AU2012203650B2 - Compositions containing PUFA and methods of use thereof - Google Patents

Compositions containing PUFA and methods of use thereof Download PDF

Info

Publication number
AU2012203650B2
AU2012203650B2 AU2012203650A AU2012203650A AU2012203650B2 AU 2012203650 B2 AU2012203650 B2 AU 2012203650B2 AU 2012203650 A AU2012203650 A AU 2012203650A AU 2012203650 A AU2012203650 A AU 2012203650A AU 2012203650 B2 AU2012203650 B2 AU 2012203650B2
Authority
AU
Australia
Prior art keywords
another embodiment
subject
omega
present
uridine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2012203650A
Other versions
AU2012203650A1 (en
Inventor
Ingrid Richardson
Richard J. Wurtman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Institute of Technology
Original Assignee
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2006251562A external-priority patent/AU2006251562B2/en
Application filed by Massachusetts Institute of Technology filed Critical Massachusetts Institute of Technology
Priority to AU2012203650A priority Critical patent/AU2012203650B2/en
Publication of AU2012203650A1 publication Critical patent/AU2012203650A1/en
Application granted granted Critical
Publication of AU2012203650B2 publication Critical patent/AU2012203650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

C \NRPorbl\DCCKXG\44 I I92( DOC-22/16I2012 This invention provides methods of increasing or enhancing the synthesis and levels of phospholipids, synapses, synaptic proteins, and synaptic membranes by a neural cell or brain cell; methods of treating a subject with a memory disorder, memory impairment, neurological disorder. or brain disease or disorder, comprising administering to the subject a composition comprising an omega-3 fatty acid, an omega-6 fatty acid, uridine, a metabolic precursor thereof, or a combination thereof. 0 o 0 n 0 r o' I l (VaSitup'0d

Description

Australian Patents Act 1990 - Regulation 3.2A ORIGINAL COMPLETE SPECIFICATION STANDARD PATENT Invention Title "Compositions containing PUFA and methods of use thereof' The following statement is a full description of this invention, including the best method of performing it known to us: C \NRPoribI\DCC\KXGA44 18838 _1DOC COMPOSITIONS CONTAINING PUFA AND METHODS OF USE THEREOF This is a divisional of Australian Patent Application No. 200625 1562, the entire contents of which are incorporated herein by reference. FIELD OF INVENTION [0001] This invention provides methods of increasing or enhancing the synthesis and levels of phospholipids, synapses, synaptic proteins, and synaptic membranes by a neural cell or brain cell; 5 methods of treating a subject with a memory disorder, memory impairment, neurological disorder, or brain disease or disorder, comprising administering to the subject a composition comprising an omega-3 fatty acid, an omega-6 fatty acid, uridine, a metabolic precursor thereof, or a combination thereof. BACKGROUND OF THE INVENTION [0002] Dementia is a brain disorder that seriously affects a person's ability to carry out daily activities. 10 The most common form of dementia among older people is Alzheimer's disease (AD), which initially involves the parts of the brain that control thought, memory, and language. A decline in memory and cognitive (thinking) function is considered by many authorities to be a normal consequence of aging. People with ARCD experience deterioration in memory and learning, attention and concentration, thinking, use of language, and other mental functions. Methods of treating these diseases and disorders 15 are urgently needed in the art. SUMMARY OF THE INVENTION [0003] This invention provides methods of increasing or enhancing the synthesis and levels of phospholipids, synapses, synaptic proteins, and synaptic membranes by a neural cell or brain cell; methods of treating a subject with a memory disorder, memory impairment, neurological disorder, or 20 brain disease or disorder, comprising administering to the subject a composition comprising an omega-3 fatty acid, an omega-6 fatty acid, uridine, a metabolic precursor thereof, or a combination thereof. [0004] In one embodiment, the present invention provides a method of increasing an amount of a synaptic membrane of a neural cell or brain cell of a subject with an age-related memory disorder, comprising administering to the subject an omega-3 fatty acid or a metabolic precursor thereof, thereby 25 increasing an amount of a synaptic membrane of a neural cell or brain cell of a subject with an age related memory disorder. [0005] In another embodiment, the present invention provides a method of increasing an amount of a synaptic membrane of a neural cell or brain cell of a subject with an age-related memory disorder, comprising administering to the subject an omega- 6 fatty acid or a metabolic precursor thereof, 1 thereby increasing an amount of a synaptic membrane of a neural cell or brain cell of a subject with an age-related memory disorder. [0006] In another embodiment, the present invention provides a method of increasing an amount of a synaptic membrane of a neural cell or brain cell of a subject with an age-related memory disorder, 5 comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty acid or a metabolic precursor thereof, thereby increasing an amount of a synaptic membrane of a neural cell or brain cell of a subject with an age-related memory disorder. [0007] In another embodiment, the present invention provides a method of increasing an amount of a o synaptic membrane of a neural cell or brain cell of a subject with an age-related memory disorder, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-6 fatty acid or a metabolic precursor thereof, thereby increasing an amount of a synaptic membrane of a neural cell or brain cell of a subject with an age-related memory disorder. .5 [0008] In another embodiment, the present invention provides a method of treating a subject with Alzheimer's disease, memory impairment, or memory loss, comprising administering to the subject an omega-3 fatty acid or a metabolic precursor thereof, whereby the omega-3 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by the neural cell, thereby treating a subject with Alzheimer's disease, memory impairment, or memory loss. 0 [0009] In another embodiment, the present invention provides a method of treating a subject with Alzheimer's disease, memory impairment, or memory loss, comprising administering to the subject an omega-6 fatty acid or a metabolic precursor thereof, whereby the omega-6 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by the neural cell, thereby treating a subject with Alzheimer's disease, memory impairment, or memory loss. 25 [00010] In another embodiment, the present invention provides a method of treating a subject with Alzheimer's disease, memory impairment, or memory loss, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty acid or a metabolic precursor thereof, whereby the composition increases a synthesis of a phospholipid by the neural cell, thereby treating a subject with Alzheimer's disease, 30 memory impairment, or memory loss. 2 [00011] In another embodiment, the present invention provides a method of treating a subject with Alzheimer's disease, memory impairment, or memory loss, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-6 fatty acid or a metabolic precursor thereof, whereby the composition increases a 5 synthesis of a phospholipid by the neural cell, thereby treating a subject with Alzheimer's disease, memory impairment, or memory loss. [00012] In another embodiment, the present invention provides a method of treating a subject with a memory disorder selected from Pick's disease, Lewy Body disease, Huntington's disease and mimimal cognitive impairment (MCI), comprising administering to the subject an omega-3 fatty acid or a 0 metabolic precursor thereof, whereby the omega-3 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by the neural cell, treating a subject with a memory disorder selected from Pick's disease, Lewy Body disease, Huntington's disease and MCI. [00013] In another embodiment, the present invention provides a method of treating a subject with a memory disorder selected from Pick's disease, Lewy Body disease, Huntington's disease and MCI, 5 comprising administering to the subject an omega-6 fatty acid or a metabolic precursor thereof, whereby the omega-6 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by the neural cell, thereby treating a subject with a memory disorder selected from Pick's disease, Lewy Body disease, Huntington's disease and MCI. [00014] In another embodiment, the present invention provides a method of treating a subject with a :0 memory disorder selected from Pick's disease, Lewy Body disease, and Huntington's disease, comprising administering to the subject a composition comprising (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty acid or a metabolic precursor thereof, whereby the Composition increases a synthesis of a phospholipid by the neural cell, thereby treating a subject with a memory disorder. 25 [000151 In another embodiment, the present invention provides a method of treating a subject with a memory disorder selected from Pick's disease, Lewy Body disease, and Huntington's disease, administering to the subject a composition comprising (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-6 fatty acid or a metabolic precursor thereof, whereby the composition increases a synthesis of a phospholipid by the neural cell, thereby treating a subject 30 with a memory disorder. 3 [00016] In another embodiment, the present invention provides a method of increasing a size or number of synapses in a brain of a subject with an age-related memory disorder, comprising administering to the subject an omega-3 fatty acid or a metabolic precursor thereof, thereby increasing a size or number of synapses in a brain of a subject with an age-related memory disorder. 5 [00017] In another embodiment, the present invention provides a method of increasing a size or number of synapses in a brain of a subject with an age-related memory disorder, comprising administering to the subject an omega-6 fatty acid or a metabolic precursor thereof, thereby increasing a size or number of synapses in a brain of a subject with an age-related memory disorder. [00018] In another embodiment, the present invention provides a method of increasing a size or number L o of synapses in a brain of a subject with an age-related memory disorder, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty acid or a metabolic precursor thereof, thereby increasing a size or number of synapses in a brain of a subject with an age-related memory disorder. [00019] In another embodiment, the present invention provides a method of increasing a size or number 1.5 of synapses in a brain of a subject with an age-related memory disorder, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-6 fatty acid or a metabolic precursor thereof, thereby increasing a size or number of synapses in a brain of a subject with an age-related memory disorder. [00020] In another embodiment, any of the methods and compositions of the present invention comprises 2o administration of an omega-3 fatty acid and a choline. In another embodiment, any of the methods and compositions of the present invention comprise administration of an omega-3 fatty acid and a choline salt. In another embodiment, any of the methods and compositions of the present invention comprises administration of an omega-6 fatty acid and a choline. In another embodiment, any of the methods and compositions of the present invention comprises administration of an omega-6 fatty acid and a choline 25 salt. [00021] In another embodiment, any of the methods and compositions of the present invention comprises administration of a composition comprising an omega-3 fatty acid, a uridine, and a choline. In another embodiment, any of the methods and compositions of the present invention comprises administration of composition comprising an omega-3 fatty acid, a uridine, and a choline salt. In another embodiment, any 30 of the methods and compositions of the present invention comprises administration of a composition 4 5 comprising an omega-6 fatty acid, a uridine, and a choline. In another embodiment, any of the methods and compositions of the present invention comprises administration of composition comprising an omega-6 fatty acid, a uridine, and a choline salt. 5 [00022] In another embodiment, any of the methods and compositions of the present invention comprises administration of an omega-6 fatty acid and an omega-3 fatty acid. In another embodiment, any of the methods and compositions of the present invention comprises administration of an omega-6 fatty acid, an omega-3 fatty acid, and a uridine. In another embodiment, any of the methods and compositions of the present invention 10 comprises administration of an omega-6 fatty acid, an omega-3 fatty acid, and a choline. In another embodiment, any of the methods and compositions of the present invention comprises administration of an omega-6 fatty acid, an omega-3 fatty acid, and a choline salt. In another embodiment, any of the methods and compositions of the present invention comprises administration of an omega-6 fatty acid, an omega-3 fatty acid, a 15 uridine, and a choline. In another embodiment, any of the methods and compositions of the present invention comprises administration of an omega-6 fatty acid, an omega-3 fatty acid, a uridine, and a choline salt. {00022a] Preferably, the invention provides a method of treating a neurological disorder 20 in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a composition comprising: (a) at least two omega-3 fatty acids selected from docosahexaenoic acid, eicosapentaenoic acid or alpha-linolenic acid; (b) uridine, an acyl derivative thereof, a uridine phosphate or a CDP-choline; 25 and (c) a choline salt, wherein the neurological disorder is selected from Alzheimer's disease, memory impairment, or memory loss and wherein components (a) and (b) act synergistically. 30 [00022b] Further preferably, the invention provides for the use of a composition in the preparation of a medicament when used to treat a neurological disorder, wherein the composition comprises: (a) at least two omega-3 fatty acids selected from docosahexaenoic acid, eicosapentaenoic acid or alpha-linolenic acid; 35 (b) uridine, an acyl derivative thereof, a uridine phosphate or a CDP-choline; and (c) a choline salt, wherein the neurological disorder is selected from Alzheimer's disease, memory impairment, or memory loss and wherein components (a) and (b) act synergistically. [00022c] Even further preferably, the invention provides a composition when used to 5 treat a neurological disorder, wherein the composition comprises: (a) at least two omega-3 fatty acids selected from docosahexaenoic acid, eicosapentaenoic acid or alpha-linolenic acid; (b) uridine, an acyl derivative thereof, a uridine phosphate or a CDP-choline; and 10 (c) a choline salt, wherein the neurological disorder is selected from Alzheimer's disease, memory impairment, or memory loss and wherein components (a) and (b) act synergistically. BRIEF DEEIPION OF THE FIGURES 15 [00023] Figure 1: DHA increases phospholipid synthesis in PC12 cells. PC12 cells were incubated overnight in with fatty acids, then incubated in media containing 14C labeled choline. Graph depicts incorporation of 14 C label into phosphatidylcholine in disintegrations per minute (dpm) per microgram (jg) DNA. DHA: docosahexaenoic acid. 20 OA: oleic acid. PA: palmitic acid. * -p < 0.05. [00024] Figure 2: DHA augmentation of phospholipid synthesis is dose-dependent. *- p <0.05. **p < 0.001. 25 [00025] Figure 3. A. Arachidonic acid increases phospholipid synthesis in SHSY-5Y cells. DHA: docosahexaenoic acid. AA: arachidonic acid. PA: palmitic acid. *: p<0.05. * p<0.001. B. AA augmentation of phospholipid synthesis is dose-dependent. [00026] Figure 4. DHA and UMP synergize to increase brain phospholipid levels in a 30 whole-animal study. "*": significantly higher than control group by one-way ANOVA. A. pmol phospholipid per milligrams (mg) protein. UMP + DHA was significantly higher than control (p < 0.05) (one-way ANOVA [F(3,28)=4.12; p = 0.015]). Two-way ANOVA revealed statistically significant effect of DHA as well, relative to the control group [F(1,28) = 8.78; p = 0.006]. B. pmol phospholipid per pg DNA. UMP + DHA was 35 significantly higher than control (p = 0.020) (one-way ANOVA [F(3,28)=3.215; p = 0.0381). [00027] Figure 5. Effects of DHA on brain CDP-choline levels (A) and CDP-ethanolamine levels (B). Groups of 8 gerbils received either a control or a UMP-containing diet, and, by gavage, DHA (in a vehicle of 5% gum Arabic solution) or 5% gum Arabic solution alone for 28 days. On the 29th day 5 brains were harvested and assayed for CDP-choline. Data are presented as means ± SEM. Statistical analysis was performed using one- or two-way ANOVA followed by Tukey test. a: P<0.05 when compared with the values for control diet plus vehicle group; b: P<0.05 when compared with values for UMP diet plus vehicle group. [00028] Figure 6. Effects of UMP diet and DHA on brain NF-70 (A) and NF-M (B) levels Gerbils 0 received the diets described in the Figure 5 legend for 21 (left panels) or 28 (right panels) days. On the 22nd and 29th days, brains were harvested and assayed for NF-70. Values are depicted as mean ± SEM. Statistical analysis was performed using one-way ANOVA and Tukey test. A. **: P<0.01; ***: P<0.001 compared to values for control diet + vehicle group. B). *P<0.05; **P<0.01. No significant differences in levels of the cytoskeletal protein beta-tubulin were observed between groups. 5 [00029] Figure 7. Effects of UMP diet and DHA on brain PSD-95 and Synapsin-1 levels. A) Gerbils received either a control diet plus, by gavage, 5% gum Arabic, or a UMP-containing (0.5%) diet plus, by gavage, DHA (300 mg/kg) dissolved in the vehicle for 7 (left panels) or 21 (right panels) days. On the following day, brains were harvested and assayed for PSD-95 (A) or Synapsin-1 (B). A. Values represent means + SEM. Statistical analysis was performed using one-way ANOVA followed by Tukey test. o **P<0.01; ***P<0.001 when compared with values for control diet plus vehicle group. B). *P<0.05; **P<0.01. [00030] Figure 8. Increased dendritic spine density in adult gerbil hippocampus. 100031] Figure 9. Effect of uridine and/or DHA on leading. [00032] Figure 10. Effect of DHA on phospholipid synthesis in cultured hippocampal neurons. Vertical 25 axis: 1C DPM/ 50 pl sample. DETAILED DESCRIPTION OF THE INVENTION [00033) This invention provides methods of increasing or enhancing the synthesis and levels of phospholipids, synapses, synaptic proteins, and synaptic membranes by a neural cell or brain cell; methods of treating a subject with a memory disorder, memory impairment, neurological 6 disorder, or brain disease or disorder, comprising administering to the subject a composition comprising an omega-3 fatty acid, an omega-6 fatty acid, uridine, a metabolic precursor thereof, or a combination thereof. [00034] In another embodiment, the present invention provides a method of increasing a level of a 5 phospholipid of a neural cell of a subject, comprising administering to the subject an omega-3 fatty acid or a metabolic precursor thereof, thereby increasing a level of a phospholipid of a neural cell of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [00035] In another embodiment of methods and compositions of the present invention, an omega-3 fatty 0 acid, omega-6 fatty acid, uridine, choline, choline salt, or combination thereof is administered in a pharmaceutical composition. [00036] In another embodiment of methods and compositions of the present invention, a composition that is administered increases a synthesis of a phospholipid by a neural cell or brain cell of the subject. In another embodiment, an omega-3 fatty acid increases a synthesis of a phospholipid by a neural cell or 5 brain cell of the subject. In another embodiment, an omega-6 fatty acid increases a synthesis of a phospholipid by a neural cell or brain cell of the subject. In another embodiment, a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline increases a synthesis of a phospholipid by a neural cell or brain cell of the subject. In another embodiment, a choline increases a synthesis of a phospholipid by a neural cell or brain cell of the subject. In another embodiment, a choline salt increases 0 a synthesis of a phospholipid by a neural cell or brain cell of the subject. Each possibility represents a separate embodiment of the present invention. [00037] In another embodiment, the present invention provides a method of increasing a level of a phospholipid of a brain cell of a subject, comprising administering to the subject an omega-3 fatty acid or a metabolic precursor thereof, thereby increasing a level of a phospholipid of a brain cell of a subject. 25 In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age related. Each possibility represents a separate embodiment of the present invention. [00038] In another embodiment, the present invention provides a method of increasing or enhancing a synthesis of a phospholipid by a neural cell or brain cell of a subject, comprising administering to the subject an omega-3 fatty acid or a metabolic precursor thereof, thereby increasing or enhancing a 30 synthesis of a phospholipid by a neural cell or brain cell of a subject. In another embodiment, the subject 7 has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [00039] As provided herein, the results presented in Examples 1 and 5 demonstrate that administration of docosahexaenoic acid (DHA), an omega-3 fatty acid, to neural and brain cells increases their 5 phospholipid synthesis, as evidenced by increased incorporation of labeled choline. Omega-3 fatty acid administration increased synthesis of total phospholipids, phosphatidylcholine, and phosphatidylethanolamine (Example 2), showing that the effect is not limited to particular phospholipids. PC12 cells display differentiated functions of neuronal cells and are commonly used in the art as a cell line model of neuronal cells. The results presented in Example 11 show that omega-3 fatty acids increase o phospholipid synthesis in neurons in short-term culture. [00040] In another embodiment, the present invention provides a method of increasing an amount of a synaptic membrane of a neural cell or brain cell of a subject, comprising administering to the subject an omega-3 fatty acid or a metabolic precursor thereof, thereby increasing an amount of a synaptic membrane of a neural cell or brain cell of a subject. In another embodiment, the subject has a memory 5 disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [00041) The phospholipid that is increased by methods and compositions of the present invention is, in another embodiment, a phosphatidic acid. The term "phosphatidic acid" is, in another embodiment, synonymous with the term "phosphatide." In another embodiment, the phospholipid is a ?0 phosphatidylcholine ("PC"; Example 1). In another embodiment, the phospholipid is a phosphatidylethanolamine ("PE"; Example 2). In another embodiment, the phospholipid is a phosphatidylserine ("PS"). In another embodiment, the phospholipid is a phosphatidylinositol ("P1"). In another embodiment, the phospholipid is sphingomyelin. In another embodiment, the phospholipid is a phosphoglyceride. In another embodiment, the phospholipid is any other phospholipid known in the art. 25 Each possibility represents a separate embodiment of the present invention. [00042] In another embodiment, PI, greatly increased by methods of the present invention, acts as a reservoir of I or more second messenger molecules. In another embodiment, the second messenger molecule is inositol 1,4,5-trisphosphate (IP 3 ). In another embodiment, the second messenger molecule is diacylglycerol (DAG). In another embodiment, protein kinase C (PKC) signaling is increased by 30 methods and compositions of the present invention. In another embodiment, a signaling pathway downstream of IP3 is activated by methods and compositions of the present invention. In another 8 embodiment, intracellular calcium levels are increased by methods and compositions of the present invention. In another embodiment, a signaling pathway downstream of DAG is activated by methods and compositions of the present invention. In another embodiment, a signaling pathway downstream of PKC is activated by methods and compositions of the present invention. In another embodiment, a i signaling pathway downstream of intracellular calcium is activated by methods and compositions of the present invention. [00043] In another embodiment, sphingomyelin, increased by methods and compositions of the present invention acts as a source of ceramide. Each possibility represents a separate embodiment of the present invention. > [00044] In another embodiment, DHA and/or UMP in methods and compositions of the present invention act as bulk precursors of cellular phospholipids. In another embodiment, UMP acts by activating P2Y receptors for UMP formed from uridine. In another embodiment, DHA acts by activating syntaxin-3. In another embodiment, a combination of these mechanisms is employed. [00045] In another embodiment, as demonstrated by the data presented herein, administration of DHA 5 and/or UMP is efficacious in treating and/or preventing a disorder characterized by impaired synapse formation or myelination. Each possibility represents a separate embodiment of the present invention. [00046] As provided herein, administration of PUFA and/or uridine to gerbils, whose pyrimidine metabolism resembles that of humans, increases levels of the neurite neurofibrillar proteins NF-70 and NF-M, the postsynaptic density protein PSD-95 and the vesicular protein Synapsin-1 (Example 7). Thus, 0 administration of PUFA increases levels of synaptic membranes in brain and neural cells. In another embodiment, under the conditions utilized herein, methods of compositions of the present invention also have utility in increasing neuronal signaling. In another embodiment, under the conditions utilized herein, methods of compositions of the present invention also have utility in enhancing neural function. In another embodiment, under the conditions utilized herein, methods of compositions of the present 25 invention also have utility in increasing neurite outgrowth. Each possibility represents a separate embodiment of the present invention. [00047] The omega-3 fatty acid utilized in methods and compositions of the present invention is, in another embodiment, an omega-3 polyunsaturated fatty acid (PUFA). In another embodiment, the omega-3 fatty acid is DHA (Examples 1-2). DHA is an omega-3, polyunsaturated, 22-carbon fatty acid 30 also referred to as 4,7,10,13,16,19- docosahexaenoic acid. 9 [00048 In another embodiment, the omega-3 fatty acid is o.-linolenic acid (9,12,15-octadecatrienoic acid). In another embodiment, the omega-3 fatty acid is stearidonic acid (6,9,12,15-octadecatetraenoic acid). In another embodiment, the omega-3 fatty acid is eicosatrienoic acid (ETA; 11,14,17-eicosatrienoic acid). In another embodiment, the omega-3 fatty acid is eicsoatetraenoic acid (8,11,14,17-eicosatetraenoic acid). In another embodiment, the omega-3 fatty acid is eicosapentaenoic acid (EPA; 5,8,11,14,17 eicosapentaenoic acid). In another embodiment, the omega-3 fatty acid is eicosahexacnoic acid (also referred to as "EPA"; 5,7,9,11,14,17-eicosahexaenoic acid). In another embodiment, the omega-3 fatty acid is docosapentaenoic acid (DPA; 7,10,13,16,19-docosapenatenoic acid). In another embodiment, the omega-3 fatty acid is tetracosahexaenoic acid (6,9,12,15,18,21-tetracosahexaenoic acid). In another embodiment, the omega-3 fatty acid is any other omega-3 fatty acid known in the art. Each omega-3 fatty acid represents a separate embodiment of the present invention. [00049] In another embodiment, the omega-3 fatty acid is an anti-inflammatory PUFA. In another embodiment, the anti-inflammatory PUFA is eicosapentaenoic acid (EPA; 5,8,11,14,17-eicosapentaenoic acid). In another embodiment, the anti-inflammatory PUFA is DHA. In another embodiment, the anti 5 inflammatory PUFA is any other anti-inflammatory PUFA known in the art. Each possibility represents a separate embodiment of the present invention. [000501 As provided herein, DHA, EPA, and AA all increase brain phospholipid levels (Example 8). Thus, the effects described herein are not specific to a particular PUFA, but rather are, under the conditions utilized herein, generalizable to omega-3 and omega-6 PUFA as a family. 0 [00051] In another embodiment, the omega-3 fatty acid is a metabolic precursor of DHA. In another embodiment, the metabolic precursor is EPA). In another embodiment, the metabolic precursor is docosapentaenoic acid (DPA; 7,10,13,16,19-docosapenatenoic acid). Each possibility represents a separate embodiment of the present invention. [00052] In another embodiment, "metabolic precursor" refers to a compound that increases the 25 concentration of the fatty acid in the bloodstream or tissues. In another embodiment, "metabolic precursor" refers to a compound that is metabolized by a tissue or enzyme of the subject to the fatty acid. In another embodiment, "metabolic precursor" refers to a compound that is metabolized by the target cell to the fatty acid. Each possibility represents a separate embodiment of the present invention. [00053] In another embodiment of methods and compositions of the present invention, the metabolic 30 precursor of an omega-3 fatty acid is an alpha-linolenic acid, which serves as a precursor to EPA 10 (eicosapentaenoic acid) and DHA (docosahexaenoic acid). In another embodiment, the metabolic precursor is any other omega-3 fatty acid precursor known in the art. Each omega-3 fatty acid precursor represents a separate embodiment of the present invention. [00054] "PUFA" refers, in another embodiment, to omega-3 fatty acid. In another embodiment, the term 5 refers to an omega-6 fatty acid. In another embodiment, the term refers to a fatty acid with 2 or more double bonds. In another embodiment, the term refers to a fatty acid with 2 double bonds. In another embodiment, the term refers to a fatty acid with 3 double bonds. In another embodiment, the term refers to a fatty acid with more than 3 double bonds. Each possibility represents a separate embodiment of the present invention. 0 [00055] In another embodiment, the present invention provides a method of increasing an amount of a synaptic membrane of a neural cell orbrain cell of a subject, comprising administering to the subject an omega-6 fatty acid or a metabolic precursor thereof, thereby increasing an amount of a synaptic membrane of a neural cell or brain cell of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate 5 embodiment of the present invention. [00056] In another embodiment, the present invention provides a method of increasing a level of a phospholipid of a neural cell of a subject, comprising administering to the subject an omega-6 fatty acid or a metabolic precursor thereof, thereby increasing a level of a phospholipid of a neural cell of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder t0 is age-related. Each possibility represents a separate embodiment of the present invention. [00057] In another embodiment, the present invention provides a method of increasing a level of a phospholipid of a brain cell of a subject, comprising administering to the subject an omega-6 fatty acid or a metabolic precursor thereof, thereby increasing a level of a phospholipid of a brain cell of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age 25 related. Each possibility represents a separate embodiment of the present invention. [00058] In another embodiment, the present invention provides a method of increasing or enhancing a synthesis of a phospholipid by a neural cell or brain cell of a subject, comprising administering to the subject an omega-6 fatty acid or a metabolic precursor thereof, thereby increasing or enhancing a synthesis of a phospholipid by a neural cell or brain cell of a subject. In another embodiment, the subject 30 has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a 11 separate embodiment of the present invention. [00059] As provided herein, the results presented in Example 3 demonstrate that administration of arachidonic acid, an omega-6 fatty acid, to neural and brain cells increases their phospholipid synthesis, as evidenced by increased incorporation of labeled choline thereafter. SHSY-5Y cells are derived from a 5 human neuroblastoma, and are used as a model system for neuronal functions. Increasing synthesis of the phospholipids results, in another embodiment, in an increase in their levels. [00060] In another embodiment, the omega-6 fatty acid is an omega-6 polyunsaturated fatty acid (PUFA). In another embodiment, the omega-6 fatty acid is arachidonic acid (Example 3). Arachidonic acid is an omega-6, 20-carbon fatty acid that is also referred to as 5,8,11,14-eicosatetraenoic acid. In another o embodiment, the omega-6 fatty acid is a metabolic precursor of arachidonic acid. Each possibility represents a separate embodiment of the present invention. [00061] In another embodiment, the omega-6 fatty acid is linoleic acid (9,12-octadecadienoic acid). In another embodiment, the omega-6 fatty acid is conjugated linoleic acid (CLA). In another embodiment, the omega-6 fatty acid is y-linolenic acid (6,9,12-octadecatrienoic acid). In another embodiment, the 5 omega-6 fatty acid is eicosadienoic acid (11,14-eicosadienoic acid). In another embodiment, the omega 6 fatty acid is homo-y-linolenic acid (8,11,14-eicosatrienoic acid). In another embodiment, the omega-6 fatty acid is docosadienoic acid (13,16-docosadienoic acid). In another embodiment, the omega-6 fatty acid is docosatetraenoic acid (7,10,13,16-docosatetraenoic acid). In another embodiment, the omega-6 fatty acid is 4,7,10,13,16-docosapentaenoic acid. In another embodiment, the omega-6 fatty acid is :o dihomogamma linolenic acid (DGLA). In another embodiment, the omega-6 fatty acid is any other omega-6 fatty acid known in the art. Each omega-6 fatty acid represents a separate embodiment of the present invention. [00062] In another embodiment of methods and compositions of the present invention, the metabolic precursor of an omega-6 fatty acid is linoleic acid. In another embodiment, the metabolic precursor is 25 trans-vaccenic acid (TVA), a source of linoleic acid. In another embodiment, the metabolic precursor is any other omega-6 fatty acid precursor known in the art. Each omega-6 fatty acid precursor represents a separate embodiment of the present invention. [00063] In another embodiment, the present invention provides a method of increasing a level of a phospholipid of a neural cell of a subject, comprising administering to the subject a composition 30 comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an 12 omega-3 fatty acid or a metabolic precursor thereof, thereby increasing a level of a phospholipid of a neural cell of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. 5 [00064] As provided herein, omega-3 fatty acids and omega-6 fatty acids each act synergistically with uridine (e.g. UMP) to increase phospholipid synthesis and phospholipid levels. In another embodiment, the uridine phosphate is a uridine monophosphate (UMP). [000651 In another embodiment, the present invention provides a method of increasing a level of a phospholipid of a brain cell of a subject, comprising administering to the subject a composition o comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty acid or a metabolic precursor thereof, thereby increasing a level of a phospholipid of a brain cell of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. 5 [00066] In another embodiment, the present invention provides a method of increasing a level of a phospholipid of a neural cell of a subject, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-6 fatty acid or a metabolic precursor thereof, thereby increasing a level of a phospholipid of a neural cell of a subject. In another embodiment, the subject has a memory disorder. In another o embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [000671 In another embodiment, the present invention provides a method of increasing a level of a phospholipid of a brain cell of a subject, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an 25 omega-6 fatty acid or a metabolic precursor thereof, thereby increasing a level of a phospholipid of a brain cell of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [00068] In another embodiment, the present invention provides a method of increasing or enhancing a 30 synthesis of a phospholipid by a neural cell or brain cell of a subject, comprising administering to the 13 subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty acid or a metabolic precursor thereof, thereby increasing or enhancing a synthesis of a phospholipid by a neural cell or brain cell of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. 5 Each possibility represents a separate embodiment of the present invention. [000691 In another embodiment, the present invention provides a method of increasing or enhancing a synthesis of a phospholipid by a neural cell or brain cell of a subject, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-6 fatty acid or a metabolic precursor thereof, thereby increasing or 0 enhancing a synthesis of a phospholipid by a neural cell or brain cell of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [00070] In another embodiment, the present invention provides a method of increasing an amount of a synaptic membrane of a neural cell or brain cell of a subject, comprising administering to the subject a 5 composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty acid or a metabolic precursor thereof, thereby increasing an amount of a synaptic membrane of a neural cell or brain cell of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. 0 [000711 In another embodiment, the present invention provides a method of increasing an amount of a synaptic membrane of a neural cell or brain cell of a subject, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-6 fatty acid or a metabolic precursor thereof, thereby increasing an amount of a synaptic membrane of a neural cell or brain cell of a subject. In another embodiment, the subject has a 25 memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [000721 Methods for measuring the amount of synaptic membrane in a subject's brain are well known in the art, and are described, for example, in OertnerTG et al (Facilitation at single synapses probed with optical quantal analysis. Nat Neurosci. 2002 Jul;5(7):657-64); Bloodgood BL et al (Neuronal activity 30 regulates diffusion across the neck of dendritic spines. Science. 2005 Nov 4;310(5749):866-9); El Fakhri G et al (Generalized five-dimensional dynamic and spectral factor analysis. Med Phys. 2006 14 Apr;33(4):1016-24); and Pautler RG. Biological applications of manganese-enhanced magnetic resonance imaging. Methods Mol Med. 2006;124:365-86). Each method represents a separate embodiment of the present invention. [00073] In another embodiment, the present invention provides a method of treating a subject with 5 Alzheimer's disease, comprising administering to the subject an omega-3 fatty acid or a metabolic precursor thereof, whereby the omega-3 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by the neural cell or brain cell, thereby treating a subject with Alzheimer's disease. [00074] In another embodiment, the present invention provides a method of treating a subject with Alzheimer's disease, comprising administering to the subject an omega-6 fatty acid or a metabolic 0 precursor thereof, whereby the omega-6 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by the neural cell or brain cell, thereby treating a subject with Alzheimer's disease. [00075] In another embodiment, the present invention provides a method of treating a subject with Alzheimer's disease, comprising contacting a neural cell of the subject with a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty .5 acid or a metabolic precursor thereof, whereby the composition increases a synthesis of a phospholipid by the neural cell or brain cell, thereby treating a subject with Alzheimer's disease. [00076] In- another embodiment, the present invention provides a method of treating a subject with Alzheimer's disease, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-6 fatty acid or a 20 metabolic precursor thereof, whereby the composition increases a synthesis of a phospholipid by the neural cell or brain cell, thereby treating a subject with Alzheimer's disease. [00077] As provided herein, compositions comprising omega-3 fatty acids, omega-6 fatty acids, and/or uridine increase the amount of synaptic membranes in neural cells. Thus, compositions of the present invention have utility in treating Alzheimer's disease. 25 [00078] In another embodiment of methods and compositions of the present invention, stimulation of phospholipid synthesis increases phospholipid levels in the target brain or neural cell. Sufficient phospholipid levels are important, in another embodiment, in many aspects of neural function, e.g. synaptic signaling, neurotransmitter function, neurite branching and outgrowth etc, and are also important, in another embodiment, in proper brain function. 15 [00079] In another embodiment, the Alzheimer's disease is at an early stage. In another embodiment, the Alzheimer's disease is at a mild stage. In another embodiment, the Alzheimer's disease is at a moderate stage. In another embodiment, the Alzheimer's disease is at a late stage. In another embodiment, the Alzheimer's disease is at a severe stage. In another embodiment, the Alzheimer's disease is at an 5 undetermined stage. In another embodiment, the Alzheimer's disease is at any stage of the disease known in the art. Each stage represents a separate embodiment of the present invention. [00080] In another embodiment, the stage of Alzheimer's disease is assessed using the Functional Assessment Staging (FAST) scale. The FAST scale was developed by Dr Reisberg and colleagues. It divides the progression of Alzheimer's disease into 16 successive stages under 7 major headings of 0 functional abilities and losses. The major headings are as follows: Stage 1 is defined as a normal adult with no decline in function or memory. Stage 2 is defined as a normal older adult who has some personal awareness of functional decline, typically complaining of memory deficit and forgetting the names of familiar people and places. Stage 3 (early Alzheimer's disease) becomes manifest in demanding job situations. Signs include one or more of the following; disorientation when traveling to an unfamiliar 5 location; reports by colleagues of decreased performance; name- and word-finding deficits; reduced ability to recall information from a passage in a book or to remember a name of a person newly introduced to them; misplacing of valuable objects; decreased concentration. In stage 4 (mild Alzheimer's Disease), the patient may require assistance in complicated tasks such as planning a party or handling finances, exhibits problems remembering life events, and has difficulty concentrating and .0 traveling. In stage 5 (moderate Alzheimer's disease, the patient requires assistance to perform everyday tasks such as choosing proper attire. Disorientation in time, and inability to recall important information of their current lives, occur, but patient can still remember major information about themselves, their family and others. In stage 6 (moderately severe Alzheimer's disease, the patient begins to forget significant amounts of information about themselves and their surroundings and require assistance 25 dressing, bathing, and toileting. Urinary incontinence and disturbed patterns of sleep occur. Personality and emotional changes become quite apparent. Because patients cannot remember information long enough to act on their thoughts, they lose willpower (cognitive abulla). In stage 7 (severe Alzheimer's disease), speech ability becomes limited to just six or seven words and intelligible vocabulary may be limited to a single word. The patient loses the ability to walk, sit up, smile and eventually cannot hold up 30 the head. Each stage of Alzheimer's disease represents a separate embodiment of the present invention. [00081] In another embodiment, the present invention provides a method of raising a brain PC level in a subject, comprising administering to the subject a composition of the present invention, whereby the 16 composition increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby raising a brain PC level in a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. 5 [00082] In another embodiment, the present invention provides a method of raising a brain SM level in a subject, comprising administering to the subject a composition of the present invention, whereby the composition increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby raising a brain SM level in a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of 0 the present invention. [00083] In another embodiment, the present invention provides a method of raising a brain PI level in a subject, comprising administering to the subject a composition of the present invention, whereby the composition increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby raising a brain PI level in a subject. In another embodiment, the subject has a memory disorder. In 5 another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [00084] In another embodiment, the present invention provides a method of raising a brain PE level in a subject, comprising administering to the subject a composition of the present invention, whereby the composition increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby t0 raising a brain PE level in a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [00085] In another embodiment, the present invention provides a method of raising a brain PS level in a subject, comprising administering to the subject a composition of the present invention, whereby the 25 composition increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby raising a brain PS level in a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [00086] In another embodiment, the present invention provides a method of improving a cognitive 30. function in a subject, comprising administering to the subject a composition of the present invention, 17 whereby the composition increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby improving a cognitive function in a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. 5 [00087] As provided herein, DHA and UMP improved the performance of animals on a memory test (Example 10). Thus, methods and compositions of the present invention are efficacious in improving and enhancing memory and other cognitive functions. [000881 As provided herein, administration of PUFA and/or uridine increases brain phospholipid levels and synthesis, levels of neurite neurofibrillar proteins, and amount of synaptic membranes. Thus, o compositions and methods of the present invention increase and enhance cognitive function, neurological function, intelligence, synaptic transmission, and neurotransmitter levels and activity. [00089] In another embodiment, the present invention provides a method of improving a neurological function in a subject, comprising administering to the subject a composition of the present invention, whereby the composition increases a synthesis of a phospholipid by a neural cell or brain cell of the .5 subject, thereby improving a neurological function in a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [00090] In another embodiment, the neurological function that is improved by a method of the present invention is a synaptic transmission. In another embodiment, the synaptic transmission is adjacent to a 20 motor neuron. In another embodiment, the synaptic transmission is adjacent to an interneuron. In another embodiment, the synaptic transmission is adjacent to a sensory neuron. Each type of synaptic transmission represents a separate embodiment of the present invention. [00091) In another embodiment, the neurological function that is improved or enhanced is a function of a neurotransmitter. In one embodiment, improving or enhancing a function of a neurotransmitter occurs 25 by means of increasing a level of the neurotransmitter in a synapse. In another embodiment, improving or enhancing a function of a neurotransmitter occurs by means of increasing the release of the neurotransmitter into a synapse. In another embodiment, improving or enhancing a function of a neurotransmitter occurs without changing the level or release of the neurotransmitter in a synapse. Each possibility represents a separate embodiment of the present invention. 30 [00092] In another embodiment, "improving" a cognitive or neurological function or intelligence 18 refers to effecting a 10% improvement thereof. In another embodiment, the term refers to effecting a 20% improvement thereof. In another embodiment, the term refers to effecting a 30% improvement thereof. In another embodiment, the term refers to effecting a 40% improvement thereof. In another embodiment, the term refers to effecting a 50% improvement thereof. In another embodiment, the term 5 refers to effecting a 60% improvement thereof. In another embodiment, the term refers to effecting a 70% improvement thereof. In another embodiment, the term refers to effecting an 80% improvement thereof. In another embodiment, the term refers to effecting a 90% improvement thereof. In another embodiment, the term refers to effecting a 100% improvement thereof. Each possibility represents a separate embodiment of the present invention. 0 [000931 In another embodiment, improvement of a cognitive or neurological function or intelligence is assessed relative to the function before beginning treatment. In another embodiment, the improvement is assessed relative to an untreated subject. In another embodiment, the improvement is assessed according to a standardized criterion such as, for example, a test or the like. Each type of improvement of cognitive activity represents a separate embodiment of the present invention. 5 [00094] In another embodiment, improvement of a cognitive or neurological function or intelligence is assessed by the number of connections between neurons in the subject's brain. In another embodiment, the improvement is assessed by the number of capillaries in the subject's brain, or in a specific region of the subject's brain. In another embodiment, the improvement is assessed by neural activity. In another embodiment, the improvement is assessed by neural function. In another embodiment, the improvement 0 is assessed by linguistic function. In another embodiment, the improvement is assessed by ability to communicate. In another embodiment, the improvement is assessed by measurement of levels of acetylcholine or other neurotransmitters or brain chemicals correlated with cognitive function. In another embodiment, the improvement is assessed by Positron Emission Tomography (PET) scanning of the subject's brain. In another embodiment, the improvement is assessed by magnetic resonance 25 imaging (MRI) scanning of the subject's brain. In another embodiment, the improvement is assessed by Cognitive Abilities Screening Instrument (CASI) (Peila R et al, Stroke. 32: 2882-9, 2001). In another embodiment, the improvement is assessed by a test such as, for example, the tests disclosed herein (Example 13). In another embodiment, the Mini-Mental test (Tsai L et al, The Mini-Mental State Test and computerized tomography. Am J Psychiatry. 1979 Apr;136(4A):436-8) is utilized. Additional 30 methods for assessing improvement of cognitive function are well known in the art, and are described, for example in Antonova E et al (Schizophr Res. 2004 Oct 1;70(2-3):117-45) and in Cognitive Function 19 Analysis (Greenwood Pub Group, 1998). Each method represents a separate embodiment of the present invention. [00095] In another embodiment, the present invention provides a method of inhibiting a decline in synapse numbers in a brain of a subject, comprising administering to the subject a composition of the 5 present invention, whereby the composition increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby inhibiting a decline in synapse numbers in a brain of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age related. Each possibility represents a separate embodiment of the present invention. [00096] In another embodiment, the present invention provides a method of increasing an amount or level o of a neurotransmitter in the brain or CNS of a subject, the method comprising administering to the subject an omega-3 fatty acid or a metabolic precursor thereof, whereby the omega-3 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid in the brain or CNS, thereby increasing an amount or level of a neurotransmitter in the brain or CNS of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. 5 Each possibility represents a separate embodiment of the present invention. [00097] In another embodiment, the present invention provides a method of increasing an amount or level of a neurotransmitter in the brain or CNS of a subject, the method comprising administering to the subject an omega-6 fatty acid or a metabolic precursor thereof, whereby the omega-6 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid in the brain or CNS, thereby .0 increasing an amount or level of a neurotransmitter in the brain or CNS of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [00098] In another embodiment, the present invention provides a method of increasing an amount or level of a neurotransmitter in the brain or CNS of a subject, the method comprising administering to the 25 subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty acid or a metabolic precursor thereof, whereby the composition increases a synthesis of a phospholipid in the brain or CNS, thereby increasing an amount or level of a neurotransmitter in the brain or CNS of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate 30 embodiment of the present invention. 20 [00099] In another embodiment, the present invention provides a method of increasing an amount or level of a neurotransmitter in the brain or CNS of a subject, the method comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-6 fatty acid or a metabolic precursor thereof, whereby the composition 5 increases a synthesis of a phospholipid in the brain or CNS, thereby increasing an amount or level of a neurotransmitter in the brain or CNS of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. . [0001001 In one embodiment, the neurotransmitter whose levels or activity, or release is affected by 0 methods of the present invention is acetylcholine. In another embodiment, the neurotransmitter is glutamate. In another embodiment, the neurotransmitter is dopamine. In another embodiment, the neurotransmitter is serotonin. In another embodiment, the neurotransmitter is 5-hydroxytryptamine (5 I-IT). In another embodiment, the neurotransmitter is GABA. In another embodiment, the neurotransmitter is any other neurotransmitter known in the art. Each type of neurotransmitter represents 5 a separate embodiment of the present invention. [000101] In another embodiment, the present invention provides a method of increasing or enhancing an ability of a brain cell of a subject to repeatedly release an effective quantity of a neurotransmitter into a synapse, the method comprising administering to the subject an omega-3 fatty acid or a metabolic precursor thereof, whereby the omega-3 fatty acid or metabolic precursor thereof increases a synthesis .o of a phospholipid by the brain cell, thereby increasing or enhancing an ability of a brain cell of a subject to repeatedly release an effective quantity of a neurotransmitter into a synapse. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [000102] As provided herein, dendritic spine density increased in animals administered DHA and/or 25 uridine (Example 9). Thus, compositions of the present invention increase the number and size of synapses in the brain and the ability of brain cells to signal via neurotransmitters. [000103] In another embodiment, the present invention provides a method of increasing or enhancing an ability of a brain cell of a subject to repeatedly release an effective quantity of a neurotransmitter into a synapse, the method comprising administering to the subject an omega-6 fatty acid or a metabolic 30 precursor thereof, whereby the omega-6 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by the brain cell, thereby increasing or enhancing an ability of a brain cell 21 of a subject to repeatedly release an effective quantity of a neurotransmitter into a synapse. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [000104] In another embodiment, the present invention provides a method of increasing or enhancing an 5 ability of a brain cell of a subject to repeatedly release an effective quantity of a neurotransmitter into a synapse, the method comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty acid or a metabolic precursor thereof, whereby the composition increases a synthesis of a phospholipid by the brain cell, thereby increasing or enhancing an ability of a brain cell of a subject to repeatedly release an o effective quantity of a neurotransmitter into a synapse. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [000105] In another embodiment, the present invention provides a method of increasing or enhancing an ability of a brain cell of a subject to repeatedly release an effective quantity of a neurotransmitter into a 5 synapse, the method comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-6 fatty acid or a metabolic precursor thereof, whereby the composition increases a synthesis of a phospholipid by the brain cell, thereby increasing or enhancing an ability of a brain cell of a subject to repeatedly release an effective quantity of a neurotransmitter into a synapse. In another embodiment, the subject has a 0 memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [000106] As provided herein, administration of PUFA and/or uridine increases brain phospholipid levels and synthesis, levels of neurite neurofibrillar proteins, and amount of synaptic membranes. Thus, compositions and methods of the present invention increase and enhance neurotransmitter release and 25 amounts. [000107] In another embodiment, the present invention provides a method of improving or enhancing an intelligence of a subject, comprising administering to the subject a composition of the present invention, whereby the composition increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby improving or enhancing an intelligence of a subject. In another embodiment, the subject 30 has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a 22 separate embodiment of the present invention. [000108] In another embodiment, the present invention provides a method of increasing the number of dendritic spines in the brain or a region thereof of a subject, comprising administering to the subject a composition of the present invention, whereby the composition increases a synthesis of a phospholipid 5 by a neural cell or brain cell of the subject, thereby increasing the number of dendritic spines in the brain or a region thereof of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [000109]The intelligence that is improved or enhanced by methods and compositions of the present 0 invention is, in another embodiment, linguistic intelligence. In another embodiment, the intelligence is musical intelligence. In another embodiment, the intelligence is spatial intelligence. In another embodiment, the intelligence is bodily intelligence. In another embodiment, the intelligence is interpersonal intelligence. In another embodiment, the intelligence is intrapersonal intelligence. In another embodiment, the intelligence is interpersonal intelligence. In another embodiment, the 5 intelligence is logico-mathematical intelligence. In another embodiment, the intelligence is any other type of intelligence known in the art. Each type of intelligence represents a separate embodiment of the present invention. [000110] In another embodiment, the present invention provides a method of facilitating or enhancing brain repair, comprising administering to the subject an omega-3 fatty acid or a metabolic precursor !o thereof, thereby facilitating or enhancing brain repair. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [000111] In another embodiment, the present invention provides a method of facilitating or enhancing brain repair, comprising administering to the subject an omega-6 fatty acid or a metabolic precursor 25 thereof, thereby facilitating or enhancing brain repair. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [000112] In another embodiment, the present invention provides a method of facilitating or enhancing brain repair, comprising administering to the subject a composition comprising: (a) a uridine, an acyl 30 derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty acid or a metabolic 23 precursor thereof, thereby facilitating or enhancing brain repair. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [000113] In another embodiment, the present invention provides a method of facilitating or enhancing 5 brain repair, comprising administering to the subject a composition comprising: (a) a uridine,-an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-6 fatty acid or a metabolic precursor thereof, thereby facilitating or enhancing brain repair. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. 0 [000114] In another embodiment, the brain repair is facilitated or enhanced following a stroke. In another embodiment, the brain repair is facilitated or enhanced following a brain injury. In another embodiment, the brain repair is facilitated or enhanced following any other event, disease or disorder known in the art that necessitates brain repair. Each possibility represents another embodiment of the present invention. [000115] In another embodiment, the subject whose cognitive function, neurological function, intelligence, 5 synaptic transmission, or neurotransmitter levels and activity is enhanced or improved by a composition or method of the present invention has a cognitive impairment or memory disorder. In another embodiment, the subject is aged. In another embodiment, the subject has no cognitive impairment or memory disorder. Each possibility represents a separate embodiment of the present invention. [000116] In another embodiment, the present invention provides a method of increasing a sensitivity of a 0 neuron to a stimulus, comprising contacting the neuron with a composition of the present invention, thereby increasing a sensitivity of a neuron to a stimulus. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [000117] As provided herein, administration of PUFA and/or uridine increases brain phospholipid levels 25 and synthesis, levels of neurite neurofibrillar proteins, and amount of synaptic membranes. Thus, compositions and methods of the present invention increase and enhance the sensitivity of neurons to stimuli and the size and number of synapses in the brain and central nervous system (CNS). [000118]In another embodiment, the present invention provides a method of increasing an average synapse size in a brain of a subject, comprising administering to the subject a composition of the present 30 invention, thereby increasing an average synapse size in a brain of a subject. In another 24 embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [000119] In another embodiment, the present invention provides a method of increasing the number of synapses in a brain of a subject, comprising administering to the subject an omega-3 fatty acid or a 5 metabolic precursor thereof, thereby increasing the number of synapses in a brain of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age related. Each possibility represents a separate embodiment of the present invention. [000120] In another embodiment, the present invention provides a method of increasing the number of synapses in a brain of a subject, comprising administering to the subject an omega-6 fatty acid or a o metabolic precursor thereof, thereby increasing the number of synapses in a brain of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age related. Each possibility represents a separate embodiment of the present invention. [000121] In another embodiment, the present invention provides a method of increasing the number of synapses in a brain of a subject, comprising administering to the subject a composition comprising: (a) a 5 uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty acid or a metabolic precursor thereof, thereby increasing the number of synapses in a brain of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age related. Each possibility represents a separate embodiment of the present invention. [000122] In another embodiment, the present invention provides a method of increasing the number of o synapses in a brain of a subject, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-6 fatty acid or a metabolic precursor thereof, thereby increasing the number of synapses in a brain of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age related. Each possibility represents a separate embodiment of the present invention. 25 [000123] Methods for measuring and estimating the average synapse size, number of synapses, and level of synaptic activity and neurotransmitter release in the brain and CNS of a subject are well known in the art, and are disclosed, for example, in Wheeler DW et al (Estimating use-dependent synaptic gain in autonomic ganglia by computational simulation and dynamic-clamp analysis. I Neurophysiol. 2004 Nov;92(5):2659-71), Viele K et al (Estimating the number of release sites and probability of firing 30 within the nerve terminal by statistical analysis of synaptic charge. Synapse. 2003 Jan;47(l):15-25), and 25 DeFelipe J et al (Estimation of the number of synapses in the cerebral cortex: methodological considerations. Cereb Cortex. 1999 Oct-Nov;9(7):722-32). Each possibility represents a separate embodiment of the present invention. [000124] In another embodiment, the present invention provides a method of stimulating or enhancing a 5 production of a membrane of a brain cell or a neural cell of a subject, comprising administering to the subject an omega-3 fatty acid or a metabolic precursor thereof, thereby stimulating or enhancing a production of a membrane of a brain cell or a neural cell of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. 0 [000125] In another embodiment, the present invention provides a method of stimulating or enhancing a production of a membrane of a brain cell or a neural cell of a subject, comprising administering to the subject an omega-6 fatty acid or a metabolic precursor thereof, thereby stimulating or enhancing a production of a membrane of a brain cell or a neural cell of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility 5 represents a separate embodiment of the present invention. [000126] In another embodiment, the present invention provides a method of stimulating or enhancing a production of a membrane of a brain cell or a neural cell of a subject, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty acid or a metabolic precursor thereof, thereby stimulating or 0 enhancing a production of a membrane of a brain cell or a neural cell of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [000127] In another embodiment, the present invention provides a method of stimulating or enhancing a production of a membrane of a brain cell or a neural cell of a subject, comprising administering to the 25 subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-6 fatty acid or a metabolic precursor thereof, thereby stimulating or enhancing a production of a membrane of a brain cell or a neural cell of a subject. In another embodiment, the subject has a memory disorder. In another embodiment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. 30 [000128] In another embodiment, methods of the present invention increase phospholipid levels while 26 substantially preserving the ratios of 2 or more phospholipids in the target brain or neural cell. In another embodiment, methods of the present invention increase phospholipid levels while substantially preserving the ratios of 3 or more phospholipids in the target brain or neural cell. In another embodiment, methods of the present invention increase phospholipid levels while substantially 5 preserving the ratios of 4 or more phospholipids in the target brain or neural cell. In another embodiment, the phospholipids are selected from PC, PE, PS, and sphingomyelin (SM). In another embodiment, substantial preservation of these ratios is important in the above aspects of neural and brain function. Each possibility represents a separate embodiment of the present invention. [000129] "Substantially preserving" refers, in another embodiment, to a deviation of less than 10% from 0 the previous ratio. In another embodiment, "substantially preserving" refers to a deviation of less than 15%. In another embodiment, the deviation is less than 20%. In another embodiment, the deviation is less than 25%. In another embodiment, the deviation is less than 30%. In another embodiment, the deviation is less than 35%. In another embodiment, the deviation is less than 40%. In another embodiment, the deviation is less than 45%. In another embodiment, the deviation is less than 50%. In 5 another embodiment, the deviation is less than 55%. In another embodiment, the deviation is less than 60%. In another embodiment, the deviation is less than 65%. In another embodiment, the deviation is less than 70%. In another embodiment, the deviation is less than 75%. In another embodiment, the deviation is less than 80%. In another embodiment, the deviation is less than 85%. In another embodiment, the deviation is less than 90%. In another embodiment, the deviation is less than 95%. In o another embodiment, the deviation is less than 90%. Each possibility represents a separate embodiment of the present invention. [000130]In another embodiment of methods of the present invention, stimulation of phospholipid synthesis enhances neurite branching. In another embodiment, stimulation of phospholipid synthesis enhances neurite outgrowth. In another embodiment, stimulation of phospholipid synthesis increases the 25 pool of phospholipid moieties that can be released via the activation of phospholipases. Some of the phospholipid moieties are bioactive, such as inositol 1,4,5-trisphosphate (IP 3 ), diacylglycerol (DAG), and lyso-platelet-activating factor (lyso-PAF), which upon further metabolism, gives rise to the bioactive lipid, PAF (1-0-alkyl-2-acetyl-sn-3-glycerol-3-phosphocholine). [0001311In another embodiment, stimulation of phospholipid synthesis protects synaptic membranes 30 against stress. In another embodiment, the stress is oxidative stress. In another embodiment, the stress is any other type of stress known in the art. 27 [000132] Each of these effects of stimulation of phospholipid synthesis enhances, in another embodiment, neurotransmitter-mediated signaling, thus slowing memory loss. In another embodiment, memory loss or impairment is halted due to one of the above effects. In another embodiment, memory loss is reversed due to one of the above effects. Each of the above effects of stimulation of phospholipid synthesis, and 5 each of the above consequences thereof, represents a separate embodiment of the present invention. [000133]In another embodiment, the present invention provides a method of treating a subject with a memory impairment or memory loss, comprising contacting a neural cell of the subject with an omega-3 fatty acid or a metabolic precursor thereof, whereby the omega-3 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by the neural cell or brain cell, thereby treating a subject 0 with a memory impairment or memory loss. [000134]In another embodiment, the present invention provides a method of treating a subject with rnemory impairment or memory loss, comprising contacting a neural cell of the subject with an omega-6 fatty acid or a metabolic precursor thereof, whereby the omega-6 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by the neural cell or brain cell, thereby treating a subject 15 with a memory impairment or memory loss. [000135]In another embodiment, the present invention provides a method of treating a subject with a memory impairment or memory loss, comprising contacting a neural cell of the subject with a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, ora CDP-choline; and (b) an omega-3 fatty acid or a metabolic precursor thereof, whereby the composition increases a 20 synthesis of a phospholipid by the neural cell or brain cell, thereby treating a subject with a memory impairment or memory loss. [000136]In another embodiment, the present invention provides a method of treating a subject with memory impairment or memory loss, comprising contacting a neural cell of the subject with a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; 25 and (b) an omega-6 fatty acid or a metabolic precursor thereof, whereby the composition increases a synthesis of a phospholipid by the neural cell or brain cell, thereby treating a subject with a memory impairment or memory loss. [000137]In another embodiment, the memory impairment is age-related. In another embodiment, the memory impairment is secondary to a cerebrovascular disease. In another embodiment, the memory 30 impairment is secondary to a stroke. The stroke is, in another embodiment, a clinical stroke. In another 28 embodiment, the stroke is a subclinical stroke. In another embodiment, the memory impairment results from multiple small subclinical strokes. In another embodiment, the memory impairment is secondary to a cardiovascular cause. In another embodiment, the memory impairment is secondary to an age-related cardiovascular cause. 5 [000138] In another embodiment, the memory impairment is secondary to a depression, e.g. a result of the depression. As is known in the art, depressed people often exhibit memory disturbances, even to the extent that older people with depression are mistakenly diagnosed, Alzheimer's disease. Methods and compositions of the present invention will increase, in another embodiment, the release of neurotransmitters known to be involved both in depression (e.g. dopamine, norepinephrine, and o serotonin) and in memory impairment (e.g. acetylcholine). [000139] In another embodiment, the memory impairment is secondary to insomnia. [000140] In another embodiment, the memory impairment results from any other cause of memory impairment known in the art. Each cause of memory impairment or memory loss represents a separate embodiment of the present invention. 5 [000141] "Age-related," in another embodiment, refers to a consequence of advanced age. In another embodiment, the age is over 65 years. In another embodiment, the age is over 60 years. In another embodiment, the age is over 55 years. In another embodiment, the age is over 68 years. In another embodiment, the age is over 70 years. In another embodiment, the age is over 72 years. In another embodiment, the age is over 75 years. In another embodiment, the age is over 78 years. In another 0 embodiment, the age is over 80 years. In another embodiment, the age is over 85 years. In another embodiment, the age is over 90 years. In another embodiment, "age-related" refers to a consequence of any age associated with memory impairment as a result of any disease or disorder comprising memory impairment. Each possibility represents a separate embodiment of the present invention. [000142] The subject of methods of the present invention is, in one embodiment, a human. In another 25 embodiment, the subject is a female. In another embodiment, the subject is a male. In another embodiment, the subject is a pregnant female. In another embodiment, the subject is a nursing female. In another embodiment, the subject is a baby. In another embodiment, the subject is a child. In another embodiment, the subject is a young child. In another embodiment, the subject is an adult. In another embodiment, the subject is an aging adult. In another embodiment, "aging" refers to any of the 30 embodiments enumerated above. Each possibility represents a separate embodiment of the present 29 invention. [000143]"Baby" refers, in another embodiment, to a subject under the age of 1 year. In another embodiment, the term refers to a subject under the age of 18 months. In another embodiment, the term refers to a subject under the age of 6 months. In another embodiment, the term refers to a subject under 5 the age of 7 months. In another embodiment, the term refers to a subject under the age of 8 months. In another embodiment, the term refers to a subject under the age of 9 months. In another embodiment, the term refers to a subject under the age of 10 months. In another embodiment, the term refers to a subject under the age of 11 months. In another embodiment, the term refers to a subject under the age of 13 months. In another embodiment, the term refers to a subject under the age of 14 months. In another o embodiment, the term refers to a subject under the age of 16 months. In another embodiment, the term refers to a subject under the age of 20 months. In another embodiment, the term refers to a subject under the age of 2 years. In another embodiment, the term refers to a subject that has not yet been weaned. In another embodiment, the tenr refers to a subject that has been weaned, but is within one of the above age ranges. Each possibility represents a separate embodiment of the present invention. 5 [000144] "Child" refers, in another embodiment, to a subject under the age of 18 years. In another embodiment, the term refers to a subject under the age of 17 years. In another embodiment, the term refers to a subject under the age of 16 years. In another embodiment, the term refers to a subject under the age of 15 years. In another embodiment, the term refers to a subject under the age of 14 years. In another embodiment, the term refers to a subject under the age of 13 years. In another embodiment, the o term refers to a subject under the age of 12 years. In another embodiment, the term refers to a subject under the age of 11 years. In another embodiment, the term refers to a subject under the age of 10 years. In another embodiment, the term refers to a subject under the age of 9 years. In another embodiment, the term refers to a subject under the age of 8 years. In another embodiment, the term refers to a subject under the age of 7 years. 25 [000145] "Young child" refers, in another embodiment, to a subject under the age of 7 years. In another embodiment, the term refers to a subject under the age of 6 years. In another embodiment, the term refers to a subject under the age of 5 years. In another embodiment, the term refers to a subject under the age of 4 years. In another embodiment, the term refers to a subject under the age of 3 years. In another embodiment, the term refers to a subject under the age of 3 years. In another embodiment, the term refers 30 to a subject under the age of 2 /2 years. Each possibility represents a separate embodiment of the present invention. 30 [000146] "Adult" refers, in other embodiments, to a subject over one of the ages listed above as an upper limit for a child. In another embodiment, the term refers to a subject over one of the ages listed above as an upper limit for a young child. Each possibility represents a separate embodiment of the present invention. 5 [000147] In another embodiment, the present invention provides a method of treating a subject with Pick's disease, comprising administering to the subject an omega-3 fatty acid or a metabolic precursor thereof, whereby the omega-3 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby treating a subject with Pick's disease. In another embodiment, the present invention provides a method of treating a subject with Lewy Body disease, 0 comprising administering to the subject an omega-3 fatty acid or a metabolic precursor thereof, whereby the omega-3 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby treating a subject with Lewy Body disease. In another embodiment, the present invention provides a method of treating a subject with Huntington's disease, comprising administering to the subject an omega-3 fatty acid or a metabolic precursor thereof, whereby 5 the omega-3 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby treating a subject with Huntington's disease. In another embodiment, the present invention provides a method of treating a subject with a mild cognitive impairment (MCI), comprising administering to the subject an omega-3 fatty acid or a metabolic precursor thereof, whereby the omega-3 fatty acid or metabolic precursor thereof increases a synthesis 0 of a phospholipid by a neural cell or brain cell of the subject, thereby treating a subject with MCI. Each possibility represents a separate embodiment of the present invention. [000148] In another embodiment, the present invention provides a method of treating a subject with Pick's disease, comprising administering to the subject an omega-6 fatty acid or a metabolic precursor thereof, whereby the omega-6 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid 25 by a neural cell or brain cell of the subject, thereby treating a subject with Pick's disease. In another embodiment, the present invention provides a method of treating a subject with Lewy Body disease, comprising administering to the subject an omega-6 fatty acid or a metabolic precursor thereof, whereby the omega-6 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby treating a subject with Lewy Body disease. In another 30 embodiment, the present invention provides a method of treating a subject with Huntington's disease, comprising administering to the subject an omega-6 fatty acid or a metabolic precursor thereof, whereby the omega-6 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by 31 a neural cell or brain cell of the subject, thereby treating a subject with Huntington's disease. In another embodiment, the present invention provides a method of treating a subject with an MCI, comprising administering to the subject an omega-3 fatty acid or a metabolic precursor thereof, whereby the omega 6 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by a neural cell or 5 brain cell of the subject, thereby treating a subject with an MCI. Each possibility represents a separate embodiment of the present invention. [000149] In another embodiment, the present invention provides a method of treating a subject with Pick's disease, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty acid or a metabolic 0 precursor thereof, whereby the composition increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby treating a subject with Pick's disease. In another embodiment, the present invention provides a method of treating a subject with Lewy Body disease, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty acid or a metabolic precursor thereof, whereby 5 the composition increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby treating a subject with Lewy Body disease. In another embodiment, the present invention provides a method of treating a subject with Huntington's disease, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty acid or a metabolic precursor thereof, whereby the composition 0 increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby treating a subject with Huntington's disease. In another embodiment, the present invention provides a method of treating a subject with an MCI, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty acid or a metabolic precursor thereof, whereby the composition increases a synthesis of a phospholipid by a 25 neural cell or brain cell of the subject, thereby treating a subject with an MCI. Each possibility represents a separate embodiment of the present invention. [000150] In another embodiment, the present invention provides a method of treating a subject with Pick's disease, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-6 fatty acid or a metabolic 30 precursor thereof, whereby the composition increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby treating a subject with Pick's disease. In another embodiment, the present invention provides a method of treating a subject with Lewy Body disease, comprising 32 administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-6 fatty acid or a metabolic precursor thereof, whereby the composition increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby treating a subject with Lewy Body disease. In another embodiment, the present invention 5 provides a method of treating a subject with Huntington's disease, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-6 fatty acid or a metabolic precursor thereof, whereby the composition increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby treating a subject with Huntington's disease. In another embodiment, the present invention provides a method of 0 treating a subject with an MCI, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-6 fatty acid or a metabolic precursor thereof, whereby the composition increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby treating a subject with an MCI. Each possibility represents a separate embodiment of the present invention. 5 [00015 1]In another embodiment, the present invention provides a method of treating a subject with a vascular dementia, comprising administering to the subject a composition of the present invention, whereby the omega-3 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by a neural cell or brain cell of the subject, thereby treating a subject with a vascular dementia. [000152] In another embodiment, the present invention provides a method of treating a subject with an !o aging-related neurological disorder, comprising contacting a neural cell of the subject with a composition of the present invention, whereby the composition increases a synthesis of a phospholipid by the neural cell or brain cell, thereby treating a subject with an aging-related neurological disorder. [000153] In another embodiment, the present invention provides a method of treating a subject with a symptom of depression, comprising contacting a neural cell of the subject with a composition of the 25 present invention, whereby the composition increases a synthesis of a phospholipid by the neural cell or brain cell, thereby treating a subject with a symptom of depression. In another embodiment, the subject has a memory disorder. In another embodi'ment, the disorder is age-related. Each possibility represents a separate embodiment of the present invention. [000154] In another embodiment, the symptom of depression is sadness. In another embodiment, the 30 symptom of depression is reduced activity. In another embodiment, the symptom of depression is fatigue. In another embodiment, the symptom of depression is weakness. In another embodiment, 33 the symptom of depression is mood fluctuations. In another embodiment, the symptom of depression is reduced concentration. In another embodiment, the symptom of depression is insomnia. In another embodiment, the symptom of depression is weight fluctuations. In another embodiment, the symptom of depression is reduced libido. In another embodiment, the symptom of depression is suicidal thoughts. 5 Each symptom represents a separate embodiment of the present invention. (000155]In another embodiment of methods and compositions of the present invention, the omega-3 fatty acid, omega-6 fatty acid, metabolic precursor thereof, or composition of the present invention exerts one of the effects enumerated herein by increasing a synthesis of a phospholipid. In another embodiment, the effect is manifested without increasing a synthesis of a phospholipid. Each possibility represents a 0 separate embodiment of the present invention. [000156] In another embodiment, methods and compositions of the present invention comprise a source of uridine. In another embodiment, methods and compositions of the present invention comprise a source of choline. In another embodiment, "source" refers to a compound that increases the concentration of the desired compound (uridine, choline, etc.) in the bloodstream or tissues. In another embodiment, 5 "source" refers to a compound that is metabolized by a tissue or enzyme of the subject to the desired compound. In another embodiment, "source" refers to a compound that is metabolized by the target cell to the desired compound. In another embodiment, the uridine source is cytidine, which is converted into uridine by the human liver. In another embodiment, the uridine source is a cytidine 5' monophosphate. In another embodiment, the uridine source is a cytidine 5' diphosphate. In another embodiment, the 0 uridine source is a cytidine 5' triphosphate. In another embodiment, the uridine source is any other cytidine phosphate known in the art. In another embodiment, the uridine source is a CDP-choline. In another embodiment, the uridine source is any other uridine source known in the art. Each uridine source represents a separate embodiment of the present invention. Each possibility represents a separate embodiment of the present invention. 25 [0001571 The uridine phosphate utilized in methods of the present invention, is, in another embodiment, a uridine 5' monophosphate. In another embodiment, the uridine phosphate is a uridine 5' diphosphate. In another embodiment, the uridine phosphate is a uridine 5' triphosphate. In another embodiment, the uridine phosphate is any other uridine phosphate known in the art. Each possibility represents a separate embodiment of the present invention. 30 (000158] In other embodiments, uridine-based compounds other than uridine itself serve as uridine sources or uridine precursors. These are, in other embodiments, uridine-rich food or dietary 34 products like algae; salts of uridine like uridine phosphates, acylated uridine or the like. In another embodiment, acyl derivatives of uridine or mixtures thereof, e.g. those disclosed in U.S. Pat. No. 5,470,838, are also administered. Each precursor of uridine represents a separate embodiment of the present invention. 5 [000159] In another embodiment, a method of the present invention further comprises administration of a choline. In another embodiment, the method further comprises administration of a choline salt. In another embodiment, the method further comprises administration of a compound that is metabolized into choline. In another embodiment, the method further comprises administration of a choline source. In another embodiment, administration of one of the above compounds augments the effect of the omega-3 0 or omega-6 fatty acid and/or uridine on synthesis of membrane phospholipids. As provided herein (Examples), administration of choline and an omega-3 or omega-6 fatty acid exhibit unexpected augmentation of levels of phospholipids, synaptic proteins, and synaptic membranes in neurons and brain tissue and of memory, intelligence, and cognitive and neurological functions. [000160) In another embodiment, any of the methods and compositions of the present invention comprises 5 administration of an omega-3 fatty acid and a choline. In another embodiment, any of the methods and compositions of the present invention comprise administration of an omega-3 fatty acid and a choline salt. In another embodiment, any of the methods and compositions of the present invention comprises administration of an omega-6 fatty acid and a choline. In another embodiment, any of the methods and compositions of the present invention comprises administration of an omega-6 fatty acid and a choline 0 salt. [000 161] In another embodiment, any of the methods and compositions of the present invention comprises administration of a composition comprising an omega-3 fatty acid, a uridine, and a choline. In another embodiment, any of the methods and compositions of the present invention comprises administration of composition comprising an omega-3 fatty acid, a uridine, and a choline salt. In another embodiment, any 25 of the methods and compositions of the present invention comprises administration of a composition comprising an omega-6 fatty acid, a uridine, and a choline. In another embodiment, any of the methods and compositions of the present invention comprises administration of composition comprising an omega-6 fatty acid, a uridine, and a choline salt. [000162] In another embodiment, any of the methods and compositions of the present invention comprises 30 administration of an omega-6 fatty acid and an omega-3 fatty acid. In another embodiment, any of the methods and compositions of the present invention comprises administration of an omega-6 fatty acid, 35 an omega-3 fatty acid, and a uridine. In another embodiment, any of the methods and compositions of the present invention comprises administration of an omega-6 fatty acid, an omega-3 fatty acid, and a choline. In another embodiment, any of the methods and compositions of the present invention comprises administration of an omega-6 fatty acid, an omega-3 fatty acid, and a choline salt. In another 5 embodiment, any of the methods and compositions of the present invention comprises administration of an omega-6 fatty acid, an omega-3 fatty acid, a uridine, and a choline. In another embodiment, any of the methods and compositions of the present invention comprises administration of an omega-6 fatty acid, an omega-3 fatty acid, a uridine, and a choline salt. [000163] In another embodiment, an anti-inflammatory PUFA is included in methods and compositions of 0 the present invention. In another embodiment, 2 different omega-3 fatty acids are included. In another embodiment, 1 of the 2 omega-3 fatty acids is an anti-inflammatory PUFA. In another embodiment, I of the 2 omega-3 fatty acids is DHA. In another embodiment, I of the 2 omega-3 fatty acids is EPA. In another embodiment, the 2 omega-3 fatty acids are EPA and DHA. [000164] In another embodiment, the ratio of the 2 omega-3 fatty acids is 0.05:1. In another embodiment, is 5 the ratio is 0.1:1. In another embodiment, is the ratio is 0.15:1. In another embodiment, is the ratio is 0.2:1. In another embodiment, is the ratio is 0.3:1. In another embodiment, is the ratio is 0.4:1. In another embodiment, is the ratio is 0.5:1. In another embodiment, is the ratio is 0.6:1. In another embodiment, is the ratio is 0.7:1. In another embodiment, is the ratio is 0.8:1. In another embodiment, is the ratio is 0.9:1. In another embodiment, is the ratio is 1:1. In another embodiment, DHA and EPA are included in !o one of the above ratios (DHA:EPA). In another embodiment, DHA and EPA are included in one of the above ratios (EPA:DHA). [000165] In another embodiment, 2 different omega-6 fatty acids are included in methods and compositions of the present invention. [000166] In another embodiment, the ratio of an omega-3 fatty acid to an omega-6 fatty in a method or 25 composition of the present invention is 1:1. In another embodiment, the ratio is 1.5:1. In another embodiment, the ratio is 2:1. In another embodiment, the ratio is 3:1. In another embodiment, the ratio is 4:1. In another embodiment, the ratio is 5:1. In another embodiment, the ratio is 6:1. In another embodiment, the ratio is 8:1. In another embodiment, the ratio is 10:1. In another embodiment, the ratio is 12:1. In another embodiment, the ratio is 15:1. In another embodiment, the ratio is 20:1. In another 30 embodiment, the ratio is 30:1. In another embodiment, the ratio is 40:1. In another embodiment, the ratio is 50:1. In another embodiment, the ratio is 60:1. In another embodiment, the ratio is 80:1. In 36 another embodiment, the ratio is 100:1. [000167] Each combination of an omega-3 fatty acid, an omega-6 fatty acid, a uridine, a choline, and/or a choline salt represents a separate embodiment of the present invention. Each combination of different omega-3 fatty acids represents a separate embodiment of the present invention. Each combination of 5 different omega-6 fatty acids represents a separate embodiment of the present invention. Each ratio represents a separate embodiment of the present invention. [000168] In another embodiment, the choline source is lecithin. In another embodiment, the choline source is a lecithin. In another embodiment, the choline source is an acetylcholine. In another embodiment, the choline source is a citicholine or an alpha- glycerophosphorylcholine. In another embodiment, the 0 choline source is CDP-choline. In another embodiment, the choline source is any other choline source known in the art. Each choline source represents a separate embodiment of the present invention. [000169] In another embodiment, the choline salt is a sulfonate salt; e.g a long-alkyl chain sulfonate salt. In another embodiment, the choline salt is choline chloride. In another embodiment, the choline salt is choline bitartrate. In another embodiment, the choline salt is choline citrate. In another embodiment, the 5 choline salt is choline tartrate. In another embodiment, the choline salt is iron-choline citrate complex. In. another embodiment, the choline source is any other choline salt known in the art. Each choline salt represents a separate embodiment of the present invention. [000170] In another embodiment, the present invention provides a composition for the treatment of Alzheimer's disease, consisting of any of the compositions disclosed in methods of the present 0 invention. Each composition represents a separate embodiment of the present invention. [000171]In another embodiment, the present invention provides a composition for the treatment of memory impairment or memory loss, consisting of any of the compositions disclosed in methods of the present invention. Each composition represents a separate embodiment of the present invention. In addition, each type of memory impairment or memory loss represents a separate embodiment of the 25 present invention. [000172) In another embodiment, the present invention provides a composition for the treatment of Pick's disease, consisting of any of the compositions disclosed in methods of the present invention. In another embodiment, the present invention provides a composition for the treatment of Lewy Body disease, consisting of any of the compositions disclosed in methods of the present invention. In another 30 embodiment, the present invention provides a composition for the treatment of Huntington's 37 disease, consisting of any of the compositions disclosed in methods of the present invention. Each composition, and each of the above diseases, represents a separate embodiment of the present invention. [000173] In another embodiment, methods and compositions of the present invention exert their effects 5 even in subjects that do not have a deficiency in omega-3 fatty acids or omega-6 fatty acids. In another embodiment, a pharmacological dose of PUFA is utilized in methods and compositions of the present invention. In another embodiment, a therapeutic dose is utilized. In another embodiment, the pharmacological doses are greater than would normally be ingested in a PUFA-rich diet. In another embodiment, membrane levels of a subject not having a PUFA deficiency are increased by 0 administration of pharmacological doses of PUFA and/or uridine. In another embodiment, results of the present invention demonstrate that PUFA exert a biochemical effect in the brain, thus supporting the use of pharmacological doses of PUFA. Each possibility represents a separate embodiment of the present invention. (000174] The dosage of omega-3 fatty acid included in methods and compositions of the present invention 5 is, in another embodiment, in the range of about 400-2000 mg/day. In another embodiment, the dosage is in the range of about 500-2000 mg/day. In another embodiment, the range is about 600-2000 mg/day. In another embodiment, the range is about 800-2000 mg/day. In another embodiment, the range is about 1000-2000 mg/day. In another embodiment, the range is about 1200-2000 mg/day. In another embodiment, the range is about 1500-2000 mg/day. In another embodiment, the range is about 400-3000 0 mg/day. In another embodiment, the dosage is in the range of about 500-3000 mg/day. In another embodiment, the range is about 600-3000 mg/day. In another embodiment, the range is about 800-3000 mg/day. In another embodiment, the range is about 1000-3000 mg/day. In another embodiment, the range is about 1200-3000 mg/day. In another embodiment, the range is about 1500-3000 mg/day. In another embodiment, the range is about 2000-3000 mg/day. In another embodiment, the range is about 25 400-4000 mg/day. In another embodiment, the dosage is in the range of about 500-4000 mg/day. In another embodiment, the range is about 600-4000 mg/day. In another embodiment, the range is about 800-4000 mg/day. In another embodiment, the range is about 1000-4000 mg/day. In another embodiment, the range is about 1200-4000 mg/day. In another embodiment, the range is about 1500 4000 mg/day. In another embodiment, the range is about 2000-4000 mg/day. In another embodiment, the 30 range is about 3000-4000 mg/day. In another embodiment, the range is about 400-1000 mg/day. In another embodiment, the range is about 500-1000 mg/day. In another embodiment, the range is about 38 600-1000 mg/day. In another embodiment, the range is about 800-100 mg/day. [000175] In another embodiment, the dosage of omega-3 fatty acid is at least 400 mg/day. In another embodiment, the dosage is at least 500 mg/day. In another embodiment, the dosage is at least 600 mg/day. In another embodiment, the dosage is at least 700 mg/day. In another embodiment, the dosage is 5 at least 800 mg/day. In another embodiment, the dosage is at least 900 mg/day. In another embodiment, the dosage is at least 1 g/day. In another embodiment, the dosage is at least 1200 mg/day. In another embodiment, the dosage is at least 1.5 g/day. In another embodiment, the dosage is at least 2 g/day. [000176] In another embodiment, the dosage of omega-3 fatty acid is about 400 mg/day. In another embodiment, the dosage is about 500 mg/day. In another embodiment, the dosage is about 600 mg/day. o In another embodiment, the dosage is about 700 mg/day. In another embodiment, the dosage is about 800 mg/day. In another embodiment, the dosage is about 900 mg/day. In another embodiment, the dosage is about 1 g/day. In another embodiment, the dosage is about 1200 mg/day. In another embodiment, the dosage is about 1.5 g/day. In another embodiment, the dosage is about 2 g/day. [000177] In another embodiment, pregnant women are given a particular dosage to meet their needs. In 5 another embodiment, the range is about 200-2000 mg/day. In another embodiment, the range is about 400-1700 mg/day. In another embodiment, the range is about 600-1500 mg/day. In another embodiment, the range is about 800-1300 mg/day. In another embodiment, the range is about 200-3000 mg/day. In another embodiment, the range is about 400-3000 mg/day. In another embodiment, the range is about 600-3000 mg/day. In another embodiment, the range is about 800-3000 mg/day. In another embodiment, o the range is about 1000-3000 mg/day. In another embodiment, the range is about 2000-3000 mg/day. In another embodiment, the dosage for pregnant women is about 1000 mg/day. In another embodiment, the dosage is about 1500 mg/day. In another embodiment, the dosage is about 2000 mg/day. In another embodiment, the dosage is about 3000 mg/day. [000178] In another embodiment, subjects with elevated cholesterol are given a particular dosage to meet 25 their needs. In another embodiment, the dosage for subjects with elevated cholesterol is in the range of about 200-4000 mg/day. In another embodiment, the dosage for subjects with elevated cholesterol is in the range of about 400-3500 mg/day. In another embodiment, the dosage for subjects with elevated cholesterol is in the range of about 600-3000 mg/day. In another embodiment, the dosage for subjects with elevated cholesterol is in the range of about 1000-2500 mg/day. In another embodiment, the dosage 30 for subjects with elevated cholesterol is in the range of about 1500-2300 mg/day. In another 39 embodiment, the dosage for subjects with elevated cholesterol is about 2000 mg/day. [000179] In another embodiment of methods and compositions of the present invention, DHA is included at one of the above doses. In another embodiment, the dosage of DHA is 1-50 mg/kg/day. In another embodiment, the dosage of DHA is 400-1000 mg/day. In another embodiment, EPA is included at one of 5 the above doses. In another embodiment, the dosage of EPA is 1-50 mg/kg/day. In another embodiment, the dosage of EPA is 400-1000 mg/day. Each dosage represents a separate embodiment of the present invention. (000180]The dosage of omega-6 fatty acid included in methods and compositions of the present invention is, in other embodiments, any of the dosages mentioned above for omega-3 fatty acid. In another .0 embodiment, arachidonic acid is included at one of the above doses. In another embodiment, the dosage of arachidonic acid is 1-50 mg/kg/day. In another embodiment, the dosage of arachidonic acid is 400 1000 mg/day. Each dosage represents a separate embodiment of the present invention. [000181]In another embodiment, eicosahexaenoic acid (EPA) is administered together with, or in addition to, another omega-3 or an omega-6 fatty acid. In another embodiment, the EPA is added in a dosage of L 5 about 200 mg/day. In another embodiment, the dosage is 100-300 mg/day. In another embodiment, the range is 150-250 mg/day. In another embodiment, the range is 170-230 mg/day. In another embodiment, the range is 100-1000 mg/day. In another embodiment, the range is 150-800 mg/day. In another embodiment, the range is 200-600 mg/day. In another embodiment, the range is 300-500 mg/day. In another embodiment, the dosage is about 300 mg/day. In another embodiment, the dosage is about 400 2 0 mg/day. In another embodiment, the dosage is about 500 mg/day. In another embodiment, the dosage is about 600 mg/day. In another embodiment, the dosage is about 800 mg/day. In another embodiment, the dosage is about 1000 mg/day. [000182] In another embodiment, pregnant women are administered a higher dose of EPA. In another embodiment, the dosage is about 1200 mg/day. In another embodiment, the dosage is about 1500 25 mg/day. In another embodiment, the dosage is about 1800 mg/day. In another embodiment, the dosage is about 2000 mg/day. In another embodiment, the dosage is about 2500 mg/day. In another embodiment, the dosage is about 3000 mg/day. In another embodiment, the dosage is 500-3000 mg/day. In another embodiment, the dosage is 800-3000 mg/day. In another embodiment, the dosage is 1000-3000 mg/day. In another embodiment, the dosage is 1500-3000 mg/day. In another embodiment, the dosage is 2000 30 3000 mg/day. In another embodiment, the dosage is 500-2000 mg/day. In another embodiment, the dosage is 800-2000 mg/day. In another embodiment, the dosage is 1000-2000 mg/day. In 40 another embodiment, the dosage is 1500-2000 mg/day. [000183] Each dosage of an omega-3 fatty acid, an omega-6 fatty acid, or additional EPA represents a separate embodiment of the present invention. [000184] The dose of uridine included in methods and compositions of the present invention, is, in another 5 embodiment, between 10-500 mg/day (inclusive). In another embodiment, the dose is 20-500 mg/day. In another embodiment, the dose is 30-500 mg/day. In another embodiment, the dose is 50-500 mg/day. In another embodiment, the dose is 100-500 mg/day. In another embodiment, the dose is 150-500 mg/day. In another embodiment, the dose is 200-500 mg/day. In another embodiment, the dose is 300-500 mg/day. In another embodiment, the dose of uridine is between 10-400 mg/day. In another embodiment, o the dose is 20-400 mg/day. In another embodiment, the dose is 30-400 mg/day. In another embodiment, the dose is 50-400 mg/day. In another embodiment, the dose is 100-400 mg/day. In another embodiment, the dose is 150-400 mg/day. In another embodiment, the dose is 200-400 mg/day. In another embodiment, the dose of uridine is between 10-300 mg/day. In another embodiment, the dose is 20-300 mg/day. In another embodiment, the dose is 30-300 mg/day. In another embodiment, the dose is 50-300 5 mg/day. In another embodiment, the dose is 100-300 mg/day. In another embodiment, the dose is 150 300 mg/day. In another embodiment, the dose is 200-300 mg/day. In another embodiment, the dose is about 50 mg/day. In another embodiment, the dose is about 70 mg/day. In another embodiment, the dose is about 100 mg/day. In another embodiment, the dose is about 150 mg/day. In another embodiment, the dose is about 200 mg/day. In another embodiment, the dose is about 300 mg/day. In another o embodiment, the dose is about 400 mg/day. In another embodiment, the dose is about 500 mg/day. [000185] Each uridine dose represents a separate embodiment of the present invention. [000186] The dose of choline included in methods and compositions of the present invention, is, in another embodiment, between 100 mg-10 g/day (inclusive). In another embodiment, the dose is 1 g-3 g. In another embodiment, the dose is 150 mg-8 g. In another embodiment, the dose is 200 mg-6 g. In another 25 embodiment, the dose is 300 mg-5 g. In another embodiment, the dose is 400 mg-4.5 g. In another embodiment, the dose is 500 mg-4 g. In another embodiment, the dose is 600 mg-4 g. In another embodiment, the dose is 800 mg-3.5 g. In another embodiment, the dose is 1.2 g-3 g. In another embodiment, the dose is 1.5 g-2.5 g. In another embodiment, the dose is about 0.5 g. In another embodiment, the dose is about 0.7 g. In another embodiment, the dose is about I g. In another 30 embodiment, the dose is about 1.2 g. In another embodiment, the dose is about 1.5 g. In another embodiment, the dose is about 2 g. In another embodiment, the dose is about 2.5 g. In another 41 embodiment, the dose is about 3 g. In another embodiment, the dose is about 4 g. Each of the above doses is the amount of choline equivalents; thus, the actual doses of a choline compound (e.g. choline chloride or choline tartrate) will be correspondingly greater. [000187] Each choline dose represents a separate embodiment of the present invention. 5 [000188]In another embodiment, a composition of the present invention is administered chronically. "Chronically" refers, in another embodiment, to administration for at least 1 week. In another embodiment, the term refers to administration for at least 2 weeks. In another embodiment, the time period is at least 10 days. In another embodiment, the time period is at least 3 weeks. In another embodiment, the time period is at least 4 weeks. In another embodiment, the time period is at least 5 0 weeks. In another embodiment, the time period is at least 6 weeks. In another embodiment, the time period is at least 2 months. In another embodiment, the time period is at least 3 months. In another embodiment, the time period is at least 4 months. In another embodiment, the time period is at least 6 months. In another embodiment, the time period is at least 6 months. In another embodiment, the time period is at least 1 year. In another embodiment, the time period is at least 2 years. In another .5 embodiment, the time period is at least 3 years. In another embodiment, the time period is at least 5 years. In another embodiment, the time period is at least 10 years. [000189] In another embodiment, the time period is 1 week. In another embodiment, the term refers to administration for 2 weeks. In another embodiment, the time period is 10 days. In another embodiment, the time period is 3 weeks. In another embodiment, the time period is 4 weeks. In another embodiment, 0 the time period is 5 weeks. In another embodiment, the time period is 6 weeks. In another embodiment, the time period is 2 months. In another embodiment, the time period is 3 months. In another embodiment, the time period is 4 months. In another embodiment, the time period is 6 months. In another embodiment, the time period is 6 months. In another embodiment, the time period is 1 year. In another embodiment, the time period is 2 years. In another embodiment, the time period is 3 years. In 25 another embodiment, the time period is 5 years. In another embodiment, the time period is 10 years. [000190] In another embodiment, the PUFA component of a composition of the present invention is administered for one of the above time periods. In another embodiment, the omega-3 component of a composition of the present invention is administered for one of the above time periods. In another embodiment, the omega-6 component of a composition of the present invention is administered for one 30 of the above time periods. In another embodiment, the uridine component of a composition of the present invention is administered for one of the above time periods. In another embodiment, the choline or 42 choline salt component of a composition of the present invention is administered for one of the above time periods. [000191]Each time period represents a separate embodiment of the present invention. [000192]"Contacting," in another embodiment, refers to directly administering to the subject a 3 composition of the present invention. In another embodiment, "contacting" refers to indirectly administering to the subject a composition of the present invention. Thus, in another embodiment, methods of the present invention include methods in which the subject is contacted with a compound or composition that is metabolized into an omega-3 or omega-6 fatty acid in the cerebrospinal fluid, the bloodstream, etc, after which the omega-3 or omega-6 fatty acid is brought in contact with the brain cell o by diffusion or any other active transport or passive transport process known in the art by which compounds circulate within the body. In another embodiment, the compound is metabolized by the target cells into an omega-3 or omega-6 fatty acid. Each possibility represents a separate embodiment of the present invention. [000193] In another embodiment, a derivative of an omega-3 or omega-6 fatty acid is utilized in the 5 methods and compositions of the present invention. In another embodiment, the derivative is the omega 6 fatty acid derivative gamma-linolenic acid. In another embodiment, the derivative is any other derivative of an omega-3 or omega-6 fatty acid known in the art. Each derivative represents a separate embodiment of the present invention. [000194] In another embodiment, the present invention provides a method of increasing neurite branching 0 of a neural cell of a subject, comprising administering to the subject an omega-3 fatty acid or a metabolic precursor thereof, whereby the omega-3 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by the neural cell, thereby increasing neurite branching thereof. In another embodiment, the present invention provides a method of increasing neurite branching of a neural cell of a subject, comprising administering to the subject an omega-6 fatty acid or a metabolic precursor thereof, whereby 25 the omega-6 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by the neural cell, thereby increasing neurite branching of a neural cell of a subject. [000195] In another embodiment, the present invention provides a method of increasing neurite branching of a neural cell of a subject, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty acid 30 or a metabolic precursor thereof, whereby the composition increases a synthesis of a phospholipid by the 43 neural cell, thereby increasing neurite branching thereof. In another embodiment, the present invention provides a method of increasing neurite branching of a neural cell of a subject, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-6 fatty acid or a metabolic precursor thereof, whereby the composition 5 increases a synthesis of a phospholipid by the neural cell, thereby increasing neurite branching of a neural cell of a subject. [0001961 In another embodiment, the present invention provides a method of increasing neurite outgrowth of a neural cell of a subject, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; and (b) an omega-3 fatty acid o or a metabolic precursor thereof, whereby the composition increases a synthesis of a phospholipid by the neural cell, thereby increasing neurite outgrowth thereof. In another embodiment, the present invention provides a method of increasing neurite outgrowth of a neural cell of a subject, comprising administering to the subject a composition comprising: (a) a uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline; an d (b) an omega-6 fatty acid or a metabolic precursor thereof, whereby the composition 5 increases a synthesis of a phospholipid by the neural cell, thereby increasing neurite outgrowth of a neural cell of a subject. [000197] In another embodiment, the present invention provides a method of increasing neurite outgrowth of a neural cell of a subject, comprising administering to the subject an omega-3 fatty acid or a metabolic precursor thereof, whereby the omega-3 fatty acid or metabolic precursor thereof increases a synthesis of 0 a phospholipid by the neural cell, thereby increasing neurite outgrowth thereof. In another embodiment, the present invention provides a method of increasing neurite outgrowth of a neural cell of a subject, comprising administering to the subject an omega-6 fatty acid or a metabolic precursor thereof, whereby the omega-6 fatty acid or metabolic precursor thereof increases a synthesis of a phospholipid by the neural cell, thereby increasing neurite outgrowth of a neural cell of a subject. 25 [000198]In another embodiment, the present invention provides a kit comprising a compound or composition utilized in performing a method of the present invention. [000199) "Pharmaceutical composition" refers, in another embodiment, to a dietary supplement. In another embodiment, the term refers to a nutritional supplement. In another embodiment, the term refers to a foodstuff of any sort that has been enriched with an omega-3 fatty acid. In another embodiment, the term 30 refers to a foodstuff that has been enriched with an omega-6 fatty acid. In another embodiment, the term refers to a foodstuff that has been enriched with a uridine. In another embodiment, the term refers to 44 a foodstuff that has been enriched with a choline. In another embodiment, the term refers to a foodstuff that has been enriched with a choline salt. [000200]"Foodstuff" refers, in another embodiment, to a solid food. In another embodiment, the term refers to a drink. In another embodiment, the term refers to a powdered drink mix. In another 5 embodiment, the term refers to a food-based preparation, functional food, dietary supplement or nutraceutical. [000201] In another embodiment, a foodstuff can be of several forms including liquid, suspension, powder, semi-solid, and solid. Semi-solid is meant to include custards, dessert puddings, thick creams, mousses, parfaits, yogurts, and sweetened gelatins. Without limiting to particular embodiments, the solid form can 0 be prepared as a bar similar to a energy bar, a chip, a cookie, a cracker, pasta or a puffed material, e.g. popcorn or a rice-cake-like foodstuff. Some embodiments require the individual to dissolve, suspend, or rehydrate the snack foodstuff. [000202) Each type of pharmaceutical composition represents a separate embodiment of the present invention. .5 [000203]In another embodiment, the present invention relates to the use of an omega-3 or omega-6 fatty acid and/or its analog, derivative, isomer, metabolite, pharmaceutically acceptable salt, pharmaceutical product, hydrate, N-oxide, or a combination thereof. Thus, in another embodiment, the methods of the present invention comprise administering an analog of the PUFA. In another embodiment, the methods of the present invention comprise administering a derivative of the PUFA. In another embodiment, the 20 methods of the present invention comprise administering an isomer of the PUFA. In another embodiment, the methods of the present invention comprise administering a metabolite of the PUFA. In another embodiment, the methods of the present invention comprise administering a pharmaceutically acceptable salt of the PUFA. In another embodiment, the methods of the present invention comprise administering a pharmaceutical product of the PUFA. In another embodiment, the methods of the present 25 invention comprise administering a hydrate of the PUFA. In another embodiment, the methods of the present invention comprise administering an N-oxide of the PUFA. In another embodiment, the methods of the present invention comprise administering any of a combination of an analog, derivative, isomer, metabolite, pharmaceutically acceptable salt, pharmaceutical product, hydrate or N-oxide of the PUFA. [000204] In another embodiment of methods and compositions of the present invention, PUFA is 30 administered as a triglyceride. 4 5 [000205] In another embodiment, the term "isomer" includes, but, in another embodiment, is not limited to, optical isomers and analogs, structural isomers and analogs, conformational isomers and analogs, and the like. [000206] This invention further includes, in another embodiment, derivatives of a PUFA. The term 5 "derivatives" includes but is not limited to ether derivatives, acid derivatives, aide derivatives, ester derivatives and the like. In addition, this invention further includes hydrates of the PUFA compounds. The term "hydrate" includes but is not limited to hemihydrate, monohydrate, dihydrate, trihydrate and the like. [000207] This invention further includes metabolites of the PUFA compounds. The term "metabolite" o means any substance produced from another substance by metabolism or a metabolic process. [000208]This invention further includes pharmaceutical products of the PUFA compounds. The term "pharmaceutical product" means a composition suitable for pharmaceutical use (pharmaceutical composition), as defined herein. [000209] In addition, the invention encompasses pure (Z)- and (E)- isomers of the PUFA compounds 5 defined herein and mixtures thereof as well as pure (RR, SS)- and (RS, SR)-enantiomer couples and mixtures thereof. Pharmaceutical Compositions and Methods of Administration [000210]The pharmaceutical compositions containing the PUFA and/or uridine can be, in another embodiment, administered to a subject by any method known to a person skilled in the art, such as 20 parenterally, paracancerally, transmucosally, transdermally, intramuscularly, intravenously, intra dermally, subcutaneously, intra-peritonealy, intra-ventricularly, intra-cranially, intra-vaginally or intra tumorally. [000211] In another embodiment of methods and compositions of the present invention, the pharmaceutical compositions are administered orally, and are thus formulated in a form suitable for oral administration, 25 i.e. as a solid or a liquid preparation. Suitable solid oral formulations include tablets, capsules, pills, granules, pellets and the like. Suitable liquid oral formulations include solutions, suspensions, dispersions, emulsions, oils and the like. In another embodiment of the present invention, the active ingredient is formulated in a capsule. In accordance with this embodiment, the compositions of the present invention comprise, in addition to the active compound and the inert carrier or diluent, a hard 46 gelating capsule. [000212) In another embodiment, the pharmaceutical compositions are administered by intravenous, intra arterial, or intra-muscular injection of a liquid preparation. Suitable liquid formulations include solutions, suspensions, dispersions, emulsions, oils and the like. In another embodiment, the pharmaceutical 3 compositions are administered intravenously and are thus formulated in a form suitable for intravenous administration. In another embodiment, the pharmaceutical compositions are administered intra-arterially and are thus formulated in a form suitable for intra-arterial administration. In another embodiment, the pharmaceutical compositions are administered intra-muscularly and are thus formulated in a form suitable for intra-muscular administration. 0 [000213]In another embodiment, the pharmaceutical compositions are administered topically to body surfaces and are thus formulated in a form suitable for topical administration. Suitable topical formulations include, in another embodiment, gels, ointments, creams, lotions, drops and the like. [000214] In another embodiment, the pharmaceutical composition is administered as a suppository, for example a rectal suppository or a urethral suppository. In another embodiment, the pharmaceutical 5 composition is administered by subcutaneous implantation of a pellet. In another embodiment, the pellet provides for controlled release of PUFA and/or uridine over a period of time. [000215] In another embodiment, the active compound is delivered in a vesicle, e.g. a liposome. [000216] In other embodiments, carriers or diluents used in methods of the present invention include, but are not limited to, a gum, a starch (e.g. corn starch, pregeletanized starch), a sugar (e.g., lactose, 20 mannitol, sucrose, dextrose), a cellulosic material (e.g. microcrystalline cellulose), an acrylate (e.g. polymethylacrylate), calcium carbonate, magnesium oxide, talc, or mixtures thereof. [000217] In other embodiments, pharmaceutically acceptable carriers for liquid formulations are aqueous or non-aqueous solutions, suspensions, emulsions or oils. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, and injectable organic esters such as ethyl oleate. Aqueous carriers include 25 water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Examples of oils are those of animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, olive oil, sunflower oil, fish-liver oil, another marine oil, or a lipid from milk or eggs. [0002181 In another embodiment, parenteral vehicles (for subcutaneous, intravenous, intraarterial, or intramuscular injection) include sodium chloride solution, Ringer's dextrose, dextrose and sodium 47 chloride, lactated Ringer's and fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers such as those based on Ringer's dextrose, and the like. Examples are sterile liquids such as water and oils, with or without the addition of a surfactant and other pharmaceutically acceptable adjuvants. In general, water, saline, aqueous dextrose and related sugar solutions, and glycols 5 such as propylene glycols or polyethylene glycol are preferred liquid carriers, particularly for injectable solutions. Examples of oils are those of animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, olive oil, sunflower oil, fish-liver oil, another marine oil, or a lipid from milk or eggs. [000219] In other embodiments, the compositions further comprise binders (e.g. acacia, cornstarch, gelatin, carbomer, ethyl cellulose, guar gum, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, 0 povidone), disintegrating agents (e.g. cornstarch, potato starch, alginic acid, silicon dioxide, croscarmelose sodium, crospovidone, guar gum, sodium starch glycolate), buffers (e.g., Tris-HCI., acetate, phosphate) of various pH and ionic strength, additives such as albumin or gelatin to prevent absorption to surfaces, detergents (e.g., Tween 20, Tween 80, Pluronic F68, bile acid salts), protease inhibitors, surfactants (e.g. sodium lauryl sulfate), permeation enhancers, solubilizing agents (e.g., 5 glycerol, polyethylene glycerol), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite, butylated hydroxyanisole), stabilizers (e.g. hydroxypropyl cellulose, hyroxypropylmethyl cellulose), viscosity increasing agents(e.g. carbomer, colloidal silicon dioxide, ethyl cellulose, guar gum), sweeteners (e.g. aspartame, citric acid), preservatives (e.g., Thimerosal, benzyl alcohol, parabens), lubricants (e.g. stearic acid, magnesium stearate, polyethylene glycol, sodium lauryl sulfate), flow-aids (e.g. colloidal silicon 0 dioxide), plasticizers (e.g. diethyl phthalate, triethyl citrate), emulsifiers (e.g. carbomer, hydroxypropyl cellulose, sodium lauryl sulfate), polymer coatings (e.g., poloxamers or poloxamines), coating and film forming agents (e.g. ethyl cellulose, acrylates, polymethacrylates) and/or adjuvants. Each of the above excipients represents a separate embodiment of the present invention. [000220] In another embodiment, the pharmaceutical compositions provided herein are controlled-release 25 compositions, i.e. compositions in which the PUFA and/or uridine is released over a period of time after administration. Controlled- or sustained-release compositions include formulation in lipophilic depots (e.g. fatty acids, waxes, oils). In another embodiment, the composition is an immediate-release composition, i.e. a composition in which all the PUFA and/or uridine is released immediately after administration. 30 [000221]In another embodiment, the pharmaceutical composition is delivered in a controlled release system. For example, the agent may be administered using intravenous infusion, an implantable osmotic 48 pump, a transdermal patch, liposomes, or other modes of administration. In one embodiment, a pump may be used (see Langer, supra; Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et a]., Surgery 88:507 (1980); Saudek et al., N. Engl. J. Med. 321:574 (1989). In another embodiment, polymeric materials are used; e.g. in microspheres in or an implant. In yet another embodiment, a 3 controlled release system is placed in proximity to the therapeutic target, e.g. the brain, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984); and Langer R, Science 249: 1527-1533 (1990). [000222) The compositions also include, in another embodiment, incorporation of the active material into or onto particulate preparations of polymeric compounds such as polylactic acid, polglycolic acid, 0 hydrogels, etc, or onto liposomes, microemulsions, micelles, unilamellar or multilamellar vesicles, erythrocyte ghosts, or spheroplasts.) Such compositions will influence the physical state, solubility, stability, rate of in vivo release, and rate of in vivo clearance. (000223] Also included in the present invention are particulate compositions coated with polymers (e.g. poloxamers or poloxamines) and the compound coupled to antibodies directed against tissue-specific 5 receptors, ligands or antigens or coupled to ligands of tissue-specific receptors. (000224) Also comprehended by the invention are compounds modified by the covalent attachment of water-soluble polymers such as polyethylene glycol, copolymers of polyethylene glycol and polypropylene glycol, carboxymethyl cellulose, dextran, polyvinyl alcohol, poly vinylpyrrolidone or polyproline. The modified compounds are known to exhibit substantially longer half-lives in blood 0 following intravenous injection than do the corresponding unmodified compounds (Abuchowski et al., 1981; Newmark et al., 1982; and Katre et al., 1987). Such modifications may also increase the compound's solubility in aqueous solution, eliminate aggregation, enhance the physical and chemical stability of the compound, and greatly reduce the immunogenicity and reactivity of the compound. As a result, the desired in vivo biological activity may be achieved by the administration of such polymer 25 compound abducts less frequently or in lower doses than with the unmodified compound. [000225] The preparation of pharmaceutical compositions that contain an active component, for example by mixing, granulating, or tablet-forming processes, is well understood in the art. The active therapeutic ingredient is often mixed with excipients that are pharmaceutically acceptable and compatible with the active ingredient. For oral administration, the PUFA and/or uridine or their physiologically tolerated 30 derivatives such as salts, esters, N-oxides, and the like are mixed with additives customary for this purpose, such as vehicles, stabilizers, or inert diluents, and converted by customary methods into 49 suitable forms for administration, such as tablets, coated tablets, hard or soft gelatin capsules, aqueous, alcoholic or oily solutions. For parenteral administration, the PUFA and/or uridine or their physiologically tolerated derivatives such as salts, esters, N-oxides, and the like are converted into a solution, suspension, or emulsion, if desired with the substances customary and suitable for this purpose, 5 for example, solubilizers or other substances. [000226] An active component is, in another embodiment, formulated into the composition as neutralized pharmaceutically acceptable salt forms. Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the polypeptide or antibody molecule), which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, o oxalic, tartaric, mandelic, and the like. Salts formed from the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine, and the like. [000227] Each of the above additives, excipients, formulations and methods of administration represents a 5 separate embodiment of the present invention. EXPERIMENTAL DETAILS SECTION EXAMPLE 1 TREATMENT OF PC-12 CELLS WITH OMEGA-3 FATTY ACIDS INCREASES PHOSPHOLIPID SYNTHESIS 20 MATERIALS AND EXPERIMENTAL METHODS Reagents [000228] "C-labeled choline chloride was obtained from Perkin-Elmer (Boston, MA). DHA, oleic acid, or palmitic acid were obtained from Biomol, (Plymouth Meeting, PA). 1C-choline was obtained from Amersham Biosciences Corp (Piscataway, NJ). 25 Cell culture [000229]PC-12 cells were maintained in Dulbecco's modified Eagle's medium (DMEM) + 10% fetal bovine serum (FBS). For experiments, cells were grown in quintuplicate collagen-coated 35 millimeter (mm) dishes. Cells were incubated for 18 hours (hr) in serum-free DMEM containing 28 .M choline +/ 5 micromolar (tM) of DHA, oleic acid, or palmitic acid. Cells were then labeled for 2.5 hr 50 with 0.5 microcurie (pCi)/ml 1 4 C-choline in serum-free DMEM containing 10-micromolar (RM) choline. Quantification of labeled phospholipids [000230] Cells were homogenized in 100 volumes of ice-cold deionized water using a tissue degrader 5 (Polytron PT 10-35, Kinematica AG, Switzerland); 1 ml of aliquots were then mixed with 3 ml of chloroform + methanol mixture (2:1 v/v) and vortexed vigorously for 30 seconds. After cooling for 1 h on ice, the mixture was mixed sequentially with 3 ml of chloroform + methanol mixture (2:1 v/v) and 1 ml of ice-cold deionized water. The mixture was vortexed vigorously and allowed to stand overnight in the cold room (18 h). The organic (lower) and aqueous (upper) phases of the mixtures were separated by .0 centrifugation (10 min at 4 *C; 1000 g). An aliquot (2 ml) of the upper phase was used for determination of CDP-Choline (see below), and 0.1-0.4 ml aliquots of the lower phase were dried under vacuum for phospholipid analysis. Residues of 0.1 ml aliquots of the lower phase were assayed for total phospholipid content by measuring phosphorus. Residues of 0.4 ml aliquots of the lower phase were reconstituted in 40 il methanol and subjected to thin-layer chromatography using silica G plates L5 (Adsorbosil Plus-1@, Alltech), and a system consisting of chloroform/ethanol/triethylamine/water (30:34:30:8) as the mobile phase. Phospholipid standards were used to identify the corresponding bands under UV light after the plates were sprayed with 0.1% diphenylhexatriene in petroleum ether. Bands for individual phospholipid classes (PC, PE, SM, PS and PI) were scraped off the plates and extracted into 1 ml of methanol; dried under vacuum; and assayed for phosphorus content. Total phosphorus was 0 o determined by comparison with standard curves by using KH 2
PO
4 run with each assay. To each sample was added 0.5 ml of 4.5% HclO 4 /27% H 2
SO
4 and tubes were heated at 180 *C for 3 h. After cooling to room temperature, 5 ml of the color reagent (a 10:1 dilution of solutions containing 2.5 mg/ml ammonium molybdate, 8.2 mg/ml sodium acetate and 100 mg/ml ascorbic acid respectively) was added and the tubes were incubated for 2 h, 37 'C. Absorbance was measured spectrophotometrically at 820 25 nm. Phospholipid mass was determined by multiplying the phosphorus content by 25. Statistical analysis [000231]Data were analyzed by one-way ANOVA (analysis of variance), followed by Student's t test. RESULTS [000232]In order to assess the effect of omega-3 fatty acids on phospholipid synthesis, PC-12 cells were 30 incubated with 1 4 C-labeled choline, following an 18-hour pre-incubation with or without DHA. Incorporation of label into phospholipids was then measured. Oleic acid and palmitic acid, which are 51 not omega-3 fatty acids, were used as negative controls. Phosphatidylcholine (PC) synthesis was significantly increased by pre-incubation with DHA, but not oleic acid or palnitic acid, as evidenced by increased incorporation of the label into PC (Figure 1). Thus, treatment with omega-3 fatty acids increases cellular phospholipid synthesis. 5 EXAMPLE 2 OMEGA-3 FATTY ACIDS INCREASE SYNTHESIS OF A NUMBER OF PHOSPHOLIPIDS IN A DOSE-DEPENDENT FASHION [000233] To further characterize the stimulation of phospholipid synthesis by omega-3 fatty acids, PC- 12 cells were pre-treated with different doses of DHA and exposed to labeled choline as described in 0 Example 1, then incorporation of 1 4 C-label into phospholipids was measured. Pre-treatment with DHA increased synthesis of phospholipids (Figure 2). The augmentation of synthesis was dose-dependent. Thus, omega-3 fatty acids stimulate phospholipid synthesis in a dose-dependent manner. EXAMPLE 3 TREATMENT OF SHSY-5Y CELLS WITH OMEGA-6 FATTY ACIDS INCREASES 5 PHOSPHOLIPID SYNTHESIS MATERIALS AND EXPERIMENTAL METHODS Cell culture [000234] SHSY-5Y cells were grown to near confluency in DMEM + 10% FBS in 35 mm dishes. Cells were incubated for 18 hr in serum-free DMEM + 1% FBS containing 30 PM choline +/- 10 IM of DHA, 20 arachidonic acid, orpalmitic acid. Cells were then labeled, and labeled phospholipids were quantified as described for Example 1. Preparation of DHA-BSA complex 1000235]DHA was dissolved in ethanol to a 100 micromolar concentration and frozen in 10 microliter aliquots at -80* C. For each experiment, one aliquot was diluted in ethanol to 10 micromolar; the volume 25 giving the desired final solution in incubation medium was mixed with an equal volume of BSA solution (1 gm/ml). RESULTS [000236] The effect of omega-6 fatty acids on phospholipid synthesis was next examined in 52 SHSY-5Y cells, a human neuroblastoma cell line. In this case, phospholipid synthesis was enhanced by arachidonic acid, an omega-6 fatty acid, but not by DHA or palmitic acid (Figure 3A). EXAMPLE 4 OMEGA-6 FATTY ACIDS INCREASE SYNTHESIS OF A NUMBER OF P"HOSPHOLIPIDS 5 IN A DOSE-DEPENDENT FASHION [000237]The effect of arachidonic acid on phospholipid synthesis in SHSY-5Y cells was further characterized as described for omega-3 fatty acids and PC-12 cells in Example 2. Arachidonic acid increased synthesis of total phospholipids, PC, and phosphatidylethanolamine over a range of dosages in a dose-dependent manner, as seen for DHA (Figure 3B). Thus, omega-6 fatty acids stimulate synthesis .0 of a variety of phospholipids in a dose-dependent manner. EXAMPLE 5 ADMINISTRATION OF PUFA INCREASES BRAIN PHOSPHOLIPID LEVELS, AND ADDITION OF URIDINE RESULTS IN A FURTHER SYNERGISTIC INCREASE MATERIALS AND EXPERIMENTAL METHODS L5 Diets [000238] Control standard diet (Table 4) consisted of Teklad Global 16% protein rodent diet (Harlan Teklad, Madison, WI), which contained 0.1% choline chloride (CC), corresponding to a daily dose of 50 mg/kg/day. UMP was provided as 0.5% UMP - 2Na weight/ weight, added to the control diet, also prepared by Harlan Teklad, corresponding to 240 mg/kg/day UMP. DHA was administered as 300 20 mg/kg/day in 200 microliter (mcL)/ day 5% Arabic Gum solution, while groups not receiving DHA were administered vehicle (5% Arabic Gum) alone. DHA was provided by Nu-Chek Prep (Elysian, MN) and UMP by Numico (Wagenigen, NL). None of the groups exhibited significant changes in body weight during the course of the experiment. [000239] Table 4. Control standard diet. 25 53 Proximate analysis (%) Protein 16.7% Carbohydrate 60.9% Oil, fiber, ash 13.7% Choline 0.1% Fatty acids (g/kg) Saturated 7.34 Unsaturated C 18: 1n-9 oleic acid 8..96 C18:2n-6 linoleic acid 23.12 C18:3n-3 linolenic acid 1.53 Brain harvesting [0002401 Gerbils were anesthetized with ketamine and xylazine (80 and 10 mg/kg bwt, i.p.) and sacrificed by immersing the head into liquid nitrogen for 2 min, followed by decapitation. Brains were immediately and quickly (30 seconds) removed using a bone rongeur and stored at -80* C. 5 Brain phospholipid measurements [000241] Frozen brain hemispheres were weighed and homogenized in 100 volumes of ice-cold deionized water using a tissue degrader (Polytron PT 10-35, Kinematica AG, Switzerland), then analyzed as described in Example 1. DNA and protein assays L 0 [000242] Protein in whole brain homogenate sample was measured for using bicinchoninic acid reagent (Perkin Elmer, Norwalk, CT, USA). DNA was measured by measuring 460 nm emission of samples on a fluorometer in the presence of bisbenzimidizole, a fluorescent dye known as Hoechst H 33258 (American Hoechst Corporation), which has an excitation maximum at 356 nm and an emission maximum of 458 when bound to DNA. 15 RESULTS [000243] Male gerbils weighing 80-100 g were divided into 4 groups of 8 gerbils and administered the supplements depicted in Table 1: [000244] Table 1. Treatment groups. 54 Group Supplement Amount/ method 1 Control diet + vehicle (5% arabic gum) 2 sodium UMP + vehicle (5% arabic gum) Na-UMTP 0.5% of chow. 3 DHA 300 mg/kg daily by garage 4 DHA + sodium UMP As above [000245] After 4 weeks, animals were sacrificed, and 1 hemisphere of the brain, minus the cerebellum and brain stem, was assayed for total phospholipids, and content of PC, phosphatidylethanolamine (PE) sphingomyelin (SM), phosphatidylinositol (PI), and phosphatidylserine (PS). Omega-3 fatty acids 5 (DHA) increased levels of total phospholipids to levels significantly above the control group (Figure 4 and Tables 2 and 3). Combination of DHA with UMP resulted in a further increase (26%) that was synergistic (i.e. greater than the sum of the increases observed in the DHA (12%) and UMP (5%) groups). Similar results were observed with each individual phospholipid (Tables 2 and 3). Statistical significance was observed whether phospholipid values were normalized to amounts of protein (Figure 4 0 A and Table 2) or to DNA (Figure 4 B and Table 3). [000246] Table 2. Effects of DHA, UMP, or both treatments on brain phospholipid levels, normalized to protein levels. Data are presented as mean +/- standard error of the mean (SEM). Statistical analysis utilized two-way ANOVA and Tukey test. "*" indicates P < 0.05; ""P < 0.01; P < 0.001 relative to control group. Treatment / Total PL PC PE SM PS P Lipid Control 351 ±8 152 ±6 64 ± 4 45 ± 2 33 ±3 21± 2 UMP 367 ± 22 171 ± 8* 84 8* 52 ±5 35 ± 3 31 ± 2** DIA 392 ± 20 185 ±12* 78+5* 56 ±3* 39 ±3 32 ±2** UMP + DHA 442 ± 24*** 220 ±12*** 113 6*** 73 ±4*** 46±6** 36 6*** 15 [000247] Table 3. Effects of DHA, UMP, or both treatments on brain phospholipid levels, normalized to DNA levels. Statistical analysis / data presentation are as in Table 2. [000248] 55 Treatment / Total PL PC PE SM PS P1 Lipid Control 885 ±45 332 ±12 176 ± 13 112±5 79±8 54±5 UMP 878 ±18 368 ±10* 195 ±9 111 4 86 ±7 78 ±6** DHA 909 ± 77 366 ±13* 196 ± 18 126 ±8 98 ±7 84 ± 13** UMP+DHA 1058 ±25*** 462±26*** 261 ±30*** 169 ±11*** 110 ±5** 85 ±10"* 1000249]These findings confirm the results of the above Examples, showing that both omega-3 fatty acids and omega-6 fatty acids increase brain phospholipid synthesis and brain phospholipid levels, both total levels and those of individual phospholipids. These findings further show that combination of PUFA 5 with uridine results in further synergistic increases. In addition, these findings show that stimulation of phospholipid synthesis by PUFA is a general phenomenon, not restricted to a particular phospholipid or experimental model. [000250] The proportional increases in the 4 structural phospholipids that comprise the bulk of cellular membranes in the brain (the 4phosphatides: PC, PE, PS, and sphingomyelin) were approximately equal, .o with levels of each of these four compounds rising by about 20%. Thus, the proportions of the 4 structural phospholipids in the membranes were maintained. Accordingly, membrane mass was increased without disrupting the normal membrane structure and function. These findings corroborate the data from previous Examples, providing further evidence that compositions of the present invention improve and enhance brain function. 15 EXAMPLE 6 ADMINISTRATION OF OMEGA-3 FATTY ACIDS TO GERBILS DECREASES BRAIN CDP-CHOLINE LEVELS WHILE INCREASING THOSE OF BRAIN PHOSPHOLIPIDS MATERIALS AND EXPERIMENTAL METHODS CDP-choline assay 20 [000251] Aliquots (2 ml) of the upper (aqueous) phase were dried under a vacuum, reconstituted, and injected into an HPLC. The dried samples were reconstituted in 100-200 41 water and were analyzed by HPLC on an anion exchange column (Alltech Hypersil APS-2, 5 mm, 250 X 4.6 mm). CDP-choline w'as eluted with a linear gradient of buffers A (H 3
PO
4 , 1.75 mM, pH 2.9) and B (NaHI 2
PO
2 , 500 mM, pH 4.5) from 0 to 100% B over period of 30 min. With this system, CDP-choline was resolved from closely 56 co-eluting substances such as UMP in an isocratic system over a period of 40 min. The retention time for CDP-choline was 9.5 min. The column was washed with buffer B at the end of each experiment and every several days to remove retained nucleotides. Individual nucleotide peaks were detected by UV absorption at 280 nm and were identified by comparison with the positions of authentic standards, as well as by the addition of nucleotide standards to samples. RESULTS [000252] To determine the effect of PUFA administration on CDP-choline levels, brain CDP-choline levels were measured in the animals from the previous Example. Administration of DHA and/or UMP decreased CDP-choline levels (Figure 5A) and CDP-ethanolamine levels (Figure 5B). DHA reduced r CDP-choline levels by 26% (compared with those receiving just the control diet and DHA's vehicle), and in UMP-treated gerbils by 21% (compared with those receiving UMP-containing diet and DHA's vehicle) (both P<0.05). Two-way ANOVA revealed a significant effect of DHA [F(1,28)=31.7; P<0.001). [000253] In another study, addition of UMP to the standard diet without concurrent DHA treatment 5 significantly increased brain levels of PC, PE and PI by 13%, 29% and 48%, respectively (Table 5A). Administration of DHA without UMP also significantly increased brain levels of these phosphatides (by 22%, 20% and 52%, respectively), as well as of sphingomyelin (by 24%). UMP + DHA increased all of the phospholipids by more than the sum of the increases produced by UMP or DHA alone. [000254] Next, the time course of these increases was examined. After 1 week of treatment, UMP 0 produced no significant effects, while UMP + DHA caused small but significant increases in brain PC (21%) and PS (38%). Treatment with UMP + DHA for 3 weeks caused significant increases (21- 48%) in all 5 of the phospholipids; UMP alone caused smaller but still significant increases (Table 5B). [000255] Table 5. Effects and UMP and/or PUFA on brain phospholipid levels. 57 Treatments (groups) Total PL PtdCho PtdEtn SM (nmol/ PtdSer Ptdlns (niol/mg prt) (nmol/mg prt) (nnol/mg prt) mg prt) (nmollmgprt) (nmo!/ig prt) A Controldiet+Vehicle 351t8 152 6 6514 4512 3313 2112 UMPdiet.+Vehila 367. 22 17118' 84te 52t5 35.3 31i2'* Controldiet+DHA 392*L20 185i? 715E' 56t3' 39t3 3212" UMPdiet+DHA 442a2e" 220a12'" 11316" 73i4' 4616 3615' Control+Vehile 4M3123 155 . 69 L,3 47 3 34 11 2012 one week UMP+Vehide 3K 121 154L6 63±4 49a3 3911 2014 UMP +DHA 436a15 18318' 79t6 57t6 4711 23i1 Three wekcs. UMP+ Vihie 479 16" 199 5" 87i4' 7014' 42s 2' 2511 UMP+DHfA 502.12*" 217t5" 1024" 7335'' 4111' 2711' [000256] Thus, under these conditions, the effect of PUFA administration on brain phospholipids is attributable to increased conversion of CDP-choline to PC and related phosphatides. EXAMPLE 7 5 ADMINISTRATION OF OMEGA-3 FATTY ACIDS AND/OR URIDINE TO GERBILS INCREASES LEVELS OF SYNAPTIC PROTEINS MATERIALS AND EXPERIMENTAL METHODS Synaptic protein level assays [000257] Synaptic proteins were assayed by Slot-Blot and by Western Blot. For Western blotting, the 1o aliquots of brain homogenates were mixed with 2X KFL loading buffer and boiled for 5 minutes prior to gel electrophoresis. Equal amounts of protein were loaded and separated using SDS-PAGE (4-20%; Bio-Rad, Hercules, CA, USA). Proteins were then transferred onto PVDF membranes (Immobilon-P, Millipore, Billerica, MA, USA). The remaining binding sites were blocked with 4% non-fat dry milk (Varnation, Glendale, CA, USA) for 30 min in Tris-buffered saline-Tween (TBST). 2X KFL loading 15 buffer was prepared by combining: 3.76 ml of IM TRIS, pH 6.8; 6 ml of 20% sodium dodecyl sulfate; 6 ml of glycerol; 1.5 ml of mercaptoethanol; 2 ml of 1% bromphenol blue; and 10.74 ml of water. [000258] For slot blotting, two sets of aliquots (18-21 pl; containing 20 ptg of protein) from brain homogenates in deionized water were blotted directly onto polyvinylidene difluoride membranes 58 (Immobilon-P, Millipore, Billerica, MA, USA) by vacuum filtration, using a slot-blot microfiltration apparatus [Minifold@ II Slot Blot System (SCR 072/0); Schleicher & Schuell, Inc., Keene, NH, USA). Remaining binding sites were blocked with 4% non-fat dry milk (Varnation, Glendale, CA, USA) for 30 min in TBST. Membranes (from slot blots and Western blots) were then rinsed 5 times in TBST buffer 5 and immersed in TBST solution containing the antibody of interest (mouse anti-NF-70, rabbit anti-NF M, mouse anti-PSD-95 and mouse anti-synapsin-1). Following overnight incubation and five rinses in TBST buffer, blots were incubated for 1 h with the appropriate peroxidase-linked secondary antibody. Blots were then rinsed in TBST buffer five times, and protein-antibody complexes were detected and visualized using the ECL system (Amersham Biosciences, Piscataway, NJ, USA) and Kodak X-AR 0 film. Films were digitized using a Supervista S-12 scanner with a transparency adapter (UMAX Technologies, Freemont, CA, USA). Immuno-reactive bands were compared by densitometry using the Public Domain NIH Image program. Areas under the absorbance curve were normalized as percentages of those generated in control groups in the same blot. Protein levels expressed as the percent of these in control animals. 5 RESULTS [000259] Brain levels of 4 synaptic proteins were measured in animals (n=8) receiving both UMP and DHA in the amounts described in Example 5. After 3 or 4 weeks of treatment, the neurite neurofibrillar proteins NF-70 and NF-M rose by 43% (P<0.01) or 102% (P<0.001), and by 19% (P<0.05) or 48% (P<0.0l), respectively (Figure 6). Levels of the postsynaptic density protein PSD-95 and the vesicular 0 protein Synapsin-1 rose by 38% and 41% after 3 weeks (both P<0.001) and by 35% (P<0.01) or 25% (P<0.05) after I week (Figure 7). [000260] These findings provide further evidence that administration of PUFA and uridine increases the quantity of synaptic membranes. These increases were similar to those observed in phospholipid levels, showing that synapse levels were increased in the brain. 25 EXAMPLE 8 DHA, EPA, AND AA INCREASE BRAIN PHOSPHOLIPID LEVELS MATERIALS AND EXPERIMENTAL METHODS [000261]Adult gerbils were administered control standard diet (Table 4) with our without 0.5% UMP and/or 300 mg/kg/day DHA, EPA, or AA. Groups not receiving DHA were administered vehicle (5% 59 Arabic Gum) alone. RESULTS [000262] Gerbils were administered UMP and/or PUFA for 3 weeks and sacrificed, and brain levels of various phospholipid were measured. As shown in Table 6, DHA, EPA, and AA all increased 5 phospholipid levels. [000263] Table 6. Brain phospholipid levels following administration of PUFA and/or uridine. Treatment Total PL PC PE SM PS PI Ctrl + vehicle 333 ±9 113 ±6 63 ±4 19 ±1 25 ±2 15 ± 1 UMP + vehicle 332 ±5 131 ±2 70 ±1 22 ±1 29 ±1 16 ±1 Ctrl + DHA 344 ± 16 133 ± 6 77 ± 2 24 ± 2 34 ±3 18± 2 Ctrl + EPA 347 ±19 125 ±8 76 ±4 26 ±3 31 ±1 22± 2 UMP + DHA 374 ±17 147 ±6 88 ±3 28±3 39 ±2 22± 2 UMP+EPA 407±22 148 ±3 91±4 30±1 41±2 26±2 UMP+AA 389±28 127 ±8 88±10 25 ±2 31±3 22+2 EXAMPLE 9 OMEGA-3 FATTY ACIDS AND URIDINE INCREASE NUMBERS OF DENDRITIC .0 SPINES IN ADULT AND DEVELOPING GERBIL AND RAT BRAINS [000264)Normal adult gerbils were given a control diet or a diet supplemented with UMP (240 mg uridine/kg) and DHA (300 mg/kg, by gavage) daily for up to 2 weeks. Animals were decapitated, and fixed hippocampal slices were stained with the carbanocyanine membrane tracer Dil(C1 8)3 ("Dil," Molecular Probes, Eugene, OR) at the end of the treatment. Images of hippocampal neurons were 1 obtained by two-photon microcopy. In animals receiving the DHA + UMP, dendritic spine density (number of spines per unit length of dendrite) increased significantly in hippocampal CA1 pyramidal neurons (27% increase, p = .001 vs. control group; (Figure 8). [000265) In another study, pregnant rats were allowed to consume ad libitum, for 10 days before parturition and 20 days while nursing, either a choline-containing control diet or this diet supplemented 20 with uridine as UMP; half of each group also received DHA or its diluent daily, by gavage. Pups were then sacrificed and brain slices were examined to determine numbers of hippocampal dendritic spines. 60 UMP alone and DHA alone each increased levels of dendritic spine numbers, while the combination resulted in further increases (Table 7). [000266] Table 7. Increases in dendritic spine numbers in developing animals in response to UMP and DHA administration. Treatment Number of spines Increase over control (%) Control 53 UMP 68 28% DHA 70 32% UMP + DHA 75 42% 5 EXAMPLE 10 DHA AND UMP IMPROVE LEARNING MATERIALS AND EXPERIMENTAL METHODS [000267] Food and water were available ad libitum until the day of experimental testing, at which point 0 gerbils were first fasted for 17 hours overnight and then provided with food from 11 AM to 6PM. Gerbils ate UMP- supplemented chow and/or 300mg/kg DHA from 3 months of age (n=8 per group), 4 weeks prior to behavioral training, until the end of the training period. Animals were first handled daily for 4 days to habituate them to routine contact. They were familiarized with the maze for an additional 4 days by placing food pellets throughout the arms and allowing 3 min for exploration. Gerbils received 1 15 trial/day, and all surfaces were sanitized with 10% ethanol between trials. Training consisted of placing a food pellet at the distal end of all the same 2 arms for all trials. The gerbil was placed in the center of the maze and allowed 2 min to find the food pellets. Working memory errors occurred whenever a gerbil re-entered an arm which contained a food pellet and which had previously been visited during a trial. Reference memory errors occurred whenever a gerbil entered an arm that had not contained a food pellet 20 during previous trials. The percent of food pellets found was recorded. RESULTS [000268] To determine the effect of uridine and/or DHA on learning, animals administered uridine and/or DHA containing diets and then subjected to a memory test. DHA and UMP improved the percentage of 61 62 animals able to complete the task (Figure 9). EXAMPLE 11 5 OMEGA-3 FATTY ACIDS INCREASE PHOSPHOLIPID SYNTHESIS IN NEURONS IN SHORT-TERM CULTURE MATERIALS AND EXPERIMENTAL METHODS 10 [000269] Rat hippocampal cells were cultured for 3 weeks in Neutrobasal plus B27 medium, to reach full maturation. On the day of the experiment, cells were incubated with DMEM + choline, with or without added DHA. 1 4 C-choline was added, cells were incubated for an additional 2 h, and newly-formed 1 4 Clabeled PC was extracted and measured as described in Example 1. 15 RESULTS [000270] To determine the effect of DHA on phospholipids in neurons in short-term culture, neurons were pre-treated with DHA + choline. DHA increased synthesis of 20 phospholipids relative to cells administered choline alone ("control") more than 2-fold (Figure 10; P = 0.04). These findings confirm that DHA increases phospholipid levels in brain and neural cells. [000271] Comprises/comprising and grammatical variations thereof when used in this specification are to be taken to specify the presence of stated features, integers, steps or 25 components or groups thereof, but do not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.

Claims (13)

1. A method of treating a neurological disorder in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a composition comprising: (a) at least two omega-3 fatty acids selected from docosahexaenoic acid, eicosapentaenoic acid or alpha-linolenic acid; (b) uridine, an acyl derivative thereof, a uridine phosphate or a CDP-choline; and (c) a choline salt, wherein the neurological disorder is selected from Alzheimer's disease, memory impairment, or memory loss and wherein components (a) and (b) act synergistically.
2. The method according to claim 1, wherein the uridine phosphate is a uridine-5' monophosphate (UMP), uridine-5'-diphosphate (UDP), uridine-5'-triphosphate (UTP), or is a salt of the UMP, UDP or UTP.
3. The method according to claim 1 or 2, wherein the choline salt is choline chloride, choline bitartrate, or choline stearate.
4. The method according to any one of claims 1 to 3, wherein the composition comprises between about 200 and about 800 mg of uridine, an acyl derivative thereof, a uridine phosphate, or a CDP-choline.
5. The method according to any one of claims 1 to 4, wherein the composition comprises between about 200 mg and about 800 mg of a choline salt.
6. The method according to any one of claims 1 to 5, wherein the composition comprises uridine-5'-monophosphate (UMP), a choline salt and docosahexaenoic acid.
7. The method according to any one of claims 1 to 6, wherein the subject is an infant, a toddler, a child or an aging adult.
8. The method according to any one of claims 1 to 7, wherein the composition is a medicament or nutritional supplement. 64
9. The method according to any one of claims 1 to 8, wherein the composition is an infant formula.
10. The method according to any one of claims 1 to 7, wherein the subject has a memory disorder caused by a stroke or brain injury.
11. Use of a composition in the preparation of a medicament when used to treat a neurological disorder, wherein the composition comprises: (a) at least two omega-3 fatty acids selected from docosahexaenoic acid, eicosapentaenoic acid or alpha-linolenic acid; (b) uridine, an acyl derivative thereof, a uridine phosphate or a CDP-choline; and (c) a choline salt, wherein the neurological disorder is selected from Alzheimer's disease, memory impairment, or memory loss and wherein components (a) and (b) act synergistically.
12. A composition when used to treat a neurological disorder, wherein the composition comprises: (a) at least two omega-3 fatty acids selected from docosahexaenoic acid, eicosapentaenoic acid or alpha-linolenic acid; (b) uridine, an acyl derivative thereof, a uridine phosphate or a CDP-choline; and (c) a choline salt, wherein the neurological disorder is selected from Alzheimer's disease, memory impairment, or memory loss and wherein components (a) and (b) act synergistically.
13. The method of any one of claims 1 to 10, the use of claim 11, or the composition of claim 12, substantially as hereinbefore described. MASSACHUSETTS INSTITUTE OF TECHNOLOGY WATERMARK PATENT AND TRADE MARKS ATTORNEYS P36407AU01
AU2012203650A 2005-05-23 2012-06-22 Compositions containing PUFA and methods of use thereof Active AU2012203650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2012203650A AU2012203650B2 (en) 2005-05-23 2012-06-22 Compositions containing PUFA and methods of use thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US60/683,352 2005-05-23
US60/716,077 2005-09-13
US60/755,058 2006-01-03
US60/761,753 2006-01-25
AU2006251562A AU2006251562B2 (en) 2005-05-23 2006-05-23 Compositions containing PUFA and methods of use thereof
AU2012203650A AU2012203650B2 (en) 2005-05-23 2012-06-22 Compositions containing PUFA and methods of use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2006251562A Division AU2006251562B2 (en) 2005-05-23 2006-05-23 Compositions containing PUFA and methods of use thereof

Publications (2)

Publication Number Publication Date
AU2012203650A1 AU2012203650A1 (en) 2012-07-12
AU2012203650B2 true AU2012203650B2 (en) 2014-09-18

Family

ID=46640183

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2012203650A Active AU2012203650B2 (en) 2005-05-23 2012-06-22 Compositions containing PUFA and methods of use thereof

Country Status (1)

Country Link
AU (1) AU2012203650B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140199265A1 (en) * 2013-01-11 2014-07-17 Mead Johnson Nutrition Company Nutritional compositions containing a neurologic component and uses thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006174A1 (en) * 1998-07-31 2000-02-10 Massachusetts Institute Of Technology Methods for increasing cytidine levels in vivo and treating cytidine-dependent human diseases
US20020182196A1 (en) * 2001-04-19 2002-12-05 Mccleary Edward Larry Composition and method for normalizing impaired or deteriorating neurological function
US20030114415A1 (en) * 2001-12-14 2003-06-19 Wurtman Richard J. Compositions and methods for treating and preventing memory impairment using citicoline

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006174A1 (en) * 1998-07-31 2000-02-10 Massachusetts Institute Of Technology Methods for increasing cytidine levels in vivo and treating cytidine-dependent human diseases
US20020182196A1 (en) * 2001-04-19 2002-12-05 Mccleary Edward Larry Composition and method for normalizing impaired or deteriorating neurological function
US20030114415A1 (en) * 2001-12-14 2003-06-19 Wurtman Richard J. Compositions and methods for treating and preventing memory impairment using citicoline

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FENTON W. S. et al.: American Journal of Psychiatry, 2001, vol. 158, pp. 2071- 2074 *
SIMOPOULOS A. P. et al.: "Workshop on the Essentiality of and Recommended Dietary Intakes for Omega-6 and Omega-3 Fatty Acids" Journal of the American College of Nutrition, 1999, vol. 18, no. 5, pp. 487-489 *
WHALLEY L. J. et al.: "Cognitive Aging, Childhood Intelligence, and the Use of Food Supplements: Possible Involvement of n-3 Fatty Acids" The American Journal of Clinical Nutrition, 2004, vol. 80, no. 6, pp. 1650-1657 *

Also Published As

Publication number Publication date
AU2012203650A1 (en) 2012-07-12

Similar Documents

Publication Publication Date Title
AU2006251562B2 (en) Compositions containing PUFA and methods of use thereof
JP6116791B2 (en) Compositions containing CDP-choline and methods of use thereof
CN101495490B (en) Composition and its application method containing polyunsaturated fatty acid and/or uridine
AU2012203650B2 (en) Compositions containing PUFA and methods of use thereof
RU2436571C2 (en) Compositions containing polyunsaturated fatty acids (pufa), and methods of application thereof
AU2014274585B2 (en) Compositions containing pufa and/or uridine and methods of use thereof
AU2012203329B2 (en) Compostions containing PUFA and/or uridine and methods of use thereof
US20160235778A1 (en) Compositions containing pufa, uridine and choline and methods of use thereof

Legal Events

Date Code Title Description
MK1 Application lapsed section 142(2)(a) - no request for examination in relevant period
NB Applications allowed - extensions of time section 223(2)

Free format text: THE TIME IN WHICH TO REQUEST EXAMINATION HAS BEEN EXTENDED TO 03 FEB 2013 .

FGA Letters patent sealed or granted (standard patent)