AU2013213761A1 - (7h-pyrrolo [2, 3-d] pyrimidin-4-yl) - piperazines as kinase inhibitors for the treatment of cancer and inflammation - Google Patents

(7h-pyrrolo [2, 3-d] pyrimidin-4-yl) - piperazines as kinase inhibitors for the treatment of cancer and inflammation Download PDF

Info

Publication number
AU2013213761A1
AU2013213761A1 AU2013213761A AU2013213761A AU2013213761A1 AU 2013213761 A1 AU2013213761 A1 AU 2013213761A1 AU 2013213761 A AU2013213761 A AU 2013213761A AU 2013213761 A AU2013213761 A AU 2013213761A AU 2013213761 A1 AU2013213761 A1 AU 2013213761A1
Authority
AU
Australia
Prior art keywords
methyl
pyrrolo
pyrimidin
piperazine
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2013213761A
Inventor
Bryce Alden Harrison
Spencer David Kimball
Ross Mabon
David Brent Rawlins
Dennis S. Rice
Michael Victor Voronkov
Yulian Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lexicon Pharmaceuticals Inc
Original Assignee
Lexicon Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2008285388A external-priority patent/AU2008285388B2/en
Application filed by Lexicon Pharmaceuticals Inc filed Critical Lexicon Pharmaceuticals Inc
Priority to AU2013213761A priority Critical patent/AU2013213761A1/en
Publication of AU2013213761A1 publication Critical patent/AU2013213761A1/en
Abandoned legal-status Critical Current

Links

Abstract

Inhibitors of LIM kinase 2 are disclosed, along with pharmaceutical compositions comprising them and methods of their use. WO 2009/021169 PCT/US2008/072584 C:) I cC ) - C14 L)C) w0 C) CD C N D CNi9D Cd

Description

WO 2009/021169 PCT/US2008/072584 KINASE INHIBITORS, COMPOSITIONS COMPRISING THEM, AND METHODS OF THEIR USE This application claims priority to U.S. provisional application no. 60/954,698, filed 5 August 8, 2007, the entirety of which is incorporated herein by reference. 1. FIELD OF THE INVENTION This invention relates to kinase inhibitors, compositions comprising them, and methods of their use to treat various diseases and disorders. 2. BACKGROUND 10 Protein kinases are a class of enzymes that catalyze the transfer of the y-phosphate group from ATP to a recipient protein. The human genome is estimated to encode in excess of 500 distinct protein kinases, of which many have been implicated in a wide range of diseases and disorders, including cancer and inflammation. The LIM kinases (LIMK) have been linked to the p53 pathway. See, e.g., 15 International Application No. WO 02/099048. LIMK belongs to a small subfamily of kinases with a unique combination of two N-terminal LIM motifs and a C-terminal protein kinase domain. These LIM motifs and kinase domains are linked by a proline- and serine-rich region containing several putative casein kinase and map kinase recognition sites. LIM kinases and their pathway proteins are believed to contribute to Rho-induced reorganization 20 of the actin cytoskeleton. Id. Members of the LIM kinase family include LIM kinase 1 (LIMK1) and LIM kinase 2 (LIMK2). Both phosphorylate cofilin and regulates Rho family dependent actin cytoskeletal rearrangement. Id. LIM kinase inhibitors have been proposed for the treatment of cancer. Id. It has also been suggested that LIMK inhibitors may be useful in treating glaucoma, by promoting actin 25 depolymerization in trabecular cells and lowering ocular tension. See International Application No. WO 04/047868. An enormous number of compounds, with a wide variety of chemotypes, have been reported as kinase inhibitors. For example, phenyl-substituted pyrimidine compounds have been disclosed that are reportedly useful as LIMK inhibitors. See International Application 30 WO 2006/084017. Pyrrole[2,3-d]pyrimidine-based compounds have been disclosed as Janus WO 2009/021169 PCT/US2008/072584 Kinase 3 inhibitors. See, e.g., U.S. patent publication no. 2004/0058922. Some pyrrole[2,3 d]pyrimidine-based have also been disclosed among a wide variety of other compounds as potential AKT protein kinase inhibitors. See U.S. patent publication no. 2005/0130954. Some pyrrole[2,3-d]pyrimidine-based kinase inhibitors are reportedly useful in the treatment 5 of cancer. See U.S. patent application no. 11/354,636, filed February 15, 2006. 3. SUMMARY OF THE INVENTION This invention is directed, in part, to compounds of formulae I and II: x
(R
4 )m (R)q (R3) N (R 4 )m R2N N N N 2 N N RH H I II and pharmaceutically acceptable salts thereof, the substituents of which are defined herein. Particular compounds of these formulae are potent inhibitors of LIMK2. 10 One embodiment of the invention encompasses pharmaceutical formations comprising compounds disclosed herein (e.g., compounds of formulae I and II). Another embodiment encompasses methods of using the compounds disclosed herein for the treatment, management and prevention of various diseases and disorders affected by LIMK2, including cancer, inflammatory diseases and disorders, and disease and disorders 15 affecting vision (e.g., diseases and disorders of the eye), such as glaucoma, neurodegeneration and infection. 4. BRIEF DESCRIPTION OF THE FIGURES Figure 1 shows the effect of a compound of the invention in the pig anterior chamber organ culture perfusion assay described in the Examples below. Here, a 0.1 gM solution 20 containing a compound of the invention was found to increase the outflow as a function of time. 2 WO 2009/021169 PCT/US2008/072584 Figure 2 shows the effect of a compound of the invention in the ocular hypertensive model described in the Examples below. Female F2 wild-type mice were used. The data in this figure were obtained one hour after topical application of the compound to the eyes of the mice. 5 5. DETAILED DESCRIPTION This invention is based, in part, on the discovery of novel inhibitors of LIM kinase 2 (LIMK2), which may be used to treat, manage and/or prevent a variety of diseases and disorders. 5.1. Definitions 10 Unless otherwise indicated, the term "alkenyl" means a straight chain, branched and/or cyclic hydrocarbon having from 2 to 20 (e.g., 2 to 10 or 2 to 6) carbon atoms, and including at least one carbon-carbon double bond. Representative alkenyl moieties include vinyl, allyl, 1-butenyl, 2-butenyl, isobutylenyl, 1-pentenyl, 2-pentenyl, 3-methyl-1-butenyl, 2-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 1-heptenyl, 2 15 heptenyl, 3-heptenyl, 1-octenyl, 2-octenyl, 3-octenyl, 1-nonenyl, 2-nonenyl, 3-nonenyl, 1 decenyl, 2-decenyl and 3-decenyl. Unless otherwise indicated, the term "alkoxy" means an -0-alkyl group. Examples of alkoxy groups include, but are not limited to, -OCH 3 , -OCH 2
CH
3 , -O(CH 2
)
2
CH
3 ,
-O(CH
2
)
3
CH
3 , -O(CH 2
)
4
CH
3 , and -O(CH 2
)
5
CH
3 . 20 Unless otherwise indicated, the term "alkyl" means a straight chain, branched and/or cyclic ("cycloalkyl") hydrocarbon having from 1 to 20 (e.g., 1 to 10 or 1 to 4) carbon atoms. Alkyl moieties having from 1 to 4 carbons are referred to as "lower alkyl." Examples of alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4-dimethylpentyl, octyl, 2,2,4-trimethylpentyl, 25 nonyl, decyl, undecyl and dodecyl. Cycloalkyl moieties may be monocyclic or multicyclic, and examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and adamantyl. Additional examples of alkyl moieties have linear, branched and/or cyclic portions (e.g., 1 ethyl-4-methyl-cyclohexyl). The term "alkyl" includes saturated hydrocarbons as well as alkenyl and alkynyl moieties. 30 Unless otherwise indicated, the term "alkylaryl" or "alkyl-aryl" means an alkyl moiety bound to an aryl moiety. 3 WO 2009/021169 PCT/US2008/072584 Unless otherwise indicated, the term "alkylheteroaryl" or "alkyl-heteroaryl" means an alkyl moiety bound to a heteroaryl moiety. Unless otherwise indicated, the term "alkylheterocycle" or "alkyl-heterocycle" means an alkyl moiety bound to a heterocycle moiety. 5 Unless otherwise indicated, the term "alkynyl" means a straight chain, branched or cyclic hydrocarbon having from 2 to 20 (e.g., 2 to 20 or 2 to 6) carbon atoms, and including at least one carbon-carbon triple bond. Representative alkynyl moieties include acetylenyl, propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, 2-pentynyl, 3-methyl-1-butynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 5-hexynyl, 1-heptynyl, 2-heptynyl, 6-heptynyl, 1-octynyl, 2-octynyl, 10 7-octynyl, 1-nonynyl, 2-nonynyl, 8-nonynyl, 1-decynyl, 2-decynyl and 9-decynyl. Unless otherwise indicated, the term "aryl" means an aromatic ring or an aromatic or partially aromatic ring system composed of carbon and hydrogen atoms. An aryl moiety may comprise multiple rings bound or fused together. Examples of aryl moieties include, but are not limited to, anthracenyl, azulenyl, biphenyl, fluorenyl, indan, indenyl, naphthyl, 15 phenanthrenyl, phenyl, 1,2,3,4-tetrahydro-naphthalene, and tolyl. Unless otherwise indicated, the term "arylalkyl" or "aryl-alkyl" means an aryl moiety bound to an alkyl moiety. Unless otherwise indicated, the terms "halogen" and "halo" encompass fluorine, chlorine, bromine, and iodine. 20 Unless otherwise indicated, the term "heteroalkyl" refers to an alkyl moiety (e.g., linear, branched or cyclic) in which at least one of its carbon atoms has been replaced with a heteroatom (e.g., N, 0 or S). Unless otherwise indicated, the term "heteroaryl" means an aryl moiety wherein at least one of its carbon atoms has been replaced with a heteroatom (e.g., N, 0 or S). 25 Examples include, but are not limited to, acridinyl, benzimidazolyl, benzofuranyl, benzoisothiazolyl, benzoisoxazolyl, benzoquinazolinyl, benzothiazolyl, benzoxazolyl, furyl, imidazolyl, indolyl, isothiazolyl, isoxazolyl, oxadiazolyl, oxazolyl, phthalazinyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrimidyl, pyrrolyl, quinazolinyl, quinolinyl, tetrazolyl, thiazolyl, and triazinyl. 30 Unless otherwise indicated, the term "heteroarylalkyl" or "heteroaryl-alkyl" means a heteroaryl moiety bound to an alkyl moiety. Unless otherwise indicated, the term "heterocycle" refers to an aromatic, partially aromatic or non-aromatic monocyclic or polycyclic ring or ring system comprised of carbon, 4 WO 2009/021169 PCT/US2008/072584 hydrogen and at least one heteroatom (e.g., N, 0 or S). A heterocycle may comprise multiple (i.e., two or more) rings fused or bound together. Heterocycles include heteroaryls. Examples include, but are not limited to, benzo[1,3]dioxolyl, 2,3-dihydro-benzo[1,4]dioxinyl, cinnolinyl, furanyl, hydantoinyl, morpholinyl, oxetanyl, oxiranyl, piperazinyl, piperidinyl, 5 pyrrolidinonyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydropyridinyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl and valerolactamyl. Unless otherwise indicated, the term "heterocyclealkyl" or "heterocycle-alkyl" refers to a heterocycle moiety bound to an alkyl moiety. Unless otherwise indicated, the term "heterocycloalkyl" refers to a non-aromatic 10 heterocycle. Unless otherwise indicated, the term "heterocycloalkylalkyl" or "heterocycloalkyl alkyl" refers to a heterocycloalkyl moiety bound to an alkyl moiety. Unless otherwise indicated, the term "LIMK2 IC 50 " is the IC 50 of a compound determined using the in vitro human LIM kinase 2 inhibition assay described in the 15 Examples, below. Unless otherwise indicated, the terms "manage," "managing" and "management" encompass preventing the recurrence of the specified disease or disorder in a patient who has already suffered from the disease or disorder, and/or lengthening the time that a patient who has suffered from the disease or disorder remains in remission. The terms encompass 20 modulating the threshold, development and/or duration of the disease or disorder, or changing the way that a patient responds to the disease or disorder. Unless otherwise indicated, the term "pharmaceutically acceptable salts" refers to salts prepared from pharmaceutically acceptable non-toxic acids or bases including inorganic acids and bases and organic acids and bases. Suitable pharmaceutically acceptable base 25 addition salts include, but are not limited to, metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from lysine, N,N' dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. Suitable non-toxic acids include, but are not limited to, inorganic and organic acids such as acetic, alginic, anthranilic, benzenesulfonic, 30 benzoic, camphorsulfonic, citric, ethenesulfonic, formic, fumaric, furoic, galacturonic, gluconic, glucuronic, glutamic, glycolic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phenylacetic, phosphoric, propionic, salicylic, stearic, succinic, sulfanilic, sulfuric, tartaric acid, and p 5 WO 2009/021169 PCT/US2008/072584 toluenesulfonic acid. Specific non-toxic acids include hydrochloric, hydrobromic, phosphoric, sulfuric, and methanesulfonic acids. Examples of specific salts thus include hydrochloride and mesylate salts. Others are well-known in the art. See, e.g., Remington ' s Pharmaceutical Sciences, 18th ed. (Mack Publishing, Easton PA: 1990) and Remington: The 5 Science and Practice ofPharmacy, 19 th ed. (Mack Publishing, Easton PA: 1995). Unless otherwise indicated, a "potent LIMK2 inhibitor" is a compound that has a LIMK2 IC 50 of less than about 250 nM. Unless otherwise indicated, the terms "prevent," "preventing" and "prevention" contemplate an action that occurs before a patient begins to suffer from the specified disease 10 or disorder, which inhibits or reduces the severity of the disease or disorder. In other words, the terms encompass prophylaxis. Unless otherwise indicated, a "prophylactically effective amount" of a compound is an amount sufficient to prevent a disease or condition, or one or more symptoms associated with the disease or condition, or prevent its recurrence. A "prophylactically effective 15 amount" of a compound means an amount of therapeutic agent, alone or in combination with other agents, which provides a prophylactic benefit in the prevention of the disease. The term "prophylactically effective amount" can encompass an amount that improves overall prophylaxis or enhances the prophylactic efficacy of another prophylactic agent. Unless otherwise indicated, the term "stereoisomeric mixture" encompasses racemic 20 mixtures as well as stereomerically enriched mixtures (e.g., R/S = 30/70, 35/65, 40/60, 45/55, 55/45, 60/40, 65/35 and 70/30). Unless otherwise indicated, the term "stereomerically pure" means a composition that comprises one stereoisomer of a compound and is substantially free of other stereoisomers of that compound. For example, a stereomerically pure composition of a compound having one 25 stereocenter will be substantially free of the opposite stereoisomer of the compound. A stereomerically pure composition of a compound having two stereocenters will be substantially free of other diastereomers of the compound. A typical stereomerically pure compound comprises greater than about 80% by weight of one stereoisomer of the compound and less than about 20% by weight of other stereoisomers of the compound, greater than 30 about 90% by weight of one stereoisomer of the compound and less than about 10% by weight of the other stereoisomers of the compound, greater than about 95% by weight of one stereoisomer of the compound and less than about 5% by weight of the other stereoisomers of the compound, greater than about 97% by weight of one stereoisomer of the compound and 6 WO 2009/021169 PCT/US2008/072584 less than about 3% by weight of the other stereoisomers of the compound, or greater than about 99% by weight of one stereoisomer of the compound and less than about 1% by weight of the other stereoisomers of the compound. Unless otherwise indicated, the term "substituted," when used to describe a chemical 5 structure or moiety, refers to a derivative of that structure or moiety wherein one or more of its hydrogen atoms is substituted with a chemical moiety or functional group such as, but not limited to, alcohol, aldehyde, alkoxy, alkanoyloxy, alkoxycarbonyl, alkenyl, alkyl (e.g., methyl, ethyl, propyl, t-butyl), alkynyl, alkylcarbonyloxy (-OC(O)alkyl), amide (e.g. -C(O)NH-alkyl-, -alkylNHC(O)alkyl), amidinyl (e.g., -C(NH)NH-alkyl-, -C(NR)NH 2 ), amine 10 (primary, secondary and tertiary such as alkylamino, arylamino, arylalkylamino), aroyl, aryl, aryloxy, azo, carbamoyl (e.g., -NHC(O)O-alkyl-, -OC(O)NH-alkyl), carbamyl (e.g., CONH 2 , CONH-alkyl, CONH-aryl, CONH-arylalkyl), carbonyl, carboxyl, carboxylic acid, carboxylic acid anhydride, carboxylic acid chloride, cyano, ester, epoxide, ether (e.g., methoxy, ethoxy), guanidino, halo, haloalkyl (e.g., -CCl 3 , -CF 3 , -C(CF 3
)
3 ), heteroalkyl, hemiacetal, imine 15 (primary and secondary), isocyanate, isothiocyanate, ketone, nitrile, nitro, oxo, phosphodiester, sulfide, sulfonamido (e.g., SO 2
NH
2 ), sulfone, sulfonyl (including alkylsulfonyl, arylsulfonyl and arylalkylsulfonyl), sulfoxide, thiol (e.g., sulfhydryl, thioether) and urea (e.g., -NHCONH-alkyl-). Unless otherwise indicated, a "therapeutically effective amount" of a compound is an 20 amount sufficient to provide a therapeutic benefit in the treatment or management of a disease or condition, or to delay or minimize one or more symptoms associated with the disease or condition. A "therapeutically effective amount" of a compound means an amount of therapeutic agent, alone or in combination with other therapies, which provides a therapeutic benefit in the treatment or management of the disease or condition. The term 25 "therapeutically effective amount" can encompass an amount that improves overall therapy, reduces or avoids symptoms or causes of a disease or condition, or enhances the therapeutic efficacy of another therapeutic agent. Unless otherwise indicated, the terms "treat," "treating" and "treatment" contemplate an action that occurs while a patient is suffering from the specified disease or disorder, which 30 reduces the severity of the disease or disorder, or retards or slows the progression of the disease or disorder. Unless otherwise indicated, the term "include" has the same meaning as "include, but are not limited to," and the term "includes" has the same meaning as "includes, but is not 7 WO 2009/021169 PCT/US2008/072584 limited to." Similarly, the term "such as" has the same meaning as the term "such as, but not limited to." Unless otherwise indicated, one or more adjectives immediately preceding a series of nouns is to be construed as applying to each of the nouns. For example, the phrase 5 "optionally substituted alky, aryl, or heteroaryl" has the same meaning as "optionally substituted alky, optionally substituted aryl, or optionally substituted heteroaryl." Unless otherwise indicated, a structure or name of a compound or genus of compounds encompasses all forms of that compound or genus of compounds, and all compositions comprising that compound or genus of compounds. 10 It should be noted that a chemical moiety that forms part of a larger compound may be described herein using a name commonly accorded it when it exists as a single molecule or a name commonly accorded its radical. For example, the terms "pyridine" and "pyridyl" are accorded the same meaning when used to describe a moiety attached to other chemical moieties. Thus, the two phrases "XOH, wherein X is pyridyl" and "XOH, wherein X is 15 pyridine" are accorded the same meaning, and encompass the compounds pyridin-2-ol, pyridin-3-ol and pyridin-4-ol. It should also be noted that if the stereochemistry of a structure or a portion of a structure is not indicated with, for example, bold or dashed lines, the structure or the portion of the structure is to be interpreted as encompassing all stereoisomers of it. Moreover, any 20 atom shown in a drawing with unsatisfied valences is assumed to be attached to enough hydrogen atoms to satisfy the valences. In addition, chemical bonds depicted with one solid line parallel to one dashed line encompass both single and double (e.g., aromatic) bonds, if valences permit. 5.2. Compounds 25 One embodiment of this invention encompasses compounds of formula I: X Y A
(R
4 ). N (R3)n N R2 N N N R, H 8 WO 2009/021169 PCT/US2008/072584 and pharmaceutically acceptable salts thereof, wherein: X is 0 or NRA; Y is 0, NRB, or
C(RB)
2 ; A is cycloalkyl, aryl or heterocycle; R 1 is hydrogen, ORB, N(RB)2, SRB, or optionally substituted alkyl, aryl, or heterocycle; R 2 is hydrogen, halogen, cyano, ORB, N(RB)2, SRB, or 5 optionally substituted alkyl, aryl, or heterocycle; each R 3 is independently halogen or optionally substituted alkyl, and/or two R 3 s may be taken together with the ring to which they are attached to provide an optionally substituted cycloalkyl or heterocycle; each R 4 is cyano, halogen, hydroxy, nitro, Rc, ORc, N(Rc) 2 , NHC(O)Rc, C(O)Rc, C(O)N(Rc) 2 , CSO 2 Rc,
CSO
2 N(Rc) 2 , or SO 2 Rc; RA is hydrogen, cyano, nitro, RAI, SO 2 RA1, SO 2 NRA1, or 10 SO 2 N(RA1) 2 ; each RAI is independently hydrogen or optionally substituted alkyl, heteroalkyl, aryl, heterocycle, alkylaryl, or alkylheterocycle; each RB is independently hydrogen or optionally substituted alkyl; each RC is independently hydrogen or optionally substituted alkyl, heteroalkyl, aryl, heterocycle, alkylaryl, or alkylheterocycle; n is 0-8; and m is 0-4. In a particular embodiment of the invention, when X is 0, Y is C(RB) 2 , one RB is 15 hydrogen and the other RB is substituted alkyl, A is not chlorophenyl or dichlorophenyl. In another, when X is 0, Y is not C(RB) 2 . Certain compounds of formula I are of the formula: H
(R
4 )m
(R
3 )n N N N R, H 9 WO 2009/021169 PCT/US2008/072584 Particular compounds are of the formulae: H H
R
3 X N -- R4mH 3 C,,, N or N CH 3 N CH 3 N- N N N N N H H Another embodiment of the invention encompasses compounds of formula II: x (R5)q N ((R 4 )m N ~R2 N KN N R H 5 II and pharmaceutically acceptable salts thereof, wherein: X is 0 or NRA; Y is 0, NRB, or
C(RB)
2 ; A is cycloalkyl, aryl or heterocycle; R 1 is hydrogen, ORB, N(RB) 2 , SRB, or optionally substituted alkyl, aryl, or heterocycle; R 2 is hydrogen, halogen, cyano, ORB, N(RB)2, SRB, or optionally substituted alkyl, aryl, or heterocycle; each R 3 is independently halogen or 10 optionally substituted alkyl, and/or two R 3 s may be taken together with the ring to which they are attached to provide an optionally substituted cycloalkyl or heterocycle; each R 4 is cyano, halogen, hydroxy, nitro, Rc, ORc, N(Rc) 2 , NHC(O)Rc, C(O)Rc, C(O)N(Rc) 2 , CSO 2 Rc,
CSO
2 N(Rc) 2 , or SO 2 Rc; RA is hydrogen, cyano, nitro, RAI, SO 2 RA1, SO 2 NRA1, or
SO
2 N(RA1) 2 ; each RAI is independently hydrogen or optionally substituted alkyl, heteroalkyl, 15 aryl, heterocycle, alkylaryl, or alkylheterocycle; each RB is independently hydrogen or optionally substituted alkyl; each RC is independently hydrogen or optionally substituted alkyl, heteroalkyl, aryl, heterocycle, alkylaryl, or alkylheterocycle; m is 0-4; p is 0-3; and q is 0-2. 10 WO 2009/021169 PCT/US2008/072584 Particular compounds of formula II are of the formula: X 0 ~Y
-
N 0 (R 4 )m
(R
3 )p N R2 N N N H With regard to the various formulae disclosed herein, as applicable, particular embodiments of the invention are such that X is 0. In others, X is NRA and RA is, for 5 example, cyano. In some, Y is NRB and RB is, for example, hydrogen. In some, A is optionally substituted aryl (e.g., substituted phenyl). In others, A is optionally substituted heterocycle. In some, R 1 is hydrogen. 10 In some, R 2 is optionally substituted lower alkyl (e.g., methyl). In some, R 3 is optionally substituted lower alkyl (e.g., methyl). In some, R 4 is halogen (e.g., bromine, fluorine). In others, R 4 is Rc, C(O)NHRc,
CSO
2 Rc, or CSO 2 NHRc and Rc is, for example, optionally substituted lower alkyl or heteroalkyl. In particular embodiments, Rc is -(CH 2
)
2
N(CH
3
)
2 . In some embodiments, Rc is 15 optionally substituted heterocycle (e.g., optionally substituted piperidine). Particular compounds of the invention are potent LIMK2 inhibitors. Certain compounds have a LIMK2 IC 50 of less than about 100, 75, 50, 25 or 10 nM. 5.3. Methods of Synthesis Compounds of the invention may be prepared by methods known in the art. See, e.g., 20 U.S. patent publication nos. 2004/0058922 and 2005/0130954. Pyrrolopyrimidines may be prepared by a variety of methods known in the art. See, e.g., West, J. Org. Chem. 26:4959 (1961); Aono et al., EP 0733633-B1. One approach is described in U.S. patent application no. 60/853,891, filed October 23, 2006, and shown below in Scheme 1: 11 WO 2009/021169 PCT/US2008/072584 0 R2 0 OH 0 H 2 N HCOOR" R-N
H
2 N Base N .R BaeH 2 N H N H Base Scheme 1 The resulting 4-hydroxy pyrrolo[2,3-d]pyrimidine compound is then converted to the corresponding 4-chloro compound (compound 1(a) in Scheme 2, below) using methods 5 known in the art. See, e.g., West, J. Org. Chem. 26:4959 (1961). That compound is then used to prepare compounds of the invention, as shown below in Scheme 2: H H N CI R2 N ) _(R3)n N (R3)n N R1 H iPrOH, heat N N 1(a) H 1(b) (R)mX Y A (R4
(R
4 )m
(R
3 )n THF 1 N N R H Scheme 2 As shown in Scheme 2, the pyrrolopyrimidine 1(a) is condensed with a piperazine 10 under suitable conditions (e.g., heating in i-PrOH) to form the substituted pyrrolopyrimidine 1(b). Treatment of this new piperazine with a suitable substituted coupling agent (e.g., an isocyanate) 1(c) produces the final compound. If desired, known can be used to transform that compound into various others encompassed by this invention. 12 WO 2009/021169 PCT/US2008/072584 5.4. Methods of Use This invention encompasses a method of inhibiting LIMK2, which comprises contacting LIMK2 with a potent LIMK2 inhibitor. Preferred potent LIMK2 inhibitors are compounds of the invention (i.e., compounds disclosed herein). 5 A particular embodiment encompasses a method of treating, managing or preventing an inflammatory disease or disorder in a patient, which comprises administering to the patient in need thereof a therapeutically or prophylactically effective amount of a compound of the invention. Another embodiment encompasses a method of treating, managing or preventing 10 cancer in a patient, which comprises administering to the patient in need thereof a therapeutically or prophylactically effective amount of a compound of the invention. Another embodiment encompasses a method of lowering intraocular pressure in a patient, which comprises inhibiting LIMK2 activity or expression in a patient in need thereof. In one method, LIMK2 activity is inhibited by contacting the eye of the patient with a potent 15 LIMK2 inhibitor. Particular potent LIMK2 inhibitors are of formulae I or II. In another method, LIMK2 expression is inhibited by administering to the eye of the patient a compound (e.g., an siRNA) that inhibits the expression of LIMK2. Another embodiment encompasses a method of treating, managing or preventing a diseases or disorder affecting vision in a patient, which comprises inhibiting LIMK2 activity 20 or expression in a patient in need thereof. In one method, LIMK2 activity is inhibited by contacting the eye of the patient with a potent LIMK2 inhibitor. Particular potent LIMK2 inhibitors are of formulae I or II. In another method, LIMK2 expression is inhibited by administering to the eye of the patient a compound (e.g., an siRNA) that inhibits the expression of LIMK2. Diseases and disorders affecting vision include glaucoma, 25 neurodegenerative diseases, and infectious diseases. 5.5. Pharmaceutical Formulations This invention encompasses pharmaceutical compositions comprising one or more compounds of the invention. Certain pharmaceutical compositions are single unit dosage forms suitable for oral, mucosal (e.g., nasal, sublingual, vaginal, buccal, or rectal), parenteral 30 (e.g., subcutaneous, intravenous, bolus injection, intramuscular, or intraarterial), transdermal, topical and ophthalmic (e.g., topical, intravitreal) administration to a patient. 13 WO 2009/021169 PCT/US2008/072584 Examples of dosage forms include, but are not limited to: tablets; caplets; capsules, such as soft elastic gelatin capsules; cachets; troches; lozenges; dispersions; suppositories; ointments; cataplasms (poultices); pastes; powders; dressings; creams; plasters; solutions; patches; aerosols (e.g., nasal sprays or inhalers); gels; liquid dosage forms suitable for oral or 5 mucosal administration to a patient, including suspensions (e.g., aqueous or non-aqueous liquid suspensions, oil-in-water emulsions, or a water-in-oil liquid emulsions), solutions, and elixirs; liquid dosage forms suitable for parenteral administration to a patient; and sterile solids (e.g., crystalline or amorphous solids) that can be reconstituted to provide liquid dosage forms suitable for parenteral administration to a patient. 10 The formulation should suit the mode of administration. For example, oral administration requires enteric coatings to protect the compounds of this invention from degradation within the gastrointestinal tract. Similarly, a formulation may contain ingredients that facilitate delivery of the active ingredient(s) to the site of action. For example, compounds may be administered in liposomal formulations, in order to protect them 15 from degradative enzymes, facilitate transport in circulatory system, and effect delivery across cell membranes to intracellular sites. The composition, shape, and type of a dosage form will vary depending on its use. For example, a dosage form used in the acute treatment of a disease may contain larger amounts of one or more of the active ingredients it comprises than a dosage form used in the 20 chronic treatment of the same disease. Similarly, a parenteral dosage form may contain smaller amounts of one or more of the active ingredients it comprises than an oral dosage form used to treat the same disease. These and other ways in which specific dosage forms encompassed by this invention will vary from one another will be readily apparent to those skilled in the art. See, e.g., Remington 's Pharmaceutical Sciences, 1 8 th ed. (Mack Publishing, 25 Easton PA: 1990). 5.5.1. Oral Dosage Forms Pharmaceutical compositions of the invention suitable for oral administration can be presented as discrete dosage forms, such as, but are not limited to, tablets (e.g., chewable tablets), caplets, capsules, and liquids (e.g., flavored syrups). Such dosage forms contain 30 predetermined amounts of active ingredients, and may be prepared by methods of pharmacy well known to those skilled in the art. See, e.g., Remington 's Pharmaceutical Sciences, 1 8th ed. (Mack Publishing, Easton PA: 1990). 14 WO 2009/021169 PCT/US2008/072584 Typical oral dosage forms are prepared by combining the active ingredient(s) in an intimate admixture with at least one excipient according to conventional pharmaceutical compounding techniques. Excipients can take a wide variety of forms depending on the form of preparation desired for administration. 5 Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit forms. If desired, tablets can be coated by standard aqueous or nonaqueous techniques. Such dosage forms can be prepared by conventional methods of pharmacy. In general, pharmaceutical compositions and dosage forms are prepared by uniformly and intimately admixing the active ingredients with liquid carriers, finely divided 10 solid carriers, or both, and then shaping the product into the desired presentation if necessary. Disintegrants may be incorporated in solid dosage forms to facility rapid dissolution. Lubricants may also be incorporated to facilitate the manufacture of dosage forms (e.g., tablets). 5.5.2. Parenteral Dosage Forms 15 Parenteral dosage forms can be administered to patients by various routes including, but not limited to, subcutaneous, intravenous (including bolus injection), intramuscular, and intraarterial. Because their administration typically bypasses patients' natural defenses against contaminants, parenteral dosage forms are specifically sterile or capable of being sterilized prior to administration to a patient. Examples of parenteral dosage forms include, 20 but are not limited to, solutions ready for injection, dry products ready to be dissolved or suspended in a pharmaceutically acceptable vehicle for injection, suspensions ready for injection, and emulsions. Suitable vehicles that can be used to provide parenteral dosage forms of the invention are well known to those skilled in the art. Examples include, but are not limited to: Water 25 for Injection USP; aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene glycol, and polypropylene glycol; and non-aqueous vehicles such as, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, 30 and benzyl benzoate. 15 WO 2009/021169 PCT/US2008/072584 5.5.3. Transdermal, Topical and Mucosal Dosage Forms Transdermal, topical, and mucosal dosage forms include, but are not limited to, ophthalmic solutions, sprays, aerosols, creams, lotions, ointments, gels, solutions, emulsions, suspensions, or other forms known to one of skill in the art. See, e.g., Remington 's 5 Pharmaceutical Sciences, 18th ed. (Mack Publishing, Easton PA: 1990); and Introduction to Pharmaceutical Dosage Forms, 4 th ed. (Lea & Febiger, Philadelphia: 1985). Transdermal dosage forms include "reservoir type" or "matrix type" patches, which can be applied to the skin and worn for a specific period of time to permit the penetration of a desired amount of active ingredients. 10 Suitable excipients (e.g., carriers and diluents) and other materials that can be used to provide transdermal, topical, and mucosal dosage forms are well known to those skilled in the pharmaceutical arts, and depend on the particular tissue to which a given pharmaceutical composition or dosage form will be applied. Depending on the specific tissue to be treated, additional components may be used 15 prior to, in conjunction with, or subsequent to treatment with active ingredients of the invention. For example, penetration enhancers may be used to assist in delivering active ingredients to the tissue. The pH of a pharmaceutical composition or dosage form, or of the tissue to which the pharmaceutical composition or dosage form is applied, may also be adjusted to improve 20 delivery of one or more active ingredients. Similarly, the polarity of a solvent carrier, its ionic strength, or tonicity can be adjusted to improve delivery. Compounds such as stearates may also be added to pharmaceutical compositions or dosage forms to advantageously alter the hydrophilicity or lipophilicity of one or more active ingredients so as to improve delivery. In this regard, stearates can serve as a lipid vehicle for the formulation, as an emulsifying 25 agent or surfactant, and as a delivery-enhancing or penetration-enhancing agent. Different salts, hydrates or solvates of the active ingredients can be used to further adjust the properties of the resulting composition. 5.5.4. Ophthalmic Dosage Forms Compounds of the invention can be delivered to the eye using aqueous solutions, 30 aqueous suspensions, and ointments. As those skilled in the art are aware, the ophthalmic product must be sterile in its final container to prevent microbial contamination of the eye. Preservatives may be used to maintain sterility once the container has been opened. 16 WO 2009/021169 PCT/US2008/072584 Ophthalmic formulations also require that the pH, buffer capacity, viscosity, and tonicity of the formulation be controlled. Preferred formulations have a pH of from about 6.5 to 8.5, and a buffer capacity of from about 0.01 to 0.1. Particular formations are isotonic. Particular formations have a viscosity of from about 25 to 50 cps. 5 Ingredients that may be used to provide safe vehicles that effectively deliver an active pharmaceutical ingredient (API) to its site of action are well known, but will vary depending on the physical and chemical characteristics of the API. Appropriately buffered aqueous solutions may be used for the delivery of water soluble compounds. In solution compositions, polymeric ingredients are typically used to 10 increase the composition's viscosity. Examples of suitable polymers include cellulosic polymers (e.g., hydroxypropyl methylcellulose, hydroxyethyl cellulose, ethylhydroxyethyl cellulose), synthetic polymers (e.g., carboxyvinyl polymers, polyvinyl alcohol), polysaccharides (e.g., xanthan gum, guar gum, and dextran), and mixtures thereof. See, e.g., U.S. patent nos. 4,136,173 and 7,244,440. Suspensions may also be used to deliver 15 compounds. Polymeric ingredients are typically used in suspension compositions as physical stability aids, helping to keep the insoluble ingredients suspended or easily redispersible. Id. Preservatives may be used to ensure the sterility of formations. Suitable preservatives include benzalkonium chloride, benzethonium chloride, chlorobutanol, phenylmercuric acetate, phenylmercuric nitrate, thimerosal, methylparaben, and propyl-parabens. And 20 antioxidants may be used to ensure the stability of formations susceptible to oxidation. Suitable antioxidants include ethylenediaminetetraacetic acid, sodium bisulfite, sodium metabisulfite, and thiourea. 6. EXAMPLES Aspects of this invention can be understood from the following examples, which do 25 not limit its scope. 17 WO 2009/021169 PCT/US2008/072584 6.1. Example 1: (S)-N-(3-bromo-4-fluorophenyl)-2-methyl-4-(5-methyl-7H pyrrolo[2,3-dlpyrimidin-4-yl)piperazine-1-carboxamide H SyN a Br
H
3 C,, N F N CH 3 H The captioned compound was prepared in several steps. 5 A. Preparation of (S)-tert-butyl 2-methyl-4-(5-methyl-7H-pyrrolo[2,3-dlpyrimidin-4 yl)piperazine-1-carboxylate. (S)-tert-butyl 2-methylpiperazine-1-carboxylate ( 3g, 15 mmol), N,N-diisopropylethylamine (3 ml), and 4-chloro-5-methyl-7H-pyrrolo[2,3-d]pyrimidine (2 g, 12 mmol) were added to isopropanol (10 ml). The solution was heated at 120'C in a sealed pressure tube for 12 hours. The reaction was concentrated under vacuum, and the residue was 10 purified by flash chromatography (80 g SiO 2 , 0-5% MeOH: CH 2 Cl 2 , 50 min) to give clean (S)-tert-butyl 2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperazine-1 carboxylate (1.5 g, 4.5 mmol, 38%). H NMR (400 MHz, chloroform-d) 6 ppm 10.42 (br. s., 1 H), 8.39 (s, 1 H), 6.96 (s, 1 H), 4.40 (d, J=6.06 Hz, 1 H), 3.83 - 4.01 (m, 2 H), 3.43 (td, J=12.57, 3.41 Hz, 1 H), 3.32 (dd, 15 J=12.76, 3.92 Hz, 1 H), 3.07 (td, J=12.32, 3.41 Hz, 1 H), 2.44 (s, 3 H), 1.50 (s, 9 H), 1.24 (d, J=6.82 Hz, 3 H); MS (ES+) [M+H]* = 332. B. Preparation of (S)-5-methyl-4-(3-methylpiperazin-1-yl)-7H-pyrrolo[2,3 dlpyrimidine. The Boc-protected piperazine from step A (1.5 g, 4.5 mmol) was added to a 1:1 mixture of trifluoroacetic acid and dichloromethane (10 ml). The reaction was stirred 20 overnight, then concentrated under vacuum, diluted with dichloromethane, and neutralized with sat. aq. sodium bicarbonate. The layers were separated, and the aqueous layer was back extracted with more dichloromethane. The combined organic fractions were dried over MgSO 4 and concentrated under vacuum to give (S)-5-methyl-4-(3-methylpiperazin-1-yl)-7H pyrrolo[2,3-d]pyrimidine (0.80 g, 3.5 mmol, 76%). 25 1 H NMR (400 MHz, MeOD) 6 ppm 8.24 (s, 1 H), 7.05 (d, J=1.01 Hz, 1 H), 3.97 4.04 (m, 2 H), 3.00 - 3.14 (m, 4 H), 2.74 (dd, J=12.88, 10.36 Hz, 1 H), 2.45 (d, J=1.01 Hz, 3 H), 1.19 (d, J=6.32 Hz, 3 H); MS (ES+) [M+H]* = 232. 18 WO 2009/021169 PCT/US2008/072584 C. Preparation of (S)-N-(3-bromo-4-fluorophenyl)-2-methyl-4-(5-methyl-7H pyrrolo[2,3-dlpyrimidin-4-yl)piperazine-1-carboxamide. To a solution of triphosgene (0.30 g, 1 mmol) in CH 2 Cl 2 (70 ml) at -5'C were added 3-bromo-4-fluoroaniline (0.19 g, 1 mmol) in CH 2 Cl 2 (20 ml) and triethylamine (0.60 ml, 4.3 mmol). The reaction was stirred at room 5 temperature for 20 min, then (S)-5 -methyl-4-(3 -methylpiperazin- 1 -yl)-7H-pyrrolo [2,3 d]pyrimidine from step B (0.23 g, 1 mmol) in CH 2 Cl 2 (30 ml) was added. The mixture was stirred for 1.5 hours, then concentrated under vacuum. The residue was purified by prep HPLC to afford (S)-N-(3-bromo-4-fluorophenyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)piperazine-1-carboxamide (65 mg) as a white solid. 10 1 H NMR (400 MHz, methanol-d 4 ) 6 ppm 8.36 (s, 1 H), 7.74 (dd, J=6.3, 2.5 Hz, 1 H), 7.35 (ddd, J=8.9, 4.2, 2.6 Hz, 1 H), 7.24 (d, J=1.0 Hz, 1 H), 7.13 (t, J=8.7 Hz, 1 H), 4.55 4.62 (m, 1 H), 4.33 - 4.41 (m, 1 H), 4.18 (dd, J=13.0, 1.3 Hz, 1 H), 4.04 - 4.12 (m, 1 H), 3.85 (dd, J=13.0, 4.0 Hz, 1 H), 3.57 - 3.68 (m, 2 H), 2.49 (d, J=1.0 Hz, 3 H), 1.28 (d, J=6.8 Hz, 3 H); MS (ES+) [M+H]* = 447.3. 15 6.2. Example 2: (S)-3-(2-methyl-4-(5-methyl-7H-pyrrolo[2,3-dipyrimidin-4 yl)piperazine-1-carboxamido)phenyl dimethylcarbamate CH3 H I O N O
N,CH
3
H
3 C,,, N 0 N CH 3 KN N H A. Preparation of 3-aminophenyl-N,N-dimethylcarbamate: 3-nitrophenol (1.0 g, 7.2 mmol) was treated with pyridine (1.7 ml, 21.6 mmol), triethylamine (1.5 ml, 10.8 mmol), and 20 N,N-dimethylchlorocarbamate (0.79 ml, 8.6 mmol) for 3 days. The reaction was quenched with H 2 0, stirred for 15 min, diluted with Et 2 0, washed with 1 M aq. NaHSO 4 , H 2 0, sat. aq. NaHCO 3 , and brine (with back extraction), dried over MgSO 4 , filtered, and concentrated under vacuum. The residue was hydrogenated with balloon pressure H 2 over 10% Pd/C (50% wet, 1.26 g, 0.59 mmol) in THF (36 ml) with AcoH (0.42 ml) for 18 hours. The reaction was 25 filtered through celite with EtOAc and concentrated under vacuum. The residue was purified 19 WO 2009/021169 PCT/US2008/072584 by flash chromatography (40 g SiO 2 , 0-4% MeOH:CH 2 Cl 2 ) to give 3-aminophenyl-N,N dimethylcarbamate (1.15 g, 6.4 mmol, 89%). H NMR (400 MHz, chloroform-d) 6 ppm 7.12 (t, J=8.0 Hz, 1 H), 6.52 (t, J=2.3 Hz, 1 H), 6.50 (t, J=2.3 Hz, 1 H), 6.46 (t, J=2.1 Hz, 1 H), 3.71 (br. s., 2 H), 3.08 (s, 3 H), 3.01 (s, 3 5 H); MS (ES+) [M+H]* = 181. B. Preparation of (S)-3-(2-methyl-4-(5-methyl-7H-pyrrolo[2,3-dlpyrimidin-4 yl)piperazine-1-carboxamido)henyl dimethylcarbamate: To a solution of triphosgene (104 mg, 0.35 mmol) in anhydrous THF (7.5 ml) at 0 0 C was added slowly 3-aminophenyl-N,N dimethylcarbamate from step A (180 mg, 1.0 mmol) in THF (2.5 ml). The reaction was 10 stirred for 15 min. at 0 'C and 15 min. at room temperature. (S)-5-methyl-4-(3 methylpiperazin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine from Example 1, step B (231 mg, 1.0 mmol) was added. The reaction was stirred 1 hour, quenched with MeOH, diluted with EtOAc, washed with H 2 0, sat. aq. NaHCO 3 and brine, dried over MgSO 4 , filtered, and concentrated under vacuum. The residue was purified by flash chromatography (40 g SiO 2 , 15 0-8% MeOH:CH 2 Cl 2 ) and lyophilized to give (S)-3-(2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)piperazine-1-carboxamido)phenyl dimethylcarbamate (365 mg, 0.84 mmol, 84%) as a white solid. IH NMR (400 MHz, chloroform-d) 6 ppm 9.82 (br. s., 1 H), 8.40 (s, 1 H), 7.31 (t, J=2.1 Hz, 1 H), 7.24 (t, J=8.2 Hz, 1 H), 7.10 - 7.19 (m, 1 H), 6.95 (s, 1 H), 6.80 (dd, J=6.8, 20 1.3 Hz, 1 H), 6.60 (s, 1 H), 4.37 (ddd, J=6.2, 3.3, 3.2 Hz, 1 H), 4.14 (dd, J=12.5, 1.4 Hz, 1 H), 3.91 - 3.98 (m, 2 H), 3.54 (td, J=12.3, 3.3 Hz, 1 H), 3.45 (dd, J=12.9, 4.0 Hz, 1 H), 3.18 (td, J=12.3, 3.5 Hz, 1 H), 3.09 (s, 3 H), 3.01 (s, 3 H), 2.45 (d, J=1.0 Hz, 3 H), 1.32 (d, J=6.6 Hz, 3 H); MS (ES+) [M+H]* = 438. 6.3. Example 3: N-(3-bromophenyl)-3-(5-methyl-7H-pyrrolo[2,3-dipyrimidin 25 4-yl)-3,8-diazabicyclo [3.2.11 octane-8-carboxamide H OyN Br N N
CH
3 H 20 WO 2009/021169 PCT/US2008/072584 A. Preparation of tert-butyl 3-(5-methyl-7H-pyrrolo 2,3-dpyyrimidin-4-yl)-3,8 diazabicyclo[3.2.11octane-8-carboxylate. To a solution of 4-chloro-5-methyl-7H-pyrrolo[2,3 d]pyrimidine (25 mg, 0.15 mmol) and tert-butyl 3,8-diazabicyclo[3.2. 1]octane-8-carboxylate (30 mg, 0.14 mmol) in isopropanol (2 ml) was added triethylamine (36 tL, 0.26 mmol). The 5 reaction was heated at 180 'C for 30 min in the microwave, then concentrated under vacuum. The residue was purified by prep HPLC (Sunfire C18 30x50 mm, 10-90%H 2 0/MeOH w/0.01 %TFA, 15 min, 35 ml/min, 220 nm) to give tert-butyl 3-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)-3,8-diazabicyclo[3.2.1 ]octane-8-carboxylate (35 mg, 0.10 mmol, 66%). B. Preparation of 4-(3,8-diazabicyclo[3.2.1]octan-3-yl)-5-methyl-7H-pyrrolo[2,3 10 dlpyrimidine dihydrochloride. Boc-protected diazabicyclo[3.2. 1]octane from step A was dissolved in 4M HCl in dioxane (4 ml). The reaction was stirred for 1 hour and concentrated under vacuum to afford 4-(3,8-diazabicyclo[3.2.1 ]octan-3-yl)-5-methyl-7H-pyrrolo[2,3 d]pyrimidine dihydrochloride (30 mg, 0.093 mmol, 91%). C. Preparation of N-(3-bromophenvl)-3-(5-methyl-7H-pyrrolo[2,3-dlpyrimidin-4-Vl 15 3,8-diazabicyclo[3.2.11octane-8-carboxamide. The diazabicyclo[3.2.1]octane from step B was dissolved in dry THF (3 ml) under N 2 , and 3-bromoisocyanate (30 [iL, 0.11 mmol) was added. After stirring for 3 hours, the reaction was concentrated, and the residue was purified by prep HPLC to give 1.5 mg of N-(3-bromophenyl)-3-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)-3,8-diazabicyclo[3.2.1 ]octane-8-carboxamide. 20 1 H NMR (MeOD): 6 5.45 (1 H, s), 7.69 (1H, s), 7.3 (1H, m), 7.1 (3H, m), 4.52 (2H, m), 2.2 (2H, J= 12.4 Hz, d), 2.18 (2H, J= 12.4 Hz, d), 2.38 (3H, s), 1.94 (2H, m), 2.25 (2H, m); MS (ES+) [M+H]* = 443. 6.4. Example 4: 2-(3-bromophenyl)-7-(5-methyl-7H-pyrrolo[2,3-dlpyrimidin 4-Yl)tetrahydroimidazo[1,5-al pyrazine-1,3(2H,5H)-dione 0 Q-Br N CN 0 N
CH
3 25 H 21 WO 2009/021169 PCT/US2008/072584 To a solution of methyl 4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperazine-2 carboxylate prepared analogously to the piperazine from Example 1, step B (30 mg, 0.1 mmol) in 1.5 ml of CH 2 Cl 2 was added slowly 3-bromoisocyanate (13 tL, 0.1 mmol). The mixture was stirred at room temperature until the starting material was consumed (monitoring 5 by LC/MS). The solvent was removed under vacuum, and the residue was purified by Prep HPLC to give 2-(3-bromophenyl)-7-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4 yl)tetrahydroimidazo[1,5-a]pyrazine-1,3(2H,5H)-dione as a white solid. H NMR (CD 3 0D): 6 8.27 (s, 1H), 7.71 (s, 1H), 7.39-7.58 (m, 3H), 7.16 (s, 1H), 4.58 4.62 (m, 1H), 4.49-4.51 (m, 1H), 4.15-4.21 (m, 2H), 3.20-3.41 (m, 3H), 2.46 (s, 3H); MS 10 (ES+) [M+H]* = 441, 443. 6.5. Example 5: (S)-N-(3-bromophenyl)-N'-cvano-2-methyl-4-(5-methyl-7H pyrrolo[2,3-dlpyrimidin-4-yl)piperazine-1-carboximidamide N H N N Br H3C,, N N
CH
3 N N H 15 A. Preparation of phenyl N-3-bromophenyl-N'-cyanocarbamimidate. 3-bromoaniline (1.44g, 8.4 mmol), diphenyl-N-cyanocarbonimidate (2 g, 8.4 mmol) were added to acetonitrile (20ml). The solution was heated at 50 0 C overnight and cooled to room temperature, resulting in precipitation of the product. The white crystalline solid was filtered to give phenyl N-3-bromophenyl-N'-cyanocarbamimidate (2 g, 6.3 mmol, 75%). 20 1H NMR (400 MHz, CHLOROFORM-d) 6 ppm 7.59 (t, J=2.02 Hz, 1 H), 7.42 - 7.47 (m, 2 H), 7.40 (ddd, J=8.15, 1.45, 1.26 Hz, 1 H), 7.31 - 7.36 (m, 2 H), 7.24 - 7.29 (m, 2 H), 7.13 - 7.18 (m, 1 H); MS (ES+) [M+H]* = 316, 318. B. Preparation of (S)-N-(3-bromophenvl)-N'-cvano-2-methyl-4-(5-methyl-7H pyrrolo[2,3-d]pyrimidin-4-yl)piperazine-1-carboximidamide. The cyanocarbamimidate from 25 step A (9.48 g, 30 mmol), (S)-5-methyl-4-(3-methylpiperazin-1-yl)-7H-pyrrolo[2,3 d]pyrimidine from Example 1, step B (6.93 g, 30 mmol), and triethylamine (4.16 ml, 30 22 WO 2009/021169 PCT/US2008/072584 mmol) were combined in MeCN (250ml) and heated to 85 0 C for 6 hours. The reaction was cooled to room temperature and concentrated under vacuum. The residue was purified by flash chromatography (750 g SiO 2 , 0-7% MeOH:CH 2 Cl 2 ) to give a yellow foam. This material was dissolved in MeOH and stirred with activated charcoal at 60 0 C for 15 min. The 5 mixture was filtered through celite, washing with copious amounts of MeOH and 10% MeOH:CH 2 Cl 2 , and concentrated under vacuum. The residue was purified again by flash chromatography (750 g SiO 2 , 0-7% MeOH:CH 2 Cl 2 ). The resulting material was dissolved in MeOH, and water was added to crash out the product. The mixture was concentrated under vacuum, and the product was resuspended in water and lyophilized to give a hydrate of (S) 10 N-(3-bromophenyl)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4 yl)piperazine-1-carboximidamide (8.17 g, 57%, 1.25 eq. H 2 0 based on CHN analysis) as an amorphous white solid. IH NMR (400 MHz, DMSO) 6 ppm 11.60 (s, 1H), 9.50 (s, 1H), 8.22 (s, 1H), 7.25 (m, 3H), 7.07 (m, 2H), 4.51 (m, 1H), 4.00 (m, 1H), 3.91 (m, 1H), 3.84 (m, 1H), 3.53 (m, 1H), 15 3.32 (m, 1H), 3.08 (m, 1H), 2.37 (d, J= 1.0 Hz, 3H), 1.24 (d, J= 6.6 Hz, 3H); MS (ES+) [M+H]* = 453, 455; CHN Anal. Calcd for C 20
H
2 1 BrNs-1.25 H 2 0: C, 50.48; H, 4.98; N, 23.55. Found: C, 50.18; H, 4.58; N, 23.53. 6.6. Example 6: (S)-N-(3-chlorophenyl)-N'-cvano-2-methyl-4-(5-methyl-7H pyrrolo[2,3-dlpyrimidin-4-yl)piperazine-1-carboximidamide N H N N CI
H
3 C,,, N N
CH
3 20 H A. Preparatio of phenyl N-3-chlorophenvl-N'-cvanocarbamimidate. Diphenyl-N cyanocarbonimidate (2 g, 8.4 mmol) and 3-chloroaniline (0.88 ml, 8.4 mmol) were added to acetonitrile (20 ml). The solution was heated at 50 'C overnight and cooled to room temperature, resulting in precipitation of the product. The white crystalline solid was filtered 25 to give phenyl N-3-chlorophenyl-N'-cyanocarbamimidate (2 g, 7.3 mmol, 88%). 23 WO 2009/021169 PCT/US2008/072584 IH NMR (400 MHz, chloroform-d) 6 ppm 7.42 - 7.48 (m, 3 H), 7.28 - 7.36 (m, 2 H), 7.24 - 7.27 (m, 2 H), 7.13 - 7.18 (m, 2 H); MS (ES+) [M+H]* = 272. B. Preparation of (S)-N-(3-chlorophenyl)-N'-cyano-2-methyl-4-(5-methyl-7H pyrrolo[2,3-d]yyrimidin-4-yl)piperazine-1-carboximidamide. The cyanocarbamimidate from 5 step A (0.47 g, 1.7 mmol), (S)-5-methyl-4-(3-methylpiperazin-1-yl)-7H-pyrrolo[2,3 d]pyrimidine from Example 1, step B (0.40 g, 1.7 mmol), and N,N-diisopropylethylamine (1 ml) were added to acetonitrile (10 ml). The mixture was heated at 85 'C in a sealed pressure tube for 4 hours. The solvent was evaporated, and the residue was purified by flash chromatography (80g SiO 2 , 0-5% MeOH:CH 2 Cl 2 , 50 min) to give (S)-N-(3-chlorophenyl)-N' 10 cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperazine-1-carboximidamide (0.32 g, 0.79 mmol, 46%). 1 H NMR (400 MHz, MeOD) 6 ppm 8.22 (s, 1 H), 7.31 (t, J=7.96 Hz, 1 H), 7.01 - 7.16 (m, 4 H), 4.15 (d, J=13.14 Hz, 1 H), 4.00 (d, J=13.39 Hz, 1 H), 3.91 (d, J=13.14 Hz, 1 H), 3.65 (d, J=3.28 Hz, 1 H), 3.47 (dd, J=13.14, 3.79 Hz, 1 H), 3.34 (s, 1 H), 3.09 - 3.25 (m, 1 15 H), 2.44 (s, 3 H), 1.32 (d, J=6.57 Hz, 3 H); MS (ES+) [M+H]* = 409. 6.7. Example 7: (S)-N'-cvano-N-(3-fluorophenyl)-2-methyl-4-(5-methyl-7H pyrrolo[2,3-dlpyrimidin-4-yl)piperazine-1-carboximidamide N H N N F
H
3 C,,, N N
CH
3 H Phenyl N'-cyano-N-(3-fluorophenyl)carbamimidate, prepared analogously to phenyl 20 N-3-chlorophenyl-N'-cyanocarbamimidate from Example 6, step A, (0.55 g, 2.2 mmol), (S) 5-methyl-4-(3-methylpiperazin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine, from example 1, step B, (0.50 g, 2.2 mmol), and N,N-diisopropylethylamine (1 ml) were added to acetonitrile (10 ml). The mixture was heated at 85 'C in a sealed pressure tube for 4 hours. The solvent was evaporated, and the residue was purified prep HPLC (Sunfire C18 30x250 mm column.10 25 100% MeCN:H 2 0 (10mM NH40Ac), 18 min., 45 ml/min) to give (S)-N'-cyano-N-(3 24 WO 2009/021169 PCT/US2008/072584 fluorophenyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperazine- 1 carboximidamide (0.23 g, 0.58 mmol, 27%). H NMR (400 MHz, MeOD) 6 ppm 8.28 (s, 1 H), 7.31 - 7.49 (m, 1 H), 7.08 (d, J=1.01 Hz, 1 H), 6.89 - 7.02 (m, 2 H), 4.63 - 4.74 (m, 1 H), 4.20 (d, J=13.14 Hz, 1 H), 4.06 5 (d, J=13.39 Hz, 1 H), 3.97 (d, J=11.12 Hz, 1 H), 3.67 - 3.86 (m, 1 H), 3.54 (dd, J=13.14, 3.79 Hz, 1 H), 3.38 (br. s., 2 H), 3.18 - 3.29 (m, 1 H), 2.50 (d, J=1.01 Hz, 2 H), 1.39 (d, J=6.57 Hz, 3 H); MS (ES+) [M+H]* = 393. 6.8. Example 8: (S)-N'-cvano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 dlpyrimidin-4-vl)-N-(3-(trifluoromethyl)phenyl)piperazine-1 10 carboximidamide N H N N
CF
3
H
3 C,, N N CH 3 H Phenyl N'-cyano-N-(3-(trifluoromethyl)phenyl)carbamimidate, prepared analogously to N-3-bromophenyl-N'-cyanocarbamimidate from Example 5, step A (36 mg, 0.12 mmol), (S)-5-methyl-4-(3-methylpiperazin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine, from Example 1, step 15 B, (35 mg, 0.15 mmol), and triethylamine (0.05 ml, 0.36 mmol) were combined in isopropanol in a microwave vessel. The reaction was heated at 140 'C for 30 min. under microwave conditions. The solvent was evaporated, and the residue was washed with
CH
2 Cl 2 (3 x 10 ml). The crude product was purified by Prep-HPLC to afford (S)-N'-cyano-2 methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(3-(trifluoromethyl)phenyl) 20 piperazine-1-carboximidamide as white solid. IH (CD 3 0D): 61.349-1.65 (3H, J = 6.4 Hz, d), 2.028-2.054 (broad, N-H); 3.515-3.547 (1H, m), 3.611-3.736 (2H, m), 4.059-4.092 (1 H, J = 13.2 Hz, d), 4.561-4.595 (1H, J = 13.6 Hz, d), 4.643-4.706 (2H, m) 6.70 (1H, s), 7.19 (1H, s), 7.428-7.449(2H, m),7.549-7.588 (2H, m), 8.203 (1H, s, broad); MS (ES+) [M+H]* = 429. 25 WO 2009/021169 PCT/US2008/072584 6.9. Example 9: (S)-N-(3-bromo-4-fluorophenyl)-N'-cvano-2-methyl-4-(5 methyl-7H-pyrrolo[2,3-dlpyrimidin-4-vl)piperazine-1-carboximidamide N H N N Br H3C, N F N
CH
3 N N H The title compound was prepared in the same manner as (S)-N-(3-chlorophenyl)-N' 5 cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperazine-1-carboximidamide from Example 6. 1 H NMR (400 MHz, MeOD) 6 ppm 8.23 (s, 1 H), 7.42 (dd, J=5.8, 2.5 Hz, 1 H), 7.13 7.24 (m, 2 H), 7.04 (s, 1 H), 4.62 (br. s., 1 H), 4.16 (d, J=13.1 Hz, 1 H), 4.03 (d, J=13.4 Hz, 1 H), 3.92 (d, J=13.1 Hz, 1 H), 3.63 - 3.73 (m, 1 H), 3.49 (dd, J=13.0, 3.7 Hz, 1 H), 3.21 (td, 10 J=12.4, 3.3 Hz, 1 H), 2.45 (s, 3 H), 1.33 (d, J=6.6 Hz, 3 H); MS (ES+) [M+H]* = 471, 473. 6.10. Example 10: N-(3-bromophenyl)-N'-cvano-2,5-dimethyl-4-(5-methyl-7H pyrrolo[2,3-dlpyrimidin-4-Vl)piperazine-1-carboximidamide N H NI N Br
H
3 C N N CH 3
CH
3 N N H A. Preparation of 4-(2,5-dimethylpiperazin-1-vl)-5-methyl-7H-pyrrolo[2,3 15 dipyrimidine. Trans-2,5-dimethylpiperazine (1 g, 8.8 mmol), N,N-diisopropylethylamine (1ml) and 4-chloro-5-methyl-7H-pyrrolo[2,3-d]pyrimidine (2 g, 11.9 mmol) were added to isopropanol (10 ml). The solution was heated in a microwave at 150 'C for 6 hours, then concentrated under vacuum. The material was purified by prep HPLC (Sunfire C18 30x250 26 WO 2009/021169 PCT/US2008/072584 mm column.10-100% MeCN:H 2 0 (1OmM NH 4 0Ac), 18 min., 45 ml/min.) to give 4-(trans 2,5-dimethylpiperazin-1-yl)-5-methyl-7H-pyrrolo[2,3-d]pyrimidine (0.30 g, 14%). H NMR (400 MHz, chloroform-d) 6 ppm 8.49 (s, 1 H), 6.95 (s, 1 H), 3.62 - 3.70 (m, 1 H), 3.46 - 3.57 (m, 1 H), 3.20 - 3.27 (m, 1 H), 2.95 (q, J=7.41 Hz, 1 H), 2.81 (dd, J=12.63, 5 9.60 Hz, 1 H), 2.08 (s, 3 H), 1.31 (d, J=6.82 Hz, 3 H), 1.15 (t, J=6.57 Hz, 4 H); MS (ES+) [M+H] = 246. B. Preparation of N-(3-bromophenyl)-N'-cyano-2,5-dimethyl-4-(5-methyl-7H pyrrolo[2,3-d]yyrimidin-4-yl)piperazine-1-carboximidamide: The dimethyl piperazine from step A (80 mg, 0.32 mmol), phenyl N-3-bromophenyl-N'-cyanocarbamimidate, from 10 Example 5, step A, (100 mg, 0.32 mmol) and N,N-diisopropylethylamine (0.20 ml) were added to isopropanol (10 ml). The mixture was heated at 150 'C for 20 min in a microwave, then concentrated under vacuum. The material was purified prep HPLC (Sunfire C18 30x250 mm column, 10-100% MeCN:H 2 0 (10mM NH 4 0Ac), 18 min., 45 ml/min) to give (E)-N-(3 bromophenyl)-N'-cyano-2,5-dimethyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4 15 yl)piperazine-1-carboximidamide (29 mg, 0.062 mmol, 19%). 1 H NMR (400 MHz, MeOD) 6 ppm 8.21 (s, 1 H), 7.23 - 7.32 (m, 3 H), 7.08 - 7.15 (m, 1 H), 7.02 (s, 1 H), 4.60 (br. s., 2 H), 3.85 (d, J=2.53 Hz, 3 H), 3.63 (d, J=12.38 Hz, 1 H), 2.43 (s, 3 H), 1.26 (d, J=6.82 Hz, 3 H), 1.18 (d, J=6.57 Hz, 3 H); MS (ES+) [M+H]* = 469. 6.11. Example 11: (S)-N-(3-bromophenyl)-N'-cvano-2-isopropyl-4-(5-methyl 20 7H-pyrrolo[2,3-dlpyrimidin-4-vl)piperazine-1-carboximidamide N H NN N Br
H
3 C
H
3 C ) N
CH
3 H A. Preparation of (S)-4-(3-isopropylpiperazin-1-vl)-5-methyl-7H-pyrrolo[2,3 dipyrimidine. To a solution of (S)-3-isopropylpiperazine-2,5-dione (100mg, 0.6mmol) in anhydrous THF was added lithium aluminum hydride IM in THF (1.2ml, 1.2mmol). The 25 reaction refluxed for 1 hr, cooled to room temperature, quenched with H 2 0, filtered, then concentrated under vacuum to yield (S)-2-isopropylpiperazine. This material was combined 27 WO 2009/021169 PCT/US2008/072584 with 4-chloro-5-methyl-7H-pyrrolo[2,3-d]pyrimidine (85.5mg ,0.5mmol) in triethylamine (1 ml) and isopropanol (2 ml). The reaction was heated in a microwave at 180 'C for 30 min, concentrated under vacuum, dissolved in EtOAc, washed with H 2 0, and concentrated under vacuum to afford (S)-4-(3 -isopropylpiperazin- 1-yl)-5 -methyl-7H-pyrrolo [2,3 -d]pyrimidine, 5 carried on without further purification. B. Preparation of (S)-N-(3-bromophenyl)-N'-cyano-2-isopropyl-4-(5-methyl-7H pyrrolo[2,3-dlpyrimidin-4-yl)piperazine-1-carboximidamide. The piperazine from step A was combined with phenyl N-3-bromophenyl-N'-cyanocarbamimidate, from example 5, step A, (40 mg, 1.2 mmol) in isopropanol in a sealed tube. The reaction was heated to 120 'C, 10 monitored by LC/MS until no starting material remained, and then concentrated under vacuum. The residue was purified by prep HPLC (Sunfire C18 5u 30 x 100 mm, 10% to 100 %B, gradient time = 13 min, flow rate = 45 ml/min, wavelength = 220 nm, solvent A = 10 mM aq. Ammonium acetate, solvent B = acetonitrile) to give (S)-N-(3-bromophenyl)-N' cyano-2-isopropyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperazine-1 15 carboximidamide (2.2mg, 7%) as a white solid. H NMR (400MHz, MeOD) 6 (ppm) 8.35(s, 1H), 7.3 (d, 1H), 7.29 (m, 1H), 7.1 (s, 1H,) 7.19 (s, 1H), 7.13(d, 1H), 3.6 dm, 2H), 3.5(m,2H), 3.3(m, 2H), 2.46(s, 3H), 1.44 (m, 2H), 0.93(m, 6H); MS (ES+) [M+H]* = 482. 6.12. Example 12: (S)-N-(3-bromophenyl)-N'-cvano-4-(5-methyl-7H 20 pyrrolo[2,3-dipyrimidin-4-yl)-2-(2-(methylthio)ethyl)piperazine-1 carboximidamide N H N N Br H3C ' N N
CH
3 H A. Preparation of (S)-3-(2-(methylthio)ethyl)piperazine-2,5-dione. L-methionine methyl ester HCl (1 g, 5 mmol) was taken up in CH 2 Cl 2 and chloroacetyl chloride (598 tL, 25 7.5 mmol) was added with stirring. After 10 minutes of stirring, aqueous saturated NaOH (1ml) was added. The reaction was stirred for 20 minutes, and the CH 2 Cl 2 layer was 28 WO 2009/021169 PCT/US2008/072584 separated, washed with H 2 0 (2x), and concentrated under vacuum. The residue was treated with 7N ammonia in MeOH at 100 'C for 1.5 hr. The reaction was concentrated under vacuum to yield (S)-3-(2-(methylthio)ethyl)piperazine-2,5-dione to be used crude. B. Preparation of (S)-N-(3-bromophenvl)-N'-cvano-4-(5-methyl-7H-pyrrolo[2,3 5 d]yyrimidin-4-yl)-2-(2-(methylthio)ethyl)piperazine-1-carboximidamide. Using the dione from step A, the title compound was prepared in the same manner as (S)-N-(3-bromophenyl) N'-cyano-2-isopropyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperazine-1 carboximidamide from Example 11. H NMR (400MHz, MeOD) 6 (ppm) 8.35(s, 1H), 7.3 (d, 1H), 7.29 (m, 1H), 7.1 (s, 10 1H,) 7.19 (s, 1H), 7.13(d, 1H), 4.24 (M, 2h), 3.99(m, 1H), 3.6 (m, 2H), 3.4 (m, 2H), 2.4 (m, 2H), 2.3(s, 3H), 1.97 (m, 1H), 1.91 (s, 3H), 1.79 (m, 1H); ); MS (ES+) [M+H]* = 514. 6.13. Example 13: (S)-phenyl N-cvano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 dlpyrimidin-4-vl)piperazine-1-carbimidate N N O H3C',, N) N
CH
3 H 15 (S)-5-Methyl-4-(3-methylpiperazin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine, from Example 1, step B, (347 mg, 1.5 mmol) and diphenyl-N-cyanocarbonimidate (357 mg, 1.5 mmol) were combined in acetonitrile (3 ml) and heated at 50 'C for 2 hours, then stirred overnight at room temperature. The reaction was concentrated under vacuum, and the residue was purified by flash chromatography (40 g SiO 2 , 0-5% MeOH:CH 2 Cl 2 ) to give (S)-phenyl N 20 cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperazine-1-carbimidate (481 mg, 1.3 mmol, 86%) as an off-white solid. IH NMR (400 MHz, MeOD) 6 ppm 8.24 (s, 1 H), 7.41 - 7.47 (m, 2 H), 7.28 (t, J=7.5 Hz, 1 H), 7.18 (d, J=7.6 Hz, 2 H), 7.04 (d, J=1.0 Hz, 1 H), 4.72 (br. s., 1 H), 4.17 - 4.29 (m, 2 H), 3.96 (dt, J=13.4, 1.9 Hz, 1 H), 3.78 (ddd, J=13.5, 11.9, 3.4 Hz, 1 H), 3.55 (dd, J=13.4, 4.0 25 Hz, 1 H), 3.21 - 3.29 (m, 1 H), 2.45 (d, J=1.0 Hz, 3 H), 1.38 (d, J=6.8 Hz, 3 H); MS (ES+) [M+H] = 376. 29 WO 2009/021169 PCT/US2008/072584 6.14. Example 14: (S)-N-(3-bromophenyl)-N'-cvano-2-methyl-4-(6-methyl-7H pyrrolo[2,3-dlpyrimidin-4-yl)piperazine-1-carboximidamide N H N N Br H3C,, N N CH3 N N H A. Preparation of 4-chloro-6-methyl-7H-pyrrolo[2,3-dlpyrimidine. In a sealed tube, 5 ethyl 2-amino-5-methyl-1H-pyrrole-3-carboxylate (150 mg, 0.9 mmol, prepared according to literature procedures, J. Heterocyclic Chem. 23:1555 (1985)) was dissolved in formamide (4.5 ml), formic acid (2.3 ml) and DMF (1.0 ml) and heated to 155 'C for 12 h. The reaction was concentrated, taken up with NaHCO 3 solution, and extracted with DCM to afford 6 methyl-7H-pyrrolo[2,3-d]pyrimidin-4-ol (70 mg, 0.46 mmol, 51%, MS (ES+) [M+H]* = 10 150). This material was dissolved in phosphorous oxychloride (5 ml) and heated to 1 10 C for 1 h. The reaction was concentrated, taken up with NaHCO 3 , and extracted with DCM to give 4-chloro-6-methyl-7H-pyrrolo[2,3-d]pyrimidine (40 mg, 0.23 mmol, 50%). MS (ES+) [M+H]Y = 168. B. Preparation of (S)-N-(3-bromophenvl)-N'-cvano-2-methyl-4-(6-methyl-7H 15 pyrrolo[2,3-d]pyrimidin-4-Vl)piperazine-1-carboximidamide. Using the pyrrolopyrimidine from step A, the title compound was prepared in the same manner as (S)-N-(3-bromophenyl) N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperazine-1 carboximidamide from Example 5. 1 H NMR (CD 3 0D): 6 8.12 (1 H, s), 7.29 (3H, m), 7.12 (1H, m), 6.38 (1H, s), 4.59 20 (2H, m), 4.83 (1H, J= 13.6 Hz, d), 3.72 (3H, m), 2.4 (3H, s), 1.31 (3H, J= 6.8 Hz, d); MS (ES+) [M+H]* = 455. 30 WO 2009/021169 PCT/US2008/072584 6.15. Example 15: (S)-N-(3-bromophenyl)-4-(5-chloro-7H-pyrrolo[2,3 dlpyrimidin-4-yl)-N'-cvano-2-methylpiperazine-1-carboximidamide N H N N Br H3C,,, N N CI N N H A. Preparation of 4,5-dichloro-7H-pyrrolo[2,3-dipyrimidine: 4-Chloro-pyrrolo[2,3 5 d]pyrimidine (0.5 g, 3.26 mmol) was suspended in anhydrous CH 2 Cl 2 (25 ml), and N chlorosuccinimide (0.87 g, 6.52 mmol) was added. The reaction mixture was refluxed for 3 days, then cooled to room temperature. The white solid was collected by filtration to give 5 dichloro-7H-pyrrolo[2,3-d]pyrimidine (0.54 g, 2.9 mmol, 88%). H NMR (CD 3 0D): 6 8.57 (1 H, s), 7.60 (1H, s); MS (ES+) [M+H]* = 188. 10 Preparation of (S)-N-(3-bromophenyl)-4-(5-chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl) N'-cyano-2-methylpiperazine- 1 -carboximidamide. Using the pyrrolopyrimidine from step A, the title compound was prepared in the same manner as of (S)-N'-cyano-2-methyl-4-(5 methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(3-(trifluoromethyl)phenyl)piperazine-1 carboximidamide from Example 8. 15 1H NMR (CD 3 0D): 6 8.29 (s, 1H), 7.12-7.34 (m, 5H), 4.64 (s, 1H), 4.41-4.43 (d, J 8 Hz, 1H), 4.16-4.19 (d, J= 12Hz, 1H), 3.98-4.02 (d, J= 16Hz, 1H), 3.71-3.78 (t, J= 14Hz, 1H), 3.47-3.52 (m, 1H), 3.21-3.28 (m, 1H), 1.35-1.36(d, J= 4Hz,3H); MS (ES+) [M+H]- = 475. 31 WO 2009/021169 PCT/US2008/072584 6.16. Example 16: (S)-4-(5-chloro-7H-pyrrolo[2,3-dlpyrimidin-4-yl)-N-(3 (isopropylcarbamovl)phenyl)-2-methylpiperazine-1-carboxamide 0 CH 3 N
CH
3 Y H
H
3 C,,, N N H 5 The title compound was prepared from 4,5-dichloro-7H-pyrrolo[2,3-d]pyrimidine, from Example 15, step A, in the same manner as (S)-3-(2-methyl-4-(5-methyl-7H pyrrolo[2,3-d]pyrimidin-4-yl)piperazine-1-carboxamido)phenyl dimethylcarbamate from Example 2. 1 H NMR (CD 3 0D): 6 8.28 (s, 1H), 7.81 (s, 1H), 7.36-7.54 (m, 3H), 7.31 (s, 1H), 4.57 10 4.59 (m, 1H), 4.43-4.46 (d, J= 12Hz, 1H), 4.18-4.24 (m, 2H), 4.04-4.08 (d, J= 16Hz,1H), 3.62-3.68 (m, 1H), 3.44-3.48 (m, 1H), 3.19-3.23 (m, 1H), 1.33-1.38 (d, J= 4Hz, 3H), 1.26 1.27 (d, J= 4Hz, 6H). MS (ES+) [M+H]* = 456. 6.17. Example 17: N-(3-bromophenyl)-N'-cvano-2-methyl-4-(7H-pyrrolo[2,3 dlpyrimidin-4-vl)piperazine-1-carboximidamide N H N N Br
H
3 C N N 15 H The title compound was prepared from 4-chloro-7H-pyrrolo[2,3-d]pyrimidine by the same procedure as (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N (3 -(trifluoromethyl)phenyl)piperazine- 1 -carboximidamide from Example 8. 32 WO 2009/021169 PCT/US2008/072584 H NMR (CD 3 0D): 6 8.18 (s, 1H), 7.05-7.35 (m, 5H), 6.66 (s, 1H), 4.51-4.74 (m, 3H), 3.98-4.09 (m, 1H), 3.35-3.74 (m, 3H), 1.32-1.33 (d, J= 4Hz, 3H); MS (ES+) [M+H]- = 441. 6.18. Example 18: (S)-4-(5-cyano-7H-pyrrolo[2,3-dipyrimidin-4-yl)-N-(3 5 (isopropylcarbamovl)phenyl)-2-methylpiperazine-1-carboxamide 0 CH 3 N
CH
3 Y H
H
3 C,,, N N N // N N N H A. Preparation of 5-bromo-4-chloro-7H-pyrrolo[2,3-d]pyrimidine. To a solution of 4-chloro-7H-pyrrolo[2,3-d]pyrimidine (1.2 g, 7.8 mmol) in CH 2 Cl 2 (25 ml) was added N bromoacetamide (1.186 g, 8.6 mmol) in CH 2 Cl 2 (25 ml). The mixture was heated at reflux 10 temperature for 40 mins, then cooled to room temperature, and concentrated under vacuum to give an off-white solid. Cold water (40 ml) was added to the solid, which was then collected by filtration, washed with cold water (5 ml), and dried under vacuum. The product was recrystallized from a minimum amount of isopropanol to yield pure 5-bromo-4-chloro-7H pyrrolo[2,3-d]pyrimidine (1.475 g, 81.5%). 15 1H NMR (CD 3 0D): 6 8.572 (s, 1H), 7.665 (s, 1H); MS (ES+) [M+H]* = 232. B. Preparation of 5-bromo-4-chloro-7-(phenvlsulfonyl)-7H-pyrrolo[2,3-dipyrimidine. To a slurry of 5-bromo-4-chloro-7H-pyrrolo[2,3-d]pyrimidine from step A (1.17 g, 5 mmol) in DMF (10 ml) at 0 'C, was added NaH (60% in mineral oil, 0.28 g, 7 mmol). After stirring 15 min., benzensulfonyl chloride (0.64 ml, 5 mmol) was added. The reaction mixture was 20 warmed to room temperature and stirred for 2 hours, resulting in precipitation of a white solid. More DMF (5 ml) was added, and the reaction was quenched with 10 ml of water. The solid was collected by filtration and dried in vacuum to afford 5-bromo-4-chloro-7 (phenylsulfonyl)-7H-pyrrolo[2,3-d]pyrimidine (1.62 g, 4.35 mmol, 87%) as a white solid, which was carried on without further purification. MS (ES+) [M+H]* = 373. 25 C. Preparation of (S)-5-bromo-4-(3-methylpiperazin-1-yl)-7-(phenylsulfonyl)-7H pyrrolo[2,3-dlpyrimidine. To a mixture of pyrrolopyrimidine from step B (76 mg, 0.2 mmol) 33 WO 2009/021169 PCT/US2008/072584 and (S)-2-methylpiperazine (21 mg, 0.2mmol) in isopropanol (2 ml) was added triethylamine (0.11 ml, 0.8mmol). The mixture was heated at 80 'C for 5 mins via microwave and concentrated under vacuum to give crude (S)-5 -bromo-4-(3 -methylpiperazin- 1-yl)-7 (phenylsulfonyl)-7H-pyrrolo[2,3-d]pyrimidine (65 mg, 0.15 mmol, 750%) which was used 5 directly for the next step. MS (ES+) [M+H]* = 437. D. Preparation of (S)-4-(5-bromo-7-(phenylsulfonyl)-7H-pyrrolo[2,3-d]pyrimidin-4 yl)-N-(3-(isopropylcarbamoyl)phenyl)-2-methylpiperazine-1-carboxamide. To a solution of triphosgene (15 mg, 0.05 mmol) in THF (1 ml ) at 0 'C under N 2 was added dropwise a solution of 3-amino-N-isopropylbenzamide (25 mg, 0.14 mmol) and triethylamine (43 tL, 10 0.3 mmol) in THF (1 ml). The mixture was stirred for 15 min at 0 'C and another 15 min at room temperature. The piperazine from step C (65 mg, 0.14 mmol) in THF (1 ml) was added, and the resulting mixture was stirred at room temperature overnight, then quenched with MeOH and K 2
CO
3 (97 mg, 0.70 mmol) and filtered. The solution was concentrated under vacuum and purified by Prep-HPLC to give (S)-4-(5-bromo-7-(phenylsulfonyl)-7H 15 pyrrolo[2,3-d]pyrimidin-4-yl)-N-(3-(isopropylcarbamoyl)phenyl)-2-methylpiperazine-1 carboxamide (70 mg, 0.11 mmol, 77% ). MS (ES+) [M+H]- = 641. E. Preparation of (S)-4-(5-cvano-7H-pyrrolo[2,3-d]pyrimidin-4-vl)-N-(3 (isopropylcarbamoyl)phenyl)-2-methylpiperazine-1-carboxamide. To a solution of (S)-4-(5 bromo-7-(phenylsulfonyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(3-(isopropylcarbamoyl) 20 phenyl)-2-methylpiperazine-1-carboxamide from step D (70 mg, 0.11 mmol) in DMF (2 ml) was added Zn(CN) 2 ( 26 mg, 0.22 mmol) and Pd(PPh 3
)
4 (13 mg, 0.011 mmol). The mixture was heated at 150 'C for 3 min via microwave, cooled to room temperature, and filtered through a pad of celite. The solution was concentrated under vacuum, and the residue was treated with NaOH and MeOH for 2 hrs. The product was purified by Prep-HPLC to obtain 25 (S)-4-(5-cyano-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(3-(isopropylcarbamoyl)phenyl)-2 methylpiperazine-1-carboxamide as a white solid. IH NMR (CD 3 0D): 6 8.37 (s, 1H), 8.07 (s, 1H), 7.79 (s, 1H), 7.32-7.61 (m, 3H), 4.52-4.65 (m, 2H), 4.30-4.42 (m, 1H), 4.18-4.16 (m, 1H), 4.02-4.13 (m, 1H), 3.57-3.76 (m, 2H), 3.38-3.47 (m, 1H), 1.31-1.33 (d, J= 8Hz, 3H), 1.26-1.28 (d, J= 8Hz, 6H); MS (ES+) 30 [M+H]Y = 447. 34 WO 2009/021169 PCT/US2008/072584 6.19. Example 19: (S)-N-(3-bromophenyl)-2-methyl-4-(5-methyl-7H pyrrolo[2,3-dlpyrimidin-4-yl)-N'-(methylsulfonyl)piperazine-1 carboximidamide
)H
3 O=S=0 I H N N Br
H
3 C,,, N N
CH
3 H 5 A. Preparation of diphenyl methylsulfonylcarbonimidate. Dichlorodiphenoxymethane (2 g, 7.46 mmol) and methylsulfonamide (1.56 g, 16.41 mmol) were dissolved in EtOAc (15 ml) and heated to reflux for 12 hours. The mixture was allowed to cool and was concentrated under vacuum. Purification of the crude mixture by flash chromatography (20% EtOAc/hexanes) afforded diphenyl methylsulfonylcarbonimidate (0.75 10 g, 2.59 mmol, 35%). H NMR (400 MHz, chloroform) 6 ppm 7.38-7.43 (m, 4 H), 7.30 (m, 2H), 7.21 (m, 4H), 3.01 (s, 3H); MS (ES+) [M+H]* = 292. B. Preparation of phenyl N-3-bromophenyl-N'-(methylsulfonyl)carbamimidate. Diphenyl methylsulfonylcarbonimidate from step A (0.75g, 2.59mmol) and 3-bromoaniline 15 (0.28 ml, 2.59 mmol) were dissolved in acetonitrile (5ml) and heated to 70 0 C for 12 hours. The reaction was cooled to room temperature and concentrated under vacuum. Purification by flash chromatography (30% EtOAc/hexanes) afforded phenyl N-3-bromophenyl-N' (methylsulfonyl)carbamimidate (0.50g, 1.35 mmol, 52%). 1 H NMR (400 MHz, chloroform) 6 ppm 9.25 (s, 1H), 7.54 (m, 1H), 7.40 (m, 3H), 20 7.26 (m, 2H), 7.13 (m, 2H), 2.96 (s, 3H); MS (ES+) [M+H]* = 369, 371. C. Preparation of (S)-N-(3-bromophenvl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)-N'-(methylsulfonyl)piperazine-1-carboximidamide. The carbamimidate from step B (100mg, 0.27mmol), (S)-5-methyl-4-(3-methylpiperazin-1-yl)-7H-pyrrolo[2,3 d]pyrimidine, from Example 1, step B (63mg, 0.27mmol), and triethylamine (77 pil, 25 0.27mmol) were combined in MeCN (1.5ml) and heated to reflux for 2 hours. The mixture was concentrated and purified by preparative HPLC to afford (S)-N-(3-bromophenyl)-2 35 WO 2009/021169 PCT/US2008/072584 methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N'-(methylsulfonyl)piperazine- 1 carboximidamide. H NMR (400 MHz, methanol) 6 ppm 8.19 (s, 1H), 7.40 (s, 1H), 7.30 (m, 2H), 7.16 (m, 1H), 7.01 (s, 1H), 4.46 (m, 1H), 4.01 (m, 1H), 3.78 (m, 2H), 3.52 (m, 1H), 3.40 (m, 1H), 5 3.08 (m, 1H), 2.98 (s, 3H), 2.39 (d, J= 1.0Hz, 3H), 1.26 (d, J= 6.8Hz, 3H); MS (ES+) [M+H] = 506, 508. 6.20. Example 20: (S)-N-(3-bromophenyl)-2-methyl-4-(5-methyl-7H pyrrolo[2,3-dipyrimidin-4-yl)-N'-sulfamoylpiperazine-1-carboximidamide
NH
2 I H N N Br H3C,, N N
CH
3 N N H 10 A. Preparation of diphenyl sulfamoylcarbonimidate. Dichlorodiphenoxymethane (lg, 3.72mmol) and sulfamide (0.72g, 7.44mmol) were dissolved in MeCN (10ml) and stirred at room temperature for 18 hours. The mixture was concentrated under vacuum and purified by flash chromatography (20-40% EtOAc/hexanes) to afford diphenyl sulfamoylcarbonimidate (0.69g, 2.34 mmol, 63%) as a colorless oil. 15 1H NMR (400 MHz, methanol) 6 ppm 7.43-7.47 (m, 4H), 7.24-7.33 (m, 6H); MS (ES+) [M+H]* = 293. B. Preparation of phenyl N-3-bromophenvl-N'-sulfamovlcarbamimidate. Diphenyl sulfamoylcarbonimidate, from step A, (0.05 g, 0.17 mmol) and 3 -bromoaniline (18 pil, 0.17 mmol,) were dissolved in acetonitrile (0.5ml) and heated to 70 0 C for 12 hours. The reaction 20 was concentrated under vacuum to afford phenyl N-3-bromophenyl-N' sulfamoylcarbamimidate, which was carried on crude to the next reaction. C. Preparation of (S)-N-(3-bromophenvl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 dlpyrimidin-4-yl)-N'-sulfamoylpiperazine-1-carboximidamide. Crude carbamimidate from step B (~25 mg, 0.068 mmol), (S)-5-methyl-4-(3-methylpiperazin-1-yl)-7H-pyrrolo[2,3 25 d]pyrimidine, from Example 1, step B (16 mg, 0.68 mmol), and triethylamine (10 ptl, 0.068 36 WO 2009/021169 PCT/US2008/072584 mmol) were combined in MeCN (0.5 ml) and heated to 70 'C for 2 hours. The mixture was concentrated and purified by preparative HPLC to afford (S)-N-(3-bromophenyl)-2-methyl-4 (5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N'-sulfamoylpiperazine-1-carboximidamide (4mg, 0.0075 mmol, 11 %) as a white solid. 5 1 H NMR (400 MHz, methanol) 6 ppm 8.19 (s, 1H), 7.31 (m, 1H), 7.20 (m, 1H), 7.11 7.15 (m, 2H), 7.07 (m, 1H), 4.43 (m, 1H), 4.03 (m, 1H), 3.76 (m, 2H), 3.47 (m, 1H), 3.35 (m,1H), 3.05 (m, 1H), 2.39 (d, J= 1.0 Hz, 3H), 1.25 (d, J= 6.8 Hz, 3H); MS (ES+) [M+H] 507, 509. 6.21. Example 21: (S)-N-(3-bromophenYl)-N'-(N 10 ((dimethylamino)methylene)sulfamovl)-2-methyl-4-(5-methyl-7H pyrrolo[2,3-dlpyrimidin-4-yl)piperazine-1-carboximidamide
H
3 C,N
CH
3 N O=S=O I H N N Br H3C,, N N
CH
3 H Crude (S)-N-(3-bromophenyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4 yl)-N'-sulfamoylpiperazine-1-carboximidamide from Example 20, step C, (~25 mg, 0.068 15 mmol) was dissolved in MeOH (0.5 ml) and N,N-dimethylformamide dimethyl acetal (7 tl) added. The mixture was stirred at room temperature for 20 minutes and then concentrated. The mixture was purified by preparative HPLC to afford the desired compound (5 mg, 0.0088 mmol, 13%) as a white solid. H NMR (400 MHz, methanol) 6 ppm 8.19 (s, 1H), 8.02 (s, 1H), 7.28 (m, 2H), 7.10 20 (m, 2H), 7.01 (s, 1H), 4.48 (m, 1H), 4.03 (m, 1H), 3.79 (m, 2H), 3.49 (m, 1H), 3.36 (m, 1H), 3.05 (m, 1H), 2.97 (s, 3H), 2.86 (s, 3H), 2.39 (d, J= 1.0Hz, 3H), 1.25 (d, J= 6.8Hz, 3H); MS (ES+) [M+H]* = 562, 564. 37 WO 2009/021169 PCT/US2008/072584 6.22. Example 22: 4-fluoro-N-(3-(2-(4-(5-methyl-7H-pyrrolo[2,3-dlpyrimidin 4-yl)piperazin-1-Yl)-2-oxoethyl)phenyl)benzamide /F H N 0 N
CH
3 H A. Preparation of 2-(3-nitrophenvl)-1-(piperazin-1-Vl)ethanone. 2-(3 5 nitrophenyl)acetyl chloride (0.20 ml, 1.0 mmol.) was added to a vigorously stirred mixture of tert-butyl piperazine-1-carboxylate (0.19 g, 1.0 mmol.) in CH 2 Cl 2 (2 ml) and sat. aq. NaHCO 3 (1 ml). The reaction was stirred for 1 hour; then the organic layer was separated, filtered through a plug of MgSO 4 , and concentrated under vacuum. The residue was treated with TFA in CH 2 Cl 2 to remove the Boc group to give 2-(3-nitrophenyl)-1-(piperazin-1 10 yl)ethanone, which was carried on crude. B. Preparation of 1-(4-(5-methyl-7H-pyrrolo[2,3-dlpyrimidin-4-Vl)piperazin-1-yl)- 2 (3-nitrophenvl)ethanone. 2-(3-Nitrophenyl)-1-(piperazin-1-yl)ethanone from step A (0.32 g, 0.9 mmol), 4-chloro-5-methyl-7H-pyrrolo[2,3-d]pyrimidine (0.168 g, 1.0 mmol), and diisopropylethylamine (0.1 ml) were combined in isopropanol and heated at 80 'C for 24 15 hours. The product was isolated by prep HPLC to give 1-(4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)piperazin-1-yl)-2-(3-nitrophenyl)ethanone. C. Preparation of 4-fluoro-N-(3-(2-(4-(5-methyl-7H-pyrrolo[2,3-d]lpyrimidin-4 yl)piperazin-1-yl)-2-oxoethyl)phenyl)benzamide. To a solution of 1-(4-(5-methyl-7H pyrrolo [2,3 -d]pyrimidin-4-yl)piperazin- 1 -yl)-2-(3 -nitrophenyl)ethanone from step B (0.13 g, 20 0.3 mmol.) in isopropanol (2 ml) was added SnCl 2 (0.19 g, 1 mmol.) and 1 drop of concentrated aq. HCl. The reaction was heated at reflux for 2 hours, and the aniline product was isolated by standard procedures. A portion of his material (35 mg, 0.1 mmol.) was dissolved in CH 2 Cl 2 (2 mL) and sat. aq. NaHCO 3 (2 ml). 4-Fluorobenzoyl chloride (16 mg, 0.1 mmol.) in CH 2 Cl 2 (1 mL) was added dropwise with vigorous stirring. The reaction was 25 stirred for 2 hours, then worked up by standard procedures. The product was isolated by prep HPLC followed by prep TLC to afford 4-fluoro-N-(3-(2-(4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)piperazin-1-yl)-2-oxoethyl)phenyl)benzamide. MS (ES+) [M+H]* = 473. 38 WO 2009/021169 PCT/US2008/072584 6.23. Additional Compounds Additional compounds were prepared using methods described herein and known in the art. Some of those compounds are listed below with their observed masses. Table 1 Compound I_(M+H) (2S)-N-(bicyclo[2.2.1]heptan-2-yl)-N'-cyano-2-methyl-4-(5-methyl-7H- 393.2 pyrrolo[2,3-d]pyrimidin-4-yl)piperazine-1-carboximidamide (3-{[(S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 466 carbonyl]-amino} -phenyl)-carbamic acid isobutyl ester (3-Bromo-phenylamino)-[(R)-2-tert-butoxymethyl-4-(5-methyl-7H- 528 pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-methyl-cyanamide (R)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 431 carboxylic acid (3-bromo-phenyl)-amide (R)-N-(3-bromophenyl)-N'-cyano-2-(hydroxymethyl)-4-(5-methyl-7H- 470 pyrrolo[2,3-d]pyrimidin-4-yl)piperazine-1-carboximidamide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 429; 431 carboxylic acid (3-bromo-phenyl)-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 461 carboxylic acid [3-(4-fluoro-phenoxy)-phenyl]-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 385 carboxylic acid (3-chloro-phenyl)-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 369 carboxylic acid (3-fluoro-phenyl)-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 376 carboxylic acid (3-cyano-phenyl)-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 429, 431 carboxylic acid (2-bromo-phenyl)-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 365 carboxylic acid o-tolylamide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 431 carboxylic acid (4-bromo-phenyl)-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 365 carboxylic acid m-tolylamide 39 WO 2009/021169 PCT/US2008/072584 (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine- 1- 464.2 carboxylic acid [3-(morpholine-4-carbonyl)-phenyl]-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1 465 carboxylic acid [3-(2-dimethylamino-ethylcarbamoyl)-phenyl]-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 436 carboxylic acid (3-isopropylcarbamoyl-phenyl)-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 472 carboxylic acid (3-isopropylsulfamoyl-phenyl)-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 438.1 carboxylic acid [3-(2-hydroxy-ethylcarbamoyl)-phenyl]-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1 5271 carboxylic acid [3-(1-methyl-piperidin-4-ylsulfamoyl)-phenyl]-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 381 carboxylic acid (3-methoxy-phenyl)-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1 4523 carboxylic acid [3-((S)-2-hydroxy-1-methyl-ethylcarbamoyl)-phenyl]-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 452.2 carboxylic acid [3-((R)-2-hydroxy-1-methyl-ethylcarbamoyl)-phenyl]-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 470.1 carboxylic acid (3-cyclopropylsulfamoyl-phenyl)-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1 carboxylic acid [3-(2-hydroxy-1-hydroxymethyl-ethylcarbamoyl)-phenyl]- 468 amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 434 carboxylic acid (3-cyclopropylcarbamoyl-phenyl)-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 452 carboxylic acid (3-dimethylcarbamoylmethoxy-phenyl)-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 491.1 carboxylic acid [3-(1-methyl-piperidin-4-ylcarbamoyl)-phenyl]-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 409 carboxylic acid (3-isopropoxy-phenyl)-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 438 carboxylic acid [3-(2-dimethylamino-ethoxy)-phenyl]-amide 40 WO 2009/021169 PCT/US2008/072584 (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine- 1 carboxylic acid [3-(2-hydroxy-1-hydroxymethyl-ethylsulfamoyl)-phenyl]- 504.1 amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 465 carboxylic acid [3-(3-dimethylamino-propionylamino)-phenyl]-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 450 carboxylic acid [3-(3-methyl-butyrylamino)-phenyl]-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 464 carboxylic acid {3-[(tetrahydro-furan-2-carbonyl)-amino]-phenyl}-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 479 carboxylic acid [3-(4-dimethylamino-butyrylamino)-phenyl]-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 522 carboxylic acid {3-[2-(3-butyl-ureido)-acetylamino]-phenyl}-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 460 carboxylic acid {3-[(furan-2-carbonyl)-amino]-phenyl}-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 517 carboxylic acid {3-[2-(pyridin-4-ylsulfanyl)-acetylamino]-phenyl}-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 423 carboxylic acid [3-(2-amino-acetylamino)-phenyl]-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 381 carboxylic acid (4-methoxy-phenyl)-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 465 carboxylic acid [4-(2-dimethylamino-ethylcarbamoyl)-phenyl]-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 492 carboxylic acid {3-[(4-methyl-piperazine-1-carbonyl)-amino]-phenyl}-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 422 carboxylic acid (4-ethylcarbamoyl-phenyl)-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 438 carboxylic acid [4-(2-hydroxy-ethylcarbamoyl)-phenyl]-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 514 carboxylic acid {3-[3-(4-chloro-butyl)-3-methyl-ureido]-phenyl}-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1 394 carboxylic acid (4-carbamoyl-phenyl)-amide 41 WO 2009/021169 PCT/US2008/072584 (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine- 1- 465 carboxylic acid [4-(3-dimethylamino-propionylamino)-phenyl]-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 380.1 carboxylic acid (3-aminomethyl-phenyl)-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 380.2 carboxylic acid (4-aminomethyl-phenyl)-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1 4083 carboxylic acid (3-dimethylaminomethyl-phenyl)-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1 437 carboxylic acid [4-(3,3-dimethyl-ureido)-phenyl]-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1 495 carboxylic acid {3-[((S)-2-oxo-thiazolidine-4-carbonyl)-amino]-phenyl}-amide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 352.1 carboxylic acid pyridin-3-ylamide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 352.2 carboxylic acid pyridin-4-ylamide (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 358.2 carboxylic acid thiazol-2-ylamide (S)-3-(N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4- 460.1 yl)piperazine- 1 -carboximidamido)-N-isopropylbenzamide (S)-3-(N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4- 419.1 yl)piperazine-1-carboximidamido)benzoic acid (S)-3-(N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4- 446.1 yl)piperazine- 1 -carboximidamido)-N-ethylbenzamide (S)-3-(N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4- 462.1 yl)piperazine- 1 -carboximidamido)-N-(2-hydroxyethyl)benzamide (S)-3-(N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4- 4892 yl)piperazine- 1 -carboximidamido)-N-(2-(dimethylamino)ethyl)benzamide (S)-3-(N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4- 531.1 yl)piperazine- 1 -carboximidamido)-N-(2-morpholinoethyl)benzamide (S)-3-(N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4- 515.1 yl)piperazine- 1 -carboximidamido)-N-(2-(pyrrolidin- 1 -yl)ethyl)benzamide (S)-4-(N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4- 418 yl)piperazine- 1 -carboximidamido)benzamide 42 WO 2009/021169 PCT/US2008/072584 (S)-5-(N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4- 480 yl)piperazine- 1 -carboximidamido)-2-fluoro-N-(2-hydroxyethyl)benzamide (S)-methyl 3-(N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4- 433.1 yl)piperazine- 1 -carboximidamido)benzoate (S)-N-((trans)-4-aminocyclohexyl)-N'-cyano-2-methyl-4-(5-methyl-7H- 396.3 pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 -carboximidamide (S)-N-(3-tert-butylphenyl)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3- 431.2 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide (S)-N-adamantyl-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin- 433.2 4-yl)piperazine- 1 -carboximidamide (S)-N-benzyl-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4- 389.1 yl)piperazine- 1 -carboximidamide (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(3- 443 (trifluoromethyl)phenyl)piperazine- 1 -carboximidamide (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(3- 421 (methylthio)phenyl)piperazine- 1 -carboximidamide (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N- 376.2 (pyridin-3 -yl)piperazine- 1 -carboximidamide (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-p- 389.2 tolylpiperazine- 1 -carboximidamide (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(4- 395.2 methylcyclohexyl)piperazine- 1 -carboximidamide (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N- 382 (piperidin-4-yl)piperazine- 1 -carboximidamide (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N- 390 (pyridin-2-ylmethyl)piperazine- 1 -carboximidamide (S)-N'-cyano-2-methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-N-(1- 396 methylpiperidin-4-yl)piperazine- 1 -carboximidamide (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N- 375 phenylpiperazine- 1 -carboximidamide (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(3- 488.2 (morpholine-4-carbonyl)phenyl)piperazine- 1 -carboximidamide (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(3-(N- 567.2 (2-morpholinoethyl)sulfamoyl)phenyl)piperazine- 1 -carboximidamide 43 WO 2009/021169 PCT/US2008/072584 (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(3-(N- 551.1 (1 -methylpiperidin-4-yl)sulfamoyl)phenyl)piperazine- 1 -carboximidamide (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N- 383.1 (tetrahydro-2H-pyran-4-yl)piperazine- 1 -carboximidamide (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(3- 431 oxo- 1,3 -dihydroisobenzofuran-5 -yl)piperazine- 1 -carboximidamide (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N- 390.1 (pyridin-4-ylmethyl)piperazine- 1 -carboximidamide (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N- 390.2 (pyridin-3 -ylmethyl)piperazine- 1 -carboximidamide (S)-N'-cyano-N-((trans)-4-hydroxycyclohexyl)-2-methyl-4-(5-methyl-7H- 3971 pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 -carboximidamide (S)-N'-cyano-N-(3-((dimethylamino)methyl)phenyl)-2-methyl-4-(5-methyl-7H- 432.3 pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 -carboximidamide (S)-N'-cyano-N-(3-(4-fluorophenoxy)phenyl)-2-methyl-4-(5-methyl-7H- 4851 pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 -carboximidamide (S)-N'-cyano-N-(3-(N-(2-(dimethylamino)ethyl)sulfamoyl)phenyl)-2-methyl-4- 525.1 (5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 -carboximidamide (S)-N'-cyano-N-(3-(N-(2-hydroxyethyl)sulfamoyl)phenyl)-2-methyl-4-(5- 498.1 methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 -carboximidamide (S)-N'-cyano-N-(3-(N-isopropylsulfamoyl)phenyl)-2-methyl-4-(5-methyl-7H- 496.1 pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 -carboximidamide (S)-N'-cyano-N-(3-cyanophenyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3- 400 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide (S)-N'-cyano-N-(3-isopropylphenyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3- 417.1 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide (S)-N'-cyano-N-(4-((dimethylamino)methyl)phenyl)-2-methyl-4-(5-methyl-7H- 4322 pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 -carboximidamide (S)-N'-cyano-N-(4-fluoro-3-methylphenyl)-2-methyl-4-(5-methyl-7H- 407.2 pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 -carboximidamide (S)-N'-cyano-N-(4-fluorophenyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3- 393 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide (S)-N'-cyano-N-(4-fluorophenyl)-3-methyl-4-(5-methyl-7H-pyrrolo[2,3- 393 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide 44 WO 2009/021169 PCT/US2008/072584 (S)-N'-cyano-N-(4-methoxyphenyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3- 405 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide (S)-N'-cyano-N,N-bis(2-hydroxyethyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide (S)-N'-cyano-N-cyclopropyl-2-methyl-4-(5-methyl-7H-pyrrolo[2,3- 339 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide (S)-tert-butyl 3-((S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 468 d]pyrimidin-4-yl)piperazine- 1 -carboximidamido)pyrrolidine- 1 -carboxylate (S)-tert-butyl 4-(N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin- 382 4-yl)piperazine- 1 -carboximidamido)piperidine- 1 -carboxylate [(3- { [(S)-2-Methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-piperazine- 523 1 -carbonyl]-amino } -phenylcarbamoyl)-methyl]-carbamic acid tert-butyl ester 2,5 -Dimethyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-piperazine-1 445 carboxylic acid (3-bromo-phenyl)-amide 2,6-Dimethyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1 443; 445 carboxylic acid (3-bromo-phenyl)-amide 2,6-Dimethyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 475 carboxylic acid [3-(4-fluoro-phenoxy)-phenyl]-amide 2-[3-(4-Fluoro-phenoxy)-phenyl]-1-[4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin- 446.1 4-yl)-piperazin-1-yl]-ethanone 2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1- 429 carboxylic acid (3-bromo-phenyl)-amide 3-({ [(E)-Ethanesulfonylimino]-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 527 d]pyrimidin-4-yl)-piperazin- 1-yl]-methyl} -amino)-N-isopropyl-benzamide 3-({ [(E)-Ethanesulfonylimino]-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3- 500 d]pyrimidin-4-yl)-piperazin- 1 -yl]-methyl} -amino)-benzoic acid methyl ester 3-({ [(E)-Ethanesulfonylimino]-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 562 d]pyrimidin-4-yl)-piperazin- 1-yl]-methyl} -amino)-N-pyridin-4-yl-benzamide 3-({ [(E)-Ethanesulfonylimino]-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3- 513 d]pyrimidin-4-yl)-piperazin- 1 -yl]-methyl} -amino)-N-ethyl-benzamide 3-({ [(E)-Ethanesulfonylimino]-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3- 485 d]pyrimidin-4-yl)-piperazin- 1 -yl]-methyl} -amino)-benzamide 3-({ [(E)-Ethanesulfonylimino]-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3- 561 d]pyrimidin-4-yl)-piperazin- 1 -yl]-methyl} -amino)-N-phenyl-benzamide 45 WO 2009/021169 PCT/US2008/072584 3-({ [(E)-Ethanesulfonylimino]-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)-piperazin-1 -yl]-methyl} -amino)-N-(1-methyl-piperidin-4-yl)- 582 benzamide 3-({ [(E)-Ethanesulfonylimino]-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)-piperazin- 1-yl]-methyl} -amino)-N-(2-morpholin-4-yl-ethyl)- 598 benzamide 3-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-3,8-diaza-bicyclo[3.2.1 ]octane- 442.9 8-carboxylic acid (3-bromo-phenyl)-amide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carbothioic acid 371.2 (4-fluoro-phenyl)-amide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carbothioic acid 354 pyridin-3-ylamide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [3- 447 (4-fluoro-phenoxy)-phenyl]-amide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3- 435 bromo-4-fluoro-phenyl)-amide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3- 417 bromo-phenyl)-amide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3- 415, 417 bromo-phenyl)-amide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid 373.1 (3,4-difluoro-phenyl)-amide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (4- 355.2 fluoro-phenyl)-amide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [4- 465.1 fluoro-3-(4-fluoro-phenoxy)-phenyl]-amide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3- 385.2 chloro-2-methyl-phenyl)-amide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3- 362.2 cyano-phenyl)-amide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid 407 (2,3-dichloro-phenyl)-amide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid 365.1 (2,3-dimethyl-phenyl)-amide 46 WO 2009/021169 PCT/US2008/072584 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3- 371.2 chloro-phenyl)-amide 4-(5 -Methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-piperazine- 1 -carboxylic acid m- 351.2 tolylamide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3- 369 fluoro-4-methyl-phenyl)-amide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid 413 biphenyl-2-ylamide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3- 383 methylsulfanyl-phenyl)-amide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [2- 404.2 (1H-indol-3-yl)-ethyl]-amide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid 3- 369 fluoro-benzylamide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid 397.05 (3,5-dimethoxy-phenyl)-amide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3- 367.1 methoxy-phenyl)-amide 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3- 431 bromo-phenyl)-methyl-amide 4-[(S)-4-(6-Chloro-5-methyl-pyrimidin-4-yl)-3-methyl-piperazin-1-yl]-5- 358.2 methyl-7H-pyrrolo[2,3-d]pyrimidine 4-Fluoro-N-(3-{2-[4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1- 473.2 yl]-2-oxo-ethyl}-phenyl)-benzamide Acetic acid 2-(3 - { [(S)-2-methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)- 4801 piperazine- 1 -carbonyl] -amino } -benzoylamino)-ethyl ester Dimethyl-carbamic acid 3 -({ [(E)-ethanesulfonylimino] - [(S)-2-methyl-4-(5 methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-piperazin- 1-yl] -methyl} -amino)- 529 phenyl ester Dimethyl-carbamic acid 4- { [(S)-2-methyl-4-(5 -methyl-7H-pyrrolo [2,3 - 438 d]pyrimidin-4-yl)-piperazine- 1 -carbonyl] -amino } -phenyl ester Ethanesulfonic acid 1-(2-methyl-benzooxazol-5-ylamino)-1-[(S)-2-methyl-4 (5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)- 497 ylideneamide 47 WO 2009/021169 PCT/US2008/072584 Ethanesulfonic acid 1-(3-bromo-phenylamino)-1-[(S)-2-methyl-4-(5-methyl- 520, 522 7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)-ylideneamide Ethanesulfonic acid 1-(3H-benzoimidazol-5-ylamino)-1-[(S)-2-methyl-4-(5 methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)- 482 ylideneamide Ethanesulfonic acid 1-(4-fluoro-3-methoxy-phenylamino)-1-[(S)-2-methyl-4 (5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)- 490 ylideneamide Ethanesulfonic acid 1-(benzo[1,3]dioxol-5-ylamino)-1-[(S)-2-methyl-4-(5 methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)- 486 ylideneamide Ethanesulfonic acid 1-(benzofuran-5-ylamino)-1-[(S)-2-methyl-4-(5-methyl- 482 7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)-ylideneamide Ethanesulfonic acid 1-(biphenyl-4-ylamino)-1-[(S)-2-methyl-4-(5-methyl-7H- 518 pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)-ylideneamide Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin- 463 4-yl)-piperazin-1-yl]-1-(5-methyl-thiazol-2-ylamino)-meth-(E)-ylideneamide Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin 4-yl)-piperazin-1-yl]-1-[3-(pyridin-3-yloxy)-phenylamino]-meth-(E)- 535 ylideneamide Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin 4-yl)-piperazin-1-yl]-1-[3-(morpholine-4-carbonyl)-phenylamino]-meth-(E)- 555 ylideneamide Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin- 443 4-yl)-piperazin-1-yl]-1-(pyridin-3-ylamino)-meth-(E)-ylideneamide Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin- 449 4-yl)-piperazin-1-yl]-1-(thiazol-2-ylamino)-meth-(E)-ylideneamide Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin- 442 4-yl)-piperazin-1-yl]-1-phenylamino-meth-(E)-ylideneamide Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin- 509 4-yl)-piperazin-1-yl]-1-(3-oxazol-5-yl-phenylamino)-meth-(E)-ylideneamide Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin 4-yl)-piperazin-1-yl]-l-[3-(2-methyl-thiazol-4-yl)-phenylamino]-meth-(E)- 539 ylideneamide 48 WO 2009/021169 PCT/US2008/072584 Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin- 493 4-yl)-piperazin-1-yl]-1-(quinolin-7-ylamino)-meth-(E)-ylideneamide Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin- 494 4-yl)-piperazin-1-yl]-1-(quinoxalin-6-ylamino)-meth-(E)-ylideneamide Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin 4-yl)-piperazin-1-yl]-1-(3-trifluoromethyl-phenylamino)-meth-(E)- 510 ylideneamide Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin 4-yl)-piperazin-1-yl]-1-[4-(3-trifluoromethyl-phenoxy)-phenylamino]-meth- 602 (E)-ylideneamide Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin 4-yl)-piperazin-1-yl]-1-(3,4,5-trimethoxy-phenylamino)-meth-(E)- 532 ylideneamide Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin 4-yl)-piperazin-1-yl]-1-[3-(morpholine-4-sulfonyl)-phenylamino]-meth-(E)- 591 ylideneamide Ethanesulfonic acid 1-[2-(1H-indol-3-yl)-ethylamino]-1-[(S)-2-methyl-4-(5 methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)- 509 ylideneamide Ethanesulfonic acid 1-[3-(4-fluoro-phenoxy)-phenylamino]-1-[(S)-2-methyl-4 (5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)- 552 ylideneamide N-(3-{2-[4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-2-oxo- 456.2 ethyl} -phenyl)-isonicotinamide N-(3-bromophenyl)-2-butyl-N'-cyano-4-(5-methyl-7H-pyrrolo[2,3- 496 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide N-(3-Bromo-phenyl)-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)- 416 piperazine- 1 -carboxamidine N-(3-bromophenyl)-N'-cyano-2-(4-fluorobenzyl)-4-(5-methyl-7H-pyrrolo[2,3- 548 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide N-(3-bromophenyl)-N'-cyano-2-ethyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin- 468 4-yl)piperazine- 1 -carboximidamide N-(3-bromophenyl)-N'-cyano-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4- 441 yl)piperazine- 1 -carboximidamide 49 WO 2009/021169 PCT/US2008/072584 N-(3-bromophenyl)-N'-cyano-5-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)- 452.9 2,5-diazabicyclo[2.2.1 ]heptane-2-carboximidamide N-[l -(3-Bromo-phenylamino)- 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3- 568 570 d]pyrimidin-4-yl)-piperazin- l-yl]-meth-(E)-ylidene]-benzenesulfonamide N-[l -(3-Bromo-phenylamino)- 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)-piperazin- 1 -yl]-meth-(E)-ylidene]-4-methoxy- 598, 600 benzenesulfonamide N-[l-[(S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1 511 yl] -1 -(5-methyl-thiazol-2-ylamino)-meth-(E)-ylidene]-benzenesulfonamide N- [1 -Ethylamino- 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4- 442 yl)-piperazin- l-yl]-meth-(E)-ylidene]-benzenesulfonamide N- [1 -Isopropylamino- 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3- 456 d]pyrimidin-4-yl)-piperazin- l-yl]-meth-(E)-ylidene]-benzenesulfonamide Naphthalene-2-sulfonic acid 1-(3-bromo-phenylamino)-1-[(S)-2-methyl-4-(5 methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)- 618, 620 ylideneamide N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-m- 389 tolylpiperazine- 1 -carboximidamide N'-cyano-N-(3-(4-fluorophenoxy)phenyl)-4-(5-methyl-7H-pyrrolo[2,3- 471 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide N'-cyano-N-(3-cyanophenyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3- 400 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide N'-cyano-N-(3-methoxyphenyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3- 404 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide tert-butyl 3-((S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin- 482 4-yl)piperazine- 1 -carboximidamido)piperidine- 1 -carboxylate 6.24. Expression and Purification of LIMK2 LIMK2 was expressed using the BAC-to-BAC* Baculovirus Expression System (Invitrogen). Recombinant baculovirus was made according to the manufacturer's directions as set forth in the instruction manual. Briefly, the plasmids (pFactBacl or pFastBacHT) 5 carrying the LIMK2 inserts were transformed into MAX efficiency DH 1 OBac competent E. coli to generate a recombinant bacmid. The DH1OBac E. coli host strain contains a baculovirus shuttle vector (bacmid) with a mini-attTn7 target site and a helper plasmid, and allows generation of a recombinant bacmid following transposition between the mini-Tn7 50 WO 2009/021169 PCT/US2008/072584 element on the pFastBac vector and the min-attTn7 target site on the bacmid. The transposition reaction occurs in the presence of transposition proteins supplied by the helper plasmid. Cells were plated and the white colonies picked for bacmid isolation as described in the instruction manual. 5 The isolated bacmid DNA was transfected into SF9 cells to generate a recombinant baculovirus, and virus was collected five days after transfection. Virus was amplified in T75 flasks at a multiplicity of infection (MOI) of 0.2. The amplified virus was used to infect SF9 cells at a MOI 5 for protein expression. For small scale purification of the LIMK2 constructs, a 50 ml culture of Sf9 cells 10 infected with the recombinant baculovirus was used. The cells were harvested by centrifugation for 5 minutes at 500 x g. The cells were then resuspended in lysis buffer (5 volumes per gram of cells). A typical lysis buffer contains the following: 50 mM HEPES (pH 8.0), 300 mM KCl, 10% glycerol, 1% NP-40, 15mM imidazole, 1mM benzamidine, and Roche complete protease inhibitors (1 tablet per 50 ml of cell lysate). The cellular 15 suspension was lysed by one passage through a Microfluidics Microfluidizer M-1 OY at a liquid pressure of 14,000 to 20,000 psi followed by centrifugation of the lysate at 60,000 x g for 15 minutes at 4 'C. The supernatant was then loaded directly onto a chromatography matrix containing Cobalt ion covalently attached to nitrilotriacetic acid NTA. The chromatography matrix was 20 equilibrated in the same buffer as the protein loading solution. The ion charged resin typically has a binding capacity equivalent to 5 to 10 mg histidine-tagged protein per ml of packed resin. The amount of extract that can be loaded onto the column depends on the amount of soluble histidine-tagged protein in the extract. The column was then washed in a stepwise fashion, first with: 50 mM HEPES (pH 8.0), 300 mM KCl, 10% glycerol, 1% NP 25 40, 15mM imidazole, 1mM benzamidine; second, with 20 mM HEPES (pH 8.0), 500mM KCl, 10% glycerol, and 20 mM imidazole; third, with 20 mM HEPES (pH 8.0), 100 mM KCl, 10% glycerol, and 20 mM imidazole; followed by elution with 250 mM imidazole in the same buffer. The LIMK2 protein solution was then analyzed by SDS-PAGE and Western blot using commercial antibodies directed to both the carboxyl terminus and internal catalytic 30 domains of the protein. For storage purposes the protein was dialyzed into 50 mM Tris (pH 7.5), 150mM NaCl, 0.1% BME, 0.03% Brij-35, and 50% glycerol. 51 WO 2009/021169 PCT/US2008/072584 Large scale LIMK2 purification was done in a Wave Bioreactor (Wave Biotech) with 1 OL culture volumes. 1 OL of cell culture at 2-3 x 106 viable cells/mL were infected at an MOI=5 pfu/cell and harvested at 48 hours post infection. 6.25. In Vitro LIMK2 Inhibition Assay 5 An in vitro assay used to identify LIMK2 inhibitors was developed. The analytical readout was the incorporation of 33 P from ATP substrate into immobilized myelin basic protein coated flash plates (Perkin Elmer Biosciences), which were counted on a scintillation counter equipped with a plate reader (TopCount, Packard Bioscience, Meriden, CT). Using 384 well flat MBP flashplates, total assay volume was 50 gl. The HTS program utilized a 10 Biomek FX for dilution. For each assay, the ingredients and conditions were as follows: 200 ng of enzyme was incubated in assay buffer (IX assay buffer contains 30 mM HEPES (pH 8.0), 5 mM DTT, and 10 mM MgCl 2 ), 10 gM ATP, 0.2 gCi [gamma- 3 3 P]-ATP and 10 gM of potential inhibitory compound. The reaction was incubated at room temperature for 60 minutes, 15 washed 3 times with 75 gl of stop/wash buffer (IX stop/was buffer contains 50 mM EDTA and 20 mM Tris (pH 7.4)), and then the plates were read on the scintillation counter. Different concentrations of staurosporine (400 nM, 200 nM, 100 nM and 50 nM; purchased from BIOMOL (Plymouth Meeting, PA)) were used as controls on each plate. 6.26. Pig Anterior Chamber Organ Culture Perfusion Assay 20 Freshly enucleated eyes were obtained from a local slaughter house. Eyes were harvested immediately after death and placed on ice. Anterior chamber dissections were performed within 4 hours after the pig was sacrificed. To prepare the anterior segments for perfusion the eyes were first cleaned by removing all extra-orbital muscles and immersing the orbit in 1% iodine (Veterinary Products Laboratories, Phoenix, AZ) for 30 seconds. A 25 circular incision was then made around the posterior circumference of the orbit and this posterior section of sclera including optic nerve is removed and discarded. The vitreous, retina, lens, and choroid were then carefully removed without damaging the outflow angle in the anterior portion of the eye. The inner central ring of the iris was also removed. The clean and dissected anterior chamber was then placed on the perfusion chamber. Unintended 30 leakage from around the eye was eliminated by placing high vacuum grease (Dow Coming Corp., Midland, MI) between the distal sclera and perfusion chamber and securing the eye in place with a 4C (5/16") 3 Oz orthodontic rubber band (ORMCO Corp., Glendora, CA). Once 52 WO 2009/021169 PCT/US2008/072584 secured the perfusion set-up is filled with the perfusion media. The perfusion media was DMEM supplemented with 4.5 g/L D-glucose, 200 units/ml penicillin G, 200 gg/ml streptomycin sulfate, and 0.2 mM L-glutamine (Invitrogen, Grand Island, NY). The media filled perfusion set-up was then connected to the infusion tubing and programmable syringe 5 pump. Pressure was monitored by placing a blood pressure sensor (WPI, Sarasota, FL) in line between the syringe pump and perfusion chamber. The sensor relayed the signal through a Bridge-8 amplifier (WPI, Sarasota, FL). The amplified signal was converted to a digital read-out through a MP-100 data acquisition system (WPI. Sarasota, FL), and the data was analyzed using the AcqKnowledge software (WPI. Sarasota, FL). Any perfusion chamber 10 set-up that could not maintain a steady pressure due to leaking was removed from the assay. Once four anterior chamber perfusion set-ups were made, the chambers were allowed to warm to 35 'C for several hours while being perfused with media at a rate of 2 gl/min. Once the perfusion set-ups were stabilized, the first control media exchange of 15 ml was performed. The exchange rate was 5 ml/min. The perfusion set-ups were then allowed to 15 establish an overnight baseline at a flow rate of 2 gl/min. The next morning, a second control media exchange was performed in the same way. This second exchange was used to establish the 2 hour baseline for the compound study. After establishing a 2 hour baseline that does not have more than a 1 mmHg drift, the compound media exchange was performed. Compound media exchanged were performed on two of the four perfusion set-ups. The 20 remaining perfusion set-ups received a vehicle media exchange. All exchanged were performed at a rate of 5ml/min and an exchange volume of 25 ml. After the exchange, the perfusion set-ups were perfused at a rate of 2 gl/min for at least 4 hr. Outflow facility was calculated by dividing the resultant IOP pressure (mmHg) by the flow rate (gl/min). Data were plotted as a relative difference from time zero, i.e., the time after the 2hr baseline and 25 before the compound/vehicle exchange. 6.27. Dexamethasone-Induced Ocular Hypertension Model Twenty eight day mouse Alzet mini-osmotic pumps (DURECT Corp., Cupertino, CA) were filled with a solution of water soluble dexamethasone (dex) in PBS (Sigma, St. Louis, MO) so that they would release roughly 0.1 mg of dex per day. Once the pumps were filled 30 with the dex, the pumps were allowed to equilibrate in PBS at 37 'C for 60 hours. The equilibrated pumps were surgically placed subcutaneously on the backs of wild-type C57:129 F2 hybrid mice weighing between 25 and 35 grams. Surgical incisions were sutured with 5-0 53 WO 2009/021169 PCT/US2008/072584 braided silk (ROBOZ, Gaithersburg, MD) and treated with antibiotic ointment throughout the entire duration of study. Intraocular pressure (TOP) was measured on these mice using a TonoLab (Colonial Medical Supply Co., Franconia, NH) tonometer. Mice were mildly sedated with isoflurane and topically anesthetized with 0.5% proparacaine (Akorn, Buffalo 5 Grove, IL) before IOP measurements were taken. Baseline IOP was measured 1 day prior to mini-pump implantation. After mini-pump implantation, IOP measurements were taken 2-3 times per week for 4 weeks. Pharmacology studies with potential ocular hypotensive compounds were performed between 21 and 28 days after implantation. 6.28. In Vivo Effects 10 Compounds of the invention found to affect conventional outflow in the pig anterior chamber organ culture perfusion assay described above were then tested in the mouse ocular hypertensive model. As shown in Figure 1, a 100 gM solution of a compound of the invention significantly increased conventional outflow in the pig perfusion assay as compared to the vehicle control. 15 And as shown in Figure 2, the topical administration of that same compound significantly lowered intraocular pressure in female F2 wild-type ocular hypertensive mice. The data in this figure were obtained one hour after topical treatment. 20 All publications (e.g., patents and patent applications) cited above are incorporated herein by reference in their entireties. 54

Claims (39)

1. A compound of the formula: (R 4 )m N N N R H 5 or a pharmaceutically acceptable salt thereof, wherein: X is 0 or NRA; Y is 0, NRB, or C(RB) 2 ; A is cycloalkyl, aryl or heterocycle; R 1 is hydrogen, ORB, N(RB)2, SRB, or optionally substituted alkyl, aryl, or 10 heterocycle; R 2 is hydrogen, halogen, cyano, ORB, N(RB)2, SRB, or optionally substituted alkyl, aryl, or heterocycle; each R 3 is independently halogen or optionally substituted alkyl, and/or two R 3 s may be taken together with the ring to which they are attached to provide an optionally substituted 15 cycloalkyl or heterocycle; each R 4 is cyano, halogen, hydroxy, nitro, Rc, ORc, N(Rc) 2 , NHC(O)Rc, C(O)Rc, C(O)N(Rc) 2 , CSO 2 Rc, CSO 2 N(Rc) 2 , or SO 2 Rc; RA is hydrogen, cyano, nitro, RAI, SO 2 RA1, SO 2 NRA1, or SO 2 N(RA1) 2 ; each RAI is independently hydrogen or optionally substituted alkyl, heteroalkyl, aryl, 20 heterocycle, alkylaryl, or alkylheterocycle; each RB is independently hydrogen or optionally substituted alkyl; each Rc is independently hydrogen or optionally substituted alkyl, heteroalkyl, aryl, heterocycle, alkylaryl, or alkylheterocycle; n is 0-8; and 25 m is 0-4; 55 WO 2009/021169 PCT/US2008/072584 with the proviso that when X is 0, Y is C(RB) 2 , one RB is hydrogen and the other RB is substituted alkyl, A is not chlorophenyl or dichlorophenyl.
2. The compound of claim 1, which is a potent LIMK2 inhibitor.
3. The compound of claim 1, which has a LIMK2 IC 50 of less than about 100, 75, 5 50, 25 or 10 nM.
4. The compound of claim 1, wherein X is 0.
5. The compound of claim 3, wherein Y is not C(RB) 2 .
6. The compound of claim 1, wherein X is NRA.
7. The compound of claim 4, wherein RA is cyano. 10
8. The compound of claim 1, wherein Y is NRB.
9. The compound of claim 1, wherein A is optionally substituted aryl.
10. The compound of claim 9, wherein A is substituted phenyl.
11. The compound of claim 1, wherein A is optionally substituted heterocycle.
12. The compound of claim 1, wherein R 1 is hydrogen. 15
13. The compound of claim 1, wherein R 2 is optionally substituted lower alkyl.
14. The compound of claim 13, wherein R 2 is methyl.
15. The compound of claim 1, wherein R 3 is optionally substituted lower alkyl.
16. The compound of claim 15, wherein R 3 is methyl.
17. The compound of claim 1, wherein R 4 is halogen. 20
18. The compound of claim 17, wherein R 4 is bromine or fluorine.
19. The compound of claim 1, wherein R 4 is Rc.
20. The compound of claim 1, wherein R 4 is C(O)NHRc.
21. The compound of claim 1, wherein R 4 is CSO 2 Rc.
22. The compound of claim 1, wherein R 4 is CSO 2 NHRc. 25
23. The compound of one of claims 19-22, wherein Rc is optionally substituted lower alkyl. 56 WO 2009/021169 PCT/US2008/072584
24. The compound of one of claims 19-22, wherein Rc is optionally substituted heteroalkyl.
25. The compound of claim 24, wherein Rc is -(CH 2 ) 2 N(CH 3 ) 2 .
26. The compound of one of claims 19-22, wherein Rc is optionally substituted 5 heterocycle.
27. The compound of claim 26, wherein Rc is optionally substituted piperidine.
28. A compound of the formula: H (R 4 )m (R 3 )n N N N R, H or a pharmaceutically acceptable salt thereof, wherein: 10 X is O or NRA; R 1 is hydrogen, ORB, N(RB) 2 , SRB, or optionally substituted alkyl, aryl, or heterocycle; R 2 is hydrogen, halogen, cyano, ORB, N(RB)2, SRB, or optionally substituted alkyl, aryl, or heterocycle; 15 each R 3 is independently halogen or optionally substituted alkyl, and/or two R 3 s may be taken together with the ring to which they are attached to provide an optionally substituted cycloalkyl or heterocycle; each R 4 is cyano, halogen, hydroxy, nitro, Rc, ORc, N(Rc) 2 , NHC(O)Rc, C(O)Rc, C(O)N(Rc) 2 , CSO 2 Rc, CSO 2 N(Rc) 2 , or SO 2 Rc; 20 RA is hydrogen, cyano, nitro, RAI, SO 2 RA1, SO 2 NRA1, or SO 2 N(RA1) 2 ; each RAI is independently hydrogen or optionally substituted alkyl, heteroalkyl, aryl, heterocycle, alkylaryl, or alkylheterocycle; each RB is independently hydrogen or optionally substituted alkyl; each Rc is independently hydrogen or optionally substituted alkyl, heteroalkyl, aryl, 25 heterocycle, alkylaryl, or alkylheterocycle; n is 0-8; and 57 WO 2009/021169 PCT/US2008/072584 m is 0-4;
29. The compound of claim 28, which is of the formula: H R3 X N (R4)m N CH 3 N N H
30. The compound of claim 29, which is of the formula: H H3C N -(R4)m N CH 3 N N 5 H
31. A compound of the formula: x (R5)q N (R 4 )m N R3) N N R, H or a pharmaceutically acceptable salt thereof, wherein: X is 0 or NRA; 10 Y is 0, NRB, or C(RB) 2 ; A is cycloalkyl, aryl or heterocycle; 58 WO 2009/021169 PCT/US2008/072584 R 1 is hydrogen, ORB, N(RB)2, SRB, or optionally substituted alkyl, aryl, or heterocycle; R 2 is hydrogen, halogen, cyano, ORB, N(RB)2, SRB, or optionally substituted alkyl, aryl, or heterocycle; 5 each R 3 is independently halogen or optionally substituted alkyl, and/or two R 3 s may be taken together with the ring to which they are attached to provide an optionally substituted cycloalkyl or heterocycle; each R 4 is cyano, halogen, hydroxy, nitro, Rc, ORc, N(Rc) 2 , NHC(O)Rc, C(O)Rc, C(O)N(Rc) 2 , CSO 2 Rc, CSO 2 N(Rc) 2 , or SO 2 Rc; 10 RA is hydrogen, cyano, nitro, RAI, SO 2 RA1, SO 2 NRA1, or SO 2 N(RA1) 2 ; each RAI is independently hydrogen or optionally substituted alkyl, heteroalkyl, aryl, heterocycle, alkylaryl, or alkylheterocycle; each RB is independently hydrogen or optionally substituted alkyl; each Rc is independently hydrogen or optionally substituted alkyl, heteroalkyl, aryl, 15 heterocycle, alkylaryl, or alkylheterocycle; m is 0-4; p is 0-3; and q is 0-2.
32. The compound of claim 31, which is of the formula: x N O (R 4 )m (R 3 )p N R2 N N N 20 H
33. A compound, or a pharmaceutically acceptable salt thereof, wherein the compound is: (2S)-N-(bicyclo[2.2.1 ]heptan-2-yl)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide; 59 WO 2009/021169 PCT/US2008/072584 (3- { [(S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine- 1 carbonyl]-amino} -phenyl)-carbamic acid isobutyl ester; (3-Bromo-phenylamino)-[(R)-2-tert-butoxymethyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)-piperazin- 1 -yl]-methyl-cyanamide; 5 (R)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine- 1 -carboxylic acid (3-bromo-phenyl)-amide; (R)-N-(3-bromophenyl)-N'-cyano-2-(hydroxymethyl)-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide; (S)-2-Methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-piperazine- 1 -carboxylic 10 acid (3-bromo-phenyl)-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [3-(4-fluoro-phenoxy)-phenyl]-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3-chloro-phenyl)-amide; 15 (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3-fluoro-phenyl)-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3-cyano-phenyl)-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic 20 acid (2-bromo-phenyl)-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid o-tolylamide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (4-bromo-phenyl)-amide; 25 (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid m-tolylamide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [3-(morpholine-4-carbonyl)-phenyl]-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic 30 acid [3-(2-dimethylamino-ethylcarbamoyl)-phenyl]-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3-isopropylcarbamoyl-phenyl)-amide; 60 WO 2009/021169 PCT/US2008/072584 (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine- 1 -carboxylic acid (3-isopropylsulfamoyl-phenyl)-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [3-(2-hydroxy-ethylcarbamoyl)-phenyl]-amide; 5 (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [3-(1-methyl-piperidin-4-ylsulfamoyl)-phenyl]-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3-methoxy-phenyl)-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic 10 acid [3-((S)-2-hydroxy-1-methyl-ethylcarbamoyl)-phenyl]-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [3-((R)-2-hydroxy-1-methyl-ethylcarbamoyl)-phenyl]-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3-cyclopropylsulfamoyl-phenyl)-amide; 15 (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [3-(2-hydroxy-1-hydroxymethyl-ethylcarbamoyl)-phenyl]-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3-cyclopropylcarbamoyl-phenyl)-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic 20 acid (3-dimethylcarbamoylmethoxy-phenyl)-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [3-(1-methyl-piperidin-4-ylcarbamoyl)-phenyl]-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3-isopropoxy-phenyl)-amide; 25 (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [3-(2-dimethylamino-ethoxy)-phenyl]-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [3-(2-hydroxy-1-hydroxymethyl-ethylsulfamoyl)-phenyl]-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic 30 acid [3-(3-dimethylamino-propionylamino)-phenyl]-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [3-(3-methyl-butyrylamino)-phenyl]-amide; 61 WO 2009/021169 PCT/US2008/072584 (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine- 1 -carboxylic acid {3-[(tetrahydro-furan-2-carbonyl)-amino]-phenyl}-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [3-(4-dimethylamino-butyrylamino)-phenyl]-amide; 5 (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid {3-[2-(3-butyl-ureido)-acetylamino]-phenyl}-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid {3-[(furan-2-carbonyl)-amino]-phenyl}-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic 10 acid {3-[2-(pyridin-4-ylsulfanyl)-acetylamino]-phenyl}-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [3-(2-amino-acetylamino)-phenyl]-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (4-methoxy-phenyl)-amide; 15 (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [4-(2-dimethylamino-ethylcarbamoyl)-phenyl]-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid {3-[(4-methyl-piperazine-1-carbonyl)-amino]-phenyl}-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic 20 acid (4-ethylcarbamoyl-phenyl)-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [4-(2-hydroxy-ethylcarbamoyl)-phenyl]-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid {3-[3-(4-chloro-butyl)-3-methyl-ureido]-phenyl}-amide; 25 (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (4-carbamoyl-phenyl)-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [4-(3-dimethylamino-propionylamino)-phenyl]-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic 30 acid (3-aminomethyl-phenyl)-amide; (S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (4-aminomethyl-phenyl)-amide; 62 WO 2009/021169 PCT/US2008/072584 (S)-2-Methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-piperazine- 1 -carboxylic acid (3 -dimethylaminomethyl-phenyl)-amide; (S)-2-Methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-piperazine-l1-carboxylic acid [4-(3 ,3 -dimethyl-ureido)-phenyl] -amide; 5 (S)-2-Methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-piperazine-l1-carboxylic acid {3 -[((S)-2-oxo-thiazolidine-4-carbonyl)-amino] -phenyl} -amide; (S)-2-Methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-piperazine-l1-carboxylic acid pyridin-3-ylamide; (S)-2-Methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-piperazine-l1-carboxylic 10 acid pyridin-4-ylamide; (S)-2-Methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-piperazine-l1-carboxylic acid thiazol-2-ylamide; (S)-3 -(N'-cyano-2-methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 carboximidamido)-N-isopropylbenzamide; 15 (S)-3 -(N'-cyano-2-methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 carboximidamido)benzoic acid; (S)-3 -(N'-cyano-2-methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 carboximidamido)-N-ethylbenzamide; (S)-3 -(N'-cyano-2-methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 20 carboximidamido)-N-(2-hydroxyethyl)benzamide; (S)-3 -(N'-cyano-2-methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 carboximidamido)-N-(2-(dimethylamino)ethyl)benzamide; (S)-3 -(N'-cyano-2-methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 carboximidamido)-N-(2-morpholinoethyl)benzamide; 25 (S)-3 -(N'-cyano-2-methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 carboximidamido)-N-(2-(pyrrolidin- 1 -yl)ethyl)benzamide; (S)-4-(N'-cyano-2-methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 carboximidamido)benzamide; (S)-5 -(N'-cyano-2-methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 30 carboximidamido)-2-fluoro-N-(2-hydroxyethyl)benzamide; (S)-methyl 3 -(N'-cyano-2-methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4 yl)piperazine- 1 -carboximidamido)benzoate; 63 WO 2009/021169 PCT/US2008/072584 (S)-N-((trans)-4-aminocyclohexyl)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide; (S)-N-(3-tert-butylphenyl)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide; 5 (S)-N-adamantyl-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4 yl)piperazine- 1 -carboximidamide; (S)-N-benzyl-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4 yl)piperazine- 1 -carboximidamide; (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(3 10 (trifluoromethyl)phenyl)piperazine- 1 -carboximidamide; (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(3 (methylthio)phenyl)piperazine- 1 -carboximidamide; (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(pyridin-3 yl)piperazine- 1 -carboximidamide; 15 (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-p tolylpiperazine- 1 -carboximidamide; (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(4 methylcyclohexyl)piperazine- 1 -carboximidamide; (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(piperidin-4 20 yl)piperazine- 1 -carboximidamide; (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(pyridin-2 ylmethyl)piperazine- 1 -carboximidamide; (S)-N'-cyano-2-methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-N-( 1 methylpiperidin-4-yl)piperazine- 1 -carboximidamide; 25 (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N phenylpiperazine- 1 -carboximidamide; (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(3 (morpholine-4-carbonyl)phenyl)piperazine- 1 -carboximidamide; (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(3-(N-(2 30 morpholinoethyl)sulfamoyl)phenyl)piperazine- 1 -carboximidamide; (S)-N'-cyano-2-methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-N-(3 -(N-( 1 methylpiperidin-4-yl)sulfamoyl)phenyl)piperazine- 1 -carboximidamide; 64 WO 2009/021169 PCT/US2008/072584 (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(tetrahydro 2H-pyran-4-yl)piperazine- 1 -carboximidamide; (S)-N'-cyano-2-methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-N-(3 -oxo- 1,3 dihydroisobenzofuran-5 -yl)piperazine- 1 -carboximidamide; 5 (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(pyridin-4 ylmethyl)piperazine- 1 -carboximidamide; (S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-(pyridin-3 ylmethyl)piperazine- 1 -carboximidamide; (S)-N'-cyano-N-((trans)-4-hydroxycyclohexyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 10 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide; (S)-N'-cyano-N-(3-((dimethylamino)methyl)phenyl)-2-methyl-4-(5-methyl-7H pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 -carboximidamide; (S)-N'-cyano-N-(3-(4-fluorophenoxy)phenyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide; 15 (S)-N'-cyano-N-(3-(N-(2-(dimethylamino)ethyl)sulfamoyl)phenyl)-2-methyl-4-(5 methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 -carboximidamide; (S)-N'-cyano-N-(3-(N-(2-hydroxyethyl)sulfamoyl)phenyl)-2-methyl-4-(5-methyl-7H pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 -carboximidamide; (S)-N'-cyano-N-(3-(N-isopropylsulfamoyl)phenyl)-2-methyl-4-(5-methyl-7H 20 pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 -carboximidamide; (S)-N'-cyano-N-(3-cyanophenyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin 4-yl)piperazine- 1 -carboximidamide; (S)-N'-cyano-N-(3-isopropylphenyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide; 25 (S)-N'-cyano-N-(4-((dimethylamino)methyl)phenyl)-2-methyl-4-(5-methyl-7H pyrrolo [2,3 -d]pyrimidin-4-yl)piperazine- 1 -carboximidamide; (S)-N'-cyano-N-(4-fluoro-3-methylphenyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide; (S)-N'-cyano-N-(4-fluorophenyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin 30 4-yl)piperazine- 1 -carboximidamide; (S)-N'-cyano-N-(4-fluorophenyl)-3-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin 4-yl)piperazine- 1 -carboximidamide; 65 WO 2009/021169 PCT/US2008/072584 (S)-N'-cyano-N-(4-methoxyphenyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide; (S)-N'-cyano-N,N-bis(2-hydroxyethyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide; 5 (S)-N'-cyano-N-cyclopropyl-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4 yl)piperazine- 1 -carboximidamide; (S)-tert-butyl 3-((S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4 yl)piperazine- 1 -carboximidamido)pyrrolidine- 1 -carboxylate; (S)-tert-butyl 4-(N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4 10 yl)piperazine- 1 -carboximidamido)piperidine- 1 -carboxylate; [(3- { [(S)-2-Methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-piperazine- 1 carbonyl] -amino } -phenylcarbamoyl)-methyl] -carbamic acid tert-butyl ester; 2,5 -Dimethyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-piperazine- 1 -carboxylic acid (3-bromo-phenyl)-amide; 15 2,6-Dimethyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3-bromo-phenyl)-amide; 2,6-Dimethyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [3-(4-fluoro-phenoxy)-phenyl]-amide; 2-[3-(4-Fluoro-phenoxy)-phenyl]-1-[4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl) 20 piperazin-1-yl]-ethanone; 2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3-bromo-phenyl)-amide; 3-({ [(E)-Ethanesulfonylimino]-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)-piperazin- 1-yl]-methyl} -amino)-N-isopropyl-benzamide; 25 3-({ [(E)-Ethanesulfonylimino]-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)-piperazin- 1 -yl]-methyl} -amino)-benzoic acid methyl ester; 3-({ [(E)-Ethanesulfonylimino]-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)-piperazin- 1 -yl]-methyl} -amino)-N-pyridin-4-yl-benzamide; 3-({ [(E)-Ethanesulfonylimino]-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 30 d]pyrimidin-4-yl)-piperazin- 1-yl]-methyl} -amino)-N-ethyl-benzamide; 3-({ [(E)-Ethanesulfonylimino]-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)-piperazin- 1-yl]-methyl} -amino)-benzamide; 66 WO 2009/021169 PCT/US2008/072584 3-({ [(E)-Ethanesulfonylimino]-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)-piperazin- 1 -yl]-methyl} -amino)-N-phenyl-benzamide; 3-({ [(E)-Ethanesulfonylimino]-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)-piperazin- 1 -yl]-methyl} -amino)-N-(1 -methyl-piperidin-4-yl)-benzamide; 5 3-({ [(E)-Ethanesulfonylimino]-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)-piperazin- 1 -yl]-methyl} -amino)-N-(2-morpholin-4-yl-ethyl)-benzamide; 3-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-3,8-diaza-bicyclo[3.2.1 ]octane-8 carboxylic acid (3-bromo-phenyl)-amide; 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carbothioic acid (4 10 fluoro-phenyl)-amide; 4-(5 -Methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-piperazine- 1 -carbothioic acid pyridin 3-ylamide; 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [3-(4 fluoro-phenoxy)-phenyl]-amide; 15 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3 bromo-4-fluoro-phenyl)-amide; 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3 bromo-phenyl)-amide; 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3 20 bromo-phenyl)-amide; 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3,4 difluoro-phenyl)-amide; 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (4 fluoro-phenyl)-amide; 25 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [4 fluoro-3-(4-fluoro-phenoxy)-phenyl]-amide; 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3 chloro-2-methyl-phenyl)-amide; 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3 30 cyano-phenyl)-amide; 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (2,3 dichloro-phenyl)-amide; 67 WO 2009/021169 PCT/US2008/072584 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (2,3 dimethyl-phenyl)-amide; 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3 chloro-phenyl)-amide; 5 4-(5 -Methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-piperazine- 1 -carboxylic acid m tolylamide; 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3 fluoro-4-methyl-phenyl)-amide; 4-(5 -Methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-piperazine- 1 -carboxylic acid biphenyl 10 2-ylamide; 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3 methylsulfanyl-phenyl)-amide; 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid [2-(1H indol-3-yl)-ethyl]-amide; 15 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid 3-fluoro benzylamide; 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3,5 dimethoxy-phenyl)-amide; 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3 20 methoxy-phenyl)-amide; 4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazine-1-carboxylic acid (3 bromo-phenyl)-methyl-amide; 4-[(S)-4-(6-Chloro-5-methyl-pyrimidin-4-yl)-3-methyl-piperazin-1-yl]-5-methyl-7H pyrrolo[2,3-d]pyrimidine; 25 4-Fluoro-N-(3-{2-[4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-l-yl]-2 oxo-ethyl} -phenyl)-benzamide; Acetic acid 2-(3 - { [(S)-2-methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl) piperazine- 1 -carbonyl] -amino } -benzoylamino)-ethyl ester; Dimethyl-carbamic acid 3-({[(E)-ethanesulfonylimino]-[(S)-2-methyl-4-(5-methyl 30 7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-methyl}-amino)-phenyl ester; Dimethyl-carbamic acid 4- { [(S)-2-methyl-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4 yl)-piperazine- 1 -carbonyl]-amino } -phenyl ester; 68 WO 2009/021169 PCT/US2008/072584 Ethanesulfonic acid 1-(2-methyl-benzooxazol-5-ylamino)-1-[(S)-2-methyl-4-(5 methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)-ylideneamide; Ethanesulfonic acid 1-(3-bromo-phenylamino)-1-[(S)-2-methyl-4-(5-methyl-7H pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)-ylideneamide; 5 Ethanesulfonic acid 1-(3H-benzoimidazol-5-ylamino)-1-[(S)-2-methyl-4-(5-methyl 7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)-ylideneamide; Ethanesulfonic acid 1-(4-fluoro-3-methoxy-phenylamino)-1-[(S)-2-methyl-4-(5 methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)-ylideneamide; Ethanesulfonic acid 1-(benzo[1,3]dioxol-5-ylamino)-1-[(S)-2-methyl-4-(5-methyl 10 7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)-ylideneamide; Ethanesulfonic acid 1-(benzofuran-5-ylamino)-1-[(S)-2-methyl-4-(5-methyl-7H pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)-ylideneamide; Ethanesulfonic acid 1-(biphenyl-4-ylamino)-1-[(S)-2-methyl-4-(5-methyl-7H pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)-ylideneamide; 15 Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl) piperazin-1-yl]-1-(5-methyl-thiazol-2-ylamino)-meth-(E)-ylideneamide; Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl) piperazin-1-yl]-1-[3-(pyridin-3-yloxy)-phenylamino]-meth-(E)-ylideneamide; Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl) 20 piperazin-1-yl]-1-[3-(morpholine-4-carbonyl)-phenylamino]-meth-(E)-ylideneamide; Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl) piperazin-1-yl]-1-(pyridin-3-ylamino)-meth-(E)-ylideneamide; Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl) piperazin-1-yl]-1-(thiazol-2-ylamino)-meth-(E)-ylideneamide; 25 Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl) piperazin-1-yl]-1-phenylamino-meth-(E)-ylideneamide; Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl) piperazin-1-yl]-1-(3-oxazol-5-yl-phenylamino)-meth-(E)-ylideneamide; Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl) 30 piperazin-1-yl]-1-[3-(2-methyl-thiazol-4-yl)-phenylamino]-meth-(E)-ylideneamide; Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl) piperazin-1-yl]-1-(quinolin-7-ylamino)-meth-(E)-ylideneamide; 69 WO 2009/021169 PCT/US2008/072584 Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl) piperazin-1-yl]-1-(quinoxalin-6-ylamino)-meth-(E)-ylideneamide; Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl) piperazin-1-yl]-1-(3-trifluoromethyl-phenylamino)-meth-(E)-ylideneamide; 5 Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl) piperazin-1-yl]-1-[4-(3-trifluoromethyl-phenoxy)-phenylamino]-meth-(E)-ylideneamide; Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl) piperazin-1-yl]-1-(3,4,5-trimethoxy-phenylamino)-meth-(E)-ylideneamide; Ethanesulfonic acid 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl) 10 piperazin-1-yl]-1-[3-(morpholine-4-sulfonyl)-phenylamino]-meth-(E)-ylideneamide; Ethanesulfonic acid 1-[2-(1H-indol-3-yl)-ethylamino]-1-[(S)-2-methyl-4-(5-methyl 7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)-ylideneamide; Ethanesulfonic acid 1-[3-(4-fluoro-phenoxy)-phenylamino]-1-[(S)-2-methyl-4-(5 methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)-ylideneamide; 15 N-(3-{2-[4-(5-Methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-2-oxo ethyl} -phenyl)-isonicotinamide; N-(3-bromophenyl)-2-butyl-N'-cyano-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4 yl)piperazine- 1 -carboximidamide; N-(3 -Bromo-phenyl)-4-(5 -methyl-7H-pyrrolo [2,3 -d]pyrimidin-4-yl)-piperazine- 1 20 carboxamidine; N-(3-bromophenyl)-N'-cyano-2-(4-fluorobenzyl)-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)piperazine- 1 -carboximidamide; N-(3-bromophenyl)-N'-cyano-2-ethyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4 yl)piperazine- 1 -carboximidamide; 25 N-(3-bromophenyl)-N'-cyano-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4 yl)piperazine- 1 -carboximidamide; N-(3-bromophenyl)-N'-cyano-5-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-2,5 diazabicyclo[2.2.1 ]heptane-2-carboximidamide; N- [1 -(3-Bromo-phenylamino)- 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 30 d]pyrimidin-4-yl)-piperazin- 1-yl]-meth-(E)-ylidene]-benzenesulfonamide; N- [1 -(3-Bromo-phenylamino)- 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3 d]pyrimidin-4-yl)-piperazin- 1 -yl]-meth-(E)-ylidene]-4-methoxy-benzenesulfonamide; 70 WO 2009/021169 PCT/US2008/072584 N-[1 -[(S)-2-Methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin- 1-yl]-1 (5-methyl-thiazol-2-ylamino)-meth-(E)-ylidene]-benzenesulfonamide; N-[1 -Ethylamino- 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl) piperazin- 1-yl]-meth-(E)-ylidene]-benzenesulfonamide; 5 N-[1 -Isopropylamino- 1-[(S)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl) piperazin- 1-yl]-meth-(E)-ylidene]-benzenesulfonamide; Naphthalene-2-sulfonic acid 1-(3-bromo-phenylamino)-1-[(S)-2-methyl-4-(5-methyl 7H-pyrrolo[2,3-d]pyrimidin-4-yl)-piperazin-1-yl]-meth-(E)-ylideneamide; N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-N-m 10 tolylpiperazine- 1 -carboximidamide; N'-cyano-N-(3-(4-fluorophenoxy)phenyl)-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4 yl)piperazine- 1 -carboximidamide; N'-cyano-N-(3-cyanophenyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4 yl)piperazine- 1 -carboximidamide; 15 N'-cyano-N-(3-methoxyphenyl)-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4 yl)piperazine-1-carboximidamide; or Tert-butyl 3-((S)-N'-cyano-2-methyl-4-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4 yl)piperazine- 1 -carboximidamido)piperidine- 1 -carboxylate.
34. A pharmaceutical formulation comprising a liquid vehicle suitable for 20 ophthalmic administration and a compound of claim 1 or 28.
35. The use of a compound of the formula: X Y A (R) (RA)m N N N R, H or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment of cancer or an inflammatory disease or disorder, wherein: 25 X is O or NRA; Y is 0, NRB, or C(RB) 2 ; A is cycloalkyl, aryl or heterocycle; 71 WO 2009/021169 PCT/US2008/072584 R 1 is hydrogen, ORB, N(RB)2, SRB, or optionally substituted alkyl, aryl, or heterocycle; R 2 is hydrogen, halogen, cyano, ORB, N(RB)2, SRB, or optionally substituted alkyl, aryl, or heterocycle; 5 each R 3 is independently halogen or optionally substituted alkyl, and/or two R 3 s may be taken together with the ring to which they are attached to provide an optionally substituted cycloalkyl or heterocycle; each R 4 is cyano, halogen, hydroxy, nitro, Rc, ORc, N(Rc) 2 , NHC(O)Rc, C(O)Rc, C(O)N(Rc) 2 , CSO 2 Rc, CSO 2 N(Rc) 2 , or SO 2 Rc; 10 RA is hydrogen, cyano, nitro, RAI, SO 2 RA1, SO 2 NRA1, or SO 2 N(RA1) 2 ; each RAI is independently hydrogen or optionally substituted alkyl, heteroalkyl, aryl, heterocycle, alkylaryl, or alkylheterocycle; each RB is independently hydrogen or optionally substituted alkyl; each Rc is independently hydrogen or optionally substituted alkyl, heteroalkyl, aryl, 15 heterocycle, alkylaryl, or alkylheterocycle; n is 0-8; and m is 0-4.
36. The use of a compound of the formula: x (R5)q N _(R 4 )m N R2 N N R, H 20 or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment of cancer or an inflammatory disease or disorder in a patient, wherein: X is 0 or NRA; Y is 0, NRB, or C(RB) 2 ; A is cycloalkyl, aryl or heterocycle; 25 R 1 is hydrogen, ORB, N(RB) 2 , SRB, or optionally substituted alkyl, aryl, or heterocycle; 72 WO 2009/021169 PCT/US2008/072584 R 2 is hydrogen, halogen, cyano, ORB, N(RB)2, SRB, or optionally substituted alkyl, aryl, or heterocycle; each R 3 is independently halogen or optionally substituted alkyl, and/or two R 3 s may be taken together with the ring to which they are attached to provide an optionally substituted 5 cycloalkyl or heterocycle; each R 4 is cyano, halogen, hydroxy, nitro, Rc, ORc, N(Rc) 2 , NHC(O)Rc, C(O)Rc, C(O)N(Rc) 2 , CSO 2 Rc, CSO 2 N(Rc) 2 , or SO 2 Rc; RA is hydrogen, cyano, nitro, RAI, SO 2 RA1, SO 2 NRA1, or SO 2 N(RA1) 2 ; each RAI is independently hydrogen or optionally substituted alkyl, heteroalkyl, aryl, 10 heterocycle, alkylaryl, or alkylheterocycle; each RB is independently hydrogen or optionally substituted alkyl; each Rc is independently hydrogen or optionally substituted alkyl, heteroalkyl, aryl, heterocycle, alkylaryl, or alkylheterocycle; m is 0-4; 15 p is 0-3; and q is 0-2.
37. The use of a compound of the formula: X Y A (R) (R 4 ). N N N R, H or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the 20 treatment of disease or disorder affecting vision, wherein: X is 0 or NRA; Y is 0, NRB, or C(RB) 2 ; A is cycloalkyl, aryl or heterocycle; R 1 is hydrogen, ORB, N(RB) 2 , SRB, or optionally substituted alkyl, aryl, or 25 heterocycle; R 2 is hydrogen, halogen, cyano, ORB, N(RB)2, SRB, or optionally substituted alkyl, aryl, or heterocycle; 73 WO 2009/021169 PCT/US2008/072584 each R 3 is independently halogen or optionally substituted alkyl, and/or two R 3 s may be taken together with the ring to which they are attached to provide an optionally substituted cycloalkyl or heterocycle; each R 4 is cyano, halogen, hydroxy, nitro, Rc, ORc, N(Rc) 2 , NHC(O)Rc, C(O)Rc, 5 C(O)N(Rc) 2 , CSO 2 Rc, CSO 2 N(Rc) 2 , or SO 2 Rc; RA is hydrogen, cyano, nitro, RAI, SO 2 RA1, SO 2 NRA1, or SO 2 N(RA1) 2 ; each RAI is independently hydrogen or optionally substituted alkyl, heteroalkyl, aryl, heterocycle, alkylaryl, or alkylheterocycle; each RB is independently hydrogen or optionally substituted alkyl; 10 each Rc is independently hydrogen or optionally substituted alkyl, heteroalkyl, aryl, heterocycle, alkylaryl, or alkylheterocycle; n is 0-8; and m is 0-4.
38. The use of a compound of the formula: x (R5)q N _(R 4 )m N N R, 15 H or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment of disease or disorder affecting vision in a patient, wherein: X is 0 or NRA; Y is 0, NRB, or C(RB) 2 ; 20 A is cycloalkyl, aryl or heterocycle; R 1 is hydrogen, ORB, N(RB)2, SRB, or optionally substituted alkyl, aryl, or heterocycle; R 2 is hydrogen, halogen, cyano, ORB, N(RB)2, SRB, or optionally substituted alkyl, aryl, or heterocycle; 74 WO 2009/021169 PCT/US2008/072584 each R 3 is independently halogen or optionally substituted alkyl, and/or two R 3 s may be taken together with the ring to which they are attached to provide an optionally substituted cycloalkyl or heterocycle; each R 4 is cyano, halogen, hydroxy, nitro, Rc, ORc, N(Rc) 2 , NHC(O)Rc, C(O)Rc, 5 C(O)N(Rc) 2 , CSO 2 Rc, CSO 2 N(Rc) 2 , or SO 2 Rc; RA is hydrogen, cyano, nitro, RAI, SO 2 RA1, SO 2 NRA1, or SO 2 N(RA1) 2 ; each RAI is independently hydrogen or optionally substituted alkyl, heteroalkyl, aryl, heterocycle, alkylaryl, or alkylheterocycle; each RB is independently hydrogen or optionally substituted alkyl; 10 each Rc is independently hydrogen or optionally substituted alkyl, heteroalkyl, aryl, heterocycle, alkylaryl, or alkylheterocycle; m is 0-4; p is 0-3; and q is 0-2. 15
39. The use of claim 38, wherein the disease or disorder affecting vision is glaucoma, neurodegeneration, or infection. 75
AU2013213761A 2007-08-08 2013-08-09 (7h-pyrrolo [2, 3-d] pyrimidin-4-yl) - piperazines as kinase inhibitors for the treatment of cancer and inflammation Abandoned AU2013213761A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2013213761A AU2013213761A1 (en) 2007-08-08 2013-08-09 (7h-pyrrolo [2, 3-d] pyrimidin-4-yl) - piperazines as kinase inhibitors for the treatment of cancer and inflammation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US60/954,698 2007-08-08
AU2008285388A AU2008285388B2 (en) 2007-08-08 2008-08-08 (7h-pyrrolo [2, 3-d] pyrimidin-4-yl) -piperazines as kinase inhibitors for the treatment of cancer and inflammation
AU2013213761A AU2013213761A1 (en) 2007-08-08 2013-08-09 (7h-pyrrolo [2, 3-d] pyrimidin-4-yl) - piperazines as kinase inhibitors for the treatment of cancer and inflammation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2008285388A Division AU2008285388B2 (en) 2007-08-08 2008-08-08 (7h-pyrrolo [2, 3-d] pyrimidin-4-yl) -piperazines as kinase inhibitors for the treatment of cancer and inflammation

Publications (1)

Publication Number Publication Date
AU2013213761A1 true AU2013213761A1 (en) 2013-08-29

Family

ID=49028806

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2013213761A Abandoned AU2013213761A1 (en) 2007-08-08 2013-08-09 (7h-pyrrolo [2, 3-d] pyrimidin-4-yl) - piperazines as kinase inhibitors for the treatment of cancer and inflammation

Country Status (1)

Country Link
AU (1) AU2013213761A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645956A (en) * 2020-12-29 2021-04-13 天津全和诚科技有限责任公司 Preparation method of prodrug intermediate of thymidine phosphorylase inhibitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645956A (en) * 2020-12-29 2021-04-13 天津全和诚科技有限责任公司 Preparation method of prodrug intermediate of thymidine phosphorylase inhibitor

Similar Documents

Publication Publication Date Title
AU2008285388B2 (en) (7h-pyrrolo [2, 3-d] pyrimidin-4-yl) -piperazines as kinase inhibitors for the treatment of cancer and inflammation
KR101706391B1 (en) Limk2 inhibitors, compositions comprising them, and methods of their use
RU2487875C2 (en) IMIDAZO[1,2-b]PYRIDAZINE AND PYRAZOLO[1,5-a]PYRIMIDINE DERIVATIVES AND USE THEREOF AS PROTEIN KINASE INHIBITOR
CA3115526A1 (en) Bifunctional compounds for degrading btk via ubiquitin proteosome pathway
US9260435B2 (en) Substituted imidazopyrazines as Akt kinase inhibitors
WO2011091204A1 (en) 5-(1h-pyrazol-5-yl)thiazole-based compounds for the treatment of diseases and disorders of the eye
AU2013213761A1 (en) (7h-pyrrolo [2, 3-d] pyrimidin-4-yl) - piperazines as kinase inhibitors for the treatment of cancer and inflammation
US9370517B2 (en) Substituted pyrazolopyrimidines as Akt kinase inhibitors
NZ720726B2 (en) Novel carboxamides, method for the production thereof, pharmaceutical preparations comprising them, and use thereof for producing medicaments

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application