AU2014277759B2 - Transverse rod connector - Google Patents

Transverse rod connector Download PDF

Info

Publication number
AU2014277759B2
AU2014277759B2 AU2014277759A AU2014277759A AU2014277759B2 AU 2014277759 B2 AU2014277759 B2 AU 2014277759B2 AU 2014277759 A AU2014277759 A AU 2014277759A AU 2014277759 A AU2014277759 A AU 2014277759A AU 2014277759 B2 AU2014277759 B2 AU 2014277759B2
Authority
AU
Australia
Prior art keywords
elongate member
connection members
connection
transverse rod
rod connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2014277759A
Other versions
AU2014277759A1 (en
Inventor
Michael Barrus
Steven A. Brown
Scott Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
K2M Inc
Original Assignee
K2M Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2010284014A external-priority patent/AU2010284014B2/en
Application filed by K2M Inc filed Critical K2M Inc
Priority to AU2014277759A priority Critical patent/AU2014277759B2/en
Publication of AU2014277759A1 publication Critical patent/AU2014277759A1/en
Application granted granted Critical
Publication of AU2014277759B2 publication Critical patent/AU2014277759B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention relates to a device for interconnecting bone anchors and, more particularly, to a transverse rod connector configured for multidirectional articulation with respect to the bone anchor. In one embodiment of the invention, there is provided a transverse rod connector including, an elongate member and first and second connection members. The elongate member includes first and second ends and may be longitudinally adjustable. The first and second connection members are connected with the first and second ends of the elongate member, respectively. The first and second connection members are configured for multidirectional positioning with respect to the elongate member. The first and second connection members are each dimensioned to be selectively and releasably secured to a bone anchor.

Description

WO 2011/022723 PCT/US2010/046324 TRANSVERSE ROD CONNECTOR CROSS-REFERENCE TO RELATED APPLICATION 10001] The present application claims the benefit of and priority to U.S. Provisional Patent Application Serial No. 61/274,820, filed August 21, 2009, the disclosure of which is herein incorporated by reference in its entirety. BACKGROUND Technical Field [0002] The present disclosure relates to a device for interconnecting bone anchors and, more particularly, to a transverse rod connector configured for multidirectional articulation with respect to the bone anchor. Background of Related Art [0003] Disease, the effects of aging, or physical trauma resulting in damage to the spine has been treated in many instances by fixation or stabilization of the effected vertebra. A wide variety of spinal fixation apparatuses have been employed in surgical procedures for correcting spinal injuries and the effects of spinal diseases. Many of these apparatuses commonly use a pair of longitudinal rods running in a relatively parallel relationship to each other and the spinal column. These rods are connected to coupling elements, which in turn are secured to the underlying vertebral bone by spinal bone fixation fasteners such as pedicle screws, hooks, and the like. The pair of longitudinal rods can be held in position relative to one another by transverse connectors, also known as transverse bridge elements or cross-connectors. [0004] As the technology of spinal surgery has developed and improved, each of the spinal fixation components has also undergone improvements and modifications to address the shortcomings of conventional spinal fixation components. The natural anatomical variations in the spinal column of a subject are such that implanted spinal rods, while approximating a parallel WO 2011/022723 PCT/US2010/046324 relationship one to the other, can vary from that parallel relationship considerably and in multiple planes. For this reason, any transverse connector used to attach the two rods to each other should not be of a rigid design without the ability to be re-configured as needed during the process of implanting and attaching to the two opposing rods. While some improvements have been made in the articulation and re-configuration operation of transverse connectors during the implantation and rod connection process, a continuing need exists to provide an improved multidirectional articulating transverse connector that can adapt to a wide variance in the contours of the spinal column. Further, a need exists to provide such a transverse connector that can provide a secure attachment means to the spinal construct, most specifically in the posterior cervical spine region where a conventional cross connector cannot be inserted due to the short distance between bone anchor heads. 100051 Conventional efforts to meet this need have fallen short of the desired transverse connector configuration. For example, U.S. Patent Publication No. 2006/0064091 to Ludwig includes first and second connector members for connection to the respective first and second bone anchors. The two connector members are connected one to the other by a fixed member, thereby not allowing adjustment between the connector members to accommodate the anatomy. In addition, the fixed member does not provide rotational freedom and needs to be bent into the appropriate configuration prior to attaching to the bone anchor. 100061 For reasons discussed above, a continuing need exists for a transverse rod connector that provides ease of operation by the surgeon to simultaneously adjust in multiple dimensions one bone anchor connecting end of the system in relation to the other bone anchor connecting end of the system and to provide a device having secure attachment means to the bone anchor of the spinal construct. SUMMARY 10007] In accordance with an embodiment of the present disclosure, there is provided a transverse rod connector including, an elongate member and first and second connection WO 2011/022723 PCT/US2010/046324 members. The elongate member includes first and second ends and may be longitudinally adjustable. The first and second connection members are connected with the first and second ends of the elongate member, respectively. The first and second connection members are configured for multidirectional positioning with respect to the elongate member. The first and second connection members are each dimensioned to be selectively and releasably secured to a bone anchor. [00081 In an embodiment, the first and second connection members may each include a base portion and a closing portion. The base portion and the closing portion may define a connection passage for receiving the bone anchor. Further, the base portion and the closing portion may be hingedly connected. [00091 In another embodiment, the first and second connection members may each define an opening. In addition, the opening may align with the bone anchor when the bone anchor is received in the connection passage. The first and second connection members may each include a screw dimensioned to be received in the opening. The screws may couple the first and second connection members with bone anchors. [00101 In yet another embodiment, the first and second ends of the elongate members may each include a receptacle portion. The first and second connection members may each include a ball joint. The ball joints may be received in the respective receptacle portions for multidirectional positioning of the first and second connection members with respect to the elongate member. The elongate member may include first and second screws dimensioned to be received in the respective receptacle portions. The first and second screws may securely fix the ball joints in the respective receptacle portions to fix the orientation of the connection members with respect to the elongate member. 100111 In still another embodiment, the first and second ends of the elongate members may each include a ball joint. The first and second connection members may each include a WO 2011/022723 PCT/US2010/046324 socket portion. The ball joints may be received in the respective socket portions for multidirectional positioning of the first and second connection members with respect to the elongate member. The first and second connection members may each include a screw dimensioned to be received in the socket portion. The screws may securely fix the ball joints in the socket portions to adjustably fix the orientation of the respective connection members with respect to the elongate member. [00121 In still another embodiment, the elongate member may include first and second portions longitudinally translatable with respect to each other. The first and second portions may at least partially overlap each other. The elongate member may define a through hole. The elongate member may further include a screw dimensioned to be received in the through hole. The screw may securely fix the position of the first and second portions with respect to each other. 100131 In accordance with another embodiment of the present disclosure, there is provided a transverse rod connector including, an elongate member and first and second connection members. The elongate member includes first and second ends. The first and second connection members are connected with first and second ends, respectively. The first and second connection members are selectively and releasably secured to bone anchors, respectively. The first and second connection members each include a stationary portion and a sliding portion. The stationary portion and the sliding portion define a connection passage. The sliding portion is movable to adjust the dimensions of the connection passage. [00141 In an embodiment, the first and second connection members may each define a receptacle portion dimensioned to receive a screw for coupling bone anchors to respective first and second connection members. The receptacle portion may be defined in the sliding portion of the first and second connection members. In addition, the first and second ends of the elongate member may each define an opening dimensioned to receive the screw. The
A
WO 2011/022723 PCT/US2010/046324 opening may be dimensioned for longitudinal movement of the screw with respect to the elongate member when the screw is securely fixed to the receptacle portion. Further, the elongate member may be arched. The elongate member may further include screw caps for fastening elongate member against the first and second connection members. BRIEF DESCRIPTION OF THE DRAWINGS 100151 The foregoing and other features of the transverse rod connector will become apparent to one skilled in the art to which the disclosed system and devices relate upon consideration of the following description of exemplary embodiments with reference to the accompanying drawings, wherein: 100161 FIG. I is a perspective view of a transverse rod connector in accordance with an embodiment of the present disclosure; [00171 FIG. 2 is an end view of the transverse rod connector of FIG. 1; [0018] FIG. 3 is a top view of the transverse rod connector of FIG. 1; 100191 FIG. 4 is a cross-sectional end view of the embodiment of FIG. 3 taken along section line L-L; [0020] FIG. 5A is a perspective view of the transverse rod connector of FIG. 1 coupled to bone anchors in an extended position; 100211 FIG. 5B is an end view of the transverse rod connector of FIG. 5A coupled to the bone anchors in a retracted position; 100221 FIG. 6A is a perspective view of a transverse rod connector in accordance with another embodiment of the present disclosure; 100231 FIG. 6B is an end view of the transverse rod connector of FIG. 6A with screws separated; 100241 FIG. 7 is a perspective view of a transverse rod connector in accordance with another embodiment of the present disclosure; WO 2011/022723 PCT/US2010/046324 [00251 FIG. 8 is a perspective view of the transverse rod connector of FIG. 7 with parts separated; 100261 FIG. 9 is a top view of the transverse rod connector of FIG. 7 in a retracted position; [0027] FIG. 10 is a cross-sectional end view of the embodiment of FIG. 9 taken along section line A-A; [0028] FIG. I1 is a top view of the transverse rod connector of FIG. 7 in an extended position; 100291 FIG. 12 is a cross-sectional end view of the embodiment of FIG. 11 taken along section line B-B; [0030] FIG. 13 is a perspective view of the transverse rod connector of FIG. 7 engaging bone anchors in an extended position; [0031] FIG. 14 is an end view of the transverse rod connector of FIG. 7 engaging bone anchors in an extended position; [0032] FIG. 15 is a perspective view of a connection member for use with the transverse rod connector of FIG. 7; [0033] FIG. 16A is a perspective view of the connection member of FIG. 15 in an open configuration; [0034] FIG. 17 is a perspective view of a transverse rod connector in accordance with another embodiment of the present disclosure; [0035] FIG. 18 is a perspective view of the transverse rod connector of FIG. 12 with parts separated; [0036] FIG. 19 is a top view of the transverse rod connector of FIG. 17; 100371 FIG. 20 is a cross-sectional end view of the embodiment of FIG. 19 taken along section line A-A; WO 2011/022723 PCT/US2010/046324 [0038] FIG. 21A is a perspective view of a bone anchor for use with the transverse rod connector of FIG. 17; and [00391 FIG. 21B is a side view of the bone anchor of FIG. 21 A with parts separated. DETAILED DESCRIPTION OF THE EMBODIMENTS 100401 Various embodiments of the presently disclosed transverse rod connector will now be described in detail with reference to the drawings, wherein like reference numerals identify similar or identical elements. In the drawings and in the description that follows, the term "proximal," will refer to the end of a device or system that is closest to the operator, while the term "distal" will refer to the end of the device or system that is farthest from the operator. In addition, the term "cephalad" is used in this application to indicate a direction toward a patient's head, whereas the term "caudad" indicates a direction toward the patient's feet. Further still, for the purposes of this application, the term "medial" indicates a direction toward the middle of the body of the patient, whilst the term "lateral" indicates a direction toward a side of the body of the patient (i.e., away from the middle of the body of the patient). The term "posterior" indicates a direction toward the patient's back, and the term "anterior" indicates a direction toward the patient's front. In the following description, well known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. [00411 The presently disclosed transverse rod connector is generally shown as reference numeral 10 in FIG. 1. Transverse rod connector 10 includes a cross member assembly 20 and first and second connection members 12, 14. The first and second connection members 12, 14 are disposed at opposing ends 16, 18 of the device 10, respectively. The two connection members 12, 14 are each configured to be selectively and releasably secured to a bone anchor 1000, which in turn can be secured to a subject's vertebra or other bone structure. Connection members 12, 14, however, may be configured to couple with other securement structures such as bone pins. - I - WO 2011/022723 PCT/US2010/046324 [00421 As shown in FIGS. 21A and 21B, bone anchor 1000 may include a pedicle screw 1010, a pin 1030, a coupling 1050 and a collet 1070. Coupling 1050 may define a saddle 1058 having a generally U-shaped configuration. Saddle 1058 is configured and dimensioned for receiving a rod 88 shown in FIGS. 5A, 5B, 6A, 6B, 13 and 14. Rod 88 may be used in any or all of the disclosed embodiments. In addition, coupling 1050 may also include a plurality of fingers 1056 extending radially outward. Collet 1070 includes a generally cylindrical body portion 1072 with an opening 1074 extending axially therethrough and a pair of upstanding wings 1076 that define a saddle 1078 which is also generally U-shaped. Body portion 1072 includes a slot 1073, and as such wings 1076 may flex toward and away from each other, whereby flexing of wings 1076 toward each other engages the outer surface of a rod 88 disposed in saddle 1078 to enable fictional securing of the rod 88. [0043] Pedicle screw 1010 may include a shank 1016 having a helical thread 1014 formed thereon. A cutting portion 1012 is formed at a distal end of the pedicle screw 1010. A head 1018 is disposed at a proximal end of pedicle screw 1010. On the top surface of head 1018, an opening is formed. The opening may include configuration for receiving the operative end of a suitable driving tool. 100441 Collet 1070 is seated atop head 1018 of pedicle screw 1010. The opening at the bottom of collet 1070 is dimensioned and configured for receiving head 1018. As such, collet 1070 and head 1018 are rotatable and pivotable in relation to each other, thereby allowing the pedicle screw 1010 to be repositioned in a plurality of orientations relative to collet 1070. Collet 1070 and pedicle screw 1010 are inserted into coupling 1050. Pin 1030 aligns collet 1070 and coupling 1050 for maintaining a fixed relationship therebetween. As assembled, pedicle screw 1010 is rotatable and pivotable in relation to collet 1070 and coupling 1050. Reference may be made to International Patent Application No. PCT/US2008/080682, filed on April 23, 2010, WO 2011/022723 PCT/US2010/046324 entitled "POSTERIOR PEDICLE SCREW HAVING A TAPER LOCK," the entire disclosure of which is incorporated by reference herein. [0045] As shown in FIG. 2, the connection members 12, 14 define first and second connection passages 22, 24, respectively. Connection passages 22, 24 are opened medial-laterally at the first or second end 16, 18 of the device 10. The outermost edges of the respective medial laterally opened connection passages 22, 24 can be configured to provide a retention feature 26, 28, as depicted in Figure 4, for coupling or attaching to bone anchor 1000. The retention feature is configured as a hinge mechanism 25 (See Figure 2 and 5B) to facilitate attachment onto bone anchor 1000. Once bone anchor 1000 (for example fingers 1056 and/or wings 1076) has been captured by the retention features 26, 28, bone anchor locking screws 97, 98 are threaded into respective openings 48, 50 to couple first and second connection members 12, 14 to respective bone anchors 1000. [0046] The first and second connection members 12, 14 define ball joints 34, 36 at their most proximal ends 30, 32, respectively. Each of the ball joints 34, 36 are configured to slide and drop into the ball joint receptacles 55, 56 of the cross member assembly 20. As shown in FIGS. 4 and 5B, connection members 12, 14 may each include a rigid ring member 37 that contains internal threads for coupling with the bone anchor locking screws 97, 98. This rigid ring member 37 may also contain a tab feature or other such member on the extemal diameter to mate with a bone anchor 1000 such that it prevents rotation of said bone anchor 1000. [00471 As shown in FIG. 4, the upper surface 38 of the cross member assembly defines bone anchor locking screw receptacles 40, 42 which are sized and configured to receive a locking screw 44, 46. The bone anchor locking screw receptacles 40, 42 as best shown in FIG. 4 are provided with threads to secure the locking screws 44, 46 into place. [00481 As shown in FIGS. 3 and 4, the cross member assembly 20 has two sliding portions 52, 54. Each sliding portion 52, 54 contains a ball joint receptacle 55, 56, and can slide -0- WO 2011/022723 PCT/US2010/046324 freely with respect to each other. Once the desired distance between the two ball joint receptacles 55, 56 is obtained, a bone anchor locking screw 58 is attached to the bone anchor locking screw receptacle 57 to securely fix the cross member assembly 20 and lock it into position. [0049] As shown in the non-limiting examples of FIGS. 14, any articulating surface of the device can be treated, machined, scored, or in any known manner textured to provide a roughened or textured surface that can serve to increase the locking contact of those surfaces when the articulating members are set in place and the associated locking screws are manipulated to lock the device in the desired configuration. 100501 In operation, a user as indicated above can manipulate the device 10 into position relative to two opposing and relatively parallel bone anchors, independently connecting the first and second connection members 12, 14 to their respective bone anchors and adjusting the alignment of the member 12,14 with the centrally connected cross member assembly 20 by manipulating the respective first ball joint 34 within the first ball joint receptacle 55 and the second ball joint 36 with the second ball joint receptacle 56 and selecting the appropriate length of the cross member (see Figure 5A). When all members of the device 10 are positioned in a desired orientation, the user can tighten the provided locking screws 44, 46, 58, and lock the device into a selected configuration relative to the two opposing bone anchors 1000. Adjustment or removal of the device can be easily achieved by loosening the locking screws 44, 46, 58. 10051] As shown in FIGS. 6A and 68, another embodiment 200 provides a two-part capture mechanism including a mobile portion 210 and a stationary portion 212 for retaining bone anchor 1000. The first portion captures one-half of bone anchor 1000 while the second half overlaps it to capture the remaining portion. Figure 6B displays the open configuration of the transverse rod connector, whereby the lateral portion of the connection member slides laterally to allow for ease of attachment onto a bone anchor. The retaining feature of the stationary portion 212 and the retaining feature of the mobile portion 210 capture the bone anchor 1000. The stationary and - in- WO 2011/022723 PCT/US2010/046324 mobile portions 210, 212 along with the bone anchor 1000 are retained by coupling of a bone anchor locking screw 220. This closed configuration is depicted in Figure 6A. 100521 With reference now to FIGS. 7-16, yet another embodiment of a transverse rod connector in accordance with the present disclosure, is illustrated. In the interest of brevity, the present embodiment will focus on the differences between the previously described transverse rod connectors 10, 200 and connector 300. Connector 300 includes a cross member assembly 320 and first and second connection members 312, 314. Each connection member 312, 314 is configured to be selectively and releasably secured to bone anchor 1000 which is secured to a subject's vertebra or other bone structure. [0053] As best shown in FIGS. 8, 10 and 12, cross member assembly 320 includes an elongate member 301 with first and second ends 316, 318. First and second ends 316, 318 include ball joints 334, 336, respectively. In addition, elongate member 301 may include a first portion 301a and a second portion 301b. First and second portions 301a, 301b may be slidably coupled to enable reciprocating translation with respect to each other. (FIGS. 11 and 12 illustrate an extended position in which first and second portions 301 a, 301b are at least partially overlapped). At least one of first and second portions 301 a, 301b may define a threaded bore 303 to enable screw 58 to securely fix the relative position of first and second portions 301 a, 301 b, in order to meet the needs of a particular procedure being performed. As shown in FIGS. 8-12, second portion 301b defines such threaded bore 303 at an end portion thereof which remains at least partially overlapped with first portion 301 a to fix the relative position with respect to each other. [0054] With reference now to FIGS. 14-16, connection members 312, 314 each include a base portion 312a, 314a and a closing portion 312b, 314b. Each connection member 312, 314 defines a connection passage 322, 324 dimensioned to receive bone anchor 1000. Respective closing portions 312b, 314b may be hingedly connected to base members _11 _ WO 2011/022723 PCT/US2010/046324 312a, 314a. In contrast to the previously described embodiments, each connection member 312, 314 includes a socket 380, 382 for receiving therein respective ball joints 334, 336, as best illustrated in FIGS. 15 and 16. In particular, sockets 380, 382 each define respective openings 381, 383, through which ball joints 334, 336 of elongate member 301 are received. Sockets 380, 382 may include internal threads for receiving screws 370. Screws 370 may be provided to securely fix ball joints 334, 336 in sockets 380, 382. As such, the relative position/orientation of elongate member 301 and connection members 312, 314 may be adjusted to meet the needs of the particular procedure being performed. Operation of transverse rod connector 300 is substantially similar to connector systems 10, 200 described hereinabove, and will be omitted in the interest of brevity. [00551 With reference now to FIGS. 17-20, a connector system 400 in accordance with still another embodiment of the present disclosure is illustrated. In the interest of brevity, the present embodiment will focus on the differences between the previously described transverse rod connectors 10, 200, 300 and connector system 400. Connector system 400 includes an elongate member 401 and first and second connection members 412, 414. Each of connection members 412, 414 may be selectively and releasably secured to bone anchor 1000 which is secured to a subject's vertebra or other bone structure. [00561 Elongate member 401 includes a body portion 402 which may be arched as shown in FIGS. 17, 18 and 20 and receiving end portions 416, 418. Receiving end portions 416, 418 each define an opening 416a, 418a dimensioned to receive a screw 470. Openings 416a, 418a may also be dimensioned to enable adjustment of the distance between connection members 412, 414, as will be described below. [00571 Connection members 412, 414 each include a stationary portion 412a, 414a and a sliding portion 412b, 414b, as best seen in FIG. 18. Each stationary portion 412a, 414a includes at least one lateral pin 413, 415 slidably received within respective longitudinal slots WO 2011/022723 PCT/US2010/046324 418, 419 defined in respective sliding portions 412b, 414b. Such configuration enables reciprocating movement of sliding portions 412b, 414b to and from stationary portions 412a, 414a, which in turn enables connection passages 422, 424 to be adjusted to facilitate attachment/coupling to bone anchor 1000. In addition, each sliding portion 412b, 414b includes an internal opening 450, 452 for receiving screw 470. Internal openings 450, 452 may be threaded to facilitate engagement with screw 470. 100581 In contrast to the above embodiments, screw 470 is utilized to couple the respective bone anchors 1000 to first and second connection members 412, 414 and to adjustably fix the distance between first and second connection members 412, 414. Under such configuration, connection passages 422, 424 are first adjustably enlarged by moving sliding portions 412b, 414b away from respective stationary portions 412a, 414a, and bone anchors 1000 are placed in respective connection passages 422, 424. Upon placement of bone anchors 1000 in connection passages 422, 424, screws 470 may be attached to respective internal openings 450, 452 and couple connection members 412, 414 onto bone anchors 1000. At this time, elongate member 401 is placed above connection members 412, 414 and screws 470 extend out of respective openings 416a, 418a. While connection members 412, 414 are coupled onto respective bone anchors 1000, the distance between connection members 412, 414 may still be adjusted. Upon determining the desired distance, caps 472 may be utilized to securely fix the distance between connection members 412, 414 by fastening caps 472 against elongate member 401, as best shown in FIG. 17. [0059] The devices 10, 200, 300, 400 can be manufactured as components by methods known in the art, to include, for example, molding, casting, forming or extruding, and machining processes. The components can be manufactured using materials having sufficient strength, resiliency and biocompatibility as is well known in the art for such devices. By way of example only, suitable materials can include implant grade metallic materials, such as titanium, cobalt 11) WO 2011/022723 PCT/US2010/046324 chromium alloys, stainless steel, or other suitable materials for this purpose. It is also conceivable that some components of the device can be made from plastics, composite materials, and the like. [00601 It is also within the concept of the inventors to provide a kit, which includes at least one of the transverse rod connectors. The kit can also include additional orthopedic devices and instruments; such as for example, instruments for tightening or loosening the locking screws, spinal rods, hooks or links and any additional instruments or tools associated therewith. Such a kit can be provided with sterile packaging to facilitate opening and immediate use in an operating room. [0061] It will be understood that various modifications may be made to the embodiments of the presently disclosed transverse rod connector. Therefore, the above description should not be construed as limiting, but merely as exemplifications of embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure. - 14 -

Claims (20)

1. A transverse rod connector comprising: an elongate member having first and second ends, each of the first and second ends including a ball joint; first and second connection members connected with the first and second ends of the elongate member, respectively, the first and second connection members configured for multidirectional positioning with respect to the elongate member, each of the first and second connection members configured to selectively and releasably secure to a bone anchor, each of the first and second connection members including a base portion and a closing portion, the base portion and the closing portion defining a connection passage for receiving the bone anchor, the base portion and the closing portion hingedly connected, each of the first and second connection members including a socket portion, the ball joints of the elongate member received in respective socket portions of the first and second connection members for multidirectional positioning of the first and second connection members with respect to the elongate member.
2. The transverse rod connector according to claim 1, wherein the first and second connection members each define an opening configured to align with the bone anchor when the bone anchor is received in the connection passage, the opening positioned to receive a screw.
3. The transverse connector according to claim 1, wherein the elongate member is longitudinally adjustable.
4. The transverse rod connector according to claim 3, wherein the elongate member includes first and second portions longitudinally translatable with respect to each other, wherein the first and second portions at least partially overlap each other. 15
5. The transverse rod connector according to claim 4, wherein the elongate member defines a through hole and includes a screw configured to attach to the through hole, the screw configured to securely fix the position of the first and second portions with respect to each other.
6. The transverse rod connector according to claim 1, wherein the connection passage is open medial-laterally between the inner surfaces of the base and closing portions, the inner surfaces of the base and closing portions spaced to support a head of the bone anchor.
7. The transverse rod connector according to claim 6, wherein the closing portion is pivotable relative to the base portion between a first position and a second position, wherein the closing portion is positioned to secure the head of the bone anchor within the connection passage as the closing portion pivots relative to the base portion towards the bone anchor.
8. The transverse rod connector according to claim 7, wherein top and bottom surfaces of the base and closing portions are substantially parallel to the elongate member while the closing portion is disposed in the second position.
9. A transverse rod connector comprising: an elongate member having first and second ends, each of the first and second ends including a ball joint member; and a first connection member and a second connection member, each of the first and second connection members including a socket portion defining an aperture in a side surface of a respective one of the first connection member and the second connection member, each aperture 16 configured to slidably receive one of the ball joint members of the elongate member, each ball joint member configured to slide into the aperture of the socket portion of the respective one of the first and second connection members from a first position at the side surface of the respective one of the first and second connection members to a second position within the socket portion of the respective one of the first and second connection members to connect the first end of the elongate member to the first connection member and the second end of the elongate member to the second connection member, the first and second connection members multidirectionally positionable with respect to the elongate member, each of the first and second connection members including a base portion and a closing portion, the base and closing portions having inner surfaces that define a connection passage adapted to receive a bone anchor, the closing portion connected to the base portion at a hinge to selectively and releasably secure the first and second connection members to a pair of bone anchors, each bone anchor including a head and shank, the head being configured to support a spinal rod and the shank configured to engage bone, the closing portion pivotable relative to the base portion about the hinge to enable the inner surfaces of the closing and base portions to engage an outer surface of the head of one of the pair of the bone anchors for securement of a respective one of the pair of bone anchors within the connection passage.
10. The transverse rod connector according to claim 9, wherein the first and second connection members each define an opening that aligns with one of the pair of bone anchors when the one of the pair of bone anchors is received in the connection passage.
11. The transverse rod connector according to claim 10, wherein the first and second connection members each include a screw configured to attach to the opening, the screws configured to couple the first and second connection members with the pair of bone anchors. 17
12. The transverse rod connector according to claim 9, wherein when one of the ball joint members of the elongate member is received in the socket portion of one of the first and second connection members, a ball joint is defined between the elongate member and one of the first and second connection members, the ball joint configured to provide multidirectional positioning of one of the first and second connection members with respect to the elongate member.
13. The transverse rod connector according to claim 12, wherein the first and second connection members each include a screw configured to attachto the socket portion of one of the first and second connection members, each screw configured to securely fix one of the ball joint members in one of the socket portions to adjustably fix the orientation of one of the connection members with respect to the elongate member.
14. The transverse connector according to claim 9, wherein the elongate member is longitudinally adjustable.
15. The transverse rod connector according to claim 14, wherein the elongate member includes first and second portions longitudinally translatable with respect to each other, wherein the first and second portions at least partially overlap each other.
16. The transverse rod connector according to claim 15, wherein the elongate member defines a through hole and includes a screw configured to attach to the through hole, the screw configured to securely fix the position of the first and second portions with respect to each other. 18
17. The transverse rod connector according to claim 9, wherein the connection passage is open medial-laterally between the inner surfaces of the base and closing portions, the inner surfaces of the base and closing portions spaced to support the head of one of the pair of bone anchors.
18. The transverse rod connector according to claim 17, wherein the hinge includes a pin, the closing portion pivotable relative to the base portion between a first position and a second position, wherein approximating movement of the closing portion towards the bone anchor relative to the base portion secures the head of the bone anchor within the connection passage.
19. The transverse rod connector according to claim 18, wherein top and bottom surfaces of the base and closing portions are substantially parallel to the elongate member when the closing portion is disposed in the second position.
20. A transverse rod connector comprising: a first connection member; a second connection member; and an elongate member having a first ball joint member and a second ball joint member, the first and second connection members being securable to the elongate member on opposite ends of the elongate member to form an elongate member assembly when the first and second connection members are secured to the elongate member, the first connection member being configured to receive the first ball joint member of the elongate member assembly and the second connection member being configured to receive the second ball joint member of the elongate member assembly, the first and second connection members being multidirectionally positionable with respect to the elongate member assembly when secured to the elongate member assembly, the first 19 and second connection members and the elongate member together being selectively and releasably securable to a pair of bone anchors, each bone anchor including a head and shank, the head configured to support a spinal rod and the shank configured to engage bone, each of the first and second connection members including a closing portion that is hingedly connected to a base portion, the base and closing portions having inner surfaces that define a connection passage, the inner surface of the closing portion engagable with an outer surface of a head of one of the pair of bone anchors in response to pivoting movement of the closing portion relative to the base portion to secure the head in the connection passage. 20
AU2014277759A 2009-08-21 2014-12-18 Transverse rod connector Ceased AU2014277759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2014277759A AU2014277759B2 (en) 2009-08-21 2014-12-18 Transverse rod connector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US61/274,820 2009-08-21
AU2010284014A AU2010284014B2 (en) 2009-08-21 2010-08-23 Transverse rod connector
AU2014277759A AU2014277759B2 (en) 2009-08-21 2014-12-18 Transverse rod connector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2010284014A Division AU2010284014B2 (en) 2009-08-21 2010-08-23 Transverse rod connector

Publications (2)

Publication Number Publication Date
AU2014277759A1 AU2014277759A1 (en) 2015-02-05
AU2014277759B2 true AU2014277759B2 (en) 2015-11-26

Family

ID=52464862

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2014277759A Ceased AU2014277759B2 (en) 2009-08-21 2014-12-18 Transverse rod connector

Country Status (1)

Country Link
AU (1) AU2014277759B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264658B1 (en) * 1998-07-06 2001-07-24 Solco Surgical Instruments Co., Ltd. Spine fixing apparatus
US20020169448A1 (en) * 1999-07-01 2002-11-14 Vanacker Gerard M. Connector for an osteosynthesis system intended to provide a connection between two rods of a spinal osteosynthesis system, osteosynthesis system using such a connector, and method of implanting such an osteosynthesis system
US20030114853A1 (en) * 2001-10-12 2003-06-19 Ian Burgess Polyaxial cross connector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264658B1 (en) * 1998-07-06 2001-07-24 Solco Surgical Instruments Co., Ltd. Spine fixing apparatus
US20020169448A1 (en) * 1999-07-01 2002-11-14 Vanacker Gerard M. Connector for an osteosynthesis system intended to provide a connection between two rods of a spinal osteosynthesis system, osteosynthesis system using such a connector, and method of implanting such an osteosynthesis system
US20030114853A1 (en) * 2001-10-12 2003-06-19 Ian Burgess Polyaxial cross connector

Also Published As

Publication number Publication date
AU2014277759A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
AU2010284014B2 (en) Transverse rod connector
US9827021B2 (en) Transverse connector
JP4708794B2 (en) Distraction and traction system for performing surgical procedures on the spine
US10357290B2 (en) Apparatus and method for connecting surgical rods
US8617213B2 (en) Low profile transverse connector
US8696717B2 (en) Multi-planar, taper lock screw with additional lock
US20150100098A1 (en) Rod reducer
US20210153910A1 (en) Spinal Fixation Device
WO2011006155A1 (en) Transverse connector
US10405896B2 (en) Rod reducer
US11246629B2 (en) Transverse connector
AU2014277759B2 (en) Transverse rod connector

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired