AU2012205224A1 - Method and System for Interworking of Cellular Networks and Wireless Local Area Networks - Google Patents

Method and System for Interworking of Cellular Networks and Wireless Local Area Networks Download PDF

Info

Publication number
AU2012205224A1
AU2012205224A1 AU2012205224A AU2012205224A AU2012205224A1 AU 2012205224 A1 AU2012205224 A1 AU 2012205224A1 AU 2012205224 A AU2012205224 A AU 2012205224A AU 2012205224 A AU2012205224 A AU 2012205224A AU 2012205224 A1 AU2012205224 A1 AU 2012205224A1
Authority
AU
Australia
Prior art keywords
wlan
wtru
pdg
ims
handover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2012205224A
Inventor
Kamel M. Shaheen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Technology Corp
Original Assignee
InterDigital Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2009201928A external-priority patent/AU2009201928B2/en
Application filed by InterDigital Technology Corp filed Critical InterDigital Technology Corp
Priority to AU2012205224A priority Critical patent/AU2012205224A1/en
Publication of AU2012205224A1 publication Critical patent/AU2012205224A1/en
Priority to AU2015213273A priority patent/AU2015213273A1/en
Priority to AU2017203987A priority patent/AU2017203987A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

A method and system for interworking between cellular networks and wireless local area networks (WLANs) are disclosed. At least one cellular network, at least one WLAN and an IP network are deployed. A wireless transmit/receive unit (WTRU) first establishes a connection to a WLAN and a tunnel between an access point (AP) and a packet data gateway (PDG) is established. The PDG further establishes a tunnel to an IP network. The WTRU then invokes a service which is delivered through the WLAN. As signal quality from the degrades below a predetermined threshold, a handover from the WLAN to the cellular network is performed. A new connection to the cellular network may be established either before or after breaking the current connection to the WLAN or the two connections may be maintained simultaneously.

Description

[0001] METHOD AND SYSTEM FOR INTERWORKING OF CELLULAR NETWORKS AND WIRELESS LOCAL AREA NETWORKS [0002] FIELD OF INVENTION [0003] The present invention is related to wireless communication systems. More specifically, the present invention is a method and system for interworking between cellular networks and wireless local area networks (WLANs). [0004] BACKGROUND [00051 Different types of wireless communication networks are presently deployed, such as WLANs and cellular networks. A multi-mode wireless transmit/receive unit (WTRU) supports wireless communication in more than one wireless communication network. As a user of the multi-mode WTRU roams between different networks, it is necessary to perform handover from one network to the other while receiving services continuously. For example, a wireless subscriber may roam between a WLAN and a third generation (3G) network while maintaining continuity in the wireless service provided to the user. Therefore, there is a need for coordination between the WTRU and the networks such that the service continuity is maintained as the user roams between different wireless networks. [0006 SUMMARY [0007] The present invention is related to a method and system for interworking between cellular networks and WLANs. At least one cellular network, at least one WLAN and an IP network are deployed. The WLAN includes an access point (AP). The cellular network includes a radio access network and a core network. The radio access network includes a Node-B and a radio network controller, and the core network includes a packet data gateway (PDG), a serving GPRS support node (SGSN) and a gateway GPRS support node (GGSN). [0008] A WTRU first establishes a connection to a WLAN and a tunnel 2 between an AP and a PDG is established. The PDG further establishes a tunnel to an IP network. The WTRU then invokes a service which is delivered through the WLAN. As signal quality from the AP degrades below a predetermined threshold, a handover from the WLAN to the cellular network is performed. A new 5 connection to the cellular network may be established either before or after breaking the current connection to the WLAN or the two connections may be maintained simultaneously. In one aspect the present invention provides a wireless transmit/receive unit (WTRU) including: 10 at least one transceiver configured to receive a user service from an Internet Protocol (IP) multimedia subsystem (IMS) via a wireless local area network (WLAN); and a handover controlling entity configured to: initiate a handover of the user service from the WLAN to a cellular network; 15 and perform the handover while continuously receiving the user service from the IMS. In another aspect the present invention provides a method for use in a wireless transmit/receive unit (WTRU), the method including: 20 establishing a connection with a Wireless Local Area Network (WLAN); invoking an IP session for a user service; receiving the user service via a packet data gateway (PDG) and the WLAN; and initiating a handover from the WLAN to a cellular network. 25 In a further aspect the present invention provides a wireless transmit/receive unit (WTRU) including: at least one transceiver configured to: establish a connection to a wireless local area network (WLAN); obtain the address of a packet data gateway (PDG) using Domain Name 30 Service (DNS) via the WLAN; establish a tunnel between the WTRU and the PDG; 2a register with a Third Generation Partnership Project (3GPP) Internet Protocol (IP) multimedia subsystem (IMS) via the WLAN using Session Initiation Protocol (SIP); invoke an IP session for a user service from the IMS; 5 receive the user service from the IMS via the WLAN and the tunnel between the WTRU and the PDG; establish a connection to a cellular network; initiate a handover of the user service from the WLAN to the cellular network; and 10 perform the handover while continuously receiving the user service from the IMS. BRIEF DESCRIPTION OF THE DRAWINGS A more detailed understanding of the invention may be had from the following description of preferred embodiments, given by way of example and to be 15 understood in conjunction with the accompanying drawings, wherein: Figure 1 is a block diagram of a UMTS-WLAN architecture; Figure 2 is a signaling diagram of a process for access to 3G based services through a WLAN; Figure 3 is a signaling diagram of a process for interworking in accordance 20 with a first embodiment of the present invention; Figure 4 is a signaling diagram of an alternative process for interworking in accordance with an alternative to the first embodiment of the present invention; Figure 5 is a signaling diagram of a process for interworking in accordance with a second embodiment of the present invention; 25 Figure 6 is a signaling diagram of an alternative process for interworking in accordance with an alternative to the second embodiment of the present invention; and Figure 7 is a signaling diagram of a process for interworking in accordance with a third embodiment of the present invention. 30 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The present invention will be described with reference to the drawing figures wherein like numerals represent like elements throughout.
[0020] When referred to hereinafter, the terminology "WTRU" includes but is not limited to a user equipment, a mobile station, a fixed or mobile subscriber unit, a pager, or any other type of device capable of operating in a wireless environment. When referred to hereinafter, the terminology "Node B" and "AP" includes but is not limited to a base station, a site controller or any other type of interfacing device in a wireless environment. [00211 The present invention provides methods for maintaining service continuity and seamless handover between a WLAN and a cellular network by defining steps for establishing the cellular network connectivity, steps for performing a handover, and steps for breaking the connectivity between the user and the WLAN. It should be noted that the cellular network can be any type of cellular network including, but not limited to, a universal mobile telecommunication system (UMTS), cdma2000 and a global system for mobile communication (GSM), and the WLAN can be any type of WLAN including, but not limited to, an IEEE 802.x network. [00221 Figure 1 is a block diagram of a TMTS-WLAN interworking network 100. WLANs 130a, 130b, (e.g., WLAN hot spots), are deployed in the coverage area of the UMTS 110. Each WLAN 130a, 130b includes at least one AP 132a, 132b for radio access. The AP 132a, 132b is connected to an access router (AR) 134 for access to external networks, such as an IP network 140, (e.g., Internet), or a cellular core network 120 for 3G-based services through the WLAN hotspot. [0023] Base stations 112 are deployed in the UMTS coverage area for access to UMTS networks. The base station 112 is connected to a radio network controller (RNC) 114 which is connected to the cellular core network 120. [00241 The cellular core network 120 comprises a circuit switched core network (not shown) and a packet switched core network (shown in Figure 1). The packet switched core network 120 comprises an SGSN 122, an authentication, authorization and accounting (AAA) server 124, a home location register (HLR)/home subscriber server (HSS) 126, a GGSN 128, a PDG 129 and a WLAN access gateway (WAG) 121. -3- [0025] Referring to Figures 1 and 2, a process 200 for access to 3G-based services through WLAN is explained hereinafter. A WTRU 102 is currently in a service area of the WLAN hotspot 130a. The WTRU 102 acquires system information of the WLAN hotspot 130a through active or passive scanning (step 202). In active scanning, the WTRU 102 sends a probe request to the AP 132a and the AP 132a sends a probe response in response to the probe request (steps 202a, 202b). The WTRU 102 may receive beacons from more than one AP. In such case the WTRU typically selects the AP having the strongest signal. In passive scanning, the WTRU 102 listens to the beacon transmitted from the AP 132a periodically (step 202c). [00261 After acquiring the system information, WLAN association and authentication procedures are performed. The WTRU 102 sends an association request message to the selected AP 132a (step 204) and the AP 132a sends an association response message to the WTRU 102 (step 206). At such point, an association is established and WLAN authentication procedure is performed (step 208). [0027] The WTRU 102 then initiates subscription and service authentication procedures by registering with the UMTS network for receiving UMTS-based services through the WLAN 130a (step 210). The WLAN 130a resolves the Network Access Id (NAI) provided by the WTRU 102. The AR 134 uses the NAI to route AAA messages to the relevant AAA server 124 in the UJMTS core network 120. The AR 134 triggers extensible authentication protocol (EAP)-authentication key agreement (AKA) authentication and relay messages to a UMTS AAA server 124. Once the WTRU 102 receives an authentication success message, the WTRU 102 uses dynamic host configuration protocol (DHCP) to receive an IP address and then initiates a tunnel establishment with the PDG 129 through the WAG 121. The WTRU 102 constructs a fully qualified domain name (FQDN) and performs a domain name service (DNS) query for the PDG 129 from a DNS 142 (step 212). The WTRU 102 selects a PDG from the received list in the DNS query response and establishes an end-to-end tunnel between the selected PDG 129 and the WTRU 102 (step 214). -4- [0028] Figure 3 is a signaling diagram of a process 300 for interworking in accordance with the first embodiment of the present invention. In accordance with the first embodiment, a new connection to the UMTS network is established before breaking the current connection to the WLAN hotspot, (i.e., "make before break"). When establishing the tunnel at step 214 in Figure 2, the WTRU indicates an application, such as voice over IP (VoIP) services, and the tunnel is set up for this certain application. The tunnel is established by the WTRU 102 sending a request to the AP 132a (step 302a) and the AP 132a forwarding the request to the PDG 129 (step 302b). After the tunnel between the WTRU 102 and the PDG 129 is established, the WTRU 102 invokes the indicated service (step 302). [0029] There are two options that may follow the indication of the application. One is that a request is sent to the PDG 129 to establish the connection to the IP Multimedia Subsystem (IMS) 150 and allocate the Proxy Call State Control Function (P-CSCF) or the Session Initiation Protocol (SIP) proxy for the WTRU 102. The other option is that a request is sent to the PDG 129 to establish the tunnel and wait for the WTRU 102 to request a connection to the IMS 150 and the allocation of the SIP proxy or the P-CSCF is performed after the request for connection. -The first option is preferred since it will save additional delay in setting up the call. However, the second option may be the implementation in certain situations. The step 304 between the PDG 129 and the IMS 150 indicates the steps taking place to establish the connection between the PDG 129 and the IMS 150, such as SIP registration, allocation of P-CSCF and the allocation of Serving CSCF (S-CSCF). A CSCF is a specific type of SIP server, which is used to process SIP signaling packets in an IMS network. A P-CSCF is an SIP proxy that is the first point of contact for the WTRU. An S-CSCF is a central node of the signaling plane. [0030] As the WTRU 102 moves away from the current WLAN hotspot 130a, as shown in Figure 1, a handover from the current WLAN hotspot 130a to the UMTS network 110 is initiated. In accordance with this embodiment, a new connectivity to the UMTS network 110 is established before breaking the existing connectivity to the current WLAN hotspot 130a.
[00311 Referring again to Figure 3, the WTRU 102 establishes a connection to the GGSN 128 as indicated by arrow 305 by the following steps 306-310. The WTRU 102 first establishes a radio access bearer (RAB) to a Node-B 112 (step 306) and invokes a 3GPP system attachment (step 308). The WTRU 102 then invokes 3GPP IP connectivity by establishing a packet data protocol (PDP) context (step 310). When the WTRU 102 sets up a PDP context, the WTRU 102 selects an access point and an access point name (APN) is determined. The APN is used in a DNS query. This process finally gives an IP address of the GGSN 128 which serves the access point. The WTRU 102 then invokes 3GPP IMS connectivity through SIP registration at step 312 at such point the connection between the GGSN 128 and the IMS 150 is also established as indicated by arrow 312a. [0032] Once the connectivity to the UMTS network 110 is established, a process for breaking the connectivity to the current WLAN hotspot 130a is initiated. The WTRU 102 sends a handover request to the AP 132a (step 314). The handover request identifies the tunnel end points, the user ID, radio resources, frequency channels, priority, or the like. The AP 132a then sends a 3GPP relocation request to the PDG 129 (step 316). There are two options with respect to the 3GPP relocation request. The PDG 129 may be removed from the call path after the connectivity to the WLAN 130a is terminated or the PDG 129 may remain on the call path after the connectivity to the WLAN 130a is terminated. Figure 3 illustrates the first option and the second option will be explained with reference to Figure 4 hereinafter. [0033] In the first embodiment shown in Figure 3, the PDG 129 is removed from the call path after the connectivity to the WLAN 130a is terminated. The PDG 129 forwards the request to the GGSN 128, and the GGSN 128 forwards the request to the IMS 150 (steps 318, 320). The tunnel between the PDG 129. and the GGSN 128 lasts only for the duration the connectivity to the WLAN 130a exists, and then a new connection between the GGSN 128' and the IMS 150 is established and traffic is forwarded directly from the IMS 150 to the GGSN 128 where the WTRU 102 is now connected. [0034 The IMS 150 sends a relocation response to the GGSN 128, which -6forwards the response to the PDG 129 (steps 322, 324). The PDG 129 sends a relocation response to the AP 132a (step 326). The AP 132a then releases the resources after sending a handover complete message to the WTRU 102 (step 328). The GGSN 128 also sends the handover complete message, (i.e., HO complete), for resource allocation to the Node-B 112 via the SGSN 122 (steps 330, 332). The Node-B 112 then sends the handover complete message to the WTRU 102 (step 334). The services from the IMS 150 are then provided through the ULMTS network 110, (i.e., from the IMS 150 via the GGSN 128, the SGSN 122 and the Node-B 112 to the WTRU 102 as indicated by arrows 336a-336c) (steps 336, 338). [00351 Figure 4 is a signaling diagram of an alternative process 400 to the first embodiment. Process 400 is similar to process 300 except the PDG 129 remains on the call path after the connectivity to the WLAN 140a is terminated. The PDG 129 will be in the middle of the call path after the handover. The handover is performed by switching the signaling path in the P-CSCF toward the GGSN 128 from the PDG 129. The traffic is directed from the PDG 129 to the GGSN 128. [0036] Steps 402-416 are the same as corresponding steps 302-316 and will not be repeated herein. After receiving the relocation request from the AP 132a, the PDG 129 sends a tunnel establishment request to the GGSN 128 and the GGSN 128 responds with a tunnel establishment response. At such point a tunnel is established between the PDG 129 and the GGSN 128. The GGSN 128 establishes the SIP connectivity to the IMS 150 through the PDG 129 (steps 422, 424). The PDG 129 sends a relocation response to the AP 132a (step 426). The AP 132a then releases the resources after sending a handover complete message to the WTRU 102 (step 428). The GGSN 128 also sends the handover complete message for resource allocation to the Node-B 112 via the SGSN 122 (steps 430, 432). The Node-B 112 then sends the handover complete message to the WTRU 102 (step 434). The services from the IMS 150 are then provided through the UMTS network 110, (i.e., from the IMS 150 via the PDG 129, the GGSN 128, the SGSN 122 and the Node-B 112 to the WTRU 102 as indicated by arrows 436a-436c) (step 436). -7- 10037] Figure 5 is a signaling diagram of a process 500 for interworking in accordance with a second embodiment of the present invention. In accordance with the second embodiment, the WTRU 102 may maintain multiple sessions simultaneously and the existing connectivity to the WLAN 130a is not torn down after the handover is complete. Two connections are maintained simultaneously and the application is transferred from one network to the other, (i.e., "simultaneous"). [0038] After the tunnel between the WTRU 102 and the PDG 129 is established, the WTRU 102 invokes a service, such as VoIP call services (step 502). The WTRU 102 sends a request to the AP 132a (step 502a) and the AP 132a forwards the request to the PDG 129 (step 502b). The step 504 between the PDG 129 and the IMS 150 indicates the steps taken place to establish the connection between the PDG 129 and the IMS 150, such as SIP registration, allocation of P-CSCF and the allocation of S-CSCF. [0039] The WTRU 102 establishes an additional connection to the UMTS network 110 concurrently. The WTRU 102 establishes a connection to the GGSN 128 as indicated by arrow 505 by the following steps 506-510. The WTRU 102 establishes an RAB to a Node-B 112 (step 506) and invokes a 3GPP system attachment (step 508). The WTRU 102 then invokes 3GPP IP connectivity by establishing a PDP context (step 510). When the WTRU 102 sets up a PDP context, the WTRU 102 selects an access point and an APN is determined. The APN is used in a DNS query. This process finally gives an IP address of the GGSN 128 which serves the access point. The WTRU 102 then invokes 3GPP IMS connectivity through SIP registration at step 512 at such point the connection between the GGSN 128 and the IMS 150 is also established as indicated by arrow 512a. [00401 As the WTRU 102 moves away from the current WLAN hotspot 130a, as shown in Figure 1, the application is transferred from the WLAN 130a to the TMTS network 110 without breaking the existing connection to the WLAN 130a. The WTRU 102 sends a handover request to the AP 132a (step 514). The handover request identifies the tunnel end points, the user ID, radio resources, frequency channels, priority, or the like. The AP 132a then -8sends a 3GPP relocation request to the PDG 129 (step 516). As stated hereinbefore with respect to the first embodiment and its alternative, the PDG 129 may be removed from the call path after the connection is switched to the U1VffS or may remain on the call path. Figure 5 illustrates the first option and the second option will be explained with reference to Figure 6 hereinafter. [0041] The PDG 129 forwards the request to the GGSN 128, and the GGSN 128 forwards the request to the IMS 150 (steps 518, 520). The PDG 129 is removed from the call path after the connectivity to the WLAN 130a is switched. The tunnel between the PDG 129 and the GGSN 128 lasts only for a certain interval, and a new connection between the GGSN 128 and the IMS 150 is established and traffic is forwarded directly from the IMS 150 to the GGSN 128 where the WTRU 102 is connected. [00421 The IMS 150 sends a relocation response to the GGSN 128, which forwards the response to the PDG 129 (steps 522, 524). The PDG 129 sends a relocation response to the AP 132a (step 526). The AP 132a then releases the resources after sending a handover complete message to the WTRU 102 (step 528). The GGSN 128 also sends the handover complete message for resource allocation to the Node-B 112 via the SGSN 122 (steps 530, 532). The Node-B 112 then sends the handover complete message to the WTRU 102 (step 534). The services from the IMS 150 are then provided through the ULMTS network 110, (i.e., from the IMS 150 via the GGSN 128, the SGSN 122 and the Node-B 112 to the WTRU 102 as indicated by arrows 536a-536c) (steps 536, 538). [0043] Figure 6 is a signaling diagram of a process 600 which is an alternative to the second embodiment of the present invention. Process 600 is similar to process 500 except the PDG 129 remains on the call path after the connectivity to the WLAN 130a is switched. The PDG 129 will be in the middle of the call path after the handover. 100441 Steps 602-616 are the same as corresponding steps 502-516 of process 500 and will not be repeated herein. After receiving the relocation request from the AP 132a, the PDG 129 sends a tunnel establishment request to the GGSN 128 and the GGSN 128 responds with a tunnel establishment response (steps 618, 620). At such point a tunnel is established between the -9- PDG 129 and the GGSN 128. The GGSN 128 establishes the SIP connectivity to the IMS 150 through the PDG 129 (steps 622, 624). The PDG 129 sends a relocation response to the AP 132a (step 626). The AP 132a then releases the resources at step 629 after sending a handover complete message to the WTRU 102 (step 628). The GGSN 128 also sends the handover complete message for resource allocation to the Node-B 112 via the SGSN 122 (steps 630, 632). The Node-B 112 then sends the handover complete message to the WTRU 102 (step 634). The services from the IMS 150 are then provided through the UMTS network, (i.e., from the IMS 150 via the PDG 129, the GGSN 128, the SGSN 122 and the Node-B 112 to the WTRU 102 as indicated by arrows 636a-636c) (step 636). [00451 Figure 7 is a signaling diagram of a process 700 for interworking in accordance with a third embodiment of the present invention. In accordance with the third embodiment, the existing connectivity to the WLAN 130a is torn down before handover to the UMTS network 110, (i.e., "break before make"). After the tunnel between the WTRU 102 and the PDG 129 is established, the WTRU 102 invokes the indicated service (step 702). To invoke the indicated service, the WTRU 102 sends a request to the AP 132a (step 702a) and the AP 132a forwards the request to the PDG 129 (step 702b). The step 704 between the PDG 129 and the IMS 150 indicates the steps taken place to establish the connection between the PDG and the IMS, such as SIP registration, allocation of P-CSCF and the allocation of S-CSCF. [00461 As the WTRU 102 moves away from the current WLAN hotspot 130a, as shown in Figure 1, handover from the current WLAN hotspot 130a to the UMTS network 110 is performed. In accordance with this embodiment, a new connectivity to the UMTS network 110 is established after breaking the existing connectivity to the current WLAN hotspot 130a, (e.g., loss of signal). 10047] When the signal from the AP 132a is lost (step 706), the WTRU may initiate the handover to the UMTS system or alternatively the WLAN may initiate the handover. Since the WLAN is connected to the PDG 129, the WLAN may initiate the handover to the target UMTS system. When the signal loss is detected, the AP 132a sends a message, (a relocation request), to -10the PDG 129 (step 708). The session is then maintained for a certain interval (step 710). [0048] The WTRU 102 then establishes a connection to the GGSN 128 as indicated by arrow 711 by the following steps 712-716. The WTRU 102 establishes an RAB to a Node-B 112 (step 712) and invokes a 3GPP system attachment (step 714). The WTRU 102 then invokes 3GPP IP connectivity by establishing a PDP context (step 716). When the WTRU 102 sets up a.PDP context, the WTRU 102 selects an access point and an APN is determined. The APN is used in a DNS query. This process finally gives an IP address of the GGSN 128 which serves the access point. The WTRU 102 then invokes 3GPP IMS connectivity through SIP registration at step 718, at such point the connection between the GGSN 128 and the IMS 150 is also established as indicated by arrow 718a. [0049] A handover bending session is then initiated (step 720). The WTRU 102 sends the information related to the existing session to the IMS 150, (i.e., . SIP server). The information includes the session/service identification, originating and terminating IP addresses, a request to redirect the traffic to the UMTS system with the new contact information, (i.e., current IP address), or the like. The IMS 150 then updates the new routing of the call/session. The IMS 150 establishes a new P-CSCF and S-CSCF for the new session. [00501 The IMS 150 then sends a handover request notification to the PDG 129 with information regarding the session and indications that the call/session has been redirected and resources previously reserved should be released (step 722). The PDG 129 then sends a relocation response to the AP 132a along with the session information and WTRU identity (step 724). The AP 132a then releases resources allocated for the WTRU 102. The session is resumed between the WTRU 102 and the IMS 150 (steps 726a-726d) and user invoked services are provided from the IMS 150 via the GGSN 128, the SGSN 122 and the Node-B 112 to the WTRU 102 (step 728). [00511 The PDG 129 may indicate a handover to the IMS 150. Alternatively, the WTRU 102 may indicate the handover to the IMS 150 and -11provide the old connection information. [0052] Embodiments [00531 1. A method for interworking between a cellular network and a WLAN for a user service provided by an IMS, whereby the user service is continuously provided through the cellular network after the handover. A WTRU initially establishes a connection to a WLAN and establishes a tunnel between the WLAN and a PDG of the cellular network and, in turn, a tunnel between the PDG and an IP network to receive a user service through the WLAN. The WTRU establishes a connection to the cellular network and performs a handover from the WLAN to the cellular network by sending a handover signaling through the WLAN. [0054] 2. The method of embodiment 1 wherein the PDG sends a relocation request to a GGSN of the cellular network when the PDG receives the handover request, whereby the PDG is removed from a call path after the handover is performed, and the call path between the IMS and the WTRU is established through the GGSN. [0055] 3. The method of embodiment 1 wherein the PDG sends a tunnel establishment request to a GGSN when the PDG receives the handover request, whereby the PDG remains on a call path after the handover is performed, and the call path between the IMS and the WTRU is established via the GGSN and the PDG. [00561 4. The method of any one of embodiments 1-3 wherein a tunnel between the PDG and the IMS is established after indication of the service. [0057] 5. The method of any one of embodiments 1-3 wherein the tunnel between the PDG and the IMS is established after a request from the WT'RU. [0058] 6. The method of any one of embodiments 1-5 wherein the handover request identifies tunnel end points. [0059] 7. The method of any one of embodiments 1-6 wherein the handover request identifies user identity (ID). [0060] 8. The method of any one of embodiments 1-7 wherein the -12handover request identifies radio resources. [0061] 9. The method of any one of embodiments 1-8 wherein the handover request identifies frequency channels. [0062] 10. The method of any one of embodiments 1-9 wherein the handover request identifies priority. [0063] 11. The method of any one of embodiments 1-10 wherein the connection to the WLAN is terminated after the connection to the cellular network is established. [0064] 12. The method of any one of embodiments 1-11 wherein the connection to the WLAN and the connection to the cellular network are maintained simultaneously. [0065] 13. A method for interworking between a cellular network and a WLAN for a user service provided by the IMS, whereby the user service is continuously provided through the cellular network. A WTRU establishes a connection to a WLAN and a tunnel between the WLAN and a PDG and, in turn, a tunnel between the PDG and an IP network to receive a user service through the WLAN. The WTRU establishes a connection to the cellular network when the connection to the WTRU is broken and initiates a handover bending session to recover the session and performs a handover from the WLAN to the cellular network. [0066] 14. The method of embodiment 13 wherein the handover to the cellular network is initiated by the WLAN. [0067] 15. The method of embodiment 13 wherein the handover to the cellular network is initiated by a user. [0068] 16. A system for interworking between the cellular network and the WLAN for a user service provided by the IMS, whereby the WTRU continuously receives the user service through the cellular network after handover by establishing a connection to the cellular network. The cellular network comprises a radio access network and a core network which includes a PDG, a SGSN and a GGSN. The WLAN is configured to establish a tunnel between the WLAN and the PDG and the PDG is configured to establish a tunnel between the PDG and the IMS. The WTRU is configured to -13communicate with both the WLAN and the cellular network and to perform a handover from the WLAN to the cellular network by sending a handover signaling through the WLAN. [00691 17. The system of embodiment 16 wherein the PDG sends a relocation request to the GGSN when the PDG receives the handover request, whereby the PDG is removed from a call path after the handover is performed, and the call path between the IMS and the WTRU is established through the GGSN. [0070] 18. The system of embodiment 16 wherein the PDG sends a tunnel establishment request to the GGSN when the PDG receives the handover request, whereby the PDG remains on a call path after the handover is performed, and the call path between the IMS and the WTRU is established via the GGSN and the PDG. [0071] 19. The system of any one of embodiments 16-18 wherein a tunnel between the PDG and an IMS is established after indication of the service. [0072] 20. The system of any one of embodiments 16-18 wherein a tunnel between the PDG and an IMS is established after a request from the WTRU. [0073] 21. The system of any one of embodiments 16-20 wherein the handover request identifies tunnel end points. [00741 22. The system of any one of embodiments 16-21 wherein the handover request identifies user identity (ID). [0075] 23. The system of any one of embodiments 16-22 wherein the handover request identifies radio resources. [0076] 24. The system of any one of embodiments 16-23 wherein the handover request identifies frequency channels. [0077] 25. The system of any one of embodiments 16-24 wherein the handover request identifies priority. [00781 26. The system of any one of embodiments 16-25 wherein the connection to the WLAN is terminated after the connection to the cellular network is established. -14- [00791 27. The system of any one of embodiments 16-26 wherein the connection to the WLAN and the connection to the cellular network are maintained simultaneously. [00801 28. A system for interworking between a cellular network and a WLAN for a user service provided by the IMS, whereby the WTRU continuously receives the user service through the cellular network after handover by establishing a connection to the cellular network after a connection to the WLAN is broken. The cellular network comprises a radio access network and a core network which includes a PDG, a SGSN and a GGSN. The WLAN is configured to establish a tunnel between the WLAN and the PDG of the cellular network and the PDG is configured to establish a tunnel between the PDG and the IMS. The WTRU is configured to communicate with both the WLAN and the cellular network and to perform a handover from the WLAN to the cellular network by establishing a connection to the cellular network when the connection to the WTRU is broken by initiating a handover bending session. [0081] 29. The system of embodiment 28 wherein the handover to the cellular network is initiated by the WLAN. [0082] . 30. The system of embodiment 28 wherein the handover to the cellular network is initiated by a user. [00831 Although the features and elements of the present invention are described in the preferred embodiments in particular combinations, each feature or element can be used alone without the other features and elements of the preferred embodiments or in various combinations with or without other features and elements of the present invention. * * * -15-

Claims (20)

1. A wireless transmit/receive unit (WTRU) including: at least one transceiver configured to receive a user service from an Internet Protocol (IP) multimedia subsystem (IMS) via a wireless local area 5 network (WLAN); and a handover controlling entity configured to: initiate a handover of the user service from the WLAN to a cellular network; and perform the handover while continuously receiving the user service from 10 the IMS.
2. The WTRU of claim 1, where the at least one transceiver is further configured to: obtain the address of a packet data gateway (PDG) using Domain Name Service (DNS) via the WLAN; and 15 establish a tunnel between the WTRU and the PDG.
3. The WTRU of claim 2, where the at least one transceiver is further configured to receive the user service from the IMS via the WLAN and the tunnel between the WTRU and the PDG.
4. The WTRU of claim 1, where the at least one transceiver is further 20 configured to register with the IMS via the WLAN using Session Initiation Protocol (SIP).
5. The WTRU of claim 1, where the at least one transceiver is further configured to maintain the connection to the WLAN and the connection to the cellular network simultaneously. 25
6. A method for use in a wireless transmit/receive unit (WTRU), the method including: establishing a connection with a Wireless Local Area Network (WLAN); invoking an IP session for a user service; 17 receiving the user service via a packet data gateway (PDG) and the WLAN; and initiating a handover from the WLAN to a cellular network.
7. The method of claim 6, further including registering with an Internet 5 Protocol (IP) multimedia subsystem (IMS) via the WLAN using Session Initiation Protocol (SIP), wherein the receiving the user service is also performed via the IMS.
8. The method of claim 7, further including: performing the handover from the WLAN to the cellular network while 10 continuously receiving the user service from the IMS.
9. The method of claim 6, further including: maintaining a connection to the WLAN and a connection to the cellular network simultaneously.
10. The method of claim 6, wherein the user service is a voice call service. 15
11. The method of claim 6, further including: obtaining the address of the PDG using Domain Name Service (DNS) via the WLAN.
12. The method of claim 11, further including: establishing a tunnel between the WTRU and the PDG. 20
13. A wireless transmit/receive unit (WTRU) including: at least one transceiver configured to: establish a connection to a wireless local area network (WLAN); obtain the address of a packet data gateway (PDG) using Domain Name Service (DNS) via the WLAN; 25 establish a tunnel between the WTRU and the PDG; 18 register with a Third Generation Partnership Project (3GPP) Internet Protocol (IP) multimedia subsystem (IMS) via the WLAN using Session Initiation Protocol (SIP); invoke an IP session for a user service from the IMS; 5 receive the user service from the IMS via the WLAN and the tunnel between the WTRU and the PDG; establish a connection to a cellular network; initiate a handover of the user service from the WLAN to the cellular network; and 10 perform the handover while continuously receiving the user service from the IMS.
14. The WTRU of claim 13, where the at least one transceiver is further configured to disconnect from the PDG in response to completion of the handover.
15 15. The WTRU of claim 13, wherein the user service is a voice call service.
16. The WTRU of claim 13, where the at least one transceiver is further configured to: send a DNS query for the address of the PDG; and receive a response to the DNS query, the response including the address 20 of the PDG.
17. The WTRU of claim 13, where the at least one transceiver is further configured to terminate the connection to the WLAN in response to establishing the connection to the cellular network.
18. The WTRU of claim 13, where the at least one transceiver is further 25 configured to maintain the connection to the WLAN and the connection to the cellular network simultaneously.
19. The WTRU of claim 1 or claim 13 and substantially as hereinbefore described with reference to the accompanying figures. 19
20. The method of claim 6 and substantially as hereinbefore described with reference to the accompanying figures. INTERDIGITAL TECHNOLOGY CORPORATION WATERMARK PATENT & TRADE MARK ATTORNEYS P28765AU02
AU2012205224A 2004-12-09 2012-07-19 Method and System for Interworking of Cellular Networks and Wireless Local Area Networks Abandoned AU2012205224A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2012205224A AU2012205224A1 (en) 2004-12-09 2012-07-19 Method and System for Interworking of Cellular Networks and Wireless Local Area Networks
AU2015213273A AU2015213273A1 (en) 2004-12-09 2015-08-11 Method and System for Interworking of Cellular Networks and Wireless Local Area Networks
AU2017203987A AU2017203987A1 (en) 2004-12-09 2017-06-13 Method and System for Interworking of Cellular Networks and Wireless Local Area Networks

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US60/634,679 2004-12-09
US11/285,684 2005-11-22
AU2009201928A AU2009201928B2 (en) 2004-12-09 2009-05-15 Method and system for interworking of cellular networks and wireless local area networks
AU2012205224A AU2012205224A1 (en) 2004-12-09 2012-07-19 Method and System for Interworking of Cellular Networks and Wireless Local Area Networks

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2009201928A Division AU2009201928B2 (en) 2004-12-09 2009-05-15 Method and system for interworking of cellular networks and wireless local area networks

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2015213273A Division AU2015213273A1 (en) 2004-12-09 2015-08-11 Method and System for Interworking of Cellular Networks and Wireless Local Area Networks

Publications (1)

Publication Number Publication Date
AU2012205224A1 true AU2012205224A1 (en) 2012-08-09

Family

ID=46651146

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2012205224A Abandoned AU2012205224A1 (en) 2004-12-09 2012-07-19 Method and System for Interworking of Cellular Networks and Wireless Local Area Networks

Country Status (1)

Country Link
AU (1) AU2012205224A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112616169A (en) * 2013-05-06 2021-04-06 瑞典爱立信有限公司 Traffic steering from a first access network to a second access network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112616169A (en) * 2013-05-06 2021-04-06 瑞典爱立信有限公司 Traffic steering from a first access network to a second access network
CN112616169B (en) * 2013-05-06 2024-04-30 瑞典爱立信有限公司 Traffic steering from a first access network to a second access network

Similar Documents

Publication Publication Date Title
AU2005314406B2 (en) Interworking of cellular networks and wireless LANS
CA2595180A1 (en) Method and system for context transfer across heterogeneous networks
AU2012205224A1 (en) Method and System for Interworking of Cellular Networks and Wireless Local Area Networks
AU2017203987A1 (en) Method and System for Interworking of Cellular Networks and Wireless Local Area Networks
KR200412435Y1 (en) Apparatus and system for interworking of cellular networks and wireless local area networks

Legal Events

Date Code Title Description
MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted