salts, with bases, examples of which include the sodium and potassium salts. Examples of compounds embraced by the structure and which may be suitable for use in the present invention include the following: 3-methyl-2H-furof2,3 c]pyran2-one (where R=CH, R, R% R4=H), 2H-furo[2,3-clpyran-2-one (whee R,,, RRs, R4=H), 7 methyl-2H-furo[2,3-c]pyran-2-one (where RI, R, R 4 =H, R=CH 3 ) 5-methyl-2H 'uro(2,3-c]pyran-2-one (where R. R 2 , Rs=, R=CH 3 ), '3.dimethyh2H-furo[23~ c]pyran-2-one (where R,, R=CH, , R4H 3,5-dimethyl-2H-furo[2,3-c]pyran-2 one (where RI R=CHs, R, Re=H), 335rimethy2H-furo[2 3-cjpyran-2-one (where RR %R 4 =CHs R 2 =H), 5-methoxymethy3-methy 2H-furo(2.3-cjpyran-2-one (where R=CH, R2 R =H R4=CH 2 OCH4 4-bromo-3,1-dimethyl-2H-furo[2,3-cpyran-2-one (where R,. R=CH 3 . R=Br. R 4 =H), 3-methylfuro[2,3-cJpyridin-2(3H)-one (where Z=NH R=CHa R-,,, R R 4 =H), 3,6-dimethylfuro[2,3-c]pyridin -2(6H)one (where Z=N -tHO, R 1 =CH, R 2 , R 3 , Re=H). See, U.S. Patent 7,576,213. These molecules are also known as karrikins. See, Halford, supra. [0055J The amount of the at least one plant signal molecule used to treat the soybean seed, expressed in units of concentration, generally ranges from about 10' to about 10^"" M (molar concentration), and in some embodiments, from about 106 to about 10' M, and in some other embodiments front about 10" to about 1 0 MI. Expressed in units of weight, the effective amount generally ranges from about I to about 400 pg/hundred weight (cwt) seed, and in some embodiments from about 2 to about 70 pg/cwt, and in some other embodiments, from about 2.5 to about 3.0 pg/cwt seed [0056] For purposes of treatment of soybean seed indirectly, ie, in-furrow treatment, the effective amount of the at least one plant signal molecule general ranges from I pg/acre to about 70 pg/acre, and in some embodiments, from about 50 pglacre to about 60 pg/acre. For purposes of application to the soybean plants, the effective amount of the at least one plant signal molecule generally ranges from I pg/acre to about 30 pg/acre, and in some embodiments, from about 11 pg/acre to about 20 pg/acre. Herbicides, Fungicides and Insecticides [0057] Suitable herbicides incide bentazon, acifluorfen, clorirnuron lactofen, clomazone, fluazifop, glufosinate glyphosate sethoxydim, imazethapyirnazamox, fomesafe, flumicorac, imazaquin, and clethodim. Commercial products containing each of these compounds are readily available, Herbicide concentration in the composition will generally correspond to the labeled use rate for a particular herbicide. [0058] A "fungicide" as used herein and in the art, is an agent that kills or inhibits fungal growth. As used herein, a fungicide "exhibits activity against" a particular species of fungi if treatment with the fungicide results in killing or growth inhibition of a fungal population (e.g., in the soil) relative to an untreated population, Effective fungicides in accordance with the invention will suitably exhibit activy against a broad range of pathogens, including but not limited to PhytophThorn, Rhizoctonia FuStr, Pythim, Phomopsis or Seferotinia and Phakopsora and combinations thereof, (0059] Commercial fungicides may be suitable for use in the present invention. Suitable commercially available fungicides include PROTNIG$1, RIVAL or ALLEGIANCE FL or LS (Gustafson, Piano. TX), WARDEN RTA (Agrilance, St, Paul, MN), APRON XL, APRON MAXX RTA or RFC, MAXIM 4FS or XL (Syngenta. Wilmington, DE), CAPTAN (Arvesta, Guelph, Ontario) and PROTREAT (NitTagin Argentina, Buenos Ares, Argentina). Active ingredients in these and other commercial fungicides include, but are not limited to, fludioxonil, mefenoxam, azoxystrobin and metalaxyl. Commercial fungicides are most suitably used in accordance with the manufacturer's instructions at the recommended concentrations. [0060] As used herein, an insecticide "exhibits activity against" a particular species of insect if treatment with the insecticide results in killing or inhibition of an insect population relative to an untreated population. Effective insecticides in accordance with the invention will suitably exhibit activity against a broad range of insects including, but not limited to, wireworms, cutworms, grubs, corn rootworm, seed corn maggots, flea beetles, chinch bugs, aphids, leaf beetles, and stink bugs, [0061] Commercial insecticides may be suitable for use in the present invention. Suitable commercially-availabie insecticides include CRUISER (Syngenta, Wilmington, DE), GAUCHO and PONCHO (Gustafson, Plano, TX). Active ingredients in these and other commercial insecticides include thiamethoxam, clothianidin, and imidacloprid. Commercial insecticides are most suitably used in accordance with the manufacturers instructions at the recommended concentrations, Phosphate Solubilizing Microorganisms, Diazotrophs (Rhizobial inoculants), and/or Mycorrhizal fungi [0062] The present invention may further include treatment of the seed with a phosphate solubilizing microorganism. As used herein, "phosphate solubilizing microorganism" is a microorganism that is able to increase the amount of phosphorous available for a piant, Phosphate solubiizing microorganisms include fungal and bacterial strains. In embodiment, the phosphate solubilizing microorganism is a spore forming microorganism. [0063] Non-limiting examples of phosphate solubilizing microorganisms include species forom a genus selected from the group consisting of Acin(etobacter, Arthrobacter; Arfhrobotrys, Asperglus, Azospirilum, Bacilus, Burkholderia, Candida Chiyseomonas. Enterobacter. Eupenici/Ium,. Exiguobacterium, liebsiella. Kluyvera, Microbacterium, Muco; Paeclomyces. Paenibacillus, Peniclllum Pseudomanas, Sentrtia, Steraophomonas Sreptomyes, Sireptosporngium Swaminathania, Thiobacitus, Taonlospora Vibrio, Xanthobacter, and Xanthononas. [0064] Non-imiting examples of phosphate solubilizing microorganisms are selected from the group consisting Acinetobacter calcoaceticus Acinetobacter sp, Anthrobacter sp, An rahbattys o/igospoa, Asperglus niget; Aspergillus sp. Azospirillum haiopraeterans, acilas amy/ollquelactens, Bacixlks atrophaeus, Bacillus ciculans Bacius lihenfarrris, Bacillus subtilis, Burkholder copacia, Bukholdoeia vietnamiensis, Candida krissi Chrvseomonas luteola Enteobacter aerogenes Efniterobacter asbuiae, Enterobacter sp, Enterobacter taylorse, Eupenicdihum parvum, FIguobacterium sp, K/bs/e/ sp, KluyvEr ciyocrescens, Micrhobacterium sp, Mucor ramosissimus Paociaomyces hepialld, Paocdomyces marquandin, PaeonibaciHus macerans, Paenibac/lus mucilaginosus, Pantoea agornerans, Penic/lrium expansum, Pseudomnonas corrugate, Pseudormonas tuerescens, Pscudomonas lutea, Pseudamonas pose. Pseudomonas putida, Pseudomnas stutzeri Pseudamnas trivialis Serratia marcescons, Stenotrophomonas maph/at Streptomyces sp, Streptospomngum p., Swaminathenia salitoletens, Thiobacidus ferrooxidans Toru/ospora globosa Vibrio proteolyticus, Xanthobacter agiis and Xanthomons cam pests [0065] In a particular embodiment, the phosphate solubilizing microorganism is a strain of the fungus Peniciiam Strains of the fungus Pee/ciium that may be useful in the practice of the present invention include P. bliae (formerly known as P bil), P. sib/dun P eurantiogrscumn P. chnysogenumn P citrongrum, P; a/tr/nm P, digitatum, P, gsetqurevs, P tuscur,. s, giabemn P. grseofulvur, P, imr" picatufn P janthinehaum.. / P mielalutaurn, P. montanense, P nigricans, P. oxaicum, P pinatrrnP. pnophilum, P. purpurogenum P raicans, P rd/cum, P. raistricki, P. rguosum P. siplcissimua, P solitun P variab/il, P Vlutinum, P. virid/catum, P. gtaucum, P. fussiporus, and P. expansum. (0066] In one particular embodiment, the Penicllhum species is P. bilaiae In another particular embodiment the P bilaise strains are selected from the group consisting of ATCC 20851, NRRL 50169, ATCC 22348, ATCC 18309, NRRL 50162 (Wakelin, et at, 2004. Biol Fertil Soils 4036-43) In another particular embodiment the Penicilium species is P gaestrvorus, e.g, NRRL 50170 (see, Wakelinsupra. [00671 In some embodiments, more than one phosphate solubilizing microorganism is used, such as, at least two, at least three, at least four, at least five, at least 6, including any combination of the Aa/netobacte Adhrobacter Arthrobottys, Aspergfilus Azospiehum, Bacillus, Burkboldehia, Ca ndid C/ryseomonas, Entarobacter Euaenic/Iam, Exiguobacteriunm, Klebsiela, Kluyvera, Microbacterium, Mucor Paechom yces, Paenibacillus. Peniciiun, Pseudom onas, Sanetia, Stenotophomonas, Steptomyces, Streptcsporangium. Swaminathana, Thiabaci/us Tor/ospom. Vibrio. Xanthobacter and Xanthomonas, including one species selected from the following group: Acinetobactcr calcoaceticus, Acinelobacter sp, A rhrobacafter sp.. Adh rbot rys o/gospor, Asprctgillus niqe, Aspergilus sp, Azospirihum halopraeferans, Bacillus amyio//quefaclans Bacillus etophaeus, Bacillus circulas sBacilus licheniformis Bacil/us subftis Burkholderia capacia. Bukhoi/dea vietnamiensis, Candida krssi, Chryseomonas luteola, Enterobacter aerogenes, Enterobacter asburae, Enterobacter sp.. Entersbacter taylrea, Eupenic/lihum parvur, Exiguobacterium sp Klebs/la sp, Kluyvera ctyocrescens Microbactedun sp., Mucor ramosissinus, Paec/im yces hapalid Rae cl/om yces marquandi, Paenbacil/us macerans, Paenibacilus muc/ginosus P'anioea aglomerans, Penlura expansuNm Pseudomonas con gate, Pseudomonas fluorescens Pseudmonas Iutea, Pseudomonas poae, Pseudomonas putidc, Pseudomonas stutzeri, Pseudomonas trivie/s Serratia marcescens Stenatrophomonas mataphlia Streptomyces S Streptosporangium sp., S warninat hania salitoerans. Thiobacillus fermoxidans, Toruosporn globosa Vibrio proteoyticus. Xanthobacfer agifis, and Xanthomonas campestris [0068J In some embodiments, two different strains of the same species may also be combined, for example, at least two different strains of Penicilhium are used, The use of a combination of at least two different Penic,um strains has the following advantages.When applied to soil already containing insoluble (or sparingly soluble) phosphates, the use of the combined fungal strains will result in an increase in the amount of phosphorus available for plant uptake compared to the use of only one Peniciiurn strain, This in turn may result in an increase in phosphate uptake and/or an increase in yield of plants grown in the soil compared to use of individual strains alone, The combination of strains also enables insoluble rock phosphates to be used as an effective fertilizer for soils which have inadequate amounts of available phosphorus, Thus, in some embodiments, one strain of P bilaCe and one strain of P, gaestrvorus are used. In other embodiments, the two strains are NRRL 50169 and NRRL 50162, In further embodiments, the at least two strains are NRRL 50169 and NRRL 50170. In yet further embodiments, the at least two strains are NRRL 50162 and NRRL 50170, [ 0069 The phosphate solubilizing microorganisms may be prepared using any suitable method known to the person skilled in the art, such as., solid state or liquid fermentation using a suitable carbon source, The phosphate solubilizing microorganism is preferably prepared in the form of a stable spore. [0070] In an embodiment, the phosphate solubilizing microorganism is a Penic##utm fungus. The Pnic/ium fungus according to the invention can be grown using solid state or liquid fermentation and a suitable carbon source Penicdflum isolates may be grown using any suitable method known to the person skilled in the art. For example, the fungus may be cultured on a solid growth medium such as potato dextrose agar or malt extract agar, or in flasks containing suitable liquid media such as Czapek-Dox medium or potato dextrose broth; These culture methods may be used in the preparation of an inoculum of Peniclium spp- for treating (eq coating) seeds and/or apiicaton to an agronomically acceptable carrier to be applied to soil. The term noculun" as used in this specification is intended to mean any form of phosphate solubilizing microorganism, fungus cells, rnyceliur or spores, bacterial cells or bacterial spores, which is capable of propagating on or in the soil when the conditions of temperature, moisture, etc., are favorable for fungal growth. [0071) Solid state production of Penicilium spores may be achieved by inoculating a solid medium such as a peat or vermiculite-based substrate, or grains including, but not limited to, oats, wheat, barley, or rice, The sterilized medium (achieved through autoclaving or irradiation) is inoculated with a spore suspension (1x 09-1x10' cfu/ml) of the appropriate Penicillium spp, and the moisture adjusted to 20 to 50%, depending on the substrate. The material is incubated for 2 to 8 weeks at room temperature, The spores may also be produced by liquid fermentation (Cunningham at at, 1990 Can J Bot. 68:2270-2274). Liquid production may be achieved by cultivating the fungus in any suitable media, such as potato dextrose broth or sucrose yeast extract media, under appropriate pH and temperature conditions that may be determined in accordance with standard procedures in the art. [0072) The resulting material may be used directly, or the spores may be harvested, concentrated by centrifugation, formulated, and then dried using air drying, freeze drying, or fluid bed drying techniques (Friesen, et a, 2005, Appl. Microbiol. Biotechnol 68:397-404) to produce a wettable powder The wettable powder is then suspended in water, applied to the surface of seeds, and allowed to dry prior to planting. The wettable powder may be used in conjunction with other seed treatments, such as, but not limited to, chemical seed treatments, carriers (eg, talc, clay, kaolin, silica gel, kaolinite) or polymers (e.g., methyicellulose, polyvinylpyrrolidone) Alternatively, a spore suspension of the appropriate Penicilifum app. may be applied to a suitable soil-compatible carrier (e.g, peat-based powder or granule) to appropriate final moisture content, The material may be incubated at room temperature, typically for about I day to about 8 weeks prior to use, [0073] Aside from the ingredients used to cultivate the phosphate solubilizing microorganism, including, e.g., ingredients referenced above in the cultivation of Penicillium, the phosphate solubilizing microorganism may be formulated using other agronomically acceptable carriers. As used herein in connection with "carrier", the term "agronomically acceptable" refers to any material which can be used to deliver the actives to a soybean seed soil or soybean plant, and preferably which carrier can be added (to the seed, soil or plant) wiithout having an adverse effect on plant growth, soil structure, soil drainage or thelie Suitable carriers comprise, but are not limited to, wheat chaff, bran, ground wheat straw, peat-based powders or granules, gypsum-based granules, and clays (eg., kaolin, bentonite, montmorillonite). When spores are added to the soil a granular formulation will be preferable. Formulations as liquid, peat, or wettable powder will be suitable for coating of soybean seeds. When used to coat soybean seeds, the material can be mixed with water, applied to the seeds and allowed to dry. Example of yet other carriers include moistened bran, dried, sieved and applied to soybean seeds prior coated with an adhesive, e g. gum arabic. In embodiments that entail formulation of the actives in a single composition, the agronomically acceptable carrier may be aqueous. (00741 The amount of the at least one phosphate solubilizing microorganism varies depending on the type of soil, the amounts of the source of phosphorus and/or micronutrients present in the soil or added thereto, etc. A suitable amount can be found by simple trial and error experiments for each particular case, Normally, for Penicifium, for example, the application amount falls into the range of 0,001 -1 .0 Kg fungal spores and mycelium (fresh weight) per hectare, or 10O10& colony forming units (cfu) per seed (when coated seeds are used), or on a granular carrier applying between 1x10 and 1x10' colony forming units per hectare. The fungal cells in the form of ag_ spores and the carrier can be added to a seed row of the soil at the root level or can be used to coat seeds prior to planting. (0075] In embodiments, for example, that entail use of at least two strains of a phosphate solubilizing microorganrsin, such as, two strains of Penicilium, commercial fertilizers may be added to the soil instead of (or even as well as) natural rock phosphate. The source of phosphorous may contain a source of phosphorous native to the soil. In other embodiments, the source of phosphorous may be added to the soil. In one embodiment the source is rock phosphate. In another embodiment the source is a manufactured fertilizer, Commercially available manufactured phosphate fertilizers are of many types. Some common ones are those containing rnonoammonium phosphate (MAP), triple super phosphate (TSP), diammonium phosphate, ordinary superphosphate and ammonium polyphosphate. All of these fertilizers are produced by chemical processing of insoluble natural rock phosphates in large scale fertilizer-manufacturing facilities and the product is expensive. By means of the present invention it is possible to reduce the amount of these fertilizers applied to the soil while still maintaining the same amount of phosphorus uptake from the soil, [00763 In a further embodiment, the source or phosphorus is organic An organic fertilizer refers to a soil amendment derived from natural sources that guarantees, at least, the minimum percentages of nitrogen, phosphate, and potash, Examples include plant and animal by-products, rock powders, seaweed, inoculants, and conditioners, Specific representative examples include bone meal, meat meal, animal manure, compost, sewage sludge, or guano. [0077] Other fertilizers, such as nitrogen sources, or other soil amendments may of course also be added to the soil at approximately the same time as the phosphate solubilizing mnicroorganism or at other times, so long as the other materials are not toxic to the fungus, [0100] Diazotrophs are bacteria and archaea that fix atmospheric nitrogen gas into a more usable form such as ammonia. Examples of diazotrophs include bacteria from the genera Rhizobium spp. (e,g, R. celiulosilyticum, R. daejeonense, R. etli, R, galegae, R. gallicum, R, giardinii, R. hainanense, R, huautlense, R indigoferae R, leguminosarum, R, loessense, R lupini, R, lusitanum, R, meliloti, R mongolense, R. miluonense, R. sullae, R. tropici. R. undicola, and/or R yanglingense), Bradyrhizobium app, (e g, B. bete, B, canariense, B. elkanii, B, iriomotense, B, japonicum, B. jicamae, B liaoningense, B. pachyrhizi, and/or B. yuanmingense), Azorhizobium spp, (e.g., A. caulinodans and/or A. doebereinerse), Sinorhizobium spp. (e.g., S, abri, S. adhaerens, S. americanum, S, aboris, S. fredii, S, indiaense. S., kostiense, S. kummerowiae, S, medicae, S. meliloti, S. mexicanus, S, morelense, S. saheli, S. terangae, and/or S. xinjiangense), Mesorhizobium spp., (M. albiziae, M. amorphae, M, chacoense, M. ciceri, M. huakuli ML loti, M. mediterraneum, M. pluifarium, M. septentrionale, M. temperatum, and/or M. tianshanense). and combinations thereof. In a particular embodiment, the diazotroph is selected from the group consisting of B, japonicum. R leguminosarum, R meliloti, S, meliloti, and combinations thereof. In another embodiment, the diazotroph is B, japonicum, In another embodiment, the diazotroph is R leguminosarum, In another embodiment, the diazotroph is R meliloti In another embodiment, the diazotroph is S. meloti. [0101] Mycorrhizal fungi form symbiotic associations with the roots of a vascular plant, and provide, e~g., absorptive capacity for water and mineral nutrients due to the comparatively large surface area of mycelium, Mycorrhizal fungi include endomycorrhizal fungi (also called vesicular arbuscular mycorrhizae, VAMs, arbuscular mycorrhizae, or AMa), an ectomycorrhizal fungi or a combination thereof. In one embodiment, the mycorrhizal fungi is an endomycorrhizae of the phylum Glomeromycota and genera Glomus and Gigaspora. In still a further embodiment, the endomycorrhizae is a strain of Glomus aggregatum, Glomus brasilianum, Glomus clarum, Giomus deserticola, Glomus etunicaturn, Glomus fasciculatum, Glomus intraradices, Glomus monosporum, or Glomus mosseae, Gigaspora rarmgarita, or a combination thereof, [0102] Examples of mycorrhizal fungi include ectomycorrhizae of the phylum Basidiomycota, Ascomycota, and Zygomycota. Other examples include a strain of Laccaria bicolor, Laccaria laccata, Pisolithus tinctorius, Rhizopogon amylopogon, Rhizopogon fulvigieba, Rhizopogon luteolus, Rhizopogon villosuli, Scleroderma cepa, Sleroderma citrinuim, or a combination thereof [0103] The mycorrhizal fungi include ecroid mycorrhizae, arbutoid mycorrhizae, or monotropoid mycorrhizae. Arbuscular and ectornycorrhizae form ericoid mycorrhiza with many plants belonging to the order Ericales, while some Ericales form arbutoid and monotropoid mycorrhizae. In one embodiment, the mycorrhiza may be an ericoid mycorrhiza, preferably of the phylum Ascorrycota, such as Hymenoscyphous ericae or Oidiodendron sp. In another embodiment, the mycorrhiza also may be an arbutoid mycorrhiza, preferably of the phylum Basidiomycota. In yet another embodiment, the mycorrhiza may be a monotripoid mycorrhiza, preferably of the phylum Basidiomycota In still yet another embodiment, the myconhiza may be an orchid mycorrhiza, preferably of the genus Rhizoctonia. [0078] The invention will now be described in terms of the following non-imiting examples. Unless indicated to the contrary, water was used as the control (indicated as "control" or "CHK").
Examples Greenhouse Experiments Example 1: Treatment of soybean with various actives [0079] Soybean seeds (Jung seed, var, 8168NRR) were treated with various active molecules. Seeds were treated with a liquid dose rate of 3 fi oz/ 100 lbs of seed, Seeds were allowed to dry for a 2 hours and planted in greenhouse in plastic pots containing 1:1 sand:iedite mixture. Seedlings were grown for 4 wks with occasional liquid fertilizer applications and then the plants were harvested, The central leaflet from the 2nd trifoliate (from down to top) was isolated and measured for surface area on a WinRhizo scanner, The rest of the plants were used for plant dry weight (DW). [0080] Results obtained from the experiment elucidated that non-inventive pea LCO, the inventive pea CO and the China CO showed significant increase in leaf surface area. But among these three actives, the pea CO produced the highest leaf surface area (significantly higher than the control (water)) and relatively higher than Chinese CO (Fig. 5), In another experiment, CO produced the highest plant dry weights in terms of either shoot, or root or total plant biomass, Thus, it was evident that the biomass increase by CO was better than the soybean LCO or any other treatments including water as a control and isoflavonoids as a separate plant signal molecule (Fig, 6), Example 2: Soybean seed treatment [0081] Soybean seeds (Pioneer 9oM80) were plated in petriplates on moist germination paper soaked with 5 ml of treatment solution containing either water or Soybean LCO, Pea CO and CO plus fatty acids. Seedling radicles were isolated after 48 hours and measured for their length, [0082] LCO showed better seed radicle growth enhancement over control and CO but it was CO plus Stearic acid or Palm tic acid that exhibited significant increase in radicle length. CO itself is less effective that LCO on soybean but addition of fatty acid either Palmitic or Stearic acid with CO could further enhance seedling radical growth (Fig. 7). Example 3: Soybean foliar treatment with various actives [0083] Soybean plants (Jung seed, var, 8168NRR) were treated with various active molecules at V44 growth stage. Plant were grown from seeds in greenhouse in plastic pots containing 1:1 sandiperlite mixture. Seedlings were grown for 4 wks with occasional liquid fertilizer appdcations and then the plants were harvested. [0084) Foliar application of soybean LCO, Pea CO or China-CO had no significant effect on plant dry biomass increase (Fig. 8). The biomass for each of LCO, CO and China-CO was relatively higher than the control plants, with the actives equally effective. 1840: Field Trials Example 4: Soybean [0085) Nineteen field trials were conducted to evaluate embodiments of the present invention on grain yield when applied to soybean foliage The field trials were conducted in eight states with various soil characteristics and environmental conditions, [0086] The treatments used in the trials were control (water), pure CO (chitoolCgosaccharide) - O (illustrated in Fig, 2a) and pure LCO (Iipo-chitooligosaccharide) - SP104 (illustrated in Fig, 2b) CO and LCO treatments were 8 x 10* molar concentration resulting in 12 pg / acre applied. Different commercial soybean varieties were employed, Treatments were added to glyphosate herbicide and sprayed on the foliage at plant vegetative stage V4 to V5, Four ounces per acre of the treatment was combined with the herbicide and water was applied at a rate of 5 to 10 gallons per acre. Soybeans were grown to maturity, harvested and grain yield determined, The results are set forth in Table 1. YIELD (Lu / A Control LCO (SF 104' UG C (COV) Mean (N 19) 565 58 582 Response (bu / A) 1.8 1.7 Response Increase (% of Control) 3% 3% Positive Yield Response (%) 68,4 68_4 [0087] As reflected by comparison between Control and 0O, the yield was enhanced by foliar CO treatment by 1.7 bu / A, resulting in a 3% increase over the Control, and a positive yield enhancement occurred in 684% of the trials, [0088] In comparison to the foliar LCO response, the CO mean yield was 0.1 bu / A, less, but the same percent yield increase over the Control and the same percent positive yield enhancement. Therefore, both CO and LCO provided substantial equal yield enhancements as a foliar treatment [0089) Atl patent and norvpatent publications cited in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains, All these publications are herein incorporated by reference to the same extent as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference [0090) Although the invention herein has been described wth reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims

Claims (29)

  1. 2. The method of claim 1, wherein the at least one CO is represented by the formula: RR H R R -wherein R, and R,, each independently represents hydrogen or methyl R,,,, represents hydrogen,, acetyl or carbamoyl; R4 represents hydrogen, acetyl or carbamoyl; R5 represents hydrogen, acetyl or carbamoyl; Rj represents hydrogen, arabinosyl, fucosyl, acetyl, sulfate ester, 3-0-S-2 O-MeFuc, 2-0-Me~uc- and 4-0 AcFuc;, R-, represents hydrogen, mannosyl or glycerol; Rg represents hydrogen, methyl, or -CH0H; R, represents hydrogen, arabinosyl, or fucosy R, represents hydrogen, acetyl or fucosyl;, and n represents 0,1, 2 or 3,
  2. 3. The method of claim 1, wherein the at least one CO is illustrated in Fig, 1a.
  3. 4. The method of claim 1, wherein the at least one CO is illustrated in Fig, 2a, 5, The method of claim 1 wherein the at least one O is represented by the formula" OH HoH NHN N H o HoH wherein n I or 2; R, represents hydrogen or methyL and R2 represents hydrogen or SO 2 H
  4. 6. The method of clairn 1, wherein the at least one CO is illustrated in Fig. 3a,
  5. 7. The method of clairn 1, wherein the at least one CO is illustrated in Fig, 4a,
  6. 8. The method of claim 1, wherein the at least one CO is synthetic,
  7. 9. The method of claim 1, wherein the at least one CO is recombinant.
  8. 10. The method of claim 9, wherein the at least one recombinant CO is at least 60% pure. 1i The method of claim 9, wherein the at least one recombinant CO is at least 70% pure,
  9. 12. The method of claim 9, wherein the at least one recombinant CO is at least 80% pure.
  10. 13. The method of claim 9, wherein the at least one recombinant CO is at least 90% pure
  11. 14. The method of claim 1, wherein the at least one CO is applied to the soybean seed prior to planting or at about the time of planting,
  12. 15. The method of claim 14, wherein the effective amount of the at least one CO is from about 10 to about 1014 Molar 16 The method of claim 1, wherein the at least one CO is applied to the soybean seed in furrow 17, The method of claim 16, wherein the effective amount of the at least one CO is from 1 pg/acre to about 70 pg/acre.
  13. 18. The method of claim 1, wherein the at least one CO is applied to the soybean plant via foliar treatment
  14. 19. The method of claim 18, wherein the effective amount of the at least one CO is from 1 pg/acre to about 30 pg/acre
  15. 20. The method of claim 1 further comprising applying to the soybean plant or seed thereof at least one agronomically beneficial agent. 21, The method of claim 20, wherein the at least one agronomically beneficial agent is a micronutrient.
  16. 22. The method of claim 21; wherein the micronutrient is selected from the group consisting of vitamins and trace minerals, 23, The method of dairn 20, wherein the agronomically beneficial agent is a fatty acid or a derivative thereof.
  17. 24. The method of claim 20, wherein the at least one agronomically beneficial agent is a plant signal molecule,
  18. 25. The method of claim 24, wherein the plant signal molecule is a lipo-chitooligosaccharide (LCO),
  19. 26. The method of ciaim 25, wherein the LCO is illustrated in Fig. 1b
  20. 27. The method of claim 25, wherein the LCO is illustrated in Fig. 2b,
  21. 28. The method of claim 25, wherein the LCO is illustrated in Fig. 3b.
  22. 29. The method of claim 25, wherein the LCO is illustrated in Fig. 4b.
  23. 30. The method of claim 24, wherein the plant signal molecule is selected from the group consisting of chitinous compounds, flavonoids, jasmonic acid and derivatives thereof, linoleic acid and derivatives thereof, linolenic acid and derivatives thereof, and karrikins and derivatives thereof.
  24. 31. The method of claim 20, wherein the agronomically beneficial agent is an herbicide, insecticide, a fungictd or any combination thereof.
  25. 32. The method of claim 207 wherein the agronomicaliy beneficial agent is a phosphate solubilising microorgarnism, diazotroph (Rh izobial inoculants), and/or mycorrhizal fungi.
  26. 33. The method of claim 32, wherein the at least one phosphate solibilizing microorganism comprises a strain of the fungus Penicilum.
  27. 34. The method of ciaan 32, wherein the at least one phosphate solubilizing microorganism comprises a strain of P. bilaie.
  28. 35. The method of claim 34, wherein the strain of P bilaie is selected from the group consisting of NRRL 50162, NRRL 50169, ATCC 20851, ATCC 22348, and ATCC 18309.
  29. 36. The method of claim 32, wherein the at least one phosphate solubilizing microorganism comprises a strain of P gaestrivorus.
AU2015258276A 2011-09-23 2015-11-20 Chitooligosaccharides and methods for use in enhancing soybean growth Abandoned AU2015258276A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2015258276A AU2015258276A1 (en) 2011-09-23 2015-11-20 Chitooligosaccharides and methods for use in enhancing soybean growth

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US61/538,369 2011-09-23
AU2012312007A AU2012312007B2 (en) 2011-09-23 2012-09-24 Chitooligosaccharides and methods for use in enhancing soybean growth
AU2015258276A AU2015258276A1 (en) 2011-09-23 2015-11-20 Chitooligosaccharides and methods for use in enhancing soybean growth

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2012312007A Division AU2012312007B2 (en) 2011-09-23 2012-09-24 Chitooligosaccharides and methods for use in enhancing soybean growth

Publications (1)

Publication Number Publication Date
AU2015258276A1 true AU2015258276A1 (en) 2015-12-10

Family

ID=54774419

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2015258276A Abandoned AU2015258276A1 (en) 2011-09-23 2015-11-20 Chitooligosaccharides and methods for use in enhancing soybean growth

Country Status (1)

Country Link
AU (1) AU2015258276A1 (en)

Similar Documents

Publication Publication Date Title
US11134683B2 (en) Chitooligosaccharides and methods for use in enhancing plant growth
US10188104B2 (en) Combinations of lipo-chitooligosaccharides and methods for use in enhancing plant growth
EP2747567B1 (en) Chitooligosaccharides and methods for use in enhancing soybean growth
US20200187506A1 (en) Combinations of Lipo-Chitooligosaccharides and Methods for Use in Enhancing Plant Growth
AU2015258276A1 (en) Chitooligosaccharides and methods for use in enhancing soybean growth
RU2588162C2 (en) Chitooligosaccharides and methods for use thereof to enhance soya growth
NZ622560B2 (en) Combinations of lipo-chitooligosaccharides and methods for use in enhancing plant growth
NZ622561B2 (en) Chitooligosaccharides and methods for use in enhancing plant growth

Legal Events

Date Code Title Description
MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted