AU2011203347A1 - Compositions and methods for the treatment of tumor of hematopoietic origin - Google Patents

Compositions and methods for the treatment of tumor of hematopoietic origin Download PDF

Info

Publication number
AU2011203347A1
AU2011203347A1 AU2011203347A AU2011203347A AU2011203347A1 AU 2011203347 A1 AU2011203347 A1 AU 2011203347A1 AU 2011203347 A AU2011203347 A AU 2011203347A AU 2011203347 A AU2011203347 A AU 2011203347A AU 2011203347 A1 AU2011203347 A1 AU 2011203347A1
Authority
AU
Australia
Prior art keywords
seq
amino acid
acid sequence
cell
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2011203347A
Other versions
AU2011203347B2 (en
Inventor
Craig Crowley
Frederic J. Desauvage
Dan L. Eaton
Allen Ebens Jr.
Andrew Polson
Victoria Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genentech Inc
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2009213070A external-priority patent/AU2009213070B9/en
Application filed by Genentech Inc filed Critical Genentech Inc
Priority to AU2011203347A priority Critical patent/AU2011203347B2/en
Publication of AU2011203347A1 publication Critical patent/AU2011203347A1/en
Application granted granted Critical
Publication of AU2011203347B2 publication Critical patent/AU2011203347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The present invention is directed to compositions of matter useful for the treatment of hematopoietic tumor in mammals and to methods of using those compositions of matter for the same. 2733288_1 (GHManers) P60826.AU 2 7/07/11

Description

AUSTRALIA Patents Act 1990 COMPLETE SPECIFICATION Standard Patent Applicant(s): GENENTECH, INC. Invention Title: COMPOSITIONS AND METHODS FOR THE TREATMENT OF TUMOR OF HEMATOPOIETIC ORIGIN The following statement is a full description of this invention, including the best method for performing it known to us: COMPOSITIONS AND METHODS FOR THE TREATMENT OF TUMOR OF HEMATOPOIETIC ORIGIN FIELD OF THE INVENTION 5 The present invention is directed to compositions of matter useful for the treatment of hematopoietic tumor in mammals and to methods of using those compositions of matter for the same. BACKGROUND OF THE INVENTION 10 It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country. 15 Malignant tumors (cancers) are the second leading cause of death in the United States, after heart disease (Boring et al., CA Cancel J. Clin. 43:7 (1993)). Cancer is characterized by the increase in the number of abnormal, or neoplastic, cells derived from a normal tissue which proliferate to form a tumor mass, the 20 invasion of adjacent tissues by these neoplastic tumor cells, and the generation of malignant cells which eventually spread via the blood or lymphatic system to regional lymph nodes and to distant sites via a process called metastasis. In a cancerous state, a cell proliferates under conditions in which normal 25 cells would not grow. Cancer manifests itself in a wide variety of forms, characterized by different degrees of invasiveness and aggressiveness. Cancers which involve cells generated during 30 hematopoiesis, a process by which cellular elements of blood, such as lymphocytes, leukocytes, platelets, erythrocytes and natural killer cells are generated are referred to as hematopoietic cancers. Lymphocytes which can be found in blood and lymphatic tissue and are critical for immune response are - la 2733288 1 (GHMatters) P60826, AU.2 7/07/11 categorized into two main classes of lymphocytes: B lymphocytes (B cells) and T lymphocytes (T cells), which mediate humoral and cell mediated immunity, respectively. B cells mature within the bone marrow and leave the marrow 5 expressing an antigen-binding antibody on their cell surface. When a naive B cell first encounters the antigen for which its membrane-bound antibody is specific, the cell begins to divide rapidly and its progeny differentiate into memory B cells and effector cells called "plasma cells". Memory B cells have a 10 longer life span and continue to express membrane-bound antibody with the same specificity as the original parent cell. Plasma cells do not produce membrane-bound antibody but instead produce the antibody in a form that can be secreted. Secreted antibodies are the major effector molecule of humoral immunity. 15 T cells mature within the thymus which provides an environment for the proliferation and differentiation of immature T cells. During T cell maturation, the T cells undergo the gene rearrangements that produce the T-cell receptor and the positive and negative selection which helps determine the cell 20 surface phenotype of the mature T cell. Characteristic cell surface markers of mature T cells are the CD3:T-cell receptor complex and one of the coreceptors, CD4 or CD8. -2Ib 2733288_1 (GHMatters) P60826 AU 2 710711 WO 2005/049075 PCT/US2004/038262 In attempts to discover effective cellular targets for cancer therapy, researchers have sought to identify transmembrane or otherwise membrane-associated polypeptides that are specifically expressed on the surface of one or more particular types) of cancer cell as compared to on one or more normal non-cancerous cell(s). Often, such membrane-associated polypeptides are more abundantly expressed on the surface of the cancer cells as compared to on the surface of the non-cancerous cells. The identification of such tumor-associated cell surface 5 antigen polypeptides has given rise to the ability to specifically target cancer cells for destruction via antibody based therapies. In this regard, it is noted that antibody-based therapy has proved very effective in the treatment of certain cancers. For example, HERCEPTIN@ and RITUXAN@ (both from Genentech Inc., South San Francisco, California) are antibodies that have been used successfully to treat breast cancer and non-Hodgkin's lymphoma, respectively. More specifically, HERCEPTIN@is a recombinant DNA-derived humanized monoclonal 0 antibody that selectively binds to the extracellular domain of the human epidermal growth factor receptor 2 (HER2) proto-oncogene. HER2 protein overexpression is observed in 25-30% of primary breast cancers. RITUXAN@ is a genetically engineered chimeric murine/human monoclonal antibody directed against the CD20 antigen found on the surface of normal and malignant B lymphocytes. Both these antibodies are recombinantly produced in CHO cells. 5 In other attempts to discover effective cellular targets for cancer therapy, researchers have sought to identify (1) non-membrane-associated polypeptides that are specifically produced by one or more particular type(s) of cancer cell(s) as compared to by one or more particular type(s) of non-cancerous normal cell(s), (2) polypeptides that are produced by cancer cells at an expression level that is significantly higher than that of one or more normal non-cancerous cell(s), or (3) polypeptides whose expression is specifically limited to only a single (or very limited .0 number of different) tissue type(s) in both the cancerous and non-cancerous state (e.g., normal prostate and prostate tumor tissue). Such polypeptides may remain intracellularly located or may be secreted by the cancer cell. Moreover, such polypeptides may be expressed not by the cancer cell itself, but rather by cells which produce and/or secrete polypeptides having a potentiating or growth-enhancing effect on cancer cells. Such secreted polypeptides are often proteins that provide cancer cells with a growth advantage over normal cells and include 5 such things as, for example, angiogenic factors, cellular adhesion factors, growth factors, and the like. Identification of antagonists of such non-membrane associated polypeptides would be expected to serve as effective therapeutic agents for the treatment of such cancers. Furthermore, identification of the expression pattern of such polypeptides would be useful for the diagnosis of particular cancers in mammals. Despite the above identified advances in mammalian cancer therapy, there is a great need for additional 30 therapeutic agents capable of detecting the presence of tumor in a mammal and for effectively inhibiting neoplastic cell growth, respectively. Accordingly, it is an objective of the present invention to identify polypeptides, cell membrane-associated, secreted or intracellular polypeptides whose expression is specifically limited to only a single (or very limited number of different) tissue type(s), hematopoietic tissues, in both a cancerous and non cancerous state, and to use those polypeptides, and their encoding nucleic acids, to produce compositions of matter 35 useful in the therapeutic treatment detection of hematopoietic cancer in mammals. SUMMARY OF THE INVENTION A. Embodiments 2 WO 2005/049075 PCTIU S2004/038262 In the present specification, Applicants describe for the first time the identification of various cellular polypeptides (and their encoding nucleic acids or fragments thereof) which are specifically expressed by both tumor and normal cells of a specific cell type, for example cells generated during hematopoiesis, i.e. lymphocytes, leukocytes, erythrocytes and platelets. All of the above polypeptides are herein referred to as Tumor Antigens of Hematopoietic Origin polypeptides ("TAHO" polypeptides) and are expected to serve as effective targets for 5 cancer therapy in mammals. Accordingly, in one embodiment of the present invention, the invention provides an isolated nucleic acid molecule having a nucleotide sequence that encodes a tumor antigen of hematopoietic origin polypeptide (a "TAHO" polypeptide) or fragment thereof. In certain aspects, the isolated nucleic acid molecule comprises a nucleotide sequence having at least 0 about 80% nucleic acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% nucleic acid sequence identity, to (a) a DNA molecule encoding a full-length TAHO polypeptide having an amino acid sequence as disclosed herein, a TAHO polypeptide amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane TAHO polypeptide, with or without the signal peptide, as disclosed herein or any other 5 specifically defined fragment of a full-length TAHO polypeptide amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a). In other aspects, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81%,82%,83%,84%,85%,86%,87%,88%,89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% nucleic acid sequence identity, to (a) a DNA molecule comprising the coding sequence of a full-length TAHO polypeptide cDNA as disclosed herein, the coding sequence of a TAHO polypeptide lacking the signal peptide as disclosed herein, the coding sequence of an extracellular domain of a transmembrane TAHO polypeptide, with or without the signal peptide, as disclosed herein or the coding sequence of any other specifically defined fragment of the full-length TAHO polypeptide amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a). .5 In further aspects, the invention concerns an isolated nucleic acid molecule comprising a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% nucleic acid sequence identity, to (a) a DNA molecule that encodes the same mature polypeptide encoded by the full-length coding region of any of the human protein cDNAs deposited with the ATCC as disclosed herein, or (b) the 30 complement of the DNA molecule of (a). Another aspect of the invention provides an isolated nucleic acid molecule comprising a nucleotide sequence encoding a TAHO polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated, or is complementary to such encoding nucleotide sequence, wherein the transmembrane domain(s) of such polypeptide(s) are disclosed herein. Therefore, soluble extracellular domains of the herein 35 described TAHO polypeptides are contemplated. In other aspects, the present invention is directed to isolated nucleic acid molecules which hybridize to (a) a nucleotide sequence encoding a TAHO polypeptide having a full-length amino acid sequence as disclosed herein, a TAHO polypeptide amino acid sequence lacking the signal peptide as disclosed herein, an extracellular 3 WO 2005/049075 PCT/US2004/038262 domain of a transmembrane TAHO polypeptide, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of a full-length TAHO polypeptide amino acid sequence as disclosed herein, or (b) the complement of the nucleotide sequence of (a). In this regard, an embodiment of the present invention is directed to fragments of a full-length TAHO polypeptide coding sequence, or the complement thereof, as disclosed herein, that may find use as, for example, hybridization probes useful as, for example, detection probes, antisense 5 oligonucleotide probes, or for encoding fragments of a full-length TAHO polypeptide that may optionally encode a polypeptide comprising a binding site for an anti-TAHO polypeptide antibody, a TAHO binding oligopeptide or other small organic molecule that binds to A TAHO polypeptide. Such nucleic acid fragments are usually at least about 5 nucleotides in length, alternatively at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, .0 130, 135, 140, 145, 150, 155, 160,165, 170,175,180, 185, 190, 195, 200,210,220,230, 240,250,260,270,280, 290, 300, 310, 320, 330, 340, 350, 360, 370,380,390,400,410,420,430,440,450,460,470,480,490,500,510, 520,530,540,550, 560,570,580,590, 600,610, 620, 630, 640, 650, 660, 670, 680,690,700,710,720,730,740, 750, 760, 770, 780, 790,800, 810, 820, 830, 840, 850, 860, 870, 880, 890,900,910,920,930,940,950,960,970, 980, 990, or 1000 nucleotides in length, wherein in this context the term "about" means the referenced nucleotide .5 sequence length plus or minus 10% of that referenced length. It is noted that novel fragments of a TAHO polypeptide-encoding nucleotide sequence may be determined in a routine manner by aligning the TAHO polypeptide-encoding nucleotide sequence with other known nucleotide sequences using any of a number of well known sequence alignment programs and determining which TAHO polypeptide-encoding nucleotide sequence fragment(s) are novel. All of such novel fragments of TAHO polypeptide-encoding nucleotide sequences are 0 contemplated herein. Also contemplated are the TAHO polypeptide fragments encoded by these nucleotide molecule fragments, preferably those TAHO polypeptide fragments that comprise a binding site for an anti-TAHO antibody, a TAHO binding oligopeptide or other small organic molecule that binds to a TAHO polypeptide. In another embodiment, the invention provides isolated TAHO polypeptides encoded by any of the isolated nucleic acid sequences hereinabove identified. !5 In a certain aspect, the invention concerns an isolated TAHO polypeptide, comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity, to a TAHO polypeptide having a full-length amino acid sequence as disclosed herein, a TAHO polypeptide amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a 30 transmembrane TAHO polypeptide protein, with or without the signal peptide, as disclosed herein, an amino acid sequence encoded by any of the nucleic acid sequences disclosed herein or any other specifically defined fragment of a full-length TAHO polypeptide amino acid sequence as disclosed herein. In a further aspect, the invention concerns an isolated TAHO polypeptide comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81%, 82%, 83%, 35 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% amino acid sequence identity, to an amino acid sequence encoded by any of the human protein cDNAs deposited with the ATCC as disclosed herein. In a specific aspect, the invention provides an isolated TAHO polypeptide without the N-terminal signal 4 WO 2005/049075 PCT/US2004/038262 sequence and/or without the initiating methionine and is encoded by a nucleotide sequence that encodes such an amino acid sequence as hereinbefore described. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the TAHO polypeptide and recovering the TAHO polypeptide from the cell culture. 5 Another aspect of the invention provides an isolated TAHO polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the TAHO polypeptide and recovering the TAHO polypeptide from the cell culture. [0 In other embodiments of the present invention, the invention provides vectors comprising DNA encoding any of the herein described polypeptides. Host cells comprising any such vector are also provided. By way of example, the host cells may be CHO cells, E. coli cells, or yeast cells. A process for producing any of the herein described polypeptides is further provided and comprises culturing host cells under conditions suitable for expression of the desired polypeptide and recovering the desired polypeptide from the cell culture. 15 In other embodiments, the invention provides isolated chimeric polypeptides comprising any of the herein described TAHO polypeptides fused to a heterologous (non-TAHO) polypeptide. Example of such chimeric molecules comprise any of the herein described TAHO polypeptides fused to a heterologous polypeptide such as, for example, an epitope tag sequence or a Fc region of an immunoglobulin. In another embodiment, the invention provides an antibody which binds, preferably specifically, to any 20 of the above or below described polypeptides. Optionally, the antibody is a monoclonal antibody, antibody fragment, chimeric antibody, humanized antibody, single-chain antibody or antibody that competitively inhibits the binding of an anti-TAHO polypeptide antibody to its respective antigenic epitope. Antibodies of the present invention may optionally be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, including, for example, a maytansinoid or calicheamicin, an antibiotic, a radioactive isotope, a nucleolytic enzyme, or the like. 25 The antibodies of the present invention may optionally be produced in CHO cells or bacterial cells and preferably induce death of a cell to which they bind. For detection purposes, the antibodies of the present invention may be detectably labeled, attached to a solid support, or the like. In other embodiments of the present invention, the invention provides vectors comprising DNA encoding any of the herein described antibodies. Host cell comprising any such vector are also provided. By way of 30 example, the host cells may be CHO cells, E. coli cells, or yeast cells. A process for producing any of the herein described antibodies is further provided and comprises culturing host cells under conditions suitable for expression of the desired antibody and recovering the desired antibody from the cell culture. In another embodiment, the invention provides oligopeptides ('TAHO binding oligopeptides") which bind, preferably specifically, to any of the above or below described TAHO polypeptides. Optionally, the TAHO 35 binding oligopeptides of the present invention may be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, including, for example, a maytansinoid or calicheamicin, an antibiotic, a radioactive isotope, a nucleolytic enzyme, or the like. The TAHO binding oligopeptides of the present invention may optionally be produced in CHO cells or bacterial cells and preferably induce death of a cell to which they bind. For detection 5 WO 2005/049075 PCT/US2004/038262 purposes, the TAHO binding oligopeptides of the present invention may be detectably labeled, attached to a solid support, or the like. In other embodiments of the present invention, the invention provides vectors comprising DNA encoding any of the herein described TAHO binding oligopeptides. Host cell comprising any such vector are also provided. By way of example, the host cells may be CHO cells, E. coli cells, or yeast cells. A process for producing any of 5 the herein described TAHO binding oligopeptides is further provided and comprises culturing host cells under conditions suitable for expression of the desired oligopeptide and recovering the desired oligopeptide from the cell culture. In another embodiment, the invention provides small organic molecules ('TAHO binding organic molecules") which bind, preferably specifically, to any of the above or below described TAHO polypeptides. [0 Optionally, the TAHO binding organic molecules of the present invention may be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, including, for example, a maytansinoid or calicheamicin, an antibiotic, a radioactive isotope, a nucleolytic enzyme, or the like. The TAHO binding organic molecules of the present invention preferably induce death of a cell to which they bind. For detection purposes, the TAHO binding organic molecules of the present invention may be detectably labeled, attached to a solid support, or the like. 15 In a still further embodiment, the invention concerns a composition of matter comprising a TAHO polypeptide as described herein, a chimeric TAHO polypeptide as described herein, an anti-TAHO antibody as described herein, a TAHO binding oligopeptide as described herein, or a TAHO binding organic molecule as described herein, in combination with a carrier. Optionally, the carrier is a pharmaceutically acceptable carrier. In yet another embodiment, the invention concerns an article of manufacture comprising a container and 20 a composition of matter contained within the container, wherein the composition of matter may comprise a TAHO polypeptide as described herein, a chimeric TAHO polypeptide as described herein, an anti-TAHO antibody as described herein, a TAHO binding oligopeptide as described herein, or a TAHO binding organic molecule as described herein. The article may further optionally comprise a label affixed to the container, or a package insert included with the container, that refers to the use of the composition of matter for the therapeutic treatment. 25 Another embodiment of the present invention is directed to the use of a TAHO polypeptide as described herein, a chimeric TAHO polypeptide as described herein, an anti-TAHO polypeptide antibody as described herein, a TAHO binding oligopeptide as described herein, or a TAHO binding organic molecule as described herein, for the preparation of a medicament useful in the treatment of a condition which is responsive to the TAHO polypeptide, chimeric TAHO polypeptide, anti-TAHO polypeptide antibody, TAHO binding oligopeptide, or 30 TAHO binding organic molecule. B. Further Additional Embodiments In yet further embodiments, the invention is directed to the following set of potential claims for this application: 35 1. Isolated nucleic acid having a nucleotide sequence that has at least 80% nucleic acid sequence identity to: (a) a DNA molecule encoding the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), 6 WO 2005/049075 PCT/US2004/038262 Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID 5 NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); (b) a DNA molecule encoding the amino acid sequence selected from the group consisting of the LO amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), [5 Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (c) a DNA molecule encoding an extracellular domain of the polypeptide having the amino acid selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID 5 NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), 30 Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide; (d) a DNA molecule encoding an extracellular domain of the polypeptide having the amino acid selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 35 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), 7 WO 2005/049075 PCT/US2004/038262 Figure 44 (SEQ IUD NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ED NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; 5 (e) the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 LO (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID [5 NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); (f) the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure II (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ 10 ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Z5 Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or (g) the complement of (a), (b), (c), (d), (e) or (f). 2. Isolated nucleic acid having: (a) a nucleotide sequence that encodes the amino acid sequence selected from the group consisting of 30 the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID 35 NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 8 WO 2005/049075 PCT/US2004/038262 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); (b) a nucleotide sequence that encodes the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 5 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID .0 NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (c) a nucleotide sequence that encodes an extracellular domain of the polypeptide having the amino acid selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure L5 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID 20 NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide; (d) a nucleotide sequence that encodes an extracellular domain of the polypeptide having the amino 25 acid selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 30 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its 35 associated signal peptide; (e) the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 9 WO 2005/049075 PCT/US2004/038262 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 5 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO; 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); (f) the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), 10 Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID 15 NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or (g) the complement of (a), (b), (c), (d), (e) or (f). 20 3. Isolated nucleic acid that hybridizes to: (a) a nucleic acid that encodes the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ 25 ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), 30 Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); (b) a nucleic acid that encodes the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 35 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22 , Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID 10 WO 2005/049075 PCT/US2004/038262 NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (c) a nucleic acid that encodes an extracellular domain of the polypeptide having the amino acid 5 sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ D) NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), 10 Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its 15 associated signal peptide; (d) a nucleic acid that encodes an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID 20 NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), 25 Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (e) the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), 30 Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID 35 NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ D NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); 11 WO 2005/049075 PCT/US2004/038262 (f) the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 5 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ED NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID ) NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or (g) the complement of (a), (b), (c), (d), (e) or (f). 4. The nucleic acid of Claim 3, wherein the hybridization occurs under stringent conditions. 5. The nucleic acid of Claim 3 which is at least about 5 nucleotides in length. 6. An expression vector comprising the nucleic acid of Claim 1, 2 or 3. 5 7. The expression vector of Claim 6, wherein said nucleic acid is operably linked to control sequences recognized by a host cell transformed with the vector. 8. A host cell comprising the expression vector of Claim 7. 9. The host cell of Claim 8 which is a CHO cell, an E. coli cell or a yeast cell. 10. A process for producing a polypeptide comprising culturing the host cell of Claim 8 under conditions 0 suitable for expression of said polypeptide and recovering said polypeptide from the cell culture. 11. An isolated polypeptide having at least 80% amino acid sequence identity to: (a) the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), .5 Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 30 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); (b) the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 35 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), 12 WO 2005/049075 PCT/US2004/038262 Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; 5 (c) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 34), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 0 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID 5 NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide; (d) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44) and Figure 46 (SEQ ID NO: 46), lacking its associated signal peptide; (e) a polypeptide encoded by the nucleotide sequence selected from the group consisting of the Z5 nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), 30 Figtire 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or 35 (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID 13 WO 2005/049075 PCTIUS2004/038262 NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), 5 Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70). 12. An isolated polypeptide having: (a) the amino acid sequence selected from the group consisting of the amino acid sequence shown in 0 Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID 5 NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); to (b) the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), 5 Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 30 (SEQ ID NO: 71), lacking its associated signal peptide sequence; (c) an amino acid sequence of an extracellular domain of the polypeptide selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), 35 Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44, Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID 14 WO 2005/049075 PCT/US20041038262 NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide sequence; (d) an amino acid sequence of an extracellular domain of the polypeptide selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44, ) Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide sequence; (e) an amino acid sequence encoded by the nucleotide sequence selected from the group consisting of 5 the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), 0 Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or 5 (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID 30 NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), 35 Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70). 13. A chimeric polypeptide comprising the polypeptide of Claim 11 or 12 fused to a heterologous polypeptide. 15 WO 2005/049075 PCT/US2004/038262 14. The chimeric polypeptide of Claim 13, wherein said heterologous polypeptide is an epitope tag sequence or an Fc region of an immunoglobulin. 15. An isolated antibody that binds to a polypeptide having at least 80% amino acid sequence identity to: (a) the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 5 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID D NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); (b) the polypeptide selected from the group consisting of the amino acid sequence shown in Figure 2 5 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), 0 Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; .5 (c) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 30 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID 35 NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide; (d) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 16 WO 2005/049075 PCT/US2004/038262 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44, Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (e) a polypeptide encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), ) Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID 5 NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence selected from 0 the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), .5 Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 30 (SEQ ID NO: 70). 16. An isolated antibody that binds to a polypeptide having: (a) the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID 35 NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44). Figure 46 (SEQ ID NO: 46), Figure 49 17 WO 2005/049075 PCT/US20041038262 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); (b) the amino acid sequence selected from the group consisting of the amino acid sequence shown in 5 Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID to NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide sequence; 15 (c) an amino acid sequence of an extracellular domain of the polypeptide selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID 20 NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), 25 Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide sequence; (d) an amino acid sequence of an extracellular domain of the polypeptide selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), 30 Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 35 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure '71 (SEQ ID NO: 71), lacking its associated signal peptide sequence; (e) an amino acid sequence encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3). Figure 5 (SEQ ID NO: 18 WO 2005/049075 PCT/US2004/038262 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID 5 NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence 0 selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 5 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID 10 NO: 68) and Figure 70 (SEQ ID NO: 70). 17. The antibody of Claim 15 or 16 which is a monoclonal antibody. 18. The antibody of Claim 15 or 16 which is an antibody fragment. 19. The antibody of Claim 15 or 16 which is a chimeric or a humanized antibody. 20. The antibody of Claim 15 or 16 which is conjugated to a growth inhibitory agent. .5 21. The antibody of Claim 15 or 16 which is conjugated to a cytotoxic agent. 22. The antibody of Claim 21, wherein the cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes. 23. The antibody of Claim 21, wherein the cytotoxic agent is a toxin. 24. The antibody of Claim 23, wherein the toxin is selected from the group consisting of maytansinoid 30 and calicheamicin. 25. The antibody of Claim 23, wherein the toxin is a maytansinoid. 26. The antibody of Claim 15 or 16 which is produced in bacteria. 27. The antibody of Claim 15 or 16 which is produced in CHO cells. 28. The antibody of Claim 15 or 16 which induces death of a cell to which it binds. 35 29. The antibody of Claim 15 or 16 which is detectably labeled. 30. An isolated nucleic acid having a nucleotide sequence that encodes the antibody of Claim 15 or 16. 31. An expression vector comprising the nucleic acid of Claim 30 operably linked to control sequences recognized by a host cell transformed with the vector. 19 WO 2005/049075 PCT/US2004/038262 32. A host cell comprising the expression vector of Claim 31. 33. The host cell of Claim 32 which is a CHO cell, an E. coli cell or a yeast cell. 34. A process for producing an antibody comprising culturing the host cell of Claim 32 under conditions suitable for expression of said antibody and recovering said antibody from the cell culture. 35. An isolated oligopeptide that binds to a polypeptide having at least 80% amino acid sequence identity 5 to: (a) the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID .0 NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), 15 Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); (b) the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), 20 Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 25 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (c) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), 30 Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID 35 NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide; 20 WO 2005/049075 PCT/US2004/038262 (d) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 5 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44, Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID 0 NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (e) a polypeptide encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ 5 ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), O0 Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), 5 Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 30 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70). 36. An isolated oligopeptide that binds to a polypeptide having: 35 (a) the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 21 WO 2005/049075 PCT[US20041038262 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID 5 NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); (b) the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO- 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID 10 NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), 15 Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ lID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide sequence; (c) an amino acid sequence of an extracellular domain of the polypeptide selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 20 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), 25 Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide sequence; (d) an amino acid sequence of an extracellular domain of the polypeptide selected from the group 30 consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 35 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), 22 WO 2005/049075 PCT/US2004/038262 Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide sequence; (e) an amino acid sequence encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ 5 ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), 10 Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 15 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID 20 NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70). 37. The oligopeptide of Claim 35 or 36 which is conjugated to a growth inhibitory agent. 25 38. The oligopeptide of Claim 35 or 36 which is conjugated to a cytotoxic agent. 39. The oligopeptide of Claim 38, wherein the cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes. 40. The oligopeptide of Claim 38, wherein the cytotoxic agent is a toxin. 41. The oligopeptide of Claim 40, wherein the toxin is selected from the group consisting of maytansinoid 30 and calicheamicin. 42. The oligopeptide of Claim 40, wherein the toxin is a maytansinoid. 43. The oligopeptide of Claim 35 or 36 which induces death of a cell to which it binds. 44. The oligopeptide of Claim 35 or 36 which is detectably labeled. 45. A TAHO binding organic molecule that binds to a polypeptide having at least 80% amino acid 35 sequence identity to: (a) the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), 23 WO 2005/049075 PCTIUS2004/038262 Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 5 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); (b) the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure .0 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID [5 NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (c) an extracellular domain of the polypeptide having the amino acid sequence selected from the z0 group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), 25 Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide; 30 (d) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 35 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), 24 WO 2005/049075 PCT/US2004/038262 Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (e) a polypeptide encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 5 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO. 47), Figure 48 (SEQ ID NO: 48), Figure 50 0 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), 5 Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID 0 NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70). 25 46. The organic molecule of Claim 45 that binds to a polypeptide having: (a) the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 30 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO- 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID 35 NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); (b) the amino acid sequence selected fom the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), 25 WO 2005/049075 PCT/US2004/038262 Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide sequence; (c) an amino acid sequence of an extracellular domain of the polypeptide selected from the group ) consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 5 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide sequence; .0 (d) an amino acid sequence of an extracellular domain of the polypeptide selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID 15 NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44, Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), 30 Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide sequence; (e) an amino acid sequence encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ 35 ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 26 WO 2005/049075 PCT/US2004/038262 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 5 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), .0 Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70). 15 47. The organic molecule of Claim 45 or 46 which is conjugated to a growth inhibitory agent. 48. The organic molecule of Claim 45 or 46 which is conjugated to a cytotoxic agent. 49. The organic molecule of Claim 48, wherein the cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes. 50. The organic molecule of Claim 48, wherein the cytotoxic agent is a toxin. 20 51. The organic molecule of Claim 50, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin. 52. The organic molecule of Claim 50, wherein the toxin is a maytansinoid. 53. The organic molecule of Claim 45 or 46 which induces death of a cell to which it binds. 54. The organic molecule of Claim 45 or 46 which is detectably labeled. 25 55. A composition of matter comprising: (a) the polypeptide of Claim 11; (b) the polypeptide of Claim 12; (c) the antibody of Claim 15; (d) the antibody of Claim 16; 30 (e) the oligopeptide of Claim 35; (f) the oligopeptide of Claim 36; (g) the TAHO binding organic molecule of Claim 45; or (h) the TAHO binding organic molecule of Claim 46; in combination with a carrier. 56. The composition of matter of Claim 55, wherein said carrier is a pharmaceutically acceptable carrier. 35 57. An article of manufacture comprising: (a) a container; and (b) the composition of matter of Claim 55 contained within said container. 58. The article of manufacture of Claim 57 further comprising a label affixed to said container, or a 27 WO 2005/049075 PCT/US2004/038262 package insert included with said container, referring to the use of said composition of matter for the therapeutic treatment of or the diagnostic detection of a cancer. 59. A method of inhibiting the growth of a cell that expresses a protein having at least 80% amino acid sequence identity to: (a) the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), ) Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); 5 (b) the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ lID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID 5 NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (c) an extracellular domain of the polypeptide having the anino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ 30 ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), 35 Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide; (d) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), 28 WO 2005/049075 PCT/US2004/038262 Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44 , Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (e) a polypeptide encoded by the nucleotide sequence selected from the group consisting of the ) nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), 5 Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or 0 (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO; 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 5 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID 30 NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70), said method comprising contacting said cell with an antibody, oligopeptide or organic molecule that binds to said protein, the binding of said antibody, oligopeptide or organic molecule to said protein thereby causing an inhibition of growth of said cell. 60. The method of Claim 59, wherein said antibody is a monoclonal antibody. 35 61. The method of Claim 59, wherein said antibody is an antibody fragment. 62. The method of Claim 59, wherein said antibody is a chimeric or a humanized antibody. 63. The method of Claim 59, wherein said antibody, oligopeptide or organic molecule is conjugated to a growth inhibitory agent. 29 WO 2005/049075 PCT/US2004/038262 64. The method of Claim 59, wherein said antibody, oligopeptide or organic molecule is conjugated to a cytotoxic agent 65. The method of Claim 64, wherein said cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes. 66. The method of Claim 64, wherein the cytotoxic agent is a toxin. 5 67. The method of Claim 66, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin. 68. The method of Claim 66, wherein the toxin is a maytansinoid. 69. The method of Claim 59, wherein said antibody is produced in bacteria. 70. The method of Claim 59, wherein said antibody is produced in CHO cells. 0 71. The method of Claim 59, wherein said cell is a hematopoietic cell. 72. The method of Claim 71, wherein said hematopoietic cell is selected from the group consisting of a lymphocyte, leukocyte, platelet, erythrocyte and natural killer cell. 73. The method of Claim 72, wherein said lymphocyte is a B cell or T cell. 74. The method of claim 73 wherein said lymphocyte is a cancer cell. 5 75. The method of claim 74 wherein said cancer cell is further exposed to radiation treatment or a chemotherapeutic agent. 76. The method of claim 75, wherein said cancer cell is selected from the group consisting of a lymphoma cell, a myeloma cell and a leukemia cell. 77. The method of Claim 71, wherein said protein is more abundantly expressed by said hematopoietic '0 cell as compared to a non-hematopoietio cell. 78. The method of Claim 59 which causes the death of said cell. 79. The method of Claim 59, wherein said protein has: (a) the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), ,5 Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 30 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); (b) the amino acid sequence selected from the group consisting of the amino acid sequence shown in 35 Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), 30 WO 2005/049075 PCT/US20041038262 Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 5 (SEQ ID NO: 71), lacking its associated signal peptide sequence; (c) an amino acid sequence of an extracellular domain of the polypeptide selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), 0 Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 5 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide sequence; (d) an amino acid sequence of an extracellular domain of the polypeptide selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 0 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure.46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID 5 NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide sequence; (e) an amino acid sequence encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 30 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID 35 NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or 31 WO 2005/049075 PCT/US20041038262 (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), ) Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70). 80. A method of therapeutically treating a mammal having a cancerous tumor comprising cells that express a protein having at least 80% amino acid sequence identity to: (a) the polypeptide having the amino acid sequence selected from the group consisting of the amino 5 acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ED NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), 0 Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); 5 (b) the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID 35 NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (c) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 32 WO 2005/049075 PCT/US2004/038262 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide; (d) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), ) Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID 5 NO: 44) , Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (e) a polypeptide encoded by the nucleotide sequence selected from the group consisting of the 0 nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), 5 Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or 30 (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 35 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), 33 WO 2005/049075 PCT/US2004/038262 Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70), said method comprising administering to said mammal a therapeutically effective amount of an antibody, oligopeptide or organic molecule that binds to said protein, thereby effectively treating said mammal. 5 81. The method of Claim 80, wherein said antibody is a monoclonal antibody. 82. The method of Claim 80, wherein said antibody is an antibody fragment. 83. The method of Claim 80, wherein said antibody is a chimeric or a humanized antibody. 84. The method of Claim 80, wherein said antibody, oligopeptide or organic molecule is conjugated to a growth inhibitory agent. 0 85. The method of Claim 80, wherein said antibody, oligopeptide or organic molecule is conjugated to a cytotoxic agent. 86. The method of Claim 85, wherein said cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes. 87. The method of Claim 85, wherein the cytotoxic agent is a toxin. .5 88. The method of Claim 87, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin. 89. The method of Claim 87, wherein the toxin is a maytansinoid. 90. The method of Claim 80, wherein said antibody is produced in bacteria. 91. The method of Claim 80, wherein said antibody is produced in CHO cells. 0 92. The method of Claim 80, wherein said tumor is further exposed to radiation treatment or a chemotherapeutic agent. 93. The method of Claim 80, wherein said tumor is a lymphoma, leukemia or myeloma tumor. 94. The method of Claim 80, wherein said protein is more abundantly expressed by a hernatopoietic cell as compared to a non-hematopoietic cell of said tumor. Z5 95. The method of Claim 94, wherein said protein is more abundantly expressed by cancerous hematopoietic cells of said tumor as compared to normal hematopoietic cells of said tumor. 96. The method of Claim 80, wherein said protein has: (a) the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), 30 Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 35 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); 34 WO 2005/049075 PCT/US2004/038262 (b) the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 ) (SEQ ID NO: 71), lacking its associated signal peptide sequence; (c) an amino acid sequence of an extracellular domain of the polypeptide selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), 5 Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44, Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 '0 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide sequence; (d) an amino acid sequence of an extracellular domain of the polypeptide selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 5 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID 30 NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide sequence; (e) an amino acid sequence encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 35 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), 35 WO 2005/049075 PCT/US2004/038262 Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or 5 (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID 0 NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), 5 Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70). 97. A method of determining the presence of a protein in a sample suspected of containing said protein, wherein said protein has at least 80% amino acid sequence identity to: (a) the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); 30 (b) the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 35 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), 36 WO 2005/049075 PCT/US2004/038262 Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (c) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 5 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44 , Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO. 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide; (d) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), 5 Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (e) a polypeptide encoded by the nucleotide sequence selected from the group consisting of the .5 nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), 30 Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or 35 (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID 37 WO 2005/049075 PCT/US2004/038262 NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), 5 Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70), said method comprising exposing said sample to an antibody, oligopeptide or organic molecule that binds to said protein and determining binding of said antibody, oligopeptide or organic molecule to said protein in said sample, wherein binding of the antibody, oligopeptide or organic molecule to said 0 protein is indicative of the presence of said protein in said sample. 98. The method of Claim 97, wherein said sample comprises a cell suspected of expressing said protein. 99. The method of Claim 98, wherein said cell is a cancer cell. 100. The method of Claim 97, wherein said antibody, oligopeptide or organic molecule is detectably labeled. 5 101. The method of Claim 97, wherein said protein has: (a) the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 '0 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID 15 NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); (b) the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID 30 NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), 35 Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide sequence; (c) an amino acid sequence of an extracellular domain of the polypeptide selected from the group 38 WO 2005/049075 PCT/US2004/038262 consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 5 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44, Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide sequence; 0 (d) an amino acid sequence of an extracellular domain of the polypeptide selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID 5 NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44, Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), 0 Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide sequence; (e) an amino acid sequence encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ .5 ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ IDNO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), 30 Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 35 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), 39 WO 2005/049075 PCT/US2004/038262 Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70). 5 102. A method for treating or preventing a cell proliferative disorder associated with increased expression or activity of a protein having at least 80% amino acid sequence identity to: (a) the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), 10 Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 15 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); (b) the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 20 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ I) NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID 25 NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (c) an extracellular domain of the polypeptide having the amino acid sequence selected from the 30 group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), 35 Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID 40 WO 2005/049075 PCT/US2004/038262 NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide; (d) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), ) Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (e) a polypeptide encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 5 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 0 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), 5 Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID 30 NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70), said method comprising administering to a subject in need of such treatment an effective 35 amount of an antagonist of said protein, thereby effectively treating or preventing said cell proliferative disorder. 103. The method of Claim 102, wherein said cell proliferative disorder is cancer. 104. The method of Claim 102, wherein said antagonist is an anti-TAHO polypeptide antibody, TAHO 41 WO 2005/049075 PCT/US2004/038262 binding oligopeptide, TAHO binding organic molecule or antisense oligonucleotide. 105. A method of binding an antibody, oligopeptide or organic molecule to a cell that expresses a protein having at least 80% amino acid sequence identity to: (a) the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 5 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID [0 NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); (b) the polypeptide having the amino acid sequence selected from the group consisting of the amino [5 acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), 20 Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; 25 (c) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 30 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44 , Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID 35 NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide; (d) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 42 WO 2005/049075 PCT/US2004/038262 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 5 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (e) a polypeptide encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), 0 Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID 5 NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence selected from '0 the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), !5 Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 30 (SEQ ID NO: 70), said method comprising contacting said cell with an antibody, oligopeptide or organic molecule that binds to said protein and allowing the binding of the antibody, oligopeptide or organic molecule to said protein to occur, thereby binding said antibody, oligopeptide or organic molecule to said cell. 106. The method of Claim 105, wherein said antibody is a monoclonal antibody. 107. The method of Claim 105, wherein said antibody is an antibody fragment. 35 108. The method of Claim 105, wherein said antibody is a chimeric or a humanized antibody. 109. The method of Claim 105, wherein said antibody, oligopeptide or organic molecule is conjugated to a growth inhibitory agent. 110. The method of Claim 105, wherein said antibody, oligopeptide or organic molecule is conjugated to a 43 WO 2005/049075 PCT/US2004/038262 cytotoxic agent. 111. The method of Claim 110, wherein said cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes. 112. The method of Claim 110, wherein the cytotoxic agent is a toxin. 113. The method of Claim 112, wherein the toxin is selected from the group consisting of maytansinoid 5 and calicheamicin. 114. The method of Claim 112, wherein the toxin is a maytansinoid. 115. The method of Claim 105, wherein said antibody is produced in bacteria. 116. The method of Claim 105, wherein said antibody is produced in CHO cells. 117. The method of Claim 105, wherein said cell is a hematopoietic cell. 10 118. The method of Claim 117, wherein said hematopoietic cell is a selected from the group consisting of a lymphocyte, leukocyte, platelet, erythrocyte and natural killer cell. 119. The method of claim 118, wherein said lymphocyte is a B cell or a T cell. 120. The method of Claim 119, wherein said lymphocyte is a cancer cell. 121. The method of Claim 120 wherein said cancer cell is further exposed to radiation treatment or a 15 chemotherapeutic agent. 122. The method of Claim 120, wherein said cancer cell is selected from the group consisting of a leukemia cell, a lymphoma cell and a myeloma cell. 123. The method of Claim 120, wherein said protein is more more abundantly expressed by said hematopoietic cell as compared to a non-hematopoietic cell. 20 124. The method of Claim 105 which causes the death of said cell. 125. Use of a nucleic acid as claimed in any of Claims 1 to 5 or 30 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 126. Use of a nucleic acid as claimed in any of Claims 1 to 5 or 30 in the preparation of a medicament for treating a tumor. 25 127. Use of a nucleic acid as claimed in any of Claims I to 5 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 128. Use of an expression vector as claimed in Claim 6 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 129. Use of an expression vector as claimed in Claim 6 in the preparation of medicament for treating a 30 tumor. 130. Use of an expression vector as claimed in Claim 6 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 131. Use of a host cell as claimed in Claim 8 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 35 132. Use of a host cell as claimed in Claim 8 in the preparation of a medicament for treating a tumor. 133. Use of a host cell as claimed in Claim 8 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 134. Use of a polypeptide as claimed in Claim 11 or 12 in the preparation of a medicament for the 44 WO 2005/049075 PCT/US2004/038262 therapeutic treatment or diagnostic detection of a cancer. 135. Use of a polypeptide as claimed in Claim 11 or 12 in the preparation of a medicament for treating a tumor. 136. Use of a polypeptide as claimed in Claim 11 or 12 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 5 137. Use of an antibody as claimed in Claim 15 or 16 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 138. Use of an antibody as claimed in Claim 15 or 16 in the preparation of a medicament for treating a tumor. 139. Use of an antibody as claimed in Claim 15 or 16 in the preparation of a medicament for treatment or ( prevention of a cell proliferative disorder. 140. Use of an oligopeptide as claimed in Claim 35 or 36 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 141. Use of an oligopeptide as claimed in Claim 35 or 36 in the preparation of a medicament for treating a tumor. 5 142. Use of an oligopeptide as claimed in Claim 35 or 36 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 143. Use of a TAHO binding organic molecule as claimed in Claim 45 or 46 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 144. Use of a TAHO binding organic molecule as claimed in Claim 45 or 46 in the preparation of a "0 medicament for treating a tumor. 145. Use of a TAHO binding organic molecule as claimed in Claims 45 or 46 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 146. Use of a composition of matter as claimed in Claim 55 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. !5 147. Use of a composition of matter as claimed in Claim 55 in the preparation of a medicament for treating a tumor. 148. Use of a composition of matter as claimed in Claim 55 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 149. Use of an article of manufacture as claimed in Claim 57 in the preparation of a medicament for the 30 therapeutic treatment or diagnostic detection of a cancer. 150. Use of an article of manufacture as claimed in Claim 58 in the preparation of a medicament for treating a tumor. 151. Use of an article of manufacture as claimed in Claim 58 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 35 152. A method for inhibiting the growth of a cell, wherein the growth of said cell is at least in part dependent upon a growth potentiating effect of a protein having at least 80% amino acid sequence identity to: (a) the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 45 WO 2005/049075 PCT/US2004/038262 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID 5 NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); (b) the polypeptide having the amino acid sequence selected from the group consisting of the amino 0 acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), 5 Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; !0 (c) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 Z5 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44 , Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID 30 NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide; (d) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ 35 ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 46 WO 2005/049075 PCTIUS2004/038262 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (e) a polypeptide encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), 5 Figure 7 (SEQ ID NO:7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID 0 NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence selected from 5 the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ D NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), .0 Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 5 (SEQ ID NO: 70), said method comprising contacting said protein with an antibody, oligopeptide or organic molecule that binds to said protein, there by inhibiting the growth of said cell. 153. The method of Claim 152, wherein said cell is a hematopoietic cell. 154. The method of Claim 152, wherein said protein is expressed by said cell. 155. The method of Claim 152, wherein the binding of said antibody, oligopeptide or organic molecule to 30 said protein antagonizes a cell gowth-potentiating activity of said protein. 156. The method of Claim 152, wherein the binding of said antibody, oligopeptide or organic molecule to said protein induces the death of said cell. 157. The method of Claim 152, wherein said antibody is a monoclonal antibody. 158. The method of Claim 152, wherein said antibody is an antibody fragment. 35 159. The method of Claim 152, wherein said antibody is a chimeric or a humanized antibody. 160. The method of Claim 152, wherein said antibody, oligopeptide or organic molecule is conjugated to a growth inhibitory agent. 161. The method of Claim 152, wherein said antibody, oligopeptide or organic molecule is conjugated to a 47 WO 2005/049075 PCT/US2004/038262 cytotoxic agent. 162. The method of Claim 161, wherein said cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes. 163. The method of Claim 161, wherein the cytotoxic agent is a toxin. 164. The method of Claim 163, wherein the toxin is selected from the group consisting of maytansinoid 5 and calicheamicin. 165. The method of Claim 163, wherein the toxin is a maytansinoid. 166. The method of Claim 152, wherein said antibody is produced in bacteria. 167. The method of Claim 152, wherein said antibody is produced in CHO cells. 168. The method of Claim 152, wherein said protein has: 10 (a) the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), 15 Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 20 (SEQ ID NO: 71); (b) the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 25 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID 30 NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide sequence; (c) an amino acid sequence of an extracellular domain of the polypeptide selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 35 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), 48 WO 2005/049075 PCT/US2004/038262 Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide sequence; (d) an amino acid sequence of an extracellular domain of the polypeptide selected from the group 5 consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 0 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44, Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide sequence; 5 (e) an amino acid sequence encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure I (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 0 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID ),5 NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), 30 Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 35 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70). 169. A method of therapeutically treating a tumor in a mammal, wherein the growth of said tumor is at 49 WO 2005/049075 PCT/US2004/038262 least in part dependent upon a growth potentiating effect of a protein having at least 80% amino acid sequence identity to: (a) the polypeptide having the amino acid sequence selected from the grup consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), 5 Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 0 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); (b) the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 5 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44 , Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (c) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), 30 Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44 , Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide; 35 (d) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ 50 WO 2005/049075 PCT/US2004/038262 ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), 5 Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide; (e) a polypeptide encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: [0 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45) , Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 15 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), 20 Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID 25 NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70), said method comprising contacting said protein with an antibody, oligopeptide or organic 30 molecule that binds to said protein, thereby effectively treating said tumor. 170. The method of Claim 169, wherein said protein is expressed by cells of said tumor. 171. The method of Claim 169, wherein the binding of said antibody, oligopeptide or organic molecule to said protein antagonizes a cell growth-potentiating activity of said protein. 172. The method of Claim 169, wherein said antibody is a monoclonal antibody. 35 173. The method of Claim 169, wherein said antibody is an antibody fragment. 174. The method of Claim 169, wherein said antibody is a chimeric or a humanized antibody. 175. The method of Claim 169, wherein said antibody, oligopeptide or organic molecule is conjugated to a growth inhibitory agent. 51 WO 2005/049075 PCT/US2004/038262 176. The method of Claim 169, wherein said antibody, oligopeptide or organic molecule is conjugated to a cytotoxic agent. 177. The method of Claim 176, wherein said cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes. 178. The method of Claim 176, wherein the cytotoxic agent is a toxin. 5 179. The method of Claim 178, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin. 180. The method of Claim 178, wherein the toxin is a maytansinoid. 181. The method of Claim 169, wherein said antibody is produced in bacteria. 182. The method of Claim 169, wherein said antibody is produced in CHO cells. 10 183. The method of Claim 169, wherein said protein has: (a) the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 15 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID 20 NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71); (b) the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID 25 NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), 30 Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide sequence; (c) an amino acid sequence of an extracellular domain of the polypeptide selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 35 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID NO: 28), Figure 30 (SEQ ID NO. 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 52 WO 2005/049075 PCT/US2004/038262 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), with its associated signal peptide sequence; 5 (d) an amino acid sequence of an extracellular domain of the polypeptide selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO: 2), Figure 4 (SEQ ID NO: 4), Figure 6 (SEQ ID NO: 6), Figure 8 (SEQ ID NO: 8), Figure 10 (SEQ ID NO: 10), Figure 12 (SEQ ID NO: 12), Figure 14 (SEQ ID NO: 14), Figure 16 (SEQ ID NO: 16), Figure 18 (SEQ ID NO: 18), Figure 20 (SEQ ID NO: 20), Figure 22 (SEQ ID NO: 22), Figure 24 (SEQ ID NO: 24), Figure 26 (SEQ ID NO: 26), Figure 28 (SEQ ID 0 NO: 28), Figure 30 (SEQ ID NO: 30), Figure 32 (SEQ ID NO: 32), Figure 34 (SEQ ID NO: 34), Figure 36 (SEQ ID NO: 36), Figure 40 (SEQ ID NO: 40), Figure 42 (SEQ ID NO: 42), Figure 44 (SEQ ID NO: 44), Figure 46 (SEQ ID NO: 46), Figure 49 (SEQ ID NO: 49), Figure 51 (SEQ ID NO: 51), Figure 53 (SEQ ID NO: 53), Figure 55 (SEQ ID NO: 55), Figure 57 (SEQ ID NO: 57), Figure 59 (SEQ ID NO: 59), Figure 61 (SEQ ID NO: 61), Figure 63 (SEQ ID NO: 63), Figure 65 (SEQ ID NO: 65), Figure 67 (SEQ ID NO: 67), 5 Figure 69 (SEQ ID NO: 69) and Figure 71 (SEQ ID NO: 71), lacking its associated signal peptide sequence; (e) an amino acid sequence encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO :3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ 0 ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), 5 Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70); or (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1), Figure 3 (SEQ ID NO:3), Figure 5 (SEQ ID NO: 5), Figure 7 (SEQ ID NO: 7), Figure 9 (SEQ ID NO: 9), Figure 11 30 (SEQ ID NO: 11), Figure 13 (SEQ ID NO: 13), Figure 15 (SEQ ID NO: 15), Figure 17 (SEQ ID NO: 17), Figure 19 (SEQ ID NO: 19), Figure 21 (SEQ ID NO: 21), Figure 23 (SEQ ID NO: 23), Figure 25 (SEQ ID NO: 25), Figure 27 (SEQ ID NO: 27), Figure 29 (SEQ ID NO: 29), Figure 31 (SEQ ID NO: 31), Figure 33 (SEQ ID NO: 33), Figure 35 (SEQ ID NO: 35), Figure 37 (SEQ ID NO: 37), Figure 39 (SEQ ID NO: 39), Figure 41 (SEQ ID NO: 41), Figure 43 (SEQ ID NO: 43), Figure 45 (SEQ ID NO: 45), Figure 47 (SEQ ID 35 NO: 47), Figure 48 (SEQ ID NO: 48), Figure 50 (SEQ ID NO: 50), Figure 52 (SEQ ID NO: 52), Figure 54 (SEQ ID NO: 54), Figure 56 (SEQ ID NO: 56), Figure 58 (SEQ ID NO: 58), Figure 60 (SEQ ID NO: 60), Figure 62 (SEQ ID NO: 62), Figure 64 (SEQ ID NO: 64), Figure 66 (SEQ ID NO: 66), Figure 68 (SEQ ID NO: 68) and Figure 70 (SEQ ID NO: 70). 53 WO 2005/049075 PCT/US200I4/038262 184. A composition of matter comprising the chimeric polypeptide of Claim 13. 185. Use of a nucleic acid as claimed in Claim 30 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 186. Use of an expression vector as claimed in Claim 7 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 5 187. Use of an expression vector as claimed in Claim 31 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 188. Use of an expression vector as claimed in Claim 7 in the preparation of medicament for treating a tumor. 189. Use of an expression vector as claimed in Claim 31 in the preparation of medicament for treating a tumor. [0 190. Use of an expression vector as claimed in Claim 7 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 191. Use of an expression vector as claimed in Claim 31 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 192. Use of a host cell as claimed in Claim 9 in the preparation of a medicament for the therapeutic treatment 15 or diagnostic detection of a cancer. 193. Use of a host cell as claimed in Claim 32 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 194. Use of a host cell as claimed in Claim 33 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 20 195. Use of a host cell as claimed in Claim 9 in the preparation of a medicament for treating a tumor. 196. Use of a host cell as claimed in Claim 32 in the preparation of a medicament for treating a tumor. 197. Use of a host cell as claimed in Claim 33 in the preparation of a medicament for treating a tumor. 198. Use of a host cell as claimed in Claim 9 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 25 199. Use of a host cell as claimed in Claim 32 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 200. Use of a host cell as claimed in Claim 33 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 201. Use of a polypeptide as claimed in Claim 13 in the preparation of a medicament for the therapeutic 30 treatment or diagnostic detection of a cancer. 202. Use of a polypeptide as claimed in Claim 14 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 203. Use of a polypeptide as claimed in Claim 13 in the preparation of a medicament for treating a tumor. 204. Use of a polypeptide as claimed in Claim 14 in the preparation of a medicament for treating at tumor. 35 205. Use of a polypeptide as claimed in Claim 13 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 206. Use of a polypeptide as claimed in Claim 14 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 54 WO 2005/049075 PCT/US2004/038262 207. Use of an antibody as claimed in Claim 17 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 208. Use of an antibody as claimed in Claim 18 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 209. Use of an antibody as claimed in Claim 19 in the preparation of a medicament for the therapeutic 5 treatment or diagnostic detection of a cancer. 210. Use of an antibody as claimed in Claim 20 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 211. Use of an antibody as claimed in Claim 21 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. C) 212. Use of an antibody as claimed in Claim 22 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 213. Use of an antibody as claimed in Claim 23 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 5 214. Use of an antibody as claimed in Claim 24 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 215. Use of an antibody as claimed in Claim 25 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 216. Use of an antibody as claimed in Claim 26 in the preparation of a medicament for the therapeutic .0 treatment or diagnostic detection of a cancer. 217. Use of an antibody as claimed in Claim 27 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 218. Use of an antibody as claimed in Claim 28 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 5 219. Use of an antibody as claimed in Claim 29 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 220. Use of an antibody as claimed in Claim 17 in the preparation of a medicament for treating a tumor. 221. Use of an antibody as claimed in Claim 18 in the preparation of a medicament for treating a tumor. 222. Use of an antibody as claimed in Claim 19 in the preparation of a medicament for treating a tumor. 30 223. Use of an antibody as claimed in Claim 20 in the preparation of a medicament for treating a tumor. 224. Use of an antibody as claimed in Claim 21 in the preparation of a medicament for treating a tumor. 225. Use of an antibody as claimed in Claim 22 in the preparation of a medicament for treating a tumor. 226. Use of an antibody as claimed in Claim 23 in the preparation of a medicament for treating a tumor. 227. Use of an antibody as claimed in Claim 24 in the preparation of a medicament for treating a tumor. 35 228. Use of an antibody as claimed in Claim 25 in the preparation of a medicament for treating a tumor. 229. Use of an antibody as claimed in Claim 26 in the preparation of a medicament for treating a tumor. 230. Use of an antibody as claimed in Claim 27 in the preparation of a medicament for treating a tumor. 231. Use of an antibody as claimed in Claim 28 in the preparation of a medicament for treating a tumor. 55 WO 2005/049075 PCT/US2004/038262 232. Use of an antibody as claimed in Claim 29 in the preparation of a medicament for treating a tumor. 233. Use of an antibody as claimed in Claim 17 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 234. Use of an antibody as claimed in Claim 18 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 5 235. Use of an antibody as claimed in Claim 17 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 235. Use of an antibody as claimed in Claim 18 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 237. Use of an antibody as claimed in Claim 19 in the preparation of a medicament for treatment or [0 prevention of a cell proliferative disorder. 238. Use of an antibody as claimed in Claim 20 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 239. Use of an antibody as claimed in Claim 21 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. [5 240. Use of an antibody as claimed in Claim 22 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 241. Use of an antibody as claimed in Claim 23 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 242. Use of an antibody as claimed in Claim 24 in the preparation of a medicament for treatment or 20 prevention of a cell proliferative disorder. .243. Use of an antibody as claimed in Claim 25 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 244. Use of an antibody as claimed in Claim 26 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 25 245. Use of an antibody as claimed in Claim 27 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 246. Use of an antibody as claimed in Claim 28 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 247. Use of an antibody as claimed in Claim 29 in the preparation of a medicament for treatment or 30 prevention of a cell proliferative disorder. 248. Use of an oligopeptide as claimed in Claim 37 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 249. Use of an oligopeptide as claimed in Claim 38 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 35 250. Use of an oligopeptide as claimed in Claim 39 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 251. Use of an oligopeptide as claimed in Claim 40 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 56 WO 2005/049075 PCT/US2004/038262 252. Use of an oligopeptide as claimed in Claim 41 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 253. Use of an oligopeptide as claimed in Claim 42 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 254. Use of an oligopeptide as claimed in Claim 43 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 255. Use of an oligopeptide as claimed in Claim 44 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 256. Use of an oligopeptide as claimed in Claim 37 in the preparation of a medicament for treating a tumor. 257. Use of an oligopeptide as claimed in Claim 38 in the preparation of a medicament for treating a tumor. ) 258. Use of an oligopeptide as claimed in Claim 39 in the preparation of a medicament for treating a tumor. 259. Use of an oligopeptide as claimed in Claim 40 in the preparation of a medicament for treating a tumor. 260. Use of an oligopeptide as claimed in Claim 41 in the preparation of a medicament for treating a tumor. 261. Use of an oligopeptide as claimed in Claim 42 in the preparation of a medicament for treating a tumor. 262. Use of an oligopeptide as claimed in Claim 43 in the preparation of a medicament for treating a tumor. 5 263. Use of an oligopeptide as claimed in Claim 44 in the preparation of a medicament for treating a tumor. 264. Use of an oligopeptide as claimed in Claim 37 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 265. Use of an oligopeptide as claimed in Claim 38 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 0 266. Use of an oligopeptide as claimed in Claim 39 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 267. Use of an oligopeptide as claimed in Claim 40 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 268. Use of an oligopeptide as claimed in Claim 41 in the preparation of a medicament for treatment or 5 prevention of a cell proliferative disorder. 269. Use of an oligopeptide as claimed in Claim 42 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 270. Use of an oligopeptide as claimed in Claim 43 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 30 271. Use of an oligopeptide as claimed in Claim 44 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 272. Use of a TAHO binding organic molecule as claimed in Claim 47 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 273. Use of a TAHO binding organic molecule as claimed in Claim 48 in the preparation of a medicament for 35 the therapeutic treatment or diagnostic detection of a cancer. 274. Use of a TAHO binding organic molecule as claimed in Claim 49 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 275. Use of a TAHO binding organic molecule as claimed in Claim 50 in the preparation of a medicament for 57 WO 2005/049075 PCT/US2004/038262 the therapeutic treatment or diagnostic detection of a cancer. 276. Use of a TAHO binding organic molecule as claimed in Claim 51 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 277. Use of a TAHO binding organic molecule as claimed in Claim 52 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 278. Use of a TAHO binding organic molecule as claimed in Claim 53 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 279. Use of a TAHO binding organic molecule as claimed in Claim 54 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 280. Use of a TAHO binding organic molecule as claimed in Claim 47 in the preparation of a medicament for ) treating a tumor. 281. Use of a TAHO binding organic molecule as claimed in Claim 48 in the preparation of a medicament for treating a tumor. 282. Use of a TAHO binding organic molecule as claimed in Claim 49 in the preparation of a medicament for treating a tumor. 5 283. Use of a TAHO binding organic molecule as claimed in Claim 50 in the preparation of a medicament for treating a tumor. 284. Use of a TAHO binding organic molecule as claimed in Claim 51 in the preparation of a medicament for treating a tumor. 285. Use of a TAHO binding organic molecule as claimed in Claim 52 in the preparation of a medicament for 0 treating a tumor. 286. Use of a TAHO binding organic molecule as claimed in Claim 53 in the preparation of a medicament for treating a tumor. 287., Use of a TAHO binding organic molecule as claimed in Claim 54 in the preparation of a medicament for treating a tumor. t5 288. Use of a TAHO binding organic molecule as claimed in Claim 47 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 289. Use of a TAHO binding organic molecule as claimed in Claim 48 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 290. Use of a TAHO binding organic molecule as claimed in Claim 49 in the preparation of a medicament for 30 treatment or prevention of a cell proliferative disorder. 291. Use of a TAHO binding organic molecule as claimed in Claim 50 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 292. Use of a TAHO binding organic molecule as claimed in Claim 51 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 35 293. Use of a TAHO binding organic molecule as claimed in Claim 52 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 294. Use of a TAHO binding organic molecule as claimed in Claim 53 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 58 WO 2005/049075 PCT/US2004/038262 295. Use of a TAHO binding organic molecule as claimed in Claim 54 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 296. Use of a composition of matter as claimed in Claim 56 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 297. Use of a composition of matter as claimed in Claim 56 in the preparation of a medicament for treating a 5 tumor. 298. Use of a composition of matter as claimed in Claim 56 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 299. Use of an article of manufacture as claimed in Claim 58 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer. 3 300. Use of an article of manufacture as claimed in Claim 58 in the preparation of a medicament for treating a tumor. 301. Use of an article of manufacture as claimed in Claim 58 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder. 5 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a nucleotide sequence (SEQ ID NO: 1) of a TAHOI (PR0720 1) cDNA, wherein SEQ ID NO:1 is a clone designated herein as "DNA105250" (also referred here in as "CD180" or "LY64"). Figure 2 shows the amino acid sequence (SEQ ID NO:2) derived from the coding sequence of SEQ ID NO:1 shown in Figure 1. O Figure 3 shows a nucleotide sequence (SEQ ID NO:3) of a TAHO2 (PR04644) cDNA, wherein SEQ ID NO:3 is a clone designated herein as "DNA 150004" (also referred here in as "CD20" or "MSA41 "). Figure 4 shows the amino acid sequence (SEQ ID NO:4) derived from the coding sequence of SEQ ID NO:3 shown in Figure 3. Figure 5 shows a nucleotide sequence (SEQ ID NO:5) of a TAHO3 (PRO31998) cDNA, wherein SEQ 5 ID NO:5 is a clone designated herein as "DNAI 82432" (also referred here in as "FcRH2" or "SPAP1"). Figure 6 shows the amino acid sequence (SEQ ID NO:6) derived from the coding sequence of SEQ ID NO:5 shown in Figure 5. Figure 7 shows a nucleotide sequence (SEQ ID NO:7) of a TAHO4 (PR036248) cDNA, wherein SEQ ID NO:7 is a clone designated herein as "DNA225785" (also referred here in as "CD79A"). 30 Figure 8 shows the amino acid sequence (SEQ ID NO:8) derived from the coding sequence of SEQ ID NO:7 shown in Figure 7. Figure 9 shows a nucleotide sequence (SEQ ID NO:9) of a TAHO5 (PR036249) cDNA, wherein SEQ ID NO:9 is a clone designated herein as "DNA225786" (also referred here in as "CD79B"). Figure 10 shows the amino acid sequence (SEQ ID NO: 10) derived from the coding sequence of SEQ 35 ID NO:9 shown in Figure 9. Figure 11 shows a nucleotide sequence (SEQ ID NO: 11) of a TAHO6 (PR036338) wherein SEQ ID NO:11 is a clone designated herein as "DNA225875" (also referred here in as "CD21" or "CR2"). Figure 12 shows the amino acid sequence (SEQ ID NO:12) derived from the coding sequence of SEQ 59 WO 2005/049075 PCT/US2004/038262 ID NO:11 shown in Figure 11. Figure 13 shows a nucleotide sequence (SEQ ID NO:13) of a TAHO7 (PR036642) wherein SEQ ID NO:13 is a clone designated herein as "DNA226179" (also referred here in as "CCR6"). Figure 14 shows the amino acid sequence (SEQ ID NO: 14) derived from the coding sequence of SEQ ID NO:13 shown in Figure 13. 5 Figure 15 shows a nucleotide sequence (SEQ ID NO: 15) of a TAHO8 (PR036702) cDNA, wherein SEQ ID NO: 15 is a clone designated herein as "DNA226239" (also referred herein as "CD72"). Figure 16 shows the amino acid sequence (SEQ ID NO: 16) derived from the coding sequence of SEQ ID NO:15 shown in Figure 15. Figure 17 shows a nucleotide sequence (SEQ ID NO: 17) of a TAHO9 (PRO36857) cDNA, wherein SEQ 10 ID NO: 17 is a clone designated herein as "DNA226394" (also referred herein as "P2RX5"). Figure 18 shows the amino acid sequence (SEQ ID NO:18) derived from the coding sequence of SEQ ID NO:17 shown in Figure 17. Figure 19 shows a nucleotide sequence (SEQ ID NO: 19) ofa TAHO10 (PRO36886) cDNA, wherein SEQ ID NO:19 is a clone designated herein as "DNA226423" (also referred herein as "HI A-DOB"). 15 Figure 20 shows the amino acid sequence (SEQ ID NO:20) derived from the coding sequence of SEQ ID NO:19 shown in Figure 19. Figure 21 shows a nucleotide sequence (SEQ ID NO:21) of a TAHO 11 (PR038244) cDNA, wherein SEQ ID NO:21 is a clone designated herein as "DNA227781" (also referred herein as "CXCR5"). Figure 22 shows the amino acid sequence (SEQ ID NO:22) derived from the coding sequence of SEQ 20 ID NO:21 shown in Figure 21. Figure 23 shows a nucleotide sequence (SEQID NO:23) of aTAHO12(PRO38342)cDNA, wherein SEQ ID NO:23 is a clone designated herein as "DNA227879" (also referred herein as "CD23" or "FCER2"). Figure 24 shows the amino acid sequence (SEQ ID NO:24) derived from the coding sequence of SEQ ID NO:23 shown in Figure 23. 25 Figure 25 shows a nucleotide sequence (SEQID NO:25) of aTAHOl 3 (PRO51405) cDNA, wherein SEQ ID NO:25 is a clone designated herein as "DNA256363" (also referred herein as "GPR2"). Figure 26 shows the amino acid sequence (SEQ ID NO:26) derived from the coding sequence of SEQ ID NO:25 shown in Figure 25. Figure 27 shows a nucleotide sequence (SEQ ID NO:27) of aTAHO14 (PRO87299) cDNA, wherein SEQ 30 ID NO:27 is a clone designated herein as "DNA332467" (also referred herein as "Btig"). Figure 28 shows the amino acid sequence (SEQ ID NO:28) derived from the coding sequence of SEQ ID NO:27 shown in Figure 27. Figure 29 shows a nucleotide sequence (SEQ ID NO:29) of a TAHOl5 PROI 1 lcDNA, wherein SEQ ID NO:29 is a clone designated herein as "DNA58721" (also referred herein as "NAG 14"). 35 Figure 30 shows the amino acid sequence (SEQ ID NO:30) derived from the coding sequence of SEQ ID NO:29 shown in Figure 29. Figure 31 shows a nucleotide sequence (SEQ IDNO:3 1) ofa TAHO16 (PRO90213) cDNA, wherein SEQ ID NO:31 is a clone designated herein as "DNA335924" (also referred herein as "SLOC16270"). 60 WO 2005/049075 PCT/US2004/038262 Figure 32 shows the amino acid sequence (SEQ ID NO:32) derived from the coding sequence of SEQ ID NO:31 shown in Figure 31. Figure 33shows a nucleotide sequence (SEQ ID NO:33) of a TAHO17 PR085143 cDNA, wherein SEQ ID NO:33 is a clone designated herein as "DNA340394" (also referred herein as "FcRHI" or "IRTA5"). Figure 34 shows the amino acid sequence (SEQ ID NO:34) derived from the coding sequence of SEQ 5 ID NO:33 shown in Figure 33. Figure 35 shows a nucleotide sequence (SEQ ID NO:35) of a TAHO1 8 PR0820 cDNA, wherein SEQ ID NO:35 is a clone designated herein as "DNA56041" (also referred herein as "FcRH5" or "IRTA2"). Figure 36 shows the amino acid sequence (SEQ ID NO:36) derived from the coding sequence of SEQ ID NO:35 shown in Figure 35. 0 Figure 37 shows a nucleotide sequence (SEQ ID NO:37) of aTAHO19 (PRO1 140)cDNA, wherein SEQ ID NO:37 is a clone designated herein as "DNA59607" (also referred herein as "ATWD578"). Figure 38 shows the amino acid sequence (SEQ ID NO:38) derived from the coding sequence of SEQ ID NO:37 shown in Figure 37. Figure 39 shows a nucleotide sequence (SEQ ID NO:39) of a TAHO20 PR052483 cDNA, wherein SEQ 5 ID NO:39 is a clone designated herein as "DNA257955" (also referred herein as "FcRH3" or "IRTA3"). Figure 40 shows the amino acid sequence (SEQ ID NO:40) derived from the coding sequence of SEQ ID NO:39 shown in Figure 39. Figure 41 shows a nucleotide sequence (SEQ IDNO:41) of aTAHO21 PR085193 cDNA, wherein SEQ ID NO:41 is a clone designated herein as "DNA329863" (also referred herein as "FcRH4" or "IRTA l"). z0 Figure 42 shows the amino acid sequence (SEQ ID NO:42) derived from the coding sequence of SEQ ID NO:41 shown in Figure 41. Figure 43 shows a nucleotide sequence (SEQ ID NO:43) of a TAHO22 PRO96849 cDNA, wherein SEQ ID NO:43 is a clone designated herein as "DNA346528" (also referred herein as "FcRH6" or "FAIL"). Figure 44 shows the amino acid sequence (SEQ ID NO:44) derived from the coding sequence of SEQ 25 ID NO:43 shown in Figure 43. Figure45 shows a nucleotide sequence (SEQ IDNO:45) of a TAHO23 (PR034414) cDNA, wherein SEQ ID NO:45 is a clone designated herein as "DNA212930" (also referred herein as "BCMA"). Figure 46 shows the amino acid sequence (SEQ ID NO:46) derived from the coding sequence of SEQ ID NO:45 shown in Figure 45. 30 Figure47 shows a nucleotide sequence (SEQ ID NO:47) of a TAHO24 (PRO90207) cDNA, wherein SEQ ID NO:47 is a clone designated herein as "DNA335918" (also referred herein as "239287_at"). Figure 48 shows a nucleotide sequence (SEQ ID NO: 48) of a TAHO25 (PR036283) cDNA, wherein SEQ ID NO: 48 is a cloned designated herein as "DNA225820" (also referred here in as "CD19"). Figure 49 shows the amino acid sequence (SEQ ID NO: 49) derived from the coding sequence of SEQ 35 ID NO: 48 shown in Figure 48. Figure 50 shows anucleotide sequence (SEQID NO: 50) ofaTAHO26 (PRO2177) cDNA, wherein SEQ ID NO: 50 is a cloned designated herein as "DNA88116" (also referred here in as "CD22"). Figure 51 shows the amino acid sequence (SEQ ID NO: 51) derived from the coding sequence of SEQ 61 WO 2005/049075 PCT/US2004/038262 ID NO: 50 shown in Figure 50. Figure 52 shows a nucleotide sequence (SEQ ID NO: 52) of a TAHO27 (PR038215) cDNA, wherein SEQ ID NO: 52 is a cloned designated herein as "DNA227752" (also referred here in as "CXCR3"). Figure 53 shows the amino acid sequence (SEQ ID NO: 53) derived from the coding sequence of SEQ ID NO: 52 shown in Figure 52. 5 Figure 54 shows a nucleotide sequence (SEQ ID NO: 54) of aTAHO28 (PRO9993) cDNA, wherein SEQ ID NO: 54 is a cloned designated herein as "DNA1 19476" (also referred here in as "SILV"). Figure 55 shows the amino acid sequence (SEQ ID NO: 55) derived from the coding sequence of SEQ ID NO: 54 shown in Figure 54. Figure 56 shows a nucleotide sequence (SEQ ID NO: 56) of a TAH029 (PR049980) cDNA, wherein .0 SEQ ID NO: 56 is a cloned designated herein as "DNA254890" (also referred here in as "KCNK4"). Figure 57 shows the amino acid sequence (SEQ ID NO: 57) derived from the coding sequence of SEQ ID NO: 56 shown in Figure 56. Figure 58 shows a nucleotide sequence (SEQ ID NO: 58) of a TAHO30 (PR034756) cDNA, wherein SEQ ID NO: 58 is a cloned designated herein as "DNA254890" (also referred here in as "CXorfl"). 15 Figure 59 shows the amino acid sequence (SEQ ID NO: 59) derived from the coding sequence of SEQ ID NO: 58 shown in Figure 58. Figure 60 shows a nucleotide sequence (SEQ ID NO: 60) of a TAHO31 (PRO293) cDNA, wherein SEQ ID NO: 60 is a cloned designated herein as "DNA254890" (also referred here in as "LRRN5"). Figure 61 shows the amino acid sequence (SEQ ID NO: 61) derived from the coding sequence of SEQ 20 ID NO: 60 shown in Figure 60. Figure 62 shows a nucleotide sequence (SEQ ID NO: 62) of a TAHO32 (PR033767) cDNA, wherein SEQ ID NO: 62 is a cloned designated herein as "DNA210233". Figure 63 shows the amino acid sequence (SEQ ID NO: 63) derived from the coding sequence of SEQ ID NO: 62 shown in Figure 62. 25 Figure 64 shows a nucleotide sequence (SEQ ID NO: 64) of a TAHO33 (PRO258) cDNA, wherein SEQ ID NO: 64 is a cloned designated herein as "DNA35918" (also referred herein as "IGSF4B"). Figure 65 shows the amino acid sequence (SEQ ID NO: 65) derived from the coding sequence of SEQ ID NO: 64 shown in Figure 64. Figure 66 shows a nucleotide sequence (SEQ ID NO: 66) of a TAHO34 (PRO53968) cDNA, wherein 30 SEQ ID NO: 66 is a cloned designated herein as "DNA260038". Figure 67 shows the amino acid sequence (SEQ ID NO: 67) derived from the coding sequence of SEQ ID NO: 66 shown in Figure 66. Figure 68 shows a nucleotide sequence (SEQ ID NO: 68) of a TAHO35 (PRO89267) cDNA, wherein SEQ ID NO: 68 is a cloned designated herein as "DNA334818" (also referred herein as "FLJ12681"). 35 Figure 69 shows the amino acid sequence (SEQ ID NO: 69) derived from the coding sequence of SEQ ID NO: 68 shown in Figure 68. Figure 70 shows a nucleotide sequence (SEQ ID NO: 70) of a TAHO36 (PROS1405) cDNA, wherein SEQ ID NO: 70 is a cloned designated herein as "DNA257501". 62 WO 2005/049075 PCT/US2004/038262 Figure 71 shows the amino acid sequence (SEQ ID NO: 71) derived from the coding sequence of SEQ ID NO: 70 shown in Figure 70. Figure 72 summarizes the Agilent human microarrays that demonstrate significant expression of TAHO15 in bone marrow plasma cells and multiple myeloma cells as compared to low expression in non-B cells, such as neutrophils, T cells and natural killer (NK) cells. TAHO15 is also significantly expressed in some non-hodgkin 5 lymphoma cells. Figures 73A-73D show microarray data showing the expression of TAHO1 in normal samples and in diseased samples, such as significant expression in Non-Hodgkin's Lyphoina (NHL) samples and normal B cells (NB). Abbreviations used in the Figures are designated as follows: Non-Hodgkin's Lymphoma (NHL), follicular lymphoma (FL), normal lymph node (NLN), normal B cells (NB), multiple myeloma cells (MM), small intestine 0 (s. intestine), fetal liver (f. liver), smooth muscle (s. muscle), fetal brain (f. brain), natural killer cells (NK), neutrophils (N'phil), dendrocytes (DC), memory B cells (mem B), plasma cells (PC), bone marrow plasma cells (BM PC). Figures 74A-74D show microarray data showing the expression of TAHO2 in normal samples and in diseased samples, such as significant expression in NHL samples, follicular lymphoma (FL), normal lymph node .5 (NLN), normal B cells (NB). Abbreviations used in the Figures are designated as follows: Non-Hodgkin's Lymphoma (NHL), follicular lymphoma (FL), normal lymph node (NLN), normal B cells (NB), multiple myeloma cells (MM), small intestine (s. intestine), fetal liver (f. liver), smooth muscle (s. muscle), fetal brain (f. brain), natural killer cells (NK), neutrophils (N'phil), dendrocytes (DC), memory B cells (mem B), plasma cells (PC), bone marrow plasma cells (BM PC). !0 Figures 75A-75D show microarry data showing the expression of TAHO3 in normal samples and in diseased samples, such as significant expression in NHL samples, follicular lymphoma (FL) and memory B cells (mem B). Abbreviations used in the Figures are designated as follows: Non-Hodgkin's Lymphoma (NHL), follicular lymphoma (FL), normal lymph node (NLN), normal B cells (NB), multiple myeloma cells (MM), small intestine (s. intestine), fetal liver (f. liver), smooth muscle (s. muscle), fetal brain (f. brain), natural killer cells Z5 (NK), neutrophils (N'phil), dendrocytes (DC), memory B cells (mem B), plasma cells (PC), bone marrow plasma cells (BM PC). Figures 76A-76D show microarray data showing the expression of TAHO4 in normal samples and in diseased samples, such as significant expression in NHL samples and multiple myeloma samples (MM), and normal cerebellum and normal blood. Abbreviations used in the Figures are designated as follows: Non-Hodgkin's 30 Lymphoma (NHL), follicular lymphoma (FL), normal lymph node (NLN), normal B cells (NB), multiple myeloma cells (MM), small intestine (s. intestine), fetal liver (f. liver), smooth muscle (s. muscle), fetal brain (f. brain), natural killer cells (NK), neutrophils (N'phil), dendrocytes (DC), memory B cells (mem B), plasma cells (PC), bone marrow plasma cells (BM PC). Figures 77A-77D show microarray data showing the expression of TAHO5 in normal samples and in 35 diseased samples, such as significant expression in NHL samples. Abbreviations used in the Figures are designated as follows: Non-Hodgkin's Lymphoma (NHL), follicular lymphoma (FL), normal lymph node (NLN), normal B cells (NB), multiple myeloma cells (MM), small intestine (s. intestine), fetal liver (f. liver), smooth muscle (s. muscle), fetal brain (f. brain), natural killer cells (NK), neutrophils (N'phil), dendrocytes (DC), memory 63 WO 2005/049075 PCT/US2004/038262 B cells (mem B), plasma cells (PC), bone marrow plasma cells (BM PC). Figures 78A-78D show microarray data showing the expression of TAHO6 in normal samples and in diseased samples, such as significant expression in NHL samples and normal lymph node (NLN). Abbreviations used in the Figures are designated as follows: Non-Hodgkin's Lymphoma (NHL), follicular lymphoma (FL), normal lymph node (NLN), normal B cells (NB), multiple myeloma cells (MM), small intestine 5 (s. intestine), fetal liver (f. liver), smooth muscle (s. muscle), fetal brain (f. brain), natural killer cells (NK), neutrophils (N'phil), dendrocytes (DC), memory B cells (mem B), plasma cells (PC), bone marrow plasma cells (BM PC). Figures 79A-79D show microarray data showing the expression of TAHO8 in normal samples and in diseased samples, such as significant expression in NHL samples, multiple myeloma samples (MM), follicular [0 lymphoma (FL) and normal tonsil. Abbreviations used in the Figures are designated as follows: Non-Hodgkin's Lymphoma (NHL), follicular lymphoma (FL), normal lymph node (NLN), normal B cells (NB), multiple myeloma cells (IM), small intestine (s. intestine), fetal liver (f. liver), smooth muscle (s. muscle), fetal brain (f. brain), natural killer cells (NK), neutrophils (N'phil), dendrocytes (DC), memory B cells (mem B), plasma cells (PC), bone marrow plasma cells (BM PC). 15 Figures 80A-80B show microarray data showing the expression of TAHO9 in normal samples and in diseased samples, such as significant expression in normal B cells (circulating and lymph-node derived B cells) and not significantly expressed in non B cells and significantly expressed in normal plasma cells and multiple myeloma samples and the lymphoid organs, spleen and thymus. Figure 80 is shown as two panels. The panel in Figure 80A represents normal tissue from left to right as follows: salivary gland (1), bone marrow (2), tonsil (3), 20 fetal liver (4), blood (5), bladder (6), thymus (7), spleen (8), adrenal gland (9), fetal brain (10), small intestine (11), testes (12), heart (13), colon (14), lung (15), prostate (16), brain cerebellum (17), skeletal muscle (18), kidney (19), pancrease (20), placenta (21), uterus (22) and mammary gland (23). The panel in Figure 80B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells (9-11), 25 memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myeloma cells (39), CD138+ cells (40), multiple myeloma cells (41-46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma cell CD19+ (71), plasma cell CD19- (72), multiple myeloma cells (73-75). 30 Figures 81A-81D show microarray data showing the expression of TAHO1O in normal samples and in diseased samples, such as significant expression in NHL samples and multiple myeloma samples. Abbreviations used in the Figures are designated as follows: Non-Hodgkin's Lymphoma (NHL), follicular lymphoma (FL), normal lymph node (NLN), normal B cells (NB), multiple myeloma cells (MM), small intestine (s. intestine), fetal liver (f. liver), smooth muscle (s. muscle), fetal brain (f. brain), natural killer cells (NK), neutrophils (N'phil), 35 dendrocytes (DC), memory B cells (mem B), plasma cells (PC), bone marrow plasma cells (BM PC). Figures 82A-82D show microarray data showing the expression of TAHO 11 in normal samples and in diseased samples, such as significant expression in NHL samples, follicular lymphoma (FL), normal lymph node (NLN), normal b cells (NB), centroblasts and follicular mantle cells and normal spleen and normal tonsil. 64 WO 2005/049075 PCT/US2004/038262 Abbreviations used in the Figures are designated as follows: Non-Hodgkin's Lymphoma (NHL), follicular lymphoma (FL), normal lymph node (NLN), normal B cells (NB), multiple myeloma cells (MM), small intestine (s. intestine), fetal liver (f. liver), smooth muscle (s. muscle), fetal brain (f. brain), natural killer cells (NK), neutrophils (N'phil), dendrocytes (DC), memory B cells (mem B), plasma cells (PC), bone marrow plasma cells (BM PC). 5 Figures 83A-83D show microarray data showing the expression of TAHO12 in normal samples and in diseased samples, such as significant expression in normal B cells, multiple myeloma and normal prostate. Abbreviations used in the Figures are designated as follows: Non-Hodgkin's Lymphoma (NHL), follicular lymphoma (FL), normal lymph node (NLN), normal B cells (NB), multiple myeloma cells (MM), small intestine (s. intestine), fetal liver (f. liver), smooth muscle (s. muscle), fetal brain (f. brain), natural killer cells (NK), 0 neutrophils (N'phil), dendrocytes (DC), memory B cells (mem B), plasma cells (PC), bone marrow plasma cells (BM PC). Figures 84A-84B show microarray data showing the expression of TAHO13 in normal samples and in diseased samples, such as significant expression in multiple myeloma and normal blood. Figures 84A-84B are shown as two panels. The panel in Figure 84A represents normal tissue from left to right as follows: brain 15 cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon (8), prostate (9), lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 84B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), 20 multiple myeloma cells (9-11), memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myeloma cells (39), CD138+ cells (40), multiple myeloma cells (41-46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma cell CD19+ (71), plasma cell CD19- (72), multiple myeloma cells (73-75). 25 Figures 85A-85D show microarray data showing the expression of TAHO15 in normal samples and in diseased samples, such as significant expression in NHL samples. Abbreviations used in the Figures are designated as follows: Non-Hodgkin's Lymphoma (NHL), follicular lymphoma (FL), normal lymph node (NLN), normal B cells (NB), multiple myeloma cells (MM), small intestine (s. intestine), fetal liver (f. liver), smooth muscle (s. muscle), fetal brain (f. brain), natural killer cells (NK), neutrophils (N'phil), dendrocytes (DC), memory 30 B cells (mem B), plasma cells (PC), bone marrow plasma cells (BM PC). Figures 86A-86D show microarray data showing the expression of TAHO17 in normal samples and in diseased samples, such as significant expression in normal B cells (NB) and memory B cells (mem B). Abbreviations used in the Figures are designated as follows: Non-Hodgkin's Lymphoma (NHL), follicular lymphoma (FL), normal lymph node (NLN), normal B cells (NB), multiple myeloma cells (MM), small intestine 35 (s. intestine), fetal liver (f. liver), smooth muscle (s. muscle), fetal brain (f. brain), natural killer cells (NK), neutrophils (N'phil), dendrocytes (DC), memory B cells (mem B), plasma cells (PC), bone marrow plasma cells (BM PC). Figures 87A-87D show microarray data showing the expression of TAHO18 in normal samples and in 65 WO 2005/049075 PCT/US2004/038262 diseased samples, such as significant expression in NHL samples. Abbreviations used in the Figures are designated as follows: Non-Hodgkin's Lymphoma (NHL), follicular lymphoma (FL), normal lymph node (NLN), normal B cells (NB), multiple myeloma cells (MM), small intestine (s. intestine), fetal liver (f. liver), smooth muscle (s. muscle), fetal brain (f. brain), natural killer cells (NK), neutrophils (N'phil), dendrocytes (DC), memory B cells (mem B), plasma cells (PC), bone marrow plasma cells (BM PC). 5 Figures 88A-88D show microarray data showing the expression of TAHO20 in normal samples and in diseased samples, such as significant expression in multiple myeloma (MM), normal B cells (NB) and normal colon, placenta, lung and spleen and bone marrow plasma cells (BM PC). Abbreviations used in the Figures are designated as follows: Non-Hodgkin's Lymphoma (NHL), follicular lymphoma (FL), normal lymph node (NLN), normal B cells (NB), multiple myeloma cells (MM), small intestine (s. intestine), fetal liver (f. liver), smooth 0 muscle (s. muscle), fetal brain (f. brain), natural killer cells (NK), neutrophils (N'phil), dendrocytes (DC), memory B cells (mem B), plasma cells (PC), bone marrow plasma cells (BM PC). Figures 89A-89D show microarray data showing the expression of TAHO21 in normal samples and in diseased samples, such as significant expression in NHL samples, centrocytes and memory B cellAbbreviations used in the Figures are designated as follows: Non-Hodgkin's Lymphoma (NHL), follicular lymphoma (FL), .5 normal lymph node (NLN), normal B cells (NB), multiple myeloma cells (MM), small intestine (s. intestine), fetal liver (f. liver), smooth muscle (s. muscle), fetal brain (f. brain), natural killer cells (NK), neutrophils (N'phil), dendrocytes (DC), memory B cells (mem B), plasma cells (PC), bone marrow plasma cells (BM PC). Figures 90A-90D show microarray data showing the expression of TAHO25 in normal samples and in diseased samples, such as significant expression in NHL samples, normal lymph node, centroblasts, centrocytes 90 and memory B cells and in normal tonsil and spleen. Abbreviations used in the Figures are designated as follows: Non-Hodgkin's Lymphoma (NHL), follicular lymphoma (FL), normal lymph node (NLN), normal B cells (NB), multiple myeloma cells (MM), small intestine (s. intestine), fetal liver (f. liver), smooth muscle (s. muscle), fetal brain (f. brain), natural killer cells (NK), neutrophils (N'phil), dendrocytes (DC), memory B cells (mem B), plasma cells (PC), bone marrow plasma cells (BM PC). 15 Figures 91A-91D show microarray data showing the expression of TAHO26 in normal samples and in diseased samples, such as significant expression in in normal B cells. Abbreviations used in the Figures are designated as follows: Non-Hodgkin's Lymphoma (NHL), follicular lymphoma (FL), normal lymph node (NLN), normal B cells (NB), multiple myeloma cells (MM), small intestine (s. intestine), fetal liver (f. liver), smooth muscle (s. muscle), fetal brain (f. brain), natural killer cells (NK), neutrophils (N'phil), dendrocytes (DC), memory 30 B cells (mem B), plasma cells (PC), bone marrow plasma cells (BM PC). Figures 92A-92B show microarray data showing the expression of TAHO27 in normal samples and in diseased samples, such as significant expression in in multiple myeloma. Figures 92A-92D are shown as two panels. The panel in Figure 92A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon (8), prostate (9), 35 lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 92B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells 66 WO 2005/049075 PCT/US2004/038262 (9-11), memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myeloma cells (39), CD138+ cells (40), multiple myeloma cells (41-46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma cell CD19+ (71), plasma cell CD19- (72), multiple myeloma cells (73-75). 5 Figures 93A-93B show microarray data showing the expression of TAHO28 in normal samples and in diseased samples, such as significant expression in in normal plasma cells and in multiple myeloma. Figures 93A 93B are shown as two panels. The panel in Figure 93A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon (8), prostate (9), lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), 10 blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 93B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells (9-11), memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myeloma cells (39), 15 CD138+ cells (40), multiple myeloma cells (41-46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma cell CD19+ (71), plasma cell CD19- (72), multiple myeloma cells (73-75). Figures 94A-94B show microarray data showing the expression of TAHO29 in normal samples and in diseased samples, such as significant expression in in multiple myeloma, normal plasma cells and normal testes. 20 Figures 94A-94B are shown as two panels. The panel in Figure 94A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine(7), colon (8), prostate (9), lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 94B represents the samples tested from left to right as follows: NK 25 cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells (9-11), memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myeloma cells (39), CD138+ cells (40), multiple myeloma cells (41-46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma 30 cell CD19+ (71), plasma cell CD19- (72), multiple myeloma cells (73-75). Figures 95A-95B show microarray data showing the expression of TAHO30 in normal samples and in diseased samples, such as significant expression in in multiple myeloma and normal testes. Figures 95A-95B are shown as two panels. The panel in Figure 95A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon 35 (8), prostate (9), lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 95B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), 67 WO 2005/049075 PCT/US2004/038262 multiple myeloma cells (9-11), memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myeloma cells (39), CD138+. cells (40), multiple myeloma cells (41-46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma cell CD19+ (71), plasma cell CD 19- (72), multiple myeloma cells (73-75). 5 Figures 96A-96B show microarray data showing the expression of TAHO31 in normal samples and in diseased samples, such as significant expression in in multiple myeloma, plasma cells and normal brain cerebellum. Figures 96A-96B are shown as two panels. The panel in Figure 96A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon (8), prostate (9), lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), D thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 96B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells (9-11), memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple 5 myelorna cells (39), CD138+ cells (40), multiple myeloma cells (41-46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma cell CD 19+ (71), plasma cell CD19- (72), multiple myeloma cells (73-75). Figures 97A-97B show microarray data showing the expression of TAHO32 in normal samples and in diseased samples, such as significant expression in in multiple myeloma and normal prostate. Figures 97A-97B 0 are shown as two panels. The panel in Figure 97A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon (8), prostate (9), lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 97B represents the samples tested from left to right as follows: NK cells (1), neutrophils .5 (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells (9-11), memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myeloma cells (39), CD138+ cells (40), multiple myeloma cells (41-46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma cell CD 19+ (71), 30 plasma cell CD19- (72), multiple myeloma cells (73-75). Figures 98A-98B show microarray data showing the expression of TAHO33 in normal samples and in diseased samples, such as significant expression in in multiple myeloma. Figures 98A-98B are shown as two panels- The panel in Figure 98A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon (8), prostate (9), 35 lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 98B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells 68 WO 2005/049075 PCT/US2004/038262 (9-11), memory B cells (12), naiveB cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myeloma cells (39), CD138+cells (40), multiple myeloma cells (41-46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma cell CD19+ (71), plasma cell CD19- (72), multiple myeloma cells (73-75). 5 Figures 99A-99B show microarray data showing the expression of TAHO34 in normal samples and in diseased samples, such as significant expression in in multiple myeloma, normal plasma cells and normal blood. Figures 98A-98B are shown as two panels. The panel in Figure 94A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon (8), prostate (9), lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), 0 thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 94B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells (9-11), memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple 5 myeloma cells (39), CD138+ cells (40), multiple myeloma cells (41-46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma cell CD 19+ (71), plasma cell CD 19- (72), multiple myeloma cells (73-75). Figures IOOA-100B show microarray data showing the expression of TAHO35 in normal samples and in diseased samples, such as significant expression in in multiple myeloma. Figures lOOA-lOOB are shown as two 0 panels. The panel in Figure 100A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon (8), prostate (9), lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 1 OOB represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells 5 (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells (9-11), memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myeloma cells (39), CD138+ cells (40), multiple myeloma cells (41-46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma cell CD19+ (71), plasma cell CD19- (72), multiple 30 myeloma cells (73-75). Figures 101 show microarray data showing the expression of TAHO36 in normal samples and in diseased samples, such as significant expression in in multiple myeloma. Figures 101A-101B are shown as two panels. The panel in Figure 101A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon (8), prostate (9), lung (10), 35 uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 101B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells 69 (9-11), memory B cells (12) , naive B cells (13) , centrocytes (14), centroblasts (15-16), centrocytes (17) , memory B cells (18), naive B cells (19), normal B cells (20-38) , multiple myeloma cells (39), CD138+ cells (40), multiple myeloma cells 5 (41-46) , tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma cell CD19+ (71), plasma cell CD19- (72), multiple myeloma cells (73-75). 10 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS I. Definitions In the claims which follow and in the preceding description of the invention, except where the context requires 15 otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the 20 invention. The terms "TAHO polypeptide" and "TAHO" as used herein and when immediately followed by a numerical designation, refer to various polypeptides, wherein the complete designation (i .e. ,TAHO/number) 25 refers to specific polypeptide sequences as described herein. The terms "TAHO/number polypeptide" and "TAHO/number" wherein the term "number" is provided as an actual numerical designation as used herein encompass native sequence polypeptides, polypeptide variants and fragments of native sequence 30 polypeptides and polypeptide variants (which are further defined herein) . The TAHO polypeptides described herein may be isolated from a variety of sources, such as from human tissue types or from another source, or prepared by recombinant or synthetic methods. The term "TAHO polypeptide" refers to each individual 35 TAHO/number polypeptide disclosed herein. All disclosures in -70 2733288_1 (GHMatters) P60826 AU.2 7/07/11 this specification which refer to the "TAHO polypeptide" refer to each of the polypeptides individually as well as jointly. For example, descriptions of the preparation of, purification of, derivation of, formation of antibodies to or against, formation of TAHO binding 5 oligopeptides to or against, formation of TAHO binding organic molecules to or against, administration of, compositions containing, treatment of a disease with, etc., pertain to each polypeptide of the invention individually. The term "TAHO polypeptide" also includes variants of the TAHO/number polypeptides disclosed herein. .0 "TAHO1" is also herein referred to as "RP105", "CD180" or "LY64". "TAHO2" is also herein referred to as "CD20" or "MS4A1". "TAHO3" is also herein referred to as "FcRH2" or "SPAP1". "TAHO4" is also herein referred to as "CD79A". "TAHO5" is also herein referred to as "CD79B". "TAHO6" is also herein referred to as "CR2" or "CD21". .5 "TAHO17" is also herein referred to as "CCR6". "TAHO8" is also herein referred to as "CD72". "TAHO9" is also herein referred to as "P2RX5" or "UNQ2170". "TAH010" is also herein referred to as "HLA-DOB" . "TAHO11" is also herein referred to as "CXCR5" or "BLR1". "TAHO12" is also herein referred to as "FCER2" or "CD23". "TAHO13" is also herein ?0 referred to as "GPR2" or "UNQ12100". "TAH014" is also herein referred to as "BTig". "TAHO15" is also herein referred to as "NAG14" or to as "SLGC16270". "TAHO17" is also herein referred to as "FcRH1" or "IRTA5". "TAHO18" is also herein referred to as "IRTA2" or "FcRH5". "TAHO19" is also herein referred to as "ATWD578". "TAHO20" is also 25 herein referred to as "FcRH3" or "IRTA3". "TAH021" is also herein referred to as "IRTAl" or "FcRH4". "TAHO22" is also herein referred to as "FcRH6" or "FAIL". "TAHO23" is also herein referred to as "BCMA". "TAHO24" is also herein referred to as "239287_at". "TAHO25" is also herein referred to as "CD19". "TAHO26" is also herein 30 referred to as "CD22". "TAHO27" is also herein referred to as "CXCR3" or "UNQ8371". "TAHO28" is also herein referred to as "SILV" or "UNQ1747". "TAHO29" is also herein referred to as "KCNK4" or "UNQ11492". "TAHO30" is also herein referred to as "CXorfl" or "UNQ9197". "TAHO31" is also herein referred to as "LRRN5" or 35 "tJNQ256". "TAHO32" is also herein referred to as "UNQ9308". -70a 2733288_1 (GiManers) P60826 AU 2 7107111 WO 2005/049075 PCTIUS2004/038262 "TAHO33" is also herein referred to as "IGSF4B" or "UNQ225". "TAHO34" is also herein referred to as "BC021178" or "UNQ13267". "TAHO35" is also herein referred to as "FU12681" or "UNQ6034". "TAH036" is also herein referred to as "I_928646" or "UNQ12376". A "native sequence TAHO polypeptide" comprises a polypeptide having the same amino acid sequence as the corresponding TAHO polypeptide derived from nature. Such native sequence TAHO polypeptides can be 5 isolated from nature or can be produced by recombinant or synthetic means. The term "native sequence TAHO polypeptide" specifically encompasses naturally-occurring truncated or secreted forms of the specific TAHO polypeptide (e.g., an extracellular domain sequence), naturally-occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of the polypeptide. In certain embodiments of the invention, the native sequence TAHO polypeptides disclosed herein are mature or full-length native sequence polypeptides [0 comprising the full-length amino acids sequences shown in the accompanying figures. Start and stop codons (if indicated) are shown in bold font and underlined in the figures. Nucleic acid residues indicated as "N" in the accompanying figures are any nucleic acid residue. However, while the TAHO polypeptides disclosed in the accompanying figures are shown to begin with methionine residues designated herein as amino acid position 1 in the figures, it is conceivable and possible that other methionine residues located either upstmam or downstream 15 from the amino acid position I in the figures may be employed as the starting amino acid residue for the TAHO polypeptides. The TAHO polypeptide "extracellular domain" or "ECD" refers to a form of the TAHO polypeptide which is essentially free of the transmembrane and cytoplasmic domains. Ordinarily, a TAHO polypeptide ECD will have less than 1% of such transmembrane and/or cytoplasmic domains and preferably, will have less than 0.5% 20 of such domains. It will be understood that any transmembrane domains identified for the TAHO polypeptides of the present invention are identified pursuant to criteria routinely employed in the art for identifying that type of hydrophobic domain. The exact boundaries of a transmembrane domain may vary but most likely by no more than about 5 amino acids at either end of the domain as initially identified herein. Optionally, therefore, an extracellular domain of a TAHO polypeptide may contain from about 5 or fewer amino acids on either side of the 25 transmernbrane domain/extracellular domain boundary as identified in the Examples or specification and such polypeptides, with or without the associated signal peptide, and nucleic acid encoding them, are contemplated by the present invention. The approximate location of the "signal peptides" of the various TAHO polypeptides disclosed herein may be shown in the present specification and/or the accompanying figures. It is noted, however, that the C 30 terminal boundary of a signal peptide may vary, but most likely by no more than about 5 amino acids on either side of the signal peptide C-terminal boundary as initially identified herein, wherein the C-terminal boundary of the signal peptide may be identified pursuant to criteria routinely employed in the art for identifying that type of amino acid sequence element (e.g., Nielsen et al., Prot Eng. 10:1-6 (1997) and von Heinje et al., Nucl. Acids. Res. 14:4683-4690 (1986)). Moreover, it is also recognized that, in some cases, cleavage of a signal sequence from 35 a secreted polypeptide is not entirely uniform, resulting in more than one secreted species. These mature polypeptides, where the signal peptide is cleaved within no more than about 5 amino acids on either side of the C-terminal boundary of the signal peptide as identified herein, and the polynucleotides encoding them, are contemplated by the present invention. 71 WO 2005/049075 PCT/US2004/038262 "TAHO polypeptide variant" means a TAHO polypeptide, preferably an active TAHO polypeptide, as defined herein having at least about 80% amino acid sequence identity with a full-length native sequence TAHO polypeptide sequence as disclosed herein, a TAHO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a TAHO polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length TAHO polypeptide sequence as disclosed herein (such as those encoded by a 5 nucleic acid that represents only a portion of the complete coding sequence for a full-length TAHO polypeptide). Such TAHO polypeptide variants include, for instance, TAHO polypeptides wherein one or more amino acid residues are added, or deleted, at the N- or C-terminus of the full-length native amino acid sequence. Ordinarily, a TAHO polypeptide variant will have at least about 80% amino acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% [0 amino acid sequence identity, to a full-length native sequence TAHO polypeptide sequence as disclosed herein, a TAHO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a TAHO polypeptide, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of a full-length TAHO polypeptide sequence as disclosed herein. Ordinarily, TAHO variant polypeptides are at least about 10 amino acids in length, alternatively at least about 20, 30, 40, 50, 60,70, 80,90, 100, 110, 120, 130, 140, L5 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390,400,410,420,430,440,450,460,470,480,490,500, 510, 520,530,540,550,560,570,580, 590, 600 amino acids in length, or more. Optionally, TAHO variant polypeptides will have no more than one conservative amino acid substitution as compared to the native TAHO polypeptide sequence, alternatively no more than 2, 3, 4, 5, 6, 7, 8, 9, or 10 conservative amino acid substitution as compared to the native TAHO polypeptide 20 sequence. "Percent (%) amino acid sequence identity" with respect to the TAHO polypeptide sequences identified herein is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the specific TAHO polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions 25 as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For purposes herein, however, % amino acid 30 sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through 35 Genentech, Inc., South San Francisco, California or may be compiled from the source code provided in Table 1 below. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary. In situations where ALIGN-2 is employed for amino acid sequence comparisons, the % amino acid 72 WO 2005/049075 PCT/US2004/038262 sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows: 100 times the fraction X/Y where X is the nurnber of amino acid residues scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of ) B to A. As examples of % amino acid sequence identity calculations using this method, Tables 2 and 3 demonstrate how to calculate the % amino acid sequence identity of the amino acid sequence designated "Comparison Protein" to the amino acid sequence designated "TAHO", wherein "TAHO" represents the amino acid sequence of a hypothetical TAHO polypeptide of interest, "Comparison Protein" represents the amino acid sequence of a polypeptide against which the "TAHO" polypeptide of interest is being compared, and "X, "Y" and 5 "Z" each represent different hypothetical amino acid residues. Unless specifically stated otherwise, all % amino acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program. "TAHO variant polynucleotide" or "TAHO variant nucleic acid sequence" means a nucleic acid molecule which encodes a TAHO polypeptide, preferably an active TAHO polypeptide, as defined herein and which has 0 at least about 80% nucleic acid sequence identity with a nucleotide acid sequence encoding a full-length native sequence TAHO polypeptide sequence as disclosed herein, a full-length native sequence TAHO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a TAHO polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length TAHO polypeptide sequence as disclosed herein (such as those encoded by a nucleic acid that represents only a portion of the complete coding 5 sequence for a full-length TAHOpolypeptide). Ordinarily, a TAHO variant polynucleotide will have at least about 80% nucleic acid sequence identity, alternatively at least about 81%, 82%,83%,84%,85%,86%, 87%,88%,89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% nucleic acid sequence identity with a nucleic acid sequence encoding a full-length native sequence TAHO polypeptide sequence as disclosed herein, a full-length native sequence TAHO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular 30 domain of a TAHO polypeptide, with or without the signal sequence, as disclosed herein or any other fragment of a full-length TAH1IO polypeptide sequence as disclosed herein. Variants do not encompass the native nucleotide sequence. Ordinarily, TAHO variant polynucleotides are at least about 5 nucleotides in length, alternatively at least about 6,7,8,9, 10, 11, 12, 13,14,15, 16, 17, 18, 19,20,21,22,23,24,25,26,27,28, 29,30,35,40,45,50,55, 35 60,65,70,75,80, 85,90,95,100,105,110,115,120, 125,130,135,140,145,150,155,160,165,170,175, 180, 185,190,195,200,210, 220,230,240,250,260,270,280,290,300,310,320,330,340,350,360, 370,380,390, 400,410,420,430,440,450,460,470,480,490,500, 510,520,530,540,550,560,570,580,590,600, 610,620, 630,640,650, 660,670,680,690,700,710,720,730,740,750,760,770,780,790, 800,810,820,830,840,850, 73 WO 2005/049075 PCT/US2004/038262 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, or 1000 nucleotides in length, wherein in this context the term "about" means the referenced nucleotide sequence length plus or minus 10% of that referenced length. "Percent (%) nucleic acid sequence identity" with respect to TAHO-encoding nucleic acid sequences identified herein is defined as the percentage of nucleotides in a candidate sequence that are identical with the 5 nucleotides in the TAHO nucleic acid sequence of interest, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent nucleic acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. For purposes herein, however, % nucleic acid sequence identity values are generated using the sequence ) comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN 2 program is publicly available through Genentech, Inc., South San Francisco, California or may be compiled from 5 the source code provided in Table 1 below. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary. In situations where ALIGN-2 is employed for nucleic acid sequence comparisons, the % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D (which 0 can alternatively be phrased as a given nucleic acid sequence C that has or comprises a certain % nucleic acid sequence identity to, with, or against a given nucleic acid sequence D) is calculated as follows: 100 times the fraction W/Z 5 where W is the number of nucleotides scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of C and D, and where Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C. As examples of % nucleic acid sequence identity calculations, Tables 4 and 5, demonstrate how to calculate the % 30 nucleic acid sequence identity of the nucleic acid sequence designated "Comparison DNA" to the nucleic acid sequence designated "TAHO-DNA", wherein "TAHO-DNA" represents a hypothetical TAHO-encoding nucleic acid sequence of interest, "Comparison DNA" represents the nucleotide sequence of a nucleic acid molecule against which the "TAHO-DNA" nucleic acid molecule of interest is being compared, and "N", "L" and "V" each represent different hypothetical nucleotides. Unless specifically stated otherwise, all % nucleic acid sequence 35 identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program. In other embodiments, TAHO variant polynucleotides are nucleic acid molecules that encode a TAHO polypeptide and which are capable of hybridizing, preferably under stringent hybridization and wash conditions, 74 WO 2005/049075 PCT/US2004/038262 to nucleotide sequences encoding a full-length TAHO polypeptide as disclosed herein. TAHO variant polypeptides may be those that are encoded by a TAHO variant polynucleotide. The term "full-length coding region" when used in reference to a nucleic acid encoding a TAHO polypeptide refers to the sequence of nucleotides which encode the full-length TAHO polypeptide of the invention (which is often shown between start and stop codons, inclusive thereof, in the accompanying figures). The term 5 "full-length coding region" when used in reference to an ATCC deposited nucleic acid refers to the TAHO polypeptide-encoding portion of the cDNA that is inserted into the vector deposited with the ATCC (which is often shown between start and stop codons, inclusive thereof, in the accompanying figures (start and stop codons are bolded and underlined in the figures)). "Isolated," when used to describe the various TAHO polypeptides disclosed herein, means polypeptide 0 that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the polypeptide will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS 5 PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Isolated polypeptide includes polypeptide in situ within recombinant cells, since at least one component of the TAHO polypeptide natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step. An "isolated" TAHO polypeptide-encoding nucleic acid or other polypeptide-encoding nucleic acid is 0 a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the polypeptide-encoding nucleic acid. An isolated polypeptide-encoding nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated polypeptide-encoding nucleic acid molecules therefore are distinguished from the specific polypeptide encoding nucleic acid molecule as it exists in natural cells. However, an isolated polypeptide-encoding nucleic '5 acid molecule includes polypeptide-encoding nucleic acid molecules contained in cells that ordinarily express the polypeptide where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells. The term "control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for 30 example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers. Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or 35 enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is 75 WO 2005/049075 PCT/US20041038262 accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. "Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower 5 temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel D) et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995). "Stringent conditions" or "high stringency conditions", as defined herein, may be identified by those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0. 1% sodium dodecyl sulfate at 50*C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% 5 polyvinylpyrrolidone/50rnM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42*C; or (3) overnight hybridization in a solution that employs 50% formamide, 5 x SSC (0.75 M NaCI, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 pg/ml), 0.1% SDS, and 10% dextran sulfate at42*C, with a 10 minute wash at 42*C in 0.2 x SSC (sodium chloride/sodium citrate) followed by a 10 minute high-stringency wash .0 consisting of 0.1 x SSC containing EDTA at 55*C. "Moderately stringent conditions" may be identified as described by Sambrooket al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and %SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37*C in a solution comprising: 20% !5 formamide, 5 x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 x Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1 x SSC at about 37-50*C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like. The term "epitope tagged" when used herein refers to a chimeric polypeptide comprising a TAHO 30 polypeptide or anti-TAIHO antibody fused to a "tag polypeptide". The tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the polypeptide to which it is fused. The tag polypeptide preferably also is fairly unique so that the antibody does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8 and 50 amino acid residues (preferably, between about 10 35 and 20 amino acid residues). "Active" or "activity" for the purposes herein refers to form(s) of a TAHO polypeptide which retain a biological and/or an immunological activity of native or naturally-occurring TAHO, wherein "biological" activity refers to a biological function (either inhibitory or stimulatory) caused by a native or naturally-occurring TAHO 76 WO 20051049075 PCT/US2004/038262 other than the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring TAHO and an "immunological" activity refers to the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring TAHO. The term "antagonist" is used in the broadest sense, and includes any molecule that partially or fully blocks, inhibits, or neutralizes a biological activity of a native TAHO polypeptide disclosed herein. In a similar 5 manner, the term "agonist" is used in the broadest sense and includes any molecule that mimics a biological activity of a native TAHO polypeptide disclosed herein. Suitable agonist or antagonist molecules specifically include agonist or antagonist antibodies or antibody fragments, fragments or amino acid sequence variants of native TAHO polypeptides, peptides, antisense oligonucleotides, small organic molecules, etc. Methods for identifying agonists or antagonists of a TAHO polypeptide may comprise contacting a TAHO polypeptide with a candidate agonist or 0 antagonist molecule and measuring a detectable change in one or more biological activities normally associated with the TAHO polypeptide. "Treating" or "treatment" or "alleviation" refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. Those in need of treatment include those already with the disorder as well as those prone to have 5 the disorder or those in whom the disorder is to be prevented. A subject or mammal is successfully "treated" for aTAHOpolypeptide-expressing cancer if, after receiving a therapeutic amount of an anti-TAHO antibody, TAHO binding oligopeptide or TAHO binding organic molecule according to the methods of the present invention, the patient shows observable and/or measurable reduction in or absence of one or more of the following: reduction in the number of cancer cells or absence of the cancer cells; reduction in the tumor size; inhibition (i.e., slow to t0 some extent and preferably stop) of cancer cell infiltration into peripheral organs including the spread of cancer into soft tissue and bone; inhibition (i.e., slow to some extent and preferably stop) of tumor metastasis; inhibition, to some extent, of tumor growth; and/or relief to some extent, one or more of the symptoms associated with the specific cancer; reduced morbidity and mortality, and improvement in quality of life issues. To the extent the anti TAHO antibody or TAHO binding oligopeptide may prevent growth and/or kill existing cancer cells, it may be !5 cytostatic and/or cytotoxic. Reduction of these signs or symptoms may also be felt by the patient. The above parameters for assessing successful treatment and improvement in the disease are readily measurable by routine procedures familiar to a physician. For cancer therapy, efficacy can be measured, for example, by assessing the time to disease progression (TTP) and/or determining the response rate (RR). Metastasis can be determined by staging tests and by bone scan and tests for calcium level and other enzymes to determine 30 spread to the bone. CT scans can also be done to look for spread to the pelvis and lymph nodes in the area. Chest X-rays and measurement of liver enzyme levels by known methods are used to look for metastasis to the lungs and liver, respectively. Other routine methods for monitoring the disease include transrectal ultrasonography (TRUS) and transrectal needle biopsy (TRNB). For bladder cancer, which is a more localized cancer, methods to determine progress of disease include 35 urinary cytologic evaluation by cystoscopy, monitoring for presence of blood in the urine, visualization of the urothelial tract by sonography or an intravenous pyelogram, computed tomography (CT) and magnetic resonance imaging (MRI). The presence of distant metastases can be assessed by CT of the abdomen, chest x-rays, or radionuclide imaging of the skeleton. 77 WO 20051049075 PCTIUS2004/038262 "Chronic" administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time. "Intermittent" administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature. "Mammal" for purposes of the treatment of, alleviating the symptoms of a cancer refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as 5 dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, etc. Preferably, the mammal is human. Administration "in combination with" one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order. "Carriers" as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers which are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, 5 mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN@, polyethylene glycol (PEG), and PLURONICS@. By "solid phase" or "solid support" is meant a non-aqueous matrix to which an antibody, TAHO binding oligopeptide or TAHO binding organic molecule of the present invention can adhere or attach. Examples of solid "0 phases encompassed herein include those formed partially or entirely of glass (e.g., controlled pore glass), polysaccharides (e.g., agarose), polyacrylamides, polystyrene, polyvinyl alcohol and silicones. In certain embodiments, depending on the context, the solid phase can comprise the well of an assay plate; in others it is a purification column (e.g., an affinity chromatography column). This term also includes a discontinuous solid phase of discrete particles, such as those described in U.S. Patent No. 4,275,149. 5 A "liposome" is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug (such as a TAHO polypeptide, an antibody thereto or a TAHO binding oligopeptide) to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes. A "small" moleculeor "small" organic molecule is defined herein to have a molecular weight below about 30 500 Daltons. An "effective amount" of a polypeptide, antibody, TAHO binding oligopeptide, TAHO binding organic molecule or an agonist or antagonist thereof as disclosed herein is an amount sufficient to carry out a specifically stated purpose. An "effective amount" may be determined empirically and in a routine manner, in relation to the stated purpose. 35 The term "therapeutically effective amount" refers to an amount of an antibody, polypeptide, TAHO binding oligopeptide, TAHO binding organic molecule or other drug effective to "treat" a disease or disorder in a subject or mammal. In the case of cancer, the therapeutically effective amount of the drug may reduce the number of cancer cells; reduce the tumor size; inhibit (i.e., slow to some extent and preferably stop) cancer cell 78 WO 2005/049075 PCT/US2004/038262 infiltration into peripheral organs; inhibit (i.e., slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the cancer. See the definition herein of "treating". To the extent the drug may prevent growth and/or kill existing cancer cells, it may be cytostatic and/or cytotoxic. A "growth inhibitory amount" of an anti-TAHO antibody, TAHO polypeptide, TAHO binding 5 oligopeptide or TAHO binding organic molecule is an amount capable of inhibiting the growth of a cell, especially tumor, e.g., cancer cell, either in vitro or in vivo. A "growth inhibitory amount" of an anti-TAHO antibody, TAHO polypeptide, TAHO binding oligopeptide or TAHO binding organic molecule for purposes of inhibiting neoplastic cell growth may be determined empirically and in a routine manner. A "cytotoxic amount" of an anti-TAHO antibody, TAHO polypeptide, TAHO binding oligopeptide or 0 TAHO binding organic molecule is an amount capable of causing the destruction of a cell, especially tumor, e.g., cancer cell, either in vitro or in vivo. A "cytotoxic amount" of an anti-TAHO antibody, TAHO polypeptide, TAHO binding oligopeptide or TAHO binding organic molecule for purposes of inhibiting neoplastic cell growth may be determined empirically and in a routine manner. The term "antibody" is used in the broadest sense and specifically covers, for example, single anti-TAHO 5 monoclonal antibodies (including agonist, antagonist, and neutralizing antibodies), anti-TAHO antibody compositions with polyepitopic specificity, polyclonal antibodies, single chain anti-TAHO antibodies, and fragments of anti-TAHO antibodies (see below) as long as they exhibit the desired biological or immunological activity. The term "immunoglobulin" (Ig) is used interchangeable with antibody herein. An "isolated antibody" is one which has been identified and separated and/or recovered from a component 0 of its natural environment. Contaminant components of its natural environment are materials which would interfere with therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning 65 cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step. The basic 4-chain antibody unit is a heterotetrameric glycoprotein composed of two identical light (L) 30 chains and two identical heavy (H) chains (an IgM antibody consists of 5 of the basic heterotetramer unit along with an additional polypeptide called J chain, and therefore contain 10 antigen binding sites, while secreted IgA antibodies can polymerize to form polyvalent assemblages comprising 2-5 of the basic 4-chain units along with J chain). In the case of IgGs, the 4-chain unit is generally about 150,000 daltons. Each L chain is linked to a H chain by one covalent disulfide bond, while the two H chains are linked to each other by one or more disulfide 35 bonds depending on the H chain isotype. Each H and L chain also has regularly spaced intrachain disulfide bridges. Each H chain has at the N-terminus, a variable domain () followed by three constant domains (C 1 ) for each of the a and y chains and four C 1 domains for pi and e isotypes. Each L chain has at the N-terminus, a variable domain (V 1 ) followed by a constant domain (CL) at its other end. The VL is aligned with the V 1 and the 79 WO 2005/049075 PCT/US2004/038262 CL is aligned with the first constant domain of the heavy chain (CH)' Particular amino acid residues are believed to form an interface between the light chain and heavy chain variable domains. The pairing of a V H and VL together forms a single antigen-binding site. For the structure and properties of the different classes of antibodies, see, e.g., Basic and Clinical Immunology, 8th edition, Daniel P. Stites, Abba I. Terr and Tristram G. Parslow (eds.), Appleton & Lange, Norwalk, CT, 1994, page 71 and Chapter 6. The L chain from any vertebrate species can be assigned to one of two clearly distinct types, called kappa and lambda, based on the amino acid sequences of their constant domains. Depending on the amino acid sequence of the constant domain of their heavy chains (C H), immunoglobulins can be assigned to different classes or isotypes. There are five classes of inmunoglobulins: IgA, IgD, IgE, IgG, and IgM, having heavy chains designated a, 8, e, y, and pt, respectively. The y and a classes are further divided into subclasses on the basis of relatively ) minor differences in CH sequence and function, e.g., humans express the following subclasses: IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2. The term "variable" refers to the fact that certain segments of the variable domains differ extensively in sequence among antibodies. TheVdornain mediates antigen binding and define specificity of aparticular antibody for its particular antigen. However, the variability is not evenly distributed across the 110-amino acid span of the 5 variable domains. Instead, the V regions consist of relatively invariant stretches called framework regions (FRs) of 15-30 amino acids separated by shorter regions of extreme variability called "hypervariable regions" that are each 9-12 amino acids long. The variable domains of native heavy and light chains each comprise four FRs, largely adopting a n-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the -sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRs and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC). 5 The term "hypervariableregion" when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding. The hypervariable region generally comprises amino acid residues from a "complementarity determining region" or "CDR" (e.g. around about residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the VL, and around about 1-35 (H1), 50-65 (H2) and 95-102 (H3) in the VH; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. 30 (1991)) and/or those residues from a "hypervariable loop" (e.g. residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the VL, and 26-32 (Hi), 53-55 (H2) and 96-101 (H3) in the VH; Chothia and Lesk J. Mol. Biol. 196:901-917 (1987)). The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except 35 for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed againstasingle antigenic site. Furthermore, in contrast to polyclonal antibody preparations which include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies 80 WO 2005/049075 PCT/US2004/038262 are advantageous in that they may be synthesized uncontaminated by other antibodies. The modifier "monoclonal" is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies useful in the present invention may be prepared by the hybridoma methodology first described by Kohler et al., Nature, 256:495 (1975), or may be made using recombinant DNA methods in bacterial, eukaryotic animal or plant cells (see, e.g., U.S. Patent No. 4,816,567). The "monoclonal antibodies" may also be 5 isolated from phage antibody libraries using the techniques described in Clackson et al., Nature 352:624-628 (1991) and Marks et al., J. Mol, Biol., 222:581-597 (1991), for example. The monoclonal antibodies herein include "chimeric" antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with 0 or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (see U.S. PatentNo. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)). Chimeric antibodies of interest herein include "primatized" antibodies comprising variable domain antigen-binding sequences derived fmrm a non-human primate (e.g. Old World Monkey, Ape etc), and human constant region 5 sequences. An "intact" antibody is one which comprises an antigen-binding site as well as a C, and at least heavy chain constant domains, CH , CH 2 and CH 3 . The constant domains may be native sequence constant domainse(g. human native sequence constant domains) or amino acid sequence variant thereof. Preferably, the intact antibody has one or more effector functions. "Antibody fragments" comprise a portion of an intact antibody, preferably the antigen binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab', F(ab') 2, and Fv fragments; diabodies; linear antibodies (see U.S. Patent No. 5,641,870, Example 2; Zapata et al., Protein Eng. 8(10): 1057-1062 [1995]); single-chain antibody molecules; and multispecific antibodies formed from antibody fragments. Z5 Papain digestion of antibodies produces two identical antigen-binding fragments, called "Fab" fragments, and a residual "Fc" fragment, a designation reflecting the ability to crystallize readily. The Fab fragment consists of an entire L chain along with the variable region domain of the H chain (VH), and the first constant domain of one heavy chain (CH1). Each Fab fragment is monovalent with respect to antigen binding, i.e., it has a single antigen-binding site. Pepsin treatment of an antibody yields a single large F(ab') 2 fragment which roughly 30 corresponds to two disulfide linked Fab fragments having divalent antigen-binding activity and is still capable of cross-linking antigen. Fab' fragments differ from Fab fragments by having additional few residues at the carboxy terminus of the C H1 domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab') 1 antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. 35 Other chemical couplings of antibody fragments are also known. The Fc fragment comprises the carboxy-terminal portions of both H chains held together by disulfides. The effector functions of antibodies are determined by sequences in the Fc region, which region is also the part recognized by Fc receptors (FcR) found on certain types of cells. 81 WO 2005/049075 PCT/US2004/038262 "Fv" is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. This fragment consists of a dirner of one heavy- and one light-chain variable region domain in tight, non-covalent association. From the folding of these two domains emanate six hypervariable loops (3 loops each from the H and L chain) that contribute the amino acid residues for antigen binding and confer antigen binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an 5 antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site. "Single-chain Fv" also abbreviated as "sFv" or "scFv" are antibody fragments that comprise the VH and V, antibody domains connected into a single polypeptide chain. Preferably, the sFv polypeptide further comprises a polypeptide linker between the V, and V, domains which enables the sFv to form the desired structure for antigen binding. For a review of sFv, see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, C) Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994); Borrebaeck 1995, infra. The term "diabodies" refers to small antibody fragments prepared by constructing sFv fragments (see preceding paragraph) with short linkers (about 5-10 residues) between the V, and V, domains such that inter-chain but not intra-chain pairing of the V domains is achieved, resulting in a bivalent fragment, i.e., fragment having two antigen-binding sites. Bispecific diabodies are heterodimers of two "crossover" sFv fragments in which the VH 5 and VL domains of the two antibodies are present on different polypeptide chains. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993). "Humanized" forms of non-human (e.8., rodent) antibodies are chimeric antibodies that contain minimal sequence derived from the non-human antibody. For the most part, humanized antibodies are human !0 immunoglobulins (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or non human primate having the desired antibody specificity, affinity, and capability. In some instances, framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the 2,5 donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human 30 immunoglobulin. For further details, see Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992). A "species-dependent antibody," e.g., a mammalian anti-human IgE antibody, is an antibody which has a strongerbinding affinity for an antigen from a first mammalian species than it has for ahomologue of that antigen from a second mammalian species. Normally, the species-dependent antibody "bind specifically" to a human 35 antigen (i.e., has a binding affinity (Kd) value of no more than about 1 x 10- M, preferably no more than about 1 x 10-8 and most preferably no more than about 1 x 10- M) but has a binding affinity for a homologue of the antigen from a second non-human mammalian species which is at least about 50 fold, or at least about 500 fold, or at least about 1000 fold, weaker than its binding affinity for the human antigen. The species-dependent antibody 82 WO 2005/049075 PCT/US2004/038262 can be of any of the various types of antibodies as defined above, but preferably is a humanized orhuman antibody. A "TAHO binding oligopeptide" is an oligopeptide that binds, preferably specifically, to a TAHO polypeptide as described herein. TAHO binding oligopeptides may be chemically synthesized using known oligopeptide synthesis methodology or may be prepared and purified using recombinant technology. TAHO binding oligopeptides are usually at least about 5 amino acids in length, alternatively at least about 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,20,21,22,23,24, 25,26, 27, 28, 29,30, 31, 32, 33,34, 35, 36, 37,38,39, 40, 41,42,43,44,45,46,47,48,49,50,51,52, 53, 54, 55,56,57,58, 59, 60, 61, 62, 63,64,65,66,67, 68, 69,70, 71,72,73, 74,75,76,77,78,79, 80,81, 82, 83, 84, 85, 86, 87, 88, 89, 90,91,92, 93, 94,95,96, 97,98, 99, or 100 amino acids in length or more, wherein such oligopeptides that are capable of binding, preferably specifically, to a TAHO polypeptide as described herein. TAHO binding oligopeptides may be identified without undue ) experimentation using well known techniques. In this regard, it is noted that techniques for screening oligopeptide libraries for oligopeptides that are capable of specifically binding to a polypeptide target are well known in the art (see, e.g., U.S. Patent Nos. 5,556,762,5,750,373,4,708,871, 4,833,092, 5,223,409,5,403,484, 5,571,689, 5,663,143; PCI' Publication Nos. WO 84/03506 and W084/03564; Geysen et al., Proc. Natl. Acad. Sci. U.S.A., 81:3998-4002(1984); Geysen et al., Proc. Natl. Acad. Sci. U.S.A., 82:178-182(1985); Geysen et al., 5 in Synthetic Peptides as Antigens, 130-149 (1986); Geysen et al., J. Immunol. Meth., 102:259-274 (1987); Schoofs et al., J. Immunol., 140:611-616(1988), Cwirla, S. E. et al. (1990) Proc. Natl. Acad. Sci. USA, 87:6378; Lowman, H.B. et al. (1991) Biochemistry, 30:10832; Clackson, T. et al. (1991) Nature, 352: 624; Marks, J. D. et al. (1991), J. Mol. Biol., 222:581; Kang,.A.S. et al. (1991) Proc. Natl. Acad. Sci. USA, 88:8363, and Smith, G. P. (1991) Current Opin. Biotechnol., 2:668). 0 A "TAHO binding organic molecule" is an organic molecule other than an oligopeptide or antibody as defined herein that binds, preferably specifically, to a TAHO polypeptide as described herein. TAHO binding organic molecules may be identified and chemically synthesized using known methodology (see, e.g., PCT Publication Nos. W00/00823 and WOOO/39585). TAHO binding organic molecules are usually less than about 2000 daltons in size, alternatively less than about 1500,750,500, 250 or 200 daltons in size, wherein such organic 5 molecules that are capable of binding, preferably specifically, to a TAHO polypeptide as described herein may be identified without undue experimentation using well known techniques. In this regard, it is noted that techniques for screening organic molecule libraries for molecules that are capable of binding to a polypeptide target are well known in the art (see, e.g., PCI' Publication Nos. WOOO/00823 and WOOO/39585). An antibody, oligopeptide or other organic molecule "which binds" an antigen of interest, e.g. a tumor 30 associated polypeptide antigen target, is one that binds the antigen with sufficient affinity such that the antibody, oligopeptide or other organic molecule is useful as a therapeutic agent in targeting a cell or tissue expressing the antigen, and does not significantly cross-react with other proteins. In such embodiments, the extent of binding of the antibody, oligopeptide or other organic molecule to a "non-target" protein will be less than about 10% of the binding of the antibody, oligopeptide or other organic molecule to its particular target protein as determined by 35 fluorescence activated cell sorting (FACS) analysis or radioimmunoprecipitation (RIA). With regard to the binding of an antibody, oligopeptide or other organic molecule to a target molecule, the term "specific binding" or "specifically binds to" or is "specific for" a particular polypeptide or an epitope on a particular polypeptide target means binding that is measurably different from a non-specific interaction. Specific binding can be 83 WO 2005/049075 PCT/US2004/038262 measured, for example, by determining binding of a molecule compared to binding of a control molecule, which generally is a molecule of similar structure that does not have binding activity. For example, specific binding can be determined by competition with a control molecule that is similar to the target, for example, an excess of non labeled target. In this case, specific binding is indicated if the binding of the labeled target to a probe is competitively inhibited by excess unlabeled target. The term "specific binding" or "specifically binds to" or is 5 "specific for" a particular polypeptide or an epitope on a particular polypeptide target as used herein can be exhibited, for example, by a molecule having a Kd for the target of at least about 10 4 M, alternatively at least about 10' M, alternatively at least about 10-6 M, alternatively at least about 104 M, alternatively at least about 10-8 M, alternatively at least about 10- M, alternatively at least about 10 -' M, alternatively at least about 10-" M, alternatively at least about 10-12 M, or greater. In one embodiment, the term "specific binding" refers to binding 0 where a molecule binds to a particular polypeptide or epitope on a particular polypeptide without substantially binding to any other polypeptide or polypeptide epitope. An antibody, oligopeptide or other organic molecule that "inhibits the growth of tumor cells expressing a TAHO polypeptide" or a "growth inhibitory" 'antibody, oligopeptide or other organic molecule is one which results in measurable growth inhibition of cancer cells expressing or overexpressing the appropriate TAHO 5 polypeptide. The TAHO polypeptide may be a transmembrane polypeptide expressed on the surface of a cancer cell or may be a polypeptide that is produced and secreted by a cancer cell. Preferred growth inhibitory anti TAHO antibodies, oligopeptides or organic molecules inhibit growth of TAHO-expressing tumor cells by greater than 20%, preferably from about 20% to about 50%, and even more preferably, by greater than 50% (e.g., from about 50% to about 100%) as compared to the appropriate control, the control typically being tumor cells not "0 treated with the antibody, oligopeptide or other organic molecule being tested. In one embodiment, growth inhibition can be measured at an antibody concentration of about 0.1 to 30 pig/ml or about 0.5 nM to 200 nM in cell culture, where the growth inhibition is determined 1-10 days after exposure of the tumor cells to the antibody. Growth inhibition of tumor cells in vivo can be determined in various ways such as is described in the Experimental Examples section below. The antibody is growth inhibitory in vivo if administration of the anti-TAHO antibody 5 at about 1 ig/kg to about 100 mg/kg body weight results in reduction in tumor size or tumor cell proliferation within about 5 days to 3 months from the first administration of the antibody, preferably within about 5 to 30 days. An antibody, oligopeptide or other organic molecule which "induces apoptosis" is one which induces programmed cell death as determined by binding of annexin V, fragmentation of DNA, cell shrinkage, dilation of endoplasmic reticulum, cell fragmentation, and/or formation of membrane vesicles (called apoptotic bodies). The 30 cell is usually one which overexpresses a TAHO polypeptide. Preferably the cell is a tumor cell, e.g., a hematopoietic cell, such as a B cell, T cell, basophil, eosinophil, neutrophil, monocyte, platelet or erythrocyte. Various methods are available for evaluating the cellular events associated with apoptosis. For example, phosphatidyl serine (PS) translocation can be measured by annexin binding; DNA fragmentation can be evaluated through DNA laddering; and nuclear/chromatin condensation along with DNA fragmentation can be evaluated by 35 any increase in hypodiploid cells. Preferably, the antibody, oligopeptide or other organic molecule which induces apoptosis is one which results in about 2 to 50 fold, preferably about 5 to 50 fold, and most preferably about 10 to 50 fold, induction of annexin binding relative to untreated cell in an annexin binding assay. Antibody "effector functions" refer to those biological activities attributable to the Fc region (a native 84 WO 2005/049075 PCT/US2004/038262 sequence Fc region or amino acid sequence variant Fc region) of an antibody, and vary with the antibody isotype. Examples of antibody effector functions include: Clq binding and complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g., B cell receptor); and B cell activation. "Antibody-dependent cell-mediated cytotoxicity" or "ADCC" refers to a form of cytotoxicity in which 5 secreted Ig bound onto Fc receptors (FcRs) present on certain cytotoxic cells (e.g., Natural Killer (NK) cells, neutrophils, and macrophages) enable these cytotoxic effector cells to bind specifically to an antigen-bearing target cell and subsequently kill the target cell with cytotoxins. The antibodies "arm" the cytotoxic cells and are absolutely required for such killing. The primary cells for mediating ADCC, NK cells, express Fc yRHI only, whereas monocytes express FcyRI, FcyRII and FcyRIII. FcR expression on hematopoietic cells is summarized 10 in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol. 9:457-92 (1991). To assess ADCC activity of a molecule of interest, an in vitro ADCC assay, such as that described in US Patent No. 5,500,362or 5,821,337 may be performed. Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed in vivo, e.g., in a animal model such as that disclosed in Clynes et al. (USA) 95:652-656 (1998). 15 "Fc receptor" or "FcR" describes a receptor that binds to the Fc region of an antibody. The preferred FcR is a native sequence human FcR. Moreover, a preferred FcR is one which binds an IgG antibody (a gamma receptor) and includes receptors of the FcyRI, FcyRII and FcyRI subclasses, including allelic variants and alternatively spliced fbrrns of these receptors. FcyRII receptors include FcyRIIA (an "activating receptor") and FcyRIIB (an "inhibiting receptor"), which have similar amino acid sequences that differ primarily in the 20 cytoplasmic domains thereof. Activating receptor FWRIIA contains an immunoreceptor tyrosine-based activation motif(ITAM) in its cytoplasmic domain. Inhibiting receptor FqRIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain. (see review M. in Dadron, Annu. Rev. Immunol. 15:203-234 (1997)). FcRs are reviewed in Ravetch and Kinet, Annu. Rev. Immunol. 9:457-492 (1991); Capel et al., Immunomethods 4:25-34 (1994); and de Haas et al., J. Lab. Clin. Med. 126:330-41 (1995). Other FcRs, including 25 those to be identified in the future, are encompassed by the term "FcR" herein. The term also includes the neonatal receptor, FcRn, which is responsible for the transfer of maternal IgGs to the fetus (Guyer et al., J. Immunol. 117:587 (1976) and Kin et al., J. Immunol. 24:249 (1994)). "Human effector cells" are leukocytes which express one or more FcRs and perform effector functions. Preferably, the cells express at least FcyRIII and perform ADCC effector function. Examples of human leukocytes 30 which mediate ADCC include peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils; with PBMCs and NK cells being preferred. The effector cells may be isolated from a native source, e.g., from blood. "Complement dependent cytotoxicity" or "CDC" refers to the lysis of a target cell in the presence of complement. Activation of the classical complement pathway is initiated by the binding of the first component 35 of the complement system (Cl q) to antibodies (of the appropriate subclass) which are bound to their cognate antigen. To assess complement activation, a CDC assay, e.g., as described in Gazzano-Santoro et aLImmunol. Methods 202:163 (1996), may be performed. The terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is 85 WO 2005/049075 PCT/US2004/038262 typically characterized by unregulated cell growth. Examples of cancer include, but are not limited to, hematopoietic cancers or blood-related cancers, such as lymphoma, leukemia, myelorna or lymphoid malignancies, but also cancers of the spleen and cancers of the lymph nodes. More particular examples of such B-cell associated cancers, including for example, high, intermediate and low grade lymphomas (including B cell lymphomas such as, for example, mucosa-associated-lymphoid tissue B cell lymphoma and non-Hodgkin's lymphoma, mantle cell 5 lymphoma, Burkitt's lymphoma, small lymphocytic lymphoma, marginal zone lymphoma, diffuse large cell lymphoma, follicular lymphoma, and Hodgkin's lymphoma and T cell lymphomas) and leukemias (including secondary leukemia, chronic lymphocytic leukemia, such as B cell leukemia (CD5+ B lymphocytes), mycloid leukemia, such as acute myeloid leukemia, chronic myeloid leukemia, lymphoid leukemia, such as acute lymphoblastic leukemia and myelodysplasia), multiple myeloma, such as plasma cell malignancy, and other 10 hematological and/or B cell- or T-cell-associated cancers. Also included are cancers of additional hematopoietic cells, including polymorphonuclear leukocytes, such as basophils, eosinophils, neutrophils and monocytes, dendritic cells, platelets, erythrocytes and natural killer cells. The origins of B-cell cancers are as follows: marginal zone B-cell lymphoma origins in memory B-cells in marginal zone, follicular lymphoma and diffuse large B-cell lymphoma originates in centrocytes in the light zone of germinal centers, multiple myeloma originates in 15 plasma cells, chronic lymphocytic leukemia and small lymphocytic leukemia originates in B I cells (CD5+),mantle cell lymphoma originates in naive B-cells in the mantle zone and Burkitt's lymphoma originates in centroblasts in the dark zone of germinal centers. Tissues which include hematopoietic cells referred herein to as "hematopoietic cell tissues" include thymus and bone marrow and peripheral lymphoid tissues, such as spleen, lymph nodes, lymphoid tissues associated with mucosa, such as the gut-associated lymphoid tissues, tonsils, 20 Peyer's patches and appendix and lymphoid tissues associated with other mucosa, for example, the bronchial linings. The terms "cell proliferative disorder" and "proliferative disorder" refer to disorders that are associated with some degree of abnormal cell proliferation. In one embodiment, the cell proliferative disorder is cancer. "Tumor", as used herein, refers to all neoplastic cell growth and proliferation, whether malignant or 25 benign, and all pre-cancerous and cancerous cells and tissues. An antibody, oligopeptide or other organic molecule which "induces cell death" is one which causes a viable cell to become nonviable. The cell is one which expresses a TAHO polypeptide and is of a cell type which specifically expresses or overexpresses a TAHO polypeptide. The cell may be cancerous or normal cells of the particular cell type. The TAHO polypeptide may be a transmembrane polypeptide expressed on the surface of a 30 cancer cell or may be a polypeptide that is produced and secreted by a cancer cell. The cell may be a cancer cell, e.g., a B cell or T cell. Cell death in vitro may be determined in the absence of complement and immune effector cells to distinguish cell death induced by antibody-dependent cell-mediated cytotoxicity (ADCC) or complement dependent cytotoxicity (CDC). Thus, the assay for cell death may be performed using heat inactivated serum (i.e., in the absence of complement) and in the absence of immune effector cells. To determine whether the 35 antibody, oligopeptide or other organic molecule is able to induce cell death, loss of membrane integrity as evaluated by uptake of propidium iodide (PI), trypan blue (see Moore et al. Cytotechnology 17:1-11 (1995)) or 7AAD can be assessed relative to untreated cells. Preferred cell death-inducing antibodies, oligopeptides or other organic molecules are those which induce PI uptake in the PI uptake assay in BT474 cells. 86 WO 2005/049075 PCT/US2004/038262 A 'TAHO-expressing cell" is a cell which expresses an endogenous or transfected TAHO polypeptide either on the cell surface or in a secreted form. A "TAHO-expressing cancer" is a cancer comprising cells that have a TAHO polypeptide present on the cell surface or that produce and secrete a TAHO polypeptide. A "TAHO-expressing cancer" optionally produces sufficient levels of TAHO polypeptide on the surface of cells thereof, such that an anti-TAHO antibody, oligopeptide to other organic molecule can bind thereto and have a 5 therapeutic effect with respect to the cancer. In another embodiment, a "TAHO-expressing cancer" optionally produces and secretes sufficient levels of TAHO polypeptide, such that an anti-TAHO antibody, oligopeptide to other organic molecule antagonist can bind thereto and have a therapeutic effect with respect to the cancer. With regard to the latter, the antagonist may be an antisense oligonucleotide which reduces, inhibits or prevents production and secretion of the secreted TAHO polypeptide by tumor cells. A cancer which "overexpresses" a 10 TAHO polypeptide is one which has significantly higher levels of TAHO polypeptide at the cell surface thereof, or produces and secretes, compared to a noncancerous cell of the same tissue type. Such overexpression may be caused by gene amplification or by increased transcription or translation. TAHO polypeptide overexpression may be determined in a detection or prognostic assay by evaluating increased levels of the TAHO protein present on the surface of a cell, or secreted by the cell (e.g., via an immunohistochemistry assay using anti-TAHO antibodies 15 prepared against an isolated TAHO polypeptide which may be prepared using recombinant DNA technology from an isolated nucleic acid encoding the TAHO polypeptide; FACS analysis, etc.). Alternatively, or additionally, one may measure levels of TAHO polypeptide-encoding nucleic acid or mRNA in the cell, e.g., via fluorescent in situ hybridization using a nucleic acid based probe corresponding to a TAHO-encoding nucleic acid or thecomplement thereof; (FISH; see W098/45479 published October, 1998), Southern blotting, Northern blotting, or polymerase 20 chain reaction (PCR) techniques, such as real time quantitative PCR (RT-PCR). One may also study TAHO polypeptide overexpression by measuring shed antigen in a biological fluid such as serum, e.g, using antibody based assays (see also, e.g., U.S. Patent No. 4,933,294 issued June 12, 1990; W091/05264 published April 18, 1991; U.S. Patent 5,401,638 issued March 28, 1995; and Sias et al., J. Immunol. Methods 132:73-80 (1990)). Aside from the above assays, various in vivo assays are available to the skilled practitioner. For example, one may 25 expose cells within the body of the patient to an antibody which is optionally labeled with a detectable label, e.g., a radioactive isotope, and binding of the antibody to cells in the patient can be evaluated, e.g., by external scanning for radioactivity or by analyzing a biopsy taken from a patient previously exposed to the antibody. As used herein, the term "inununoadhesin" designates antibody-like molecules which combine the binding specificity of a heterologous protein (an "adhesin") with the effector functions of immunoglobulin constant 30 domains. Structurally, the immunoadhesins comprise a fusion of an amino acid sequence with the desired binding specificity which is other than the antigen recognition and binding site of an antibody (i.e., is "heterologous"), and an immunoglobulin constant domain sequence. The adhesin part of an immunoadhesin molecule typically is a contiguous amino acid sequence comprising at least the binding site of a receptor or a ligand. The immunoglobulin constant domain sequence in the immunoadhesin may be obtained from any immunoglobulin, such as IgG-1, IgG 35 2, IgG-3, or IgG-4 subtypes, IgA (including IgA- 1 and IgA-2), IgE, IgD or IgM. The word "label" when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to the antibody, oligopeptide or other organic molecule so as to generate a 'labeled" antibody, oligopeptide or other organic molecule. The label may be detectable by itself (e.g. radioisotope labels or 87 WO 2005/049075 PCTIUS2004/038262 fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable. The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g., ht , 1131,,125, Y , Re , Re , Smi 5 3 , Bim12, P3' and radioactive isotopes of Lu), chemotherapeutic agents e.g. methotrexate, 5 adriamicin, vinca alkaloids (vincristine, vinblastine, etoposide), doxorubicin, melphalan, mitomycin C, chlorambucil, daunorubicin or other intercalating agents, enzymes and fragments thereof such as nucleolytic enzymes, antibiotics, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof, and the various antitumor or anticancer agents disclosed below. Other cytotoxic agents are described below. A tumoricidal agent causes destruction of tumor [0 cells. A "growth inhibitory agent" when used herein refers to a compound or composition which inhibits growth of a cell, especially a TAIHO-expressing cancer cell, either in vitro or in vivo. Thus, the growth inhibitory agent may be one which significantly reduces the percentage of TAHO-expressing cells in S phase. Examples of growth inhibitory agents include agents that block cell cycle progression (at a place other than S phase), such as agents [5 that induce G1 arrest and M-phase arrest. Classical M-phase blockers include the vincas (vincristine and vinblastine), taxanes, and topoisomerase II inhibitors such as doxorubicin, epirubicin, daunorubicin, etoposide, and bleomycin. Those agents that arrest G 1 also spill over into S-phase arrest, for example, DNA alkylating agents such as tamoxifen, prednisone, dacarbazine, mechlorethamine, cisplatin, methotrexate, 5-fluorouracil, and ara-C. Further information can be found in The Molecular Basis of Cancer, Mendelsohn and Israel, eds., Chapter 1, 20 entitled "Cell cycle regulation, oncogenes, and antineoplastic drugs" by Murakami et al. (WB Saunders: Philadelphia, 1995), especially p. 13. The taxanes (paclitaxel and docetaxel) are anticancer drugs both derived from the yew tree. Docetaxel (TAXOTERE@, Rhone-Poulenc Rorer), derived from the European yew, is a semisynthetic analogue of paclitaxel (TAXOL@, Bristol-Myers Squibb). Paclitaxel and docetaxel promote the assembly of microtubules from tubulin dimers and stabilize microtubules by preventing depolymerization, which 25 results in the inhibition of mitosis in cells. "Doxorubicin" is an anthracycline antibiotic. The full chemical name of doxorubicin is (8S-cis)-l0-[(3 amino-2,3,6-trideoxy-a-L-lyxo-hexapyranosyl)oxy-7,8,9, 10-tetrahydro-6,8,1 1-trihydroxy-8-(hydroxyacetyl)-I methoxy-5,12-naphthacenedione. The term "cytokine" is a generic term for proteins released by one cell population which act on another 30 cell as intercellular mediators. Examples of such cytokines are lymphokines, monokines, and traditional polypeptide hormnes. Included among the cytokines are growth hormone such as human growth hormone, N methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), and luteinizing hormone (LH); hepatic growth factor; fibroblast growth factor; 35 prolactin; placental lactogen; tumor necrosis factor-a and -0; mullerian-inhibiting substance; mouse gonadotropin associated peptide; inhibin; activin; vascular endothelial growth factor; integrin; thrombopoietin (TPO); nerve growth factors such as NGF- Q; platelet-growth factor; transforming growth factors (TGFs) such as TGF-a and TGF-$; insulin-like growth factor-I and -II; erythropoietin (EPO); osteoinductive factors; interferons such as 88 WO 2005/049075 PCT/US2004/038262 interferon -a, -Q, and -y; colony stimulating factors (CSFs) such as macrophage-CSF (M-CSF); granulocyte macrophage-CSF (GM-CSF); and granulocyte-CSF (G-CSF); interleukins (ILs) such as IL-1, IL- la, IL-2, IL-3, [L-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-ll, IL-12; a tumor necrosis factor such as TNF-a or TNF-8; and other polypeptide factors including LIF and kit ligand (KL). As used herein, the term cytokine includes proteins from natural sources or from recombinant cell culture and biologically active equivalents of the native sequence 5 cytokines. The term "package insert" is used to refer to instructions customarily included in commercial packages of therapeutic products, that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products. 89 WO 20105/049075 PCT/US2004/038262 Table 1 " C-C increased from 12 to 15 " is average of EQ 5 * Bis average ofND " match with stop is _M; stop-stop = 0; J (joker) match = 0 #define *.M -8 /* value of a match with a stop * .0 it _day[26] [262 = I /* A*/ ( 2, 0,-2, 0, 0,-4, 1,-1,-1, 0,-l,-2,-l,0,...M, 1, 0,-2, 1, 1,0,0,-6, 0,-3, 0), /*1B *1 10, 3,-4, 3, 2,-5, 0, l,-2, 0, 0,-3,-2, 2,M,-1, 1, 0, 0,0, 0,-2,-5, 0,-3, 1), /* C *1 -2,-4915,-5,-5,-4,-3,-3,-2, 0,-5,-6,-5,-4-.M,-3,-5,-4, 0,-2, 0,-2,-8, 0, 0,-5}, .5 # * D */ (0, 3,-5, 4, 3,-6, I,1I,-2, 0, 0,4,-3, 2,.M,-l, 2,-1, 0,0, 0,-2,-7, 0,-4, 2), I* E *1 0, 2,-5, 3, 4,-5, 0, 1,-2, 0, 0,-3,-2, 1_,jI, 2,-i, 0, 0, 0,-2,-7, 0,-4, 3), /* F */ -4,-5,-4,-6,-5, 9,-5,-2, 1, 0,-5, 2, 0,-4_.M,-5,-5,-4,-3,-3, 0,-I, 0, 0, 7,-5), I* G * 1, 0,-3, 1, 0,-5, 5,-2,-3, 0,-2,-4,-3, 0,..M-11-310,0,-1,-7, 0,-5, 0), I* H/ {1, 1,-3,,1,,2,-2, -0, 0,-2,2, 2M, 0,3, 2,--1 0,-2,-3, 0, 0, 2}, !0 /*1 1 {-1,-2,-2,-2,-2, 1,-3,-2, 5, 0,-2, 2, 2,-2,_M,-2,-2,-2,-1, 0,0, 4,-5, 0,-l,-2), **f {(0,0, 0, 0,0, 0,0, 0, 0,0, 0, 0, 0,0M, 0, 0,0,0, 0,0, 0, 0, 0,0,0), /* K (4{-, 0,-5, 0, 0,-5,-2,0O,-2, 0, 5,-3, 0, I-..M,-1, 1, 3, 0,0, 0,-2,-3, 0,-4, 01, 1* L *1 {-2,-3,-6,-4,-3, 2,-4,-2, 2, 0,-3, 6, 4,-3,_M,-3,-2,-3,-3,-I, 0, 2,-2, 0,-1,-2), 1* M *1{-1,-2,-5,-3,-2, 0,-3,-2, 2, 0,0,4, 6,-2,-M,-2,-1, 0,-2,-l, 0, 2,-4, 0,-2,-1}, 5 /* N/ ( 0, 2,-4,2, I,-4, 0, 2,-2, 0, I,-3,-2, 2,.M,-1, 1, 0, 1, 0, 0,-2,-4, 0,-2, 1), /* Q*/ (-_ _ -,M__ -, ,M M M M M 0_MM MM~,M ,..M,_....MjA , /* p */ { 1,1-,l-l-,1 ,-2, 0,-1,-3,-2,-1,..M, 6,0,0, 1,0, 0,-1,-6, 0,-5, 0), 1* Q * ( 0, 1,-5, 2, 2,-5,-1, 3,-2, 0, 1,-2,- 1, 1,-.M, 0, 4, 1,1-,0,-2,-5, 0,-4, 3), /* R *1(-2, 0,-4,-1,-1,-4,-3, 2,-2, 0, 3,-3, 0, 0,_M, 0, 1,6, 0,i, 0,-2, 2, 0,-4, 01, /0 * S * (1, 0,0, 0, 0,-3, 1,-1,-1, 0, 0,-3,-2, 1_,..M, 1,-i, 0, 2, 1, 0,-l,-2, 0,-3, 0), /* T * (1, 0,-2, 0, 0,-3, 0,-i, 0, 0, 0,-I,- 1, 0-M, 0,-i ,-1. 1, 3, 0, 0,-5, 0,-3, 0), /** { 0, 0,0, 0, 0,0, 0,0, 0, 0, 0, 0, 0,0M, 0,0, 0,0, 0,0, 0,0, 0,0, 0, P* V */ {0,-2,-2,-2,-2,-1,-1,-2, 4, 0,-2, 2, 2,-2-.M,-1,-2,-2,-1, 0, 0, 4,-6, 0,-2,-21, 1* W *1{-6,-S,-8,-7,-7, 0,-7,-3,-5, 0,-3,-2,-4,-4,.M,-6,-5, 2,-2,-5, 0,-6,17, 0, 0,-6}, 5 /* x* (o,0o,o,0o,o,0o,o,0o, o,o,o,o,o,o,m,o,o, 0,0o,0o,0o,0o,0o,0o,0o,0), 1* Y fI -3,-3, 0,-4,-4, 7,-5,0,-I, 0,-4,1,-2,-2-.M,-5,-4,-4,-3,-3, 0,-2, 0, 0,i0,-4), t~o 45 50 90 WO 2005/049075 PCT/US2004/038262 Table 1 (cont') /* #include <stdio.h> #include <ctype.h> 5 #define MAXJMP 16 /* max jumps in a diag */ #define MAXGAP 24 /* don't continue to penalize gaps larger than this */ #define JMPS 1024 /* max jmps in an path */ #define MX 4 /* save if there's at least MX-I bases since last jmp */ 10 #define DMAT 3 /* value of matching bases */ #define DMIS 0 /* penalty for mismatched bases */ #define DINSO 8 /* penalty for a gap */ #define DINS1 1 /* penalty per base */ 15 #define PINSO 8 /* penalty for a gap */ definee PINSI 4 /* penalty per residue */ struct jmp { short n[MAXJMP]; /* size of jmp (neg for dely) */ 20 unsigned short x[MAXJMP]; /* base no. of jmp in seq x */ }; /* limits seq to 2A16 -1 * struct diag I int score; /* score at last jmp */ 25 long offset; /* offset of prev block */ short ijmp; /* current jmp index */ structjmp ip; /* list of jmps */ 1; 30 strict path{ int spc; /* number of leading spaces */ short n[JMPS];/* size of jmp (gap) */ int x[JMPS];/* loc of jmp (last elem before gap) */ }; 35 char *ofile; /* output file name */ char *namex[21; /* seq names: getseqsO */ char *prog; /* prog name for err msgs */ char *seqx[2]; /* seqs: getseqsO */ 40 int dmax; /* best diag: nwo */ int dmax0; /* final diag */ int dna; /* set if dna: mainO */ int endgaps; /* set if penalizing end gaps */ int gapx, gapy; /* total gaps in seqs */ 45 int lenO, lenl; /* seq lens */ int ngapx, ngapy; /* total size of gaps */ int smax; /* max score: nwo*/ int *xbm; /* bitmap for matching */ long offset; /* current offset in jmp file */ 50 strict diag *dx; /* holds diagonals */ struct path pp[2]; /* holds path for seqs */ char *calloco, *maloco, *indexO, *strcpyo; char *getseq0, *g_caUoc0; 91 WO 2005/049075 PCT/US2004/038262 Table 1 (cont') /* Needleman-Wunsch alignment program * usage: progs file file2 * where file and file2 are two dna or two protein sequences. 5 * The sequences can be in upper- or lower-case an may contain ambiguity * Any lines beginning with ';', '>' or'<' are ignored * Max file length is 65535 (limited by unsigned short x in the jmp strict) * A sequence with 1/3 or more of its elements ACGTU is assumed to be DNA * Output is in the file "aligntout" 10 * * The program may create a tmp file in /tmp to hold info about traceback. * Original version developed under BSD 4.3 on a vax 8650 */ #include "nw.h" 15 #include "day.h" static _dbval[26]={ 1,14,2,13,0,0,4,11,0,0,12,0,3,15,0,0,0,5,6,8,8,7,9,0,10,0 }; 20 static _pbval[26]={ 1, 2|(1<<CD'-'A'))(1<<(N'-'A')), 4, 8, 16, 32, 64, 128, 256, OxFFFFFFF, 1<<10, 1<<l1, 1<<12, 1<<13, 1<<14, 1<<15, 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 25 l<<23, 1<<24, 1<<251(1<<('E'-'A'))|(1<<('Q'-'A')) 1; main(ac, av) main int ac; 30 char *av[]; { prog av[0]; if (ac != 3){ fprintf(stderr,"usage: %s file file2\n", prog); 35 fprintf(stderr,"where file and file2 are two dna or two protein sequences.\n"); fprintf(stderr,"The sequences can be in upper- or lower-case\n"); fprintf(stderr,"Any lines beginning with ';' or'<' are ignored\n"); fprintf(stderr,"Output is in the file \"align.out\"\n"); exit(l); 40 namex[0] = av[1]; namex[1] = av[2]; seqx[0] = getseq(namex[O], &lenO); seqx[l] = getseq(namex[1], &lenl); 45 xbm = (dna)? dbval : pbval; endgaps = 0; /* 1 to penalize endgaps */ ofile = "align.out"; /* output file */ 50 nwo; /* fill in the matrix, get the possible jmps *1 readjmpsO; /* get the actual jmps */ print; /* print stats, alignment */ cleanup(0); /* unlink any imp files */) 92 WO 2005/049075 PCT/US2004/038262 Table 1 (cont') /* do the alignment, return best score: mainO * dna: values in Fitch and Smith, PNAS, 80, 1382-1386,1983 * pro: PAM 250 values * When scores are equal, we prefer mismatches to any gap, prefer 5 * a new gap to extending an ongoing gap, and prefer a gap in seqx * to a gap in seq y. *1 nwo RW { 0 char *px, *py; /* seqs and ptrs */ int *ndely, *dely; /* keep track of dely */ int ndelx, delx; /* keep track of delx */ int *tmp; /* for swapping rowO, rowl */ int mis; /* score for each type */ 5 int insO, insi; /* insertion penalties */ register id; /* diagonal index */ register ij; /* jmp index */ register *Colo, *coll; /* score for curr, last row */ 0 register xx, yy; /* index into seqs */ dx = (struct diag *)gcalloc("to get diags", lenO+enl+l, sizeof(struct diag)); ndely = (int *)g.calloc("to get ndely", len 1 + 1, sizeof(int)); dely = (int *)g-calloc(to get dely", len 1+ 1, sizeof(int)); colO = (int *)g-calloc("to get colO", len1+1, sizeof(int)); 5 col = (int *)g-calloc("to get coll", lenI+1, sizeof(int)); insO = (dna)? DINSO: PINSO; ins1 = (dna)? DINSI : PINS I; smax = -10000; if (endgaps) ( 0 for (colO[0] =dely[0] = -insO, yy =1; yy <= lenl; yy++){ colOyy]= dely[yy]= colO[yy-1] - ins]; ndelyyy] = yy; I coO[] = 0; /* Waterman Bull Math Biol 84*/ 5 I else for(yy= 1;yy<=lenl; yy++) dely[yy] =-insO; /* fill in match matrix for (px = seqx[0], xx = 1; xx <= lenO; px++, xx++) { /* initialize first entry in col */ if (endgaps) { 5 if (xx==1) coil [0]= delx = -(ins0+insl); else col1[0] = delx = colO[0] - ins1; ndelx =xx; 0 else { col1[0] = 0; delx = -insO; ndelx =0; 5 93 WO 2005/049075 PCT/US2004/038262 Table 1 (cont') ...nw for (py seqx[l], yy= 1; yy <= lenl; py++, yy++) { mis = colO[yy-1]; if (dna) 5 mis += (xbm[*px-'A']&xbm[*py-'A'])? DMAT: DMIS; else mis += _day[*px-'A'][*py-'A']; /* update penalty for del in x seq; 10 * favor new del over ongong del * ignore MAXGAP if weighting endgaps */ if (endgaps || ndely[yy] < MAXGAP) { if (colO[yy] - inso >= dely[yy]){ 15 delytyy] = colO[yy] - (insO+insl); ndely[yy] = 1; } else { dely[yy] -= insi; 20 ndelyfyy4-, 20 I else{ if (col0[yy] - (ins0+insI) >= dely[yy]) { dely[yy] = colO[yy] - (insO+insl); 25 else ndely[yy] = 1; 25 }else ndely[yy]++; } /* update penalty for del in y seq; 30 * favor new del over ongong del */ if (endgaps ndelx < MAXGAP) { if (col1[yy-1] - insO >= delx) { deIx = col1[yy-1] - (ins0+insl); 35 ndelx= 1; }else { delx -= insi; ndelx++; 40 }else{ if (col I[yy-1] - (insO+insl) >= delx) { delx = coll[yy-1] - (insO+ins1); ndelx = 1; 45 ndelx++; /* pick the maximum score; we're favoring * mis over any del and delx over dely 50 */ ... nw id = xx - yy +]enl - 1; If (mis >= delx && mis >= dely[yy]) 55 coll[yy] = mis; 94 WO 2005/049075 PCT/US2004/038262 Table 1 (cont") else if (delx >= deiy[yy]) { Coll[yy] = delx; ij= dx[id].ijmp; if (dx [idJ.jp.n[O] && (!dna 11 (ndelx >= MAXJMP 5 && xx > dx[id]jp.xljj]+MX) 11 mis > dx[id).score+DINSO)){ dx[id].ijmp++; If (++ij >= MIAXJMP) I writejmps(id); ij = dx[id].ijmp = 0; 10 dx[id].offset = offset; offset += slzeof(structjmp) + sizeof(offset); dx[id].jp.n[ij] ndelx; 15 dxfid].jp.x[ijj = xx:, dx[idl.score =dclx; else { col [yy] = dely[yy]; 20 ij = dx[id].ijmp; if (dx[id].jp.n[O] && (!dna II(ndeiy[yy] >= MAXJMP && xx > dx~id]jp.x[ij]+MX) 11 mis > dx[id).score+DINSO)) f dx[id].ijmp++; if (++ij >= MAXJMP){ 25 wxitejmps(id); ij = dx[id].ijmp = 0; dx[id].offset = offset; offset += sizeof(struct imp) + sizeof(offset); 301 dx[id].jp.nhij] =-ndely[yy]; dx[idl.jp.xfij] = xx; dx[idl.scorre = deiy[yy]; 35 if (xx ien0 && yy <lenI){f /* last col if (endgaps) coii[yy] - ins0+insl*(lenl-yy); 40 if (coll[yy] > smax) I smax = col 1[yyJ; dmax = id; 451 if (endgaps && xx < lenO) col [yy-l ] - ins0+insl *Oen0-xx); if (col [yy-lI] > smax) I smax =col [yy-i11; 50 dmax =id; I tmp = Colo; Colo =Coil; Col tmp; (void) free((char *)ndely); (void) free((char *)deiy); 55 (void) fiteCe(har *)Cio); (void) free((char *)Coll); 95 WO 2005/049075 PCT/US2004/038262 Table 1 (cont') /* * * print - only routine visible outside this module * 5 *stat: * getmato - trace back best path, count matches: print * praligno - print alignment of described in array p[]: print * dumpblock0 -- dump a block of lines with numbers, stars: pr._aligno * numso -- put out a number line: dumpblock() 10 * putlineO - put out a line (name, [num], seq, [num]): dumpblockQ * stars - -put a line of stars: dumpblocko * stripname() - strip any path and prefix from a seqname */ 15 #indude "nw.h" #define SPC 3 #define PLINE 256 /* maximum output line */ 20 #define PSPC 3 /* space between name or num and seq */ extern _day[26][26]; int olen; /* set output line length */ FILE *fx; /* output file */ 25 print print { int lx, ly, firstgap, lastgap; /* overlap */ if ((fx = fopen(ofile, "w")) == 0) 1 30 fprintf(stderr,"%s: can't write %s\n", prog, ofile); cleanup(l); } fprintf(fx, "<first sequence: %s (length = %d)\n", namex[0], lenO); fprintf(fx, "<second sequence: %s (length = %d)\n", namex[1], len1); 35 olen=60; lx = lenO; ly = lenl; firstgap = lastgap =0; if (dmax < lenI - 1) ( /* leading gap in x */ 40 pp[O.spc = firstgap = len1 - dmax - 1; ly -= pp[0].spc; I else if (dmax >lenl - 1) ( /* leading gap iny */ pp[1].spc = firstgap = dmax - (leni - 1); 45 lx -= pp[l].spc; if (dmax0 < lenO - 1){ /* trailing gap in x lastgap = lenO - dmax0 -1; lx -= lastgap; 50 } else If (dmax0 > lenO - 1) ( /* trailing gap in y */ lastgap = dmax0 - (enO - 1); ly -= lastgap; } 55 getmatix, ly, firstgap, lastgap); pralignO; } 96 WO 2005/049075 PCT/US2004/038262 Table 1 (cont') * trace back the best path, count matches */ static 5 getmat(lx, ly, firstgap, lastgap) getmat int lx, ly; /* "core" (minus endgaps) */ int firstgap, lastgap; /* leading trailing overlap */ { int nm, 1o, il, sizo, sizi; 10 char outx[32]; double pct; register nO, n1; register char *p0, *p1; /* get total matches, score 15 */ iO=il =siz0=sizl =0; pO= seqx[O] + pp[1].spc; pl =seqx[l]+ pp[O].spc; nO=pp[l].spc+ 1; 20 n1 =pp[O].spc + 1; rm= 0; while ( p0 && *pl){ if (sizO) { p1++; 25 n1++; sizO--; } else if (siz1) I p0++; 30 n0.s.; sizl-; } else { if (xbm[*pO-'A']&xbm[*pl-'A']) 35 nm++; if (nO++ == pp[0].x[iO]) sizo = pp[0].n[iO++]; if (n++ == pp[I].x[il]) siz1 = pp[l].n[il++]; 40 pO++; pl-H-; } } 45 /* pet homology: * if penalizing endgaps, base is the shorter seq * else, knock off overhangs and take shorter ore */ if (endgaps) 50 Ix=(lenO<lenl)?IenO: leni; else lx = (lx < ly)? lx: ly, pct = 100.*(double)nm/(double)lx; fprintf(fx, "\n"); 55 fprintf(fx, "<%d match%s in an overlap of 9'od: %.2f percent similarity\n", nn, (nm = 1)? "": es", lx, pct); 97 WO 2005/049075 PCT/US2004/038262 Table 1 (cont') fprintf(fx, "<gaps in first sequence: %d", gapx); ...getmat if (gapx) { (void) sprintf(outx, " (%d %s%s)", ngapx, (dna)? "base":"residue", (ngapx 1)? "":"s"); 5 fprintf(fx,"%s", outx); fprintf(fx, ", gaps in second sequence: %d", gapy); if (gapy) ( (void) sprintf(outx, " (%d %s%s)", ngapy, (dna)? "base":"residue", (ngapy = 1)? ":'s"); 10 fprintf(fx,"%s", outx); ) if(dna) fprintf(fx, "\n<score: %d (match = %d, mismatch = %d, gap penalty = %od + %d per base)\n", 15 smax, DMAT, DMIS, DINSO, DINS 1); else fprintf(fx, "\n<score: %d (Dayhoff PAM 250 matrix, gap penalty = %d + %d per residue)\n", smax, PINSO, PINSI); 20 if(endgaps) fprintf(fx, "<endgaps penalized. left endgap: %d %s9'os, right endgap: %d %s%s\n", firstgap, (dna)? "base" "residue", (firstgap = 1)? : "s", lastgap, (dna)? "base" : "residue", (lastgap = 1)? "" : ); 25 else fprintf(fx, "<endgaps not penalized\n"); } static nm; /* matches in core - for checking */ static Imax; /* lengths of stripped file names */ 30 static ij[2]; /* jmp index for a path */ static nc[2]; /* number at start of current line */ static ni[2]; /* current elem number -- for gapping */ static siz[2]; static char *ps[2]; /* ptr to current element */ 35 static char *po[2]; /* ptr to next output char slot */ static char out[2][PLINE]; /* output line */ static char star[P_LINE]; /* set by stars */ /* * print alignment of described in struct path pp[] 40 */ static pr-aligno pr-align { int nn; /* char count */ 45 int more; register i; for (i= 0, lmax =0; i <2; i++){ nn = stripname(namex[i]); 50 if (nn >Imax) Imax = nn; nc[i] 1; ni[i]= 1; siz[i] ij[i] = 0; 55 ps[i] =seqx[i]; po[i]= out[i]; } 98 WO 2005/049075 PCT/US2004/038262 Table 1 (cont') for (nn =nm = 0, more = 1; more; ) { ...pralign for (i = more = 0; i <2; i++) { /* 5 * do we have more of this sequence? */ if (!*ps[i]) continue; more++; 10 if (pp[i].spc) { /* leading space */ *po[i]++=' ; pp[i].spc--; } else if (siz[i]) { /* in a gap */ 15 *po[i]++ siz[i]-; } else { /* we're putting a seq element */ 20 *poli] = *ps[i]; if (islower(*ps[i])) *ps[i] = toupper(*ps[i]); po[i]++; psli]++; 25 /* * are we at next gap for this seq? */ if (ni[i] = pp[i].x[ij[i]]) { /* 30 * we need to merge all gaps * at this location */ siz[i] = pp[i].n[ij[i]++]; while (ni[i] = pp[i].x[ij[i]]) 35 siz[i] += pp[i].ntij[i]++]; } nii[i]++; } } 40 if (++nn=olen I !more && nn){ dumpblocko; for (i = 0; i < 2; i++) po[i] = out[i]; nn =0; 45 } } } /* * dump a block of lines, including numbers, stars: pr align() 50 */ static dumpblocko dumpblock register i; 55 for (i=0;i<2;i++) *po[i]--=''; 99 WO 20051049075 PCT/US2004/038262 Table 1 (cont') ...dumpblock (void) putc(\n', fx); for (= 0; i<2; i++) I if (*out[i] && (*out[i] *(po[i)) !=' ')) { 5 if(i=0) nums(i); if (i 0 && *out[l]) stars; putline(i); 10 if (i =0 && *out[l]) fprintf(fx, star); if(i==1) nums(i); } 15 1 } /* * put out a number line: dumpblock() */ 20 static nums(ix) nums int ix; /* index in out[] holding seq line */ { char nline[P.LINE]; 25 register i, j; register char *pn, *px, *py; for (pn = nline, i =0; i <lmax+P_SPC; i++, pn++) *pn='' for (i= nc[ix], py = out[ix]; *py, py++, pn++) { 30 if(*py=''1l*py=') *pn= else{ if (i%0 == 0| (i = 1 && nc[ix] 1)) { j= (i < 0)?-i : i; 35 for(px=pn;j;j/= 10,px-) *px = j%10 + '0'; if (i <0) *px } 40 else *pn=''; i++; } } 45 *pn=\; nc[ix]= i; for (pn = nline; *pn; pnt+) (void) putc(*pn, fx); (void) putc(\n', fx); 50 /* * put out a line (name, [num], seq, [num]): dumpblocko */ static 55 putline(ix) putline int ix; { 100 WO 2005/049075 PCT/US2004/038262 Table 1 (cont') ...putline int i; register char *px; 5 for (px = namex[ix], i = 0; *px && *px !=':; px4+, i++) (void) putc(*px, fx); for (; i < lmax+P_.SPC; i++) (void) putc(', fx); 10 /* these count from 1: * ni[] is current element (from 1) * nc[] is number at start of current line */ 15 for (px = out[ix]; *px; px++) (void) putc(*px&Ox7F, fx); (void) putc('n', fx); 20 /* * put a line of stars (seqs always in out[O], out[1]): dumpblocko */ static 25 stars stars { int i; register char *pO, *pI, cx, *px; 30 if (!*out[0]l (*out[]= ' - && *(po[0])==)|I !*out[1] |1 (*out[1] =' && *(po[])=)) return; px = star; for (i = Imax+PSPC; i; i-) 35 *px++=''; for (p0=out[0], p1 =out[l]; *pO&& *p1; pO++,pl++) { if (isalpha(*p0) && isalpha(*p1)) { 40 if (xbm[*p0-'A'&xbm[*p-'A') I cx ='*; nm++; else if (!dna && _day[*p0-'A'][*p1-'A'] > 0) 45 ex = else cx='' else 50 ex *px++= cx; *px++='\n; *px ='\0'; 55 1 101 WO 2005/049075 PCT/US2004/038262 Table 1 (cont') /* * strip path or prefix from pn, return len: pr .aligno */ static 5 stripname(pn) stripname char *pn; /* file name (may be path) */ I register char *px, *py; 10 py=O; for (px = pn; *px; px++) if (*px == ') py=px+ 1; 15 (void) strcpy(pn, py); return(strlen(pn)); } 20 102 WO 2005/049075 PCT/US2004/038262 Table 1 (cont') /* * cleanupO - cleanup any tmp file * getseqO - read in seq, set dna, len, maxien * gcalloco -- calloco with error checkin 5 * readjmpso - get the good jmps, from tmp file if necessary * writejmpsO -- write a filled array of jmps to a tmp file: nwO */ #include "nw.h" #include <sys/file.h> 10 char *jname = "/tmp/homgXXXXXX"; /* tmp file for jmps */ FILE *f; int cleanup; /* cleanup tmp file */ long IseekO; 15 /* * remove any tmp file if we blow */ cleanup(i) cleanup int i; 20 if(f) (void) unlink(jname); exit(i); I 25 /* * read, return ptr to seq, set dna, len, maxlen * skip lines starting with ';', '<, or >' * seq in upper or lower case */ 30 char * getseq(file, len) getseq char *file; /* file name */ Int *len; /* seq len */ { 35 char line[1024], *pseq; register char *px, *py; int natgc, ten; FILE *fp; if ((fp = fopen(file,"r")) = 0) { 40 fprintf(stderr,"%s: can't read %s\n", prog, file); exit(l); I tlen = natgc = 0; while (fgets(line, 1024, fp)) { 45 if (*line =';'| *line '<' l line continue; for (px = line; *px ='\n; px++) if (isupper(*px) 1islower(*px)) tlen++; 50 I if ((pseq = malloc((unsigned)(tlen+6))) == 0) { fprintf(stderr,"%s: mallocO failed to get %d bytes for %s\n", prog, tien+6, file); exit(l); 55 pseq[O] = pseq[1] = pseq[21 = pseq[3] ='\'; 103 WO 2005/049075 PCT/US2004/038262 Table 1 (cont') ...getseq py=pseq +4; *len = tlen; rewind(fp); 5 while (fgets(line, 1024, fp)) { if (*line =';'||1*line ='<'|| *line ='>') continue; for (px = line; *px != '\n'; px++) { if (isupper(*px)) 10 *py++= *px; else if (islower(*px)) *py++= toupper(*px); if (index("ATGCU",*(py-l))) natgc++; 15 } } *py++= '\0'; *py='\0'; (void) fclose(fp); 20 dna = natgc > (tlen/3); return(pseq-4); } char * gcalloc(msg, nx, sz) gcalloc 25 char *msg; /* program, calling routine */ int nx, sz; /* number and size of elements */ { char *px, *callocO; If ((px = calloc((unsigned)nx, (unsigned)sz)) = 0){ 30 if (*msg) f fprintf(stderr, "%s: g-calloco failed %s (n=%d, sz=%d)\n", prog, msg, nx, sz); exit(l); } } 35 return(px); } /* * get final jmps from dx[] or tmp file, set pp[], reset dmax: iainO 40 */ readjmpsO readjmps { int fd = -l; int siz, 1o, iI; 45 register i, j, xx; If (fj) I (void) fclose(fj); if ((fd = open(jname, ORDONLY, 0)) <0){ fprintf(stderr "%s: can't open %s\n", prog, namee; 50 cleanup(l); } for (i =O = iI = 0, dmax0 = dmax, xx = lenO; ; i++){ while (1) { 55 for (j = dx[dmax].ijmp; j >= 0 && dx[dmax].jp.xU] >= xx;j--) 104 WO 2005/049075 PCT/US2004/038262 Table 1 (cont') ...readjznps if (j <0 && dx[dmax].offset && fj) { (void) iseek(fd, dx[dmax].offset, 0); (void) read(fd, (char *)&dx[dmax].jp, sizeof(structjmp)); 5 (void) read(fd, (char *)&dx[dmax].offset, sizeof(dx[dmax].offset)); dx[dmax).ijmp = MAXJMP-1; else break; if (i >= JMPS) { 10 fprintf(stderr, "%s: too many gaps in alignment\n", prog); cleanup(1); } if (j >= 0)1 siz = dx[dmax].jp.nU]; 15 xx =dx[dmax]jp.xU]; dmax += siz; if (siz <0)1 /* gap in second seq */ pp[1].n[il] = -siz; xx += siz; 20 /* id = xx -yy +leni -1I pp[l].x[il]= xx - dmax + len1 - 1; gapy++; ngapy -= siz; /* ignore MAXGAP when doing endgaps */ 25 siz = (-siz <MAXGAP 11 endgaps)? -siz: MAXGAP; il++; } elseif(siz>0){ /*gapin first seq*/ pp[0].n[iO] = siz; 30 pp[0].x[0]= xx; gapx++; ngapx 4-= siz; /* ignore MAXGAP when doing endgaps */ siz = (siz< MAXGAP lendgaps)? siz: MAXGAP; 35 i0++; } else break; 40 /* reverse the order of jmps */ for ( = 0, iO--; j <i0; j++, O-) I i = pp[0].nU]; pp[0].nU] = pp[0].n[iO]; pp[0].n[i0]= i; 45 ) for (j =0,i11--; j < il; j++, il-){ i = pp[1].nj]; pp[1].nU]= pp[1].n[il]; pp[1].n[il] i; i = pp[1].xU]; pp[1].xUj]= pp[1].x[il]; pp[1].x[il]= i; 50 if (fd >= 0) (void) close(fd); if (fI) (void) unlink(jname); fj=0; 55 offset=0; } } 105 WO 2005/049075 PCT/US2004/038262 Table 1 (cont') Write a filled jmp struct offset of the prey one (itf any): nwo 5 writejmps(ix) writejmps int. ix; char *mktempo; 10 i Ij if (mktemp~jnanie) < 0)1 fprintf(stderr, "%s: can't mktempo %s\n", prog, jnaine); cleanup(1); 15 if(f fopenojname, "w")) = 0){ fprintf(stdcrr, "%s: can't write %s\n", prog,jniaie); exit(1); 20 (void) fwrite((char *)&dx[ixl.jp, sizeof(struct imp), 1, fj); (void) fwrite((diar *)&dx[jx].offset, sizeof(dx[ix].offset), 1, fi); 106 WO 2005/049075 PCT/US2004/038262 Table 2 TAHO XXjXXXXXX XXX (Length = 15 amino acids) Comparison Protein XXXXXYYYYYYY (Length = 12 amino acids) 5 % amino acid sequence identity = (the number of identically matching amino acid residues between the two polypeptide sequences as determined by ALIGN-2) divided by (the total number of amino acid residues of the TAHO polypeptide)= 10 5 divided by 15 = 33.3% Table 3 TAHO XXXXXXXX (Length = 10 amino acids) 15 Comparison Protein XXXXXYYYYYYZZYZ (Length = 15 amino acids) % amino acid sequence identity = (the number of identically matching amino acid residues between the two polypeptide sequences as determined 20 by ALIGN-2) divided by (the total number of amino acid residues of the TAHO polypeptide)= 5 divided by 10 = 50% Table 4 25 TAHO-DNA NNNNNNNNNNNNNN (Length = 14 nucleotides) Comparison DNA NNNNNNLLLLLLLJJLL (Length = 16 nucleotides) % nucleic acid sequence identity = 30 (the number of identically matching nucleotides between the two nucleic acid sequences as determined by ALIGN-2) divided by (the total number of nucleotides of the TAHO-DNA nucleic acid sequence)= 6 divided by 14 = 42.9% 107 WO 2005/049075 PCT/US2004/038262 Table 5 TAHO-DNA NNNNNNNNNNNN (Length =12 nucleotides) Comparison DNA NNNNLLLVV (Length = 9 nucleotides) 5 % nucleic acid sequence identity (the number of identically matching nucleotides between the two nucleic acid sequences as determined by ALIGN-2) divided by (the total number of nucleotides of the TAHO-DNA nucleic acid sequence)= l0 4 divided by 12 = 33.3% II. Compositions and Methods of the Invention A. Anti-TAHO Antibodies In one embodiment, the present invention provides anti-TAHO antibodies which may find use herein .5 as therapeutic agents. Exemplary antibodies include polyclonal, monoclonal, humanized, bispecific, and heteroconjugate antibodies. 1. Polyclonal Antibodies Polyclonal antibodies are preferably raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the relevant antigen and an adjuvant. It may be useful to conjugate the relevant antigen (especially when synthetic peptides are used) to a protein that is immunogenic in the species to be immunized. For example, the antigen can be conjugated to keyhole limpet hemocyanin (KLH), serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor, using a bifunctional or derivatizing agent, e.g., maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOC1 2 , or RIN=C=NR, where R and R I are different alkyl 5 groups. Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining, e.g., 100 ig or 5 .Lg of the protein or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant and injecting the solution intradermally at multiple sites. One month later, the animals are boosted with 1/5 to 1/10 the original amount of peptide or conjugate in Freund's complete adjuvant by 30 subcutaneous injection at multiple sites. Seven to 14 days later, the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune response. 2. Monoclonal Antibodies 5 Monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Patent No. 4,816,567). In the hybridoma method, a mouse or other appropriate host animal, such as a hamster, is immunized as described above to elicit lymphocytes that produce or are capable of producing antibodies that will specifically 108 WO 2005/049075 PCT/US2004/038262 bind to the protein used for immunization. Alternatively, lymphocytes may be immunized in vitro. After immunization, lymphocytes are isolated and then fused with a myeloma cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp.59 103 (Academic Press, 1986)). The hybridoma cells thus prepared are seeded and grown in a suitable culture medium which medium 5 preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells (also referred to as fusion partner). For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the selective culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells. 10 Preferred fusion partner myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a selective medium that selects against the unfused parental cells. Preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC- 11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, California USA, and SP-2 and derivatives e.g., X63-Ag8-653 cells available from the American Type Culture 15 Collection, Manassas, Virginia, USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); and Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)). Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies 20 directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunosorbent assay (ELISA). The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis described in Munson et al., Anal. Biochem., 107:220 (1980). 25 Once hybridoma cells that produce antibodies of the desired specificity, affinity, and/or activity are identified, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-10 3 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal e.g,, by i.p. injection of the cells into mice. 30 The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional antibody purification procedures such as, for example, affinity chromatography (e.g., using protein A or protein G-Sepharose) or ion-exchange chromatography, hydroxylapatite chromatography, gel electrophoresis, dialysis, etc. DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional 35 procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese Hamster Ovary (CHO) cells, or myeloma cells that do not otherwise produce 109 WO 2005/049075 PCT/US2004/038262 antibody protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skerra et al., Curr. Opinion in Immunol., 5:256-262 (1993) and Plickthun, Immunol. Revs. 130:151-188 (1992). In a further embodiment, monoclonal antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al., Nature, 348:552-554 (1990). 5 Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries. Subsequent publications describe the production of high affinity (nM range) human antibodies by chain shuffling (Marks et al., Bio/Technology, 10:779-783 (1992)), as well as combinatorial infection and in vivo recombination as a strategy for constructing very large phage libraries (Waterhouse et al., Nuc. Acids. Res. 21:2265-2266 (1993)). Thus, these techniques are 10 viable alternatives to traditional monoclonal antibody hybridoma techniques for isolation of monoclonal antibodies. The DNA that encodes the antibody may be modified to produce chimeric or fusion antibody polypeptides, for example, by substituting human heavy chain and light chain constant domain (CH and C 1 ) sequences for the homologous marine sequences (U.S. Patent No.4,816,567; and Morrison, etal., Proc. Natl Acad. Sci. USA, 81:6851 (1984)), or by fusing the immunoglobulin coding sequence with all or part of the coding 15 sequence for a non-immunoglobulin polypeptide (heterologous polypeptide). The non-immunoglobulin polypeptide sequences can substitute for the constant domains of an antibody, or they are substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen. 20 3. Human and Humanized Antibodies The anti-TAHO antibodies of the invention may further comprise humanized antibodies or human antibodies. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab') 2 or other antigen-binding subsequences ofantibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies 25 include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework 30 sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin [Jones et al., Nature, 321:522-525 (1986); Riechmann et 35 al., Nature, 332:323-329 (1988); and Presta, Curr. Op. Strict. Biol., 2:593-596 (1992)). Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" 110 WO 2005/049075 PCT/US2004/038262 variable domain. Humanization can be essentially performed following the method of Winter and co-workers [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 2:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the 5 corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies. The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity and HAMA response (human anti-mouse antibody) when the 10 antibody is intended for human therapeutic use. According to the so-called "best-fit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable domain sequences. The human V domain sequence which is closest to that of the rodent is identified and the human framework region (FR) within it accepted for the humanized antibody (Sims et al., J. Immunol. 151:2296 (1993); Chothia et al., J. Mol. Biol., 196:901 (1987)). Another method uses a particular framework region derived from 15 the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., J. Immunol. 151:2623 (1993)). It is further important that antibodies be humanized with retention of high binding affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized 20 antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the 5 residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the hypervariable region residues are directly and most substantially involved in influencing antigen binding. 30 Various forms of a humanized anti-TAHO antibody are contemplated. For example, the humanized antibody may be an antibody fragment, such as a Fab, which is optionally conjugated with one or more cytotoxic agent(s) in order to generate an immunoconjugate. Alternatively, the humanized antibody may be an intact antibody, such as an intact IgG1 antibody. As an alternative to humanization, human antibodies can be generated. For example, it is now possible 35 to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line 111 WO 2005/049075 PCT/US2004/038262 immunoglobulin gene array into such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggemann et al., Year in Immuno. 7:33 (1993); U.S. Patent Nos. 5,545,806, 5,569,825, 5,591,669 (all of GenPharm); 5,545,807; and WO 97/17852. Alternatively, phage display technology (McCafferty et al., Nature 348:552-553 [1990]) can be used to 5 produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors. According to this technique, antibody V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as M1 3 or fd, and displayed as functional antibody fragments on the surface of the phage particle. Because the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody 10 also result in selection of the gene encoding the antibody exhibiting those properties. Thus, the phage mimics some of the properties of the B-cell. Phage display can be performed in a variety of formats, reviewed in, e.g., Johnson, Kevin S. and Chiswell, David J., Current Opinion in Structural Biology 3:564-571 (1993). Several sources of V gene segments can be used for phage display. Clackson et al.Nature, 352:624-628 (1991) isolated a diverse array of anti-oxazolone antibodies from a small random combinatorial library of V genes derived from the spleens of 15 immunized mice. A repertoire of V genes from unimmunized human donors can be constructed and antibodies to a diverse array of antigens (including self-antigens) can be isolated essentially following the techniques described by Marks et al., J. Mol. Biol. 222:581-597 (1991), or Griffith et al., EMBO J. 12:725-734 (1993). See, also, U.S. Patent Nos. 5,565,332 and 5,573,905. As discussed above, human antibodies may also be generated by in vitro activated B cells (see U.S. 20 Patents 5,567,610 and 5,229,275). 4. Antibody fragments In certain circumstances there are advantages of using antibody fragments, rather than whole antibodies. The smaller size of the fragments allows for rapid clearance, and may lead to improved access to solid tumors. Various techniques have been developed for the production of antibody fragments. Traditionally, these 25 fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., Journal of Biochemical and Biophysical Methods 24:107-117 (1992); and Brennan et al., Science, 229:81 (1985)). However, these fragments can now be produced directly by recombinant host cells. Fab, Fv and ScFv antibody fragments can all be expressed in and secreted from E. coli, thus allowing the facile production of large amounts of these fragments. Antibody fragments can be isolated from the antibody phage libraries discussed above. Alternatively, 30 Fab'-SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab') 2 fragments (Carter et al., Bio/Technology 10:163-167 (1992)). According to another approach, F(ab') 2 fragments can be isolated directly from recombinant host cell culture. Fab and F(ab') 2 fragment with increased in vivo half-life comprising a salvage rceptor binding epitope residues are described in U.S. Patent No. 5,869,046. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner. In other embodiments, the antibody 35 of choice is a single chain Fv fragment (scFv). See WO 93/16185; U.S. Patent No. 5,571,894; and U.S. Patent No. 5,587,458. Fv and sFv are the only species with intact combining sites that are devoid of constant regions; thus, they are suitable for reduced nonspecific binding during in vivo use. sFv fusion proteins may be constructed to yield fusion of an effector protein at either the amino or the carboxy terminus of an sFv. See Antibody 112 WO 2005/049075 PCT/US2004/038262 Engineering, ed. Borrebaeck, supra. The antibody fragment may also be a "linear antibody", e.g., as described in U.S. Patent 5,641,870 for example. Such linear antibody fragments may be monospecific or bispecific. 5. Bispecific Antibodies Bispecific antibodies are antibodies that have binding specificities for at least two different epitopes. Exemplary bispecific antibodies may bind to two different epitopes of a TAHO protein as described herein. Other 5 such antibodies may combine a TAHO binding site with a binding site for another protein. Alternatively, an anti TAHO arm may be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD3), orFc receptors for IgG (FcyR), such as FcyRI (CD64), FcyRl (CD32) and FcyRIII (CD16), so as to focus and localize cellular defense mechanisms to the TAHO-expressing cell. Bispecific antibodies may also be used to localize cytotoxic agents to cells which express TAHO. These antibodies possess 10 a TAHO-binding arm and an arm which binds the cytotoxic agent (e.g., saporin, anti-interferon-a, vinca alkaloid, ricin A chain, methotrexate or radioactive isotope hapten). Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g., F(ab') 2 bispecific antibodies). WO 96/16673 describes a bispecific anti-ErbB2/anti-FcyRII antibody and U.S. Patent No. 5,837,234 discloses a bispecific anti-ErbB2/anti-FcyRI antibody. A bispecific anti-ErbB2/Fc a antibody is shown in 15 W098/02463. U.S. Patent No. 5,821,337 teaches a bispecific anti-ErbB2/anti-CD3 antibody. Methods for making bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the co-expression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al., Nature 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture 20 of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, and in Traunecker et al., EMBO J. 10:3655 3659 (1991). According to a different approach, antibody variable domains with the desired binding specificities 25 (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. Preferably, the fusion is with an Ig heavy chain constant domain, comprising at least part of the hinge, CH 2 , and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light chain bonding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable 30 host cell. This provides for greater flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yield of the desired bispecific antibody. It is, however, possible to insert the coding sequences for two or all three polypeptide chains into a single expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios have no significant affect on the yield of the desired 35 chain combination. In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric 113 WO 2005/049075 PCT/US2004/038262 structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology 121:210 (1986). According to another approach described in U.S. Patent No. 5,731,168, the interface between a pair of 5 antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH 3 domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g., tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller 10 ones (e.g., alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers. Bispecific antibodies include cross-linked or "heteroconjugate" antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of 15 HIV infection (WO 91/00360, WO 92/200373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Patent No. 4,676,980, along with a number of cross-linking techniques. Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 20 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab') 2 fragments. These fragments are reduced in the presence of the dithiol complexing agent, sodium arsenite, to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB 25 derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes. Recent progress has facilitated the direct recovery of Fab'-SH fragments from E. coli, which can be chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175: 217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab') 2 molecule. Each Fab' fragment was separately secreted 30 from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets. Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny 35 et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger 114 WO 2005/049075 PCT/US2004/038262 et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a VH connected to a VL by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) 5 dimers has also been reported. See Gruber et al., J. Immunol., 152:5368 (1994). Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991). 6. Heteroconiugate Antibodies Heteroconjugate antibodies arealso within the scope of the present invention. Heteroconjugate antibodies 10 are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells [U.S. Patent No. 4,676,980], and for treatment of HIV infection [WO 91/00360; WO 92/200373; EP 03089]. It is contemplated that the antibodies may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples 15 ofsuitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980. 7. Multivalent Antibodies A multivalent antibody may be internalized (and/or catabolized) faster than a bivalent antibody by a cell expressing an antigen to which the antibodies bind. The antibodies of the present invention can be multivalent 20 antibodies (which are other than of the IgM class) with three or more antigen binding sites (e.g. tetravalent antibodies), which can be readily produced by recombinant expression of nucleic acid encoding the polypeptide chains of the antibody. The multivalent antibody can comprise a dimerization domain and three or more antigen binding sites. The preferred dimerization domain comprises (or consists of) an Fc region or a hinge region. In this scenario, the antibody will comprise an Fc region and three or more antigen binding sites amino-terninal to the 25 Fc region. The preferred multivalent antibody herein comprises (or consists of) three to about eight, but preferably four, antigen binding sites. The multivalent antibody comprises at least one polypeptide chain (and preferably two polypeptide chains), wherein the polypeptide chain(s) comprise two or more variable domains. For instance, the polypeptide chain(s) may comprise VD 1-(Xl),-VD2-(X2),-Fc, wherein VDI is a first variable domain, VD2 is a second variable domain, Fc is one polypeptide chain of an Fc region, X1 and X2 represent an amino acid or 30 polypeptide, and n is 0 or 1. For instance, the polypeptide chain(s) may comprise: VH-CH1-flexible linker-VH CHl-Fc region chain; or VH-CHI-VH-CHI-Fc region chain. The multivalent antibody herein preferably further comprises at least two (and preferably four) light chain variable domain polypeptides. The multivalent antibody herein may, for instance, comprise from about two to about eight light chain variable domain polypeptides. The light chain variable domain polypeptides contemplated here comprise a light chain variable domain and, optionally, 35 further comprise a CL domain. 8. Effector Function Engineering It may be desirable to modify the antibody of the invention with respect to effector function, e.g., so as to enhance antigen-dependent cell-mediated cyotoxicity (ADCC) and/or complement dependent cytotoxicity 115 WO 2005/049075 PCT/US2004/038262 (CDC) of the antibody. This may be achieved by introducing one or more amino acid substitutions in an Fc region of the antibody. Alternatively or additionally, cysteine residue(s) may be introduced in the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med. 176:1191-1195 (1992) and Shopes, B. J. Immunol. 5 148:2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et alCancer Research 53:2560-2565 (1993). Alternatively, an antibody can be engineered which has dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al.Anti-Cancer Drug Design 3:219-230 (1989). To increase the serum half life of the antibody, one may incorporate a salvage receptor binding epitope into the antibody (especially an 10 antibody fragment) as described in U.S. Patent 5,739,277, for example. As used herein, the term "salvage receptor binding epitope" refers to an epitope of the Fc region of an IgG molecule (e.g., IgG 1 , IgG 2 , IgG 3 , or IgG 4 ) that is responsible for increasing the in vivo serum half-life of the IgG molecule. 9. Immunoconjugates The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent 15 such as a chemotherapeutic agent, a growth inhibitory agent, a toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate). Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudononas aeruginosa), ricin A chain, abrin A chain, 20 modeccin A chain, alpha-sarcin,Aleuritesfordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include 212 Bi, m311, 1 31 1n, 90 Y, and 1 86 Re. Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N 25 succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be 30 prepared as described in Vitetta et aL, Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3 methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See W094/11026. Conjugates of an antibody and one or more small molecule toxins, such as a calicheamicin, auristatin peptides, such as monomethylauristatin (MMAE) (synthetic analog of dolastatin), maytansinoids, such as DM1, 35 a trichothene, and CC1065, and the derivatives of these toxins that have toxin activity, are also contemplated herein. Maytansine and maytansinoids 116 WO 2005/049075 PCT/US2004/038262 In one preferred embodiment, an anti-TAHO antibody (full length or fragments) of the invention is conjugated to one or more maytansinoid molecules. Maytansinoids, such as DM1, are mitototic inhibitors which act by inhibiting tubulin polymerization. Maytansine was first isolated from the east African shrub Maytenus serrata (U.S. Patent No. 3,896,111). Subsequently, it was discovered that certain microbes also produce maytansinoids, such as maytansinol and C-3 5 maytansinol esters (U.S. PatentNo. 4,151,042). Synthetic maytansinol and derivatives and analogues thereof are disclosed, for example, in U.S. Patent Nos. 4,137,230; 4,248,870; 4,256,746; 4,260,608; 4,265,814; 4,294,757; 4,307,016; 4,308,268; 4,308,269;4,309,428; 4,313,946; 4,315,929; 4,317,821; 4,322,348; 4,331,598; 4,361,650; 4,364,866; 4,424,219; 4,450,254; 4,362,663; and 4,371,533, the disclosures of which are hereby expressly incorporated by reference. 10 Maytansinoid-antibody coniugates In an attempt to improve their therapeutic index, maytansine and maytansinoids have been conjugated to antibodies specifically binding to tumor cell antigens. Immunoconjugates containing maytansinoids and their therapeutic use are disclosed, for example, in U.S. Patent Nos. 5,208,020, 5,416,064 and European Patent 15 EP 0 425 235 B 1, the disclosures of which are hereby expressly incorporated by reference. Liu et al., Proc. Natl. Acad. Sci. USA 93:8618-8623 (1996) described immunoconjugates comprising a maytansinoid designated DM1 linked to the monoclonal antibody C242 directed against human colorectal cancer. The conjugate was found to be highly cytotoxic towards cultured colon cancer cells, and showed antitumor activity in an in vivo tumor growth assay. Chari et al.,Cancer Research 52:127-131 (1992) describe immunoconjugates in which a maytansinoid was 20 conjugated via a disulfide linker to the murine antibody A7 binding to an antigen on human colon cancer cell lines, or to another murine monoclonal antibody TA. I that binds the HER-2/ neu oncogene. The cytotoxicity of the TA.1-maytansonoid conjugate was tested in vitro on the human breast cancer cell line SK-BR-3, which expresses 3 x 105 HER-2 surface antigens per cell. The drug conjugate achieved a degree of cytotoxicity similar to the free maytansonid drug, which could be increased by increasing the number of maytansinoid molecules per antibody 25 molecule. The A7-maytansinoid conjugate showed low systemic cytotoxicity in mice. Anti-TAHO polyveptide antibody-maytansinoid coniugates (immunoconiugates) Anti-TAHO antibody-maytansinoid conjugates are prepared by chemically linking an anti-TAHO antibody to a maytansinoid molecule without significantly diminishing the biological activity ofeither the antibody or the maytansinoid molecule. An average of 3-4 maytansinoid molecules conjugated per antibody molecule has 30 shown efficacy in enhancing cytotoxicity of target cells without negatively affecting the function or solubility of the antibody, although even one molecule of toxin/antibody would be expected to enhance cytotoxicity over the use of naked antibody. Maytansinoids are well known in the art and can be synthesized by known techniques or isolated from natural sources. Suitable maytansinoids are disclosed, for example, in U.S. Patent No. 5,208,020 and in the other patents and nonpatent publications referred to hereinabove. Preferred maytansinoids are 35 maytansinol and maytansinol analogues modified in the aromatic ring or at other positions of the maytansinol molecule, such as various maytansinol esters. There are many linking groups known in the art for making antibody-maytansinoid conjugates, including, for example, those disclosed in U.S. Patent No. 5,208,020 or EP Patent 0 425 235 B 1, and Chari et al., Cancer 117 WO 2005/049075 PCT/US2004/038262 Research 52:127-131 (1992). The linking groups include disufide groups, thioether groups, acid labile groups, photolabile groups, peptidase labile groups, or esterase labile groups, as disclosed in the above-identified patents, disulfide and thioether groups being preferred. Conjugates of the antibody and maytansinoid may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP), succinimidyl-4-(N 5 maleimidomethyl) cyclohexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as toluene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). Particularly preferred coupling agents include N 10 succinimidyl-3-(2-pyridyldithio) propionate (SPDP) (Carlsson et al., Biochem. J. 173:723-737 [1978]), sulfosuccinimidyl maleimidomethyl cyclohexane carboxylate (SMCC) and N-succinimidyl-4-(2 pyridylthio)pentanoate (SPP) to provide for a disulfide linkage. Other useful linkers includecys-MC-vc-PAB (a valine-citrulline (vc) dipeptide linker reagent having a maleimide component and a para-aminobenzylcarbamoyl (PAB) self-immolative component. 15 The linker may be attached to the maytansinoid molecule at various positions, depending on the type of the link. For example, an ester linkage may be formed by reaction with a hydroxyl group using conventional coupling techniques. The reaction may occur at the C-3 position having a hydroxyl group, the C-14 position modified with hyrdoxymethyl, the C-15 position modified with a hydroxyl group, and the C-20 position having a hydroxyl group. In a preferred embodiment, the linkage is formed at the C-3 position of maytansinol or a 20 maytansinol analogue. Calicheamicin Another immunoconjugate of interest comprises an anti-TAHO antibody conjugated to one or more calicheamicin molecules. The calicheamicin family of antibiotics are capable of producing double-stranded DNA 25 breaks at sub-picomolar concentrations. For the preparation of conjugates of the calicheamicin family, see U.S. patents 5,712,374,5,714,586,5,739,116,5,767,285,5,770,701,5,770,710,5,773,001, 5,877,296 (all to American Cyanamid Company). Structural analogues of calicheamicin which may be used include, but are not limited to, y 1 , 2, 0 1 , N-acetyl-y 1 , PSAG and O'1 (Hinman et al., Cancer Research 53:3336-3342 (1993), Lode et al., Cancer Research 58:2925-2928 (1998) and the aforementioned U.S. patents to American Cyanamid). Another 30 anti-tumor drug that the antibody can be conjugated is QFA which is an antifolate. Both calicheamicin and QFA have intracellular sites of action and do not readily cross the plasma membrane. Therefore, cellular uptake of these agents through antibody mediated internalization greatly enhances their cytotoxic effects. Other cytotoxic agents Other antitumor agents that can be conjugated to the anti-TAHO antibodies of the invention include 35 BCNU, streptozoicin, vincristine and 5-fluorouracil, the family of agents known collectively LL-E33288 complex described in U.S. patents 5,053,394, 5,770,710, as well as esperamicins (U.S. patent 5,877,296). Enzymatically active toxins and fragments thereof which can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudononas aeruginosa), ricin A chain, 118 WO 2005/049075 PCT/US2004/038262 abrin A chain, modeccin A chain, alpha-sarcin, Aleuritesfordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordicacharantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin and the tricothecenes. See, for example, WO 93/21232 published October 28, 1993. The present invention further contemplates an immunoconjugate formed between an antibody and a 5 compound with nucleolytic activity (e.g., a ribonuclease or a DNA endonuclease such as a deoxyribonuclease; DNase). For selective destruction of the tumor, the antibody may comprise a highly radioactive atom. A variety of radioactive isotopes are available for the production of radioconjugated anti-TAHO antibodies. Examples 211 131 125 90 186 188 153 22.3 include At , I1, I, Y ,Re, Re , Sm , Bi2, p3, Pb 212 and radioactive isotopes of Lu. When the 10 conjugate is used for detection, it may comprise a radioactive atom for scintigraphic studies, for example tc9f"' or J123, or a spin label for nuclear magnetic resonance (NMR) imaging (also known as magnetic resonance imaging, mri), such as iodine-123 again, iodine-131, indium-lll, fluorine-19, carbon-13, nitrogen-15, oxygen-17, gadolinium, manganese or iron. The radio- or other labels may be incorporated in the conjugate in known ways. For example, the peptide 15 may be biosynthesized or may be synthesized by chemical amino acid synthesis using suitable amino acid precursors involving, for example, fluorine-19 in place of hydrogen. Labels such as tc 99m or I23, .Re", Re" and In" can be attached via a cysteine residue in the peptide. Yttrium-90 can be attached via a lysine residue. The IODOGEN method (Raker et al (1978) Biochem. Biophys. Res. Commun. 80: 49-57 can be used to incorporate iodine-123. "Monoclonal Antibodies in Immunoscintigraphy" (Chatal,CRC Press 1989) describes 20 other methods in detail. Conjugates of the antibody and cytotoxic agent may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP), succinimidyl-4-(N maleimidomethyl) cyclohexane-l-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), 25 bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science 238:1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3 methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of 30 radionucleotide to the antibody. See W094/11026. The linker may be a "cleavable linker" facilitating release of the cytotoxic drug in the cell. For example, an acid-labile tinker, peptidase-sensitive linker, photolabile linker, dimethyl linker or disulfide-containing linker (Chari et al., Cancer Research 52:127-131 (1992); U.S. Patent No. 5,208,020) may be used. Alternatively, a fusion protein comprising the anti-TAHO antibody and cytotoxic agent may be made, e.g., 35 by recombinant techniques or peptide synthesis. The length of DNA may comprise respective regions encoding the two portions of the conjugate either adjacent one another or separated by a region encoding a linker peptide which does not destroy the desired properties of the conjugate. 119 WO 2005/049075 PCT/US2004/038262 In yet another embodiment, the antibody may be conjugated to a "receptor" (such streptavidin) for utilization in tumor pre-targeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) which is conjugated to a cytotoxic agent (e.g., a radionucleotide). 10. Immunoliposomes 5 The anti-TAHO antibodies disclosed herein may also be formulated as immunoliposomes. A "liposome" is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688 (1985); Hwang et al., 10 Proc. Natl Acad. Sci. USA77:4030 (1980); U.S. Pat. Nos. 4,485,045 and 4,544,545; and W097138731 published October 23, 1997. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556. Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine
(PEG
PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. 15 Fab' fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem. 257:286-288 (1982) via a disulfide interchange reaction. A chemotherapeutic agent is optionally contained within the liposome. See Gabizon et al., J. National Cancer Inst. 81(19):1484 (1989). B. TAHO Binding Oligopeptides TAHO binding oligopeptides of the present invention are oligopeptides that bind, preferably specifically, 20 to a TAHO polypeptide as described herein. TAHO binding oligopeptides may be chemically synthesized using known oligopeptide synthesis methodology or may be prepared and purified using recombinant technology. TAHO binding oligopeptides are usually at least about 5 amino acids in length, alternatively at least about 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16,17,18,19,20, 21,22,23,24,25, 26,27,28,29, 30, 31, 32, 33, 34, 35,36, 37,38, 39, 40,41,42,43,44,45,46,47,48,49, 50, 51, 52, 53, 54, 55, 56, 57, 58,59, 60,61, 62, 63, 64, 65, 66, 67, 68, 25 69, 70,71, 72, 73,74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 amino acids in length or more, wherein such oligopeptides that are capable of binding, preferably specifically, to a TAHO polypeptide as described herein. TAHO binding oligopeptides may be identified without undue experimentation using well known techniques. In this regard, it is noted that techniques for screening oligopeptide libraries for oligopeptides that are capable of specifically binding to a polypeptide target are well 30 known in the art (see, e.g., U.S. Patent Nos. 5,556,762, 5,750,373, 4,708,871, 4,833,092, 5,223,409, 5,403,484, 5,571,689, 5,663,143; PC' Publication Nos. WO 84/03506 and WO84/03564; Geysen et al., Proc. Natl. Acad. Sci. U.S.A., 81:3998-4002(1984); Geysen et al., Proc. Natl. Acad. Sci. U.S.A., 82:178-182 (1985); Geysen et al., in Synthetic Peptides as Antigens, 130-149 (1986); Geysen et al., J. Immunol. Meth., 102:259-274(1987); Schoofs et al., J. Immunol., 140:611-616 (1988), Cwirla, S. E. et al. (1990) Proc. Natl. Acad. Sci. USA, 87:6378; Lowman, 35 H.B. et al. (1991) Biochemistry, 30:10832; Clackson, T. et al. (1991) Nature, 352: 624; Marks, J. D. et al. (1991), J. Mol. Biol., 222:581; Kang, A.S. et al. (1991) Proc. Nal. Acad. Sci. USA, 88:8363, and Smith, G. P. (1991) Current Opin. Biotechnol., 2:668). In this regard, bacteriophage (phage) display is one well known technique which allows one to screen 120 WO 2005/049075 PCT/US2004/038262 large oligopeptide libraries to identify member(s) of those libraries which are capable of specifically binding to a polypeptide target. Phage display is a technique by which variant polypeptides are displayed as fusion proteins to the coat protein on the surface of bacteriophage particles (Scott, J.K. and Smith, G. P. (1990) Science, 249: 386). The utility of phage display lies in the fact that large libraries of selectively randomized protein variants (or randomly cloned cDNAs) can be rapidly and efficiently sorted for those sequences that bind to a target molecule 5 with high affinity. Display of peptide (Cwirla, S. E. et al. (1990Proc. Natl. Acad. Sci. USA, 87:6378) or protein (Lowman, H.B. et al. (1991) Biochemistry, 30:10832; Clackson, T. et al. (1991) Nature, 352: 624; Marks, J. D. et al. (1991), J. Mol. Biol., 222:581; Kang, A.S. et al. (1991) Proc. Natl. Acad. Sci. USA, 88:8363) libraries on phage have been used for screening millions of polypeptides or oligopeptides for ones with specific binding properties (Smith, G. P. (1991) Current Opin. Biotechnol., 2:668). Sorting phage libraries of random mutants 10 requires a strategy for constructing and propagating a large number of variants, a procedure for affinity purification using the target receptor, and a means of evaluating the results of binding enrichments. U.S. Patent Nos. 5,223,409, 5,403,484, 5,571,689, and 5,663,143. Although most phage display methods have used filamentous phage, lambdoid phage display systems (WO 95/34683; U.S. 5,627,024), T4 phage display systems (Ren et al., Gene, 215: 439 (1998); Zhu et al., Cancer 15 Research, 58(15): 3209-3214 (1998); Jiang et al., Infection & Immunity, 65(11): 4770-4777 (1997); Ren et al., Gene, 195(2):303-311 (1997); Ren, Protein Sci., 5: 1833 (1996); Efimov et al., Virus Genes, 10: 173 (1995)) and T17 phage display systems (Smith and Scott, Methods in Enzymologv, 217: 228-257 (1993); U.S. 5,766,905) are also known. Many other improvements and variations of the basic phage display concept have now been developed. 20 These improvements enhance the ability of display systems to screen peptide libraries for binding to selected target molecules and to display functional proteins with the potential of screening these proteins for desired properties. Combinatorial reaction devices for phage display reactions have been developed (WO 98/14277) and phage display libraries have been used to analyze and control bimolecular interactions (WO 98/20169; WO 98/20159) and properties of constrained helical peptides (WO 98/20036). WO 97/35196 describes a method of isolating an 25 affinity ligand in which a phage display library is contacted with one solution in which the ligand will bind to a target molecule and a second solution in which the affinity ligand will not bind to the target molecule, to selectively isolate binding ligands. WO 97/46251 describes a method of biopanning a random phage display library with an affinity purified antibody and then isolating binding phage, followed by a micropanning process using microplate wells to isolate high affinity binding phage. The use of Staphlylococcus aureus protein A as an affinity tag has 30 also been reported (Li et al. (1998) Mol Biotech., 9:187). WO 97/47314 describes the use of substrate subtraction libraries to distinguish enzyme specificities using a combinatorial library which may be a phage display library. A method for selecting enzymes suitable for use in detergents using phage display is described in WO 97/09446. Additional methods of selecting specific binding proteins are described in U.S. Patent Nos. 5,498,538, 5,432,018, and WO 98/15833. 35 Methods of generating peptide libraries and screening these libraries are also disclosed in U.S. Patent Nos. 5,723,286, 5,432,018, 5,580,717, 5,427,908, 5,498,530, 5,770,434, 5,734,018, 5,698,426, 5,763,192, and 5,723,323. C. TAHO Binding Organic Molecules 121 WO 2005/049075 PCT/US2004/038262 TAHO binding organic molecules are organic molecules other than oligopeptides or antibodies as defined herein that bind, preferably specifically, to a TAHO polypeptide as described herein. TAHO binding organic molecules may be identified and chemically synthesized using known methodology (see, e.g., PCT Publication Nos.W00/00823 and WO00/395 85). TAHO binding organic molecules are usually less than about 2000 daltons in size, alternatively less than about 1500, 750, 500, 250 or 200 daltons in size, wherein such organic molecules 5 that are capable of binding, preferably specifically, to a TAHO polypeptide as described herein may be identified without undue experimentation using well known techniques. In this regard, it is noted that techniques for screening organic molecule libraries for molecules that are capable of binding to a polypeptide target are well known in the art (see, e.g., PCT Publication Nos. W00/00823 and WOOO/39585). TAHO binding organic molecules may be, for example, aldehydes, ketones, oximes, hydrazones, semicarbazones, carbazides, primary 10 amines, secondary amines, tertiary amines, N-substituted hydrazines, hydrazides, alcohols, ethers, thiols, thioethers, disulfides, carboxylic acids, esters, aides, ureas, carbamates, carbonates, ketals, thioketals, acetals, thioacetals, aryl halides, aryl sulfonates, alkyl halides, alkyl sulfonates, aromatic compounds, heterocyclic compounds, anilines, alkenes, alkynes, diols, amino alcohols, oxazolidines, oxazolines, thiazolidines, thiazolines, enamines, sulfonamides, epoxides, aziridines, isocyanates, sulfonyl chlorides, diazo compounds, acid chlorides, or the like. 15 D. Screening for Anti-TAHO Antibodies, TAHO'Binding Oligopeptides and TAHO Binding Organic Molecules With the Desired Properties Techniques for generating antibodies, oligopeptides and organic molecules that bind to TAHO polypeptides have been described above. One may further select antibodies, oligopeptides or other organic molecules with certain biological characteristics, as desired. 20 The growth inhibitory effects of an anti-TAHO antibody, oligopeptide or other organic molecule of the invention may be assessed by methods known in the art, e.g., using cells which express a TAHO polypeptide either endogenously or following transfection with the TAHO gene. For example, appropriate tumor cell lines and TAHO-transfected cells may be treated with an anti-TAHO monoclonal antibody, oligopeptide or other organic molecule of the invention at various concentrations for a few days (e.g., 2-7) days and stained with crystal violet 25 or MTT or analyzed by some other colorimetric assay. Another method of measuring proliferation would be by comparing 3 H-thymidine uptake by the cells treated in the presence or absence an anti-TAHO antibody, TAHO binding oligopeptide or TAHO binding organic molecule of the invention. After treatment, the cells are harvested and the amount of radioactivity incorporated into the DNA quantitated in a scintillation counter. Appropriate positive controls include treatment of a selected cell line with a growth inhibitory antibody known to inhibit growth 30 of that cell line. Growth inhibition of tumor celldin vivo can be determined in various ways known in the art. The tumor cell may be one that overexpresses a TAHO polypeptide. The anti-TAHO antibody, TAHO binding oligopeptide or TAHO binding organic molecule will inhibit cell proliferation of a TAHO-expressing tumor cell in vitro or in vivo by about 25-100% compared to the untreated tumor cell, more preferably, by about 30-100%, and even more preferably by about 50-100% or 70-100%, in one embodiment, at an antibody concentration of 35 about 0.5 to 30 pg/ml. Growth inhibition can be measured at an antibody concentration of about 0.5 to 3Qig/mI or about 0.5 nM to 200 nM in cell culture, where the growth inhibition is determined 1-10 days after exposure of the tumor cells to the antibody. The antibody is growth inhibitory in vivo if administration of the anti-TAHO antibody at about 1 .Lg/kg to about 100 mg/kg body weight results in reduction in tumor size or reduction of tumor 122 WO 2005/049075 PCT/US2004/038262 cell proliferation within about 5 days to 3 months from the first administration of the antibody, preferably within about 5 to 30 days. To select for an anti-TAHO antibody, TAHO binding oligopeptide or TAHO binding organic molecule which induces cell death, loss of membrane integrity as indicated by, e.g., propidium iodide (PI), trypan blue or 7AAD uptake may be assessed relative to control. A PI uptake assay can be performed in the absence of 5 complement and immune effector cells. TAHO polypeptide-expressing tumor cells are incubated with medium alone or medium containing the appropriate anti-TAHO antibody (e.g, at about 10ig/ml), TAHO binding oligopeptide or TAHO binding organic molecule. The cells are incubated for a 3 day time period. Following each treatment, cells are washed and aliquoted into 35 mm strainer-capped 12 x 75 tubes (lml per tube, 3 tubes per treatment group) for removal of cell clumps. Tubes then receive PI (10pg/ml). Samples may be analyzed using 10 a FACSCAN@ flow cytometer and FACSCONVERT@ CellQuest software (Becton Dickinson). Those anti TAHO antibodies, TAHO binding oligopeptides or TAHO binding organic molecules that induce statistically significant levels of cell death as determined by PI uptake may be selected as cell death-inducing anti-TAHO antibodies, TAHO binding oligopeptides or TAHO binding organic molecules. To screen for antibodies, oligopeptides or other organic molecules which bind to an epitope on a TAHO 15 polypeptide bound by an antibody of interest, a routine cross-blocking assay such as that described in Antibodies, A Laboratory Manual. Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. This assay can be used to determine if a test antibody, oligopeptide or other organic molecule binds the same site or epitope as a known anti-TAHO antibody. Alternatively, or additionally, epitope mapping can be performed by methods known in the art. For example, the antibody sequence can be mutagenized such as by alanine scanning, 20 to identify contact residues. The mutant antibody is initially tested for binding with polyclonal antibody to ensure proper folding. In a different method, peptides corresponding to different regions of a TAHO polypeptide can be used in competition assays with the test antibodies or with a test antibody and an antibody with a characterized or known epitope. E. Antibody Dependent Enzyme Mediated Prodrun Therapy (ADEPT) 25 The antibodies of the present invention may also be used in ADEPT by conjugating the antibody to a prodrug-activating enzyme which converts a prodrug (e.g., a peptidyl chemotherapeutic agent, see W081/01145) to an active anti-cancer drug. See, for example, WO 88/07378 and U.S. Patent No. 4,975,278. The enzyme component of the immunoconjugate useful for ADEPT includes any enzyme capable of acting on a prodrug in such a way so as to covert it into its more active, cytotoxic form. 30 Enzymes that are useful in the method of this invention include, but are not limited to, alkaline phosphatase useful for converting phosphate-containing prodrugs into free drugs; arylsulfatase useful for' converting sulfate-containing prodrugs into free drugs; cytosine deaminase useful for converting non-toxic 5 fluorocytosine into the anti-cancer drug, 5-fluorouracil; proteases, such as serratia protease, thermolysin, subtilisin, carboxypeptidases and cathepsins (such as cathepsins B and L), that are useful for converting peptide-containing 35 prodrugs into free drugs; D-alanylcarboxypeptidases, useful for converting prodrugs that contain D-amino acid substituents; carbohydrate-cleaving enzymes such as -galactosidase and neuraminidase useful for converting glycosylated prodrugs into free drugs; P-lactamase useful for converting drugs derivatized with P-lactams into free drugs; and penicillin amidases, such as penicillin V amidase or penicillin G amidase, useful for converting drugs 123 WO 2005/049075 PCT/US2004/038262 derivatized at their amine nitrogens with phenoxyacetyl or phenylacetyl groups, respectively, into free drugs. Alternatively, antibodies with enzymatic activity, also known in the art as "abzymes", can be used to convert the prodrugs of the invention into free active drugs (see, e.g., Massey, Nature 328:457-458(1987)). Antibody-abzyme conjugates can be prepared as described herein for delivery of the abzyme to a tumor cell population. The enzymes of this invention can be covalently bound to the anti-TAHO antibodies by techniques well 5 known in the art such as the use of the heterobifunctional crosslinking reagents discussed above. Alternatively, fusion proteins comprising at least the antigen binding region of an antibody of the invention linked to at least a functionally active portion of an enzyme of the invention can be constructed using recombinant DNA techniques well known in the art (see, e.g., Neuberger et al., Nature 312:604-608 (1984). F. Full-Length TAHO Polypeptides 10 The present invention also provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as TAHO polypeptides. In particular, cDNAs (partial and full length) encoding various TAHO polypeptides have been identified and isolated, as disclosed in further detail in the Examples below. As disclosed in the Examples below, various cDNA clones have been deposited with the ATCC. The 15 actual nucleotide sequences of those clones can readily be determined by the skilled artisan by sequencing of the deposited clone using routine methods in the art. The predicted amino acid sequence can be determined from the nucleotide sequence using routine skill. For the TAHO polypeptides and encoding nucleic acids described herein, in some cases, Applicants have identified what is believed to be the reading frame best identifiable with the sequence information available at the time. 20 G. Anti-TAHO Antibody and TAHO Polypeptide Variants In addition to the anti-TAHO antibodies and full-length native sequence TAHO polypeptides described herein, it is contemplated that anti-TAHO antibody and TAHO polypeptide variants can be prepared. Anti-TAHO antibody and TAHO polypeptide variants can be prepared by introducing appropriate nucleotide changes into the encoding DNA, and/or by synthesis of the desired antibody or polypeptide. Those skilled in the art will appreciate 25 that amino acid changes may alter post-translational processes of the anti-TAHO antibody or TAHO polypeptide, such as changing the number or position of glycosylation sites or altering the membrane anchoring characteristics. Variations in the anti-TAHO antibodies and TAHO polypeptides described herein, can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations set forth, for instance, in U.S. Patent No. 5,364,934. Variations may be a substitution, deletion or insertion of one or more 30 codons encoding the antibody or polypeptide that results in a change in the amino acid sequence as compared with the native sequence antibody or polypeptide. Optionally the variation is by substitution of at least one amino acid with any other amino acid in one or more of the domains of the anti-TAHO antibody or TAHO polypeptide. Guidance in determining which amino acid residue may be inserted, substituted or deleted without adversely affecting the desired activity may be found by comparing the sequence of the anti-TAHO antibody or TAHO 35 polypeptide with that of homologous known protein molecules and minimizing the number of amino acid sequence changes made in regions of high homology. Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a leucine with a serine, i.e., conservative amino acid replacements. Insertions or deletions may optionally be in the range 124 WO 2005/049075 PCT/US2004/038262 of about I to 5 amino acids. The variation allowed may be determined by systematically making insertions, deletions or substitutions of amino acids in the sequence and testing the resulting variants for activity exhibited by the full-length or mature native sequence. Anti-TAHO antibody and TAHO polypeptide fragments are provided herein. Such fragments may be truncated at the N-terminus or C-terminus, or may lack internal residues, for example, when compared with a full 5 length native antibody or protein. Certain fragments lack amino acid residues that are not essential for a desired biological activity of the anti-TAHO antibody or TAHO polypeptide. Anti-TAHO antibody and TAHO polypeptide fragments may be prepared by any of a number of conventional techniques. Desired peptide fragments may be chemically synthesized. An alternative approach involves generating antibody or polypeptide fragments by enzymatic digestion, e.g., by treating the protein with 10 an enzyme known to cleave proteins at sites defined by particular amino acid residues, or by digesting the DNA with suitable restriction enzymes and isolating the desired fragment. Yet another suitable technique involves isolating and amplifying a DNA fragment encoding a desired antibody or polypeptide fragment, by polymerase chain reaction (PCR). Oligonucleotides that define the desired termini of the DNA fragment are employed at the 5' and 3' primers in the PCR. Preferably, anti-TAHO antibody and TAHO polypeptide fragments share at least 15 one biological and/or immunological activity with the native anti-TAHO antibody or TAHO polypeptide disclosed herein. In particular embodiments, conservative substitutions of interest are shown in Table 6 under the heading of preferred substitutions. If such substitutions result in a change in biological activity, then more substantial changes, denominated exemplary substitutions in Table 6, or as further described below in reference to amino acid 20 classes, are introduced and the products screened. 125 WO 2005/049075 PCT/US2004/038262 Table 6 Original Exemplary Preferred Residue Substitutions Substitutions Ala (A) val; leu; ile val 5 Arg (R) lys; gin; asn lys Asn (N) gln; his; lys; arg gin Asp (D) glu glu Cys (C) ser ser Gin (Q) asn asn 10 Glu (E) asp asp Gly (G) pro; ala ala His (H) asn; gin; lys; arg arg Be (I) leu; val; met; ala; phe; norleucine leu 15 Leu (L) norleucine; ile; val; met; ala; phe ile Lys (K) arg; gin; asn arg Met (M) leu; phe; ile leu Phe (F) leu; val; ile; ala; tyr leu 20 Pro (P) ala ala Ser (S) thr thr Thr (T) ser ser Trp (W) tyr; phe tyr Tyr (Y) tip; phe; thr; ser phe 25 Val (V) ile; leu; met; phe; ala; norleucine leu Substantial modifications in function or immunological identity of the anti-TAHO antibody or TAHO polypeptide are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) 30 the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties: (1) hydrophobic: norleucine, met, ala, val, leu, ile; (2) neutral hydrophilic: cys, ser, thr; 35 (3) acidic: asp, glu; (4) basic: asn, gin, his, lys, arg; (5) residues that influence chain orientation: gly, pro; and (6) aromatic: tip, tyr, phe. Non-conservative substitutions will entail exchanging a member of one of these classes for another class. 40 Such substituted residues also may be introduced into the conservative substitution sites or, more preferably, into the remaining (non-conserved) sites. The variations can be made using methods known in the art such as oligonucleotide-mediated (site directed) mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis [Carter et al., Nucl. Acids Res., 13:4331 (1986); Zoller et al., Nucl. Acids Res., 10:6487 (1987)], cassette mutagenesis [Wells et al., 45 Gene, 34:315 (1985)], restriction selection mutagenesis [Wells et al., Philos. Trans. R. Soc. London SerA, 317:415 (1986)] or other known techniques can be performed on the cloned DNA to produce the anti-TAHO antibody or 126 WO 2005/049075 PCT/US2004/038262 TAHO polypeptide variant DNA. Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, seine, and cysteine. Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main 5 chain conformation of the variant [Cunningham and Wells, Science, 244:1081-1085 (1989)]. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions [Creighton, The Proteins, (W.H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150:1 (1976)]. If alanine substitution does not yield adequate amounts of variant, an isoteric amino acid can be used. Any cysteine residue not involved in maintaining the proper conformation of the anti-TAHO antibody 10 or TAHO polypeptide also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the anti-TAHO antibody or TAHO polypeptide to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment). A particularly preferred type of substitutional variant involves substituting one or more hypervariable 15 region residues of a parent antibody (e.g., a humanized or human antibody). Generally, the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated. A convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariableregion sites (e.g., 6-7 sites) are mutated to generate all possible amino substitutions at each site. The antibody variants thus generated are displayed in a monovalent fashion from 20 filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. The phage displayed variants are then screened for their biological activity (e.g., binding affinity) as herein disclosed. In order to identify candidate hypervariable region sites for modification, alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding. Alternatively, or additionally, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact 25 points between the antibody and human TAHO polypeptide. Such contact residues and neighboring residues are candidates for substitution according to the techniques elaborated herein. Once such variants are generated, the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development. Nucleic acid molecules encoding amino acid sequence variants of the anti-TAHO antibody are prepared 30 by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the anti-TAHO antibody. H. Modifications of Anti-TAHO Antibodies and TAHO Polypentides 35 Covalent modifications of anti-TAHO antibodies and TAHO polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of an anti TAHO antibody or TAHO polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C- terminal residues of the anti-TAHO antibody or TAHO polypeptide. Derivatization 127 WO 2005/049075 PCT/US2004/038262 with bifunctional agents is useful, for instance, for crosslinking anti-TAHO antibody or TAHO polypeptide to a water-insoluble support matrix or surface for use in the method for purifying anti-TAHO antibodies, and vice versa. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleinides such as bis-N 5 maleimido-1,8-octane and agents such as methyl-3-[(p-azidophenyl)dithiojpropioimidate. Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the a-amino groups of lysine, arginine, and histidine side chains [T.E. Creighton, Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San Francisco, pp. 10 79-86 (1983)], acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group. Another type of covalent modification of the anti-TAHO antibody or TAHO polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the antibody or polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence anti-TAHO antibody or TAHO polypeptide (either by removing 15 the underlying glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence anti-TAHO antibody or TAHO polypeptide. In addition, the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present. Glycosylation of antibodies and other polypeptides is typically either N-linked or O-linked. N-linked 20 refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a 25 hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used. Addition of glycosylation sites to the anti-TAHO antibody or TAHO polypeptide is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or 30 substitution by, one or more serine or threonine residues to the sequence of the original anti-TAHO antibody or TAHO polypeptide (for O-linked glycosylation sites). The anti-TAHO antibody or TAHO polypeptide amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the anti-TAHO antibody or TAHO polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids. 35 Another means of increasing the number of carbohydrate moieties on the anti-TAHO antibody or TAHO polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330 published 11 September 1987, and in Aplin and Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981). 128 WO 2005/049075 PCT/US2004/038262 Removal of carbohydrate moieties present on the anti-TAHO antibody or TAHO polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., Arch. Biochem. Biophys., 259:52(1987) and by Edge et al., Anal. Biochem., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the 5 use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138:350 (1987). Another type of covalent modification of anti-TAHO antibody or TAHO polypeptide comprises linking the antibody or polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337. The antibody or polypeptide also may be entrapped in 10 microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules), orin macroemulsions. Such techniques are disclosed ireminton's Pharmaceutical Sciences, 16th edition, Oslo, A., Ed., (1980). 15 The anti-TAHO antibody or TAHO polypeptide of the present invention may also be modified in a way to form chimeric molecules comprising an anti-TAHO antibody or TAHO polypeptide fused to another, heterologous polypeptide or amino acid sequence. In one embodiment, such a chimeric molecule comprises a fusion of the anti-TAHO antibody or TAHO polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. 20 The epitope tag is generally placed at the amino- or carboxyl- terminus of the anti-TAHO antibody or TAHO polypeptide. The presence of such epitope-tagged forms of the anti-TAHO antibody or TAHO polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the anti TAHO antibody or TAHO polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. Various tag polypeptides and their respective 25 antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly his-gly) tags; the flu HA tag polypeptide and its antibody 12CA5 [Field et al., Mol. Cell. Biol., 8:2159-2165 (1988)]; the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto [Evan et al., Molecular and Cellular Biology 5:3610-3616 (1985)]; and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., Protein Engineering, 3(6):547-553 (1990)]. Other tag polypeptides include the Flag-peptide 30 [Hopp et al., BioTechnology, 6:1204-1210 (1988)]; the KT3 epitope peptide [Martin et al., Science 255:192-194 (1992)]; an a-tubulin epitope peptide [Skinner et al., J. Biol. Chem., 26:15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., Proc. Nat. Acad. Sci. USA, 87:6393-6397 (1990)]. In an alternative embodiment, the chimeric molecule may comprise a fusion of the anti-TAHO antibody or TAHO polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form 35 of the chimeric molecule (also referred to as an "immunoadhesin"), such a fusion could be to the Fc region of an IgG molecule. The Ig fusions preferably include the substitution of a soluble (transmembrane domain deleted or inactivated) form of an anti-TAHO antibody or TAHO polypeptide in place of at least one variable region within an Ig molecule. In a particularly preferred embodiment, the immunoglobulin fusion includes the hinge, CIj and 129 WO 2005/049075 PCTIUS2004/038262
CH
3 , or the hinge, CHI, CH 2 and CH 3 regions of an IgGI molecule. For the production of immunoglobulin fusions see also US Patent No. 5,428,130 issued June 27, 1995. I. Preparation of Anti-TAHO Antibodies and TAHO Polypeptides The description below relates primarily to production of anti-TAHO antibodies and TAHO polypeptides by culturing cells transformed or transfected with a vector containing anti-TAHO antibody- and TAHO 5 polypeptide-encoding nucleic acid. It is, of course, contemplated that alternative methods, which are well known in the art, may be employed to prepare anti-TAHO antibodies and TAHO polypeptides. For instance, the appropriate amino acid sequence, or portions thereof, may be produced by direct peptide synthesis using solid phase techniques [see, e.g., Stewart et al., Solid-Phase Peptide Synthesis, W.H. Freeman Co., San Francisco, CA (1969); Merrifield, J. Am. Chem. Soc., 5:2149-2154 (1963)]. In vitro protein synthesis may be performed using 10 manual techniques or by automation. Automated synthesis may be accomplished, for instance, using an Applied Biosystems Peptide Synthesizer (Foster City, CA) using manufacturer's instructions. Various portions of the anti TAHO antibody or TAHO polypeptide may be chemically synthesized separately and combined using chemical or enzymatic methods to produce the desired anti-TAHO antibody or TAHO polypeptide. 1. Isolation of DNA Encoding Anti-TAHO Antibody or TAHO Polypeptide 15 DNA encoding anti-TAHO antibody or TAHO polypeptide may be obtained from a cDNA library prepared from tissue believed to possess the anti-TAHO antibody or TAHO polypeptide mRNA and to express it at a detectable level. Accordingly, human anti-TAHO antibody or TAHO polypeptide DNA can be conveniently obtained from a cDNA library prepared from human tissue. The anti-TAHO antibody- or TAHO polypeptide encoding gene may also be obtained from a genomic library or by known synthetic procedures (e.g., automated 20 nucleic acid synthesis). Libraries can be screened with probes (such as oligonucleotides of at least about 20-80 bases) designed to identify the gene of interest or the protein encoded by it. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures, such as described in Sambrook et al., Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means 25 to isolate the gene encoding anti-TAHO antibody or TAHO polypeptide is to use PCR methodology [Sambrook et al., supra; Dieffenbach et al., PCR Primer: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1995)]. Techniques for screening a cDNA library are well known in the art. The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized. The oligonucleotide is preferably labeled such that it can be detected upon hybridization to DNA in the library 30 being screened. Methods of labeling are well known in the art, and include the use of radiolabels likFP-labeled ATP, biotinylation or enzyme labeling. Hybridization conditions, including moderate stringency and high stringency, are provided in Sambrook et al., supra. Sequences identified in such library screening methods can be compared and aligned to other known sequences deposited and available in public databases such as GenBank or other private sequence databases. 35 Sequence identity (at either the amino acid or nucleotide level) within defined regions of the molecule or across the full-length sequence can be determined using methods known in the art and as described herein. Nucleic acid having protein coding sequence may be obtained by screening selected cDNA or genomic libraries using the deduced amino acid sequence disclosed herein for the first time, and, if necessary, using 130 WO 2005/049075 PCT/US2004/038262 conventional primer extension procedures as described in Sambrook et al., supra, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA. 2. Selection and Transformation of Host Cells Host cells are transfected or transformed with expression or cloning vectors described herein for anti TAHO antibody or TAHO polypeptide production and cultured in conventional nutrient media modified as 5 appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. The culture conditions, such as media, temperature, pH and the like, can be selected by the skilled artisan without undue experimentation. In general, principles, protocols, and practical techniques for maximizing the productivity of cell cultures can be found in Mammalian Cell Biotechnology: a Practical Approac M. Butler, ed. (IRL Press, 1991) and Sambrook et al., suora. 10 Methods of eukaryotic cell transfection and prokaryotic cell transformation are known to the ordinarily skilled artisan, for example, CaC 2 , CaPO 4 , liposome-mediated and electroporation. Depending on the host cell used, transformation is performed using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in Sambrook et al., supra, or electroporation is generally used for prokaryotes. Infection with Agrobacterium tumefaciens is used for transformation of certain plant cells, as 15 described by Shaw et al., Gene, Q:315 (1983) and WO 89/05859 published 29 June 1989. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, Virology, 52:456 457 (1978) can be employed. General aspects of mammalian cell host system transfections have been described in U.S. Patent No. 4,399,216. Transformations into yeast are typically carried out according to the method of Van Solingen et al., J. Bact., 130:946 (1977) and Hsiao etal., Proc. Natl. Acad. Sci. (USA), 76:3829(1979). However, 20 other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene, polyornithine, may also be used. For various techniques for transforming mammalian cells, see Keown et al., Methods in Enzymology, 185:527-537(1990) and Mansour et al., Nature, 336:348-352 (1988). Suitable host cells for cloning or expressing the DNA in the vectors herein include prokaryote, yeast, or 25 higher eukaryote cells. Suitable prokaryotes include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as E. coli. Various E. coli strains are publicly available, such as E. coli K12 strain MM294 (ATCC 31,446); E. coli X1776 (ATCC 31,537); E coli strain W3110 (ATCC 27,325) and K5 772 (ATCC 53,635). Other suitable prokaryotic host cells include Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella 30 typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. lichenifonnis (e.g., B. lichenifonnis 41P disclosed in DD 266,710 published 12 April 1989), Pseudoinonas such as P. aeruginosa, and Streptomyces. These examples are illustrative rather than limiting. Strain W3 110 is one particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentations. Preferably, the host cell secretes minimal amounts of proteolytic enzymes. For example, strain 35 W3 110 may be modified to effect a genetic mutation in the genes encoding proteins endogenous to the host, with examples of such hosts including E. coli W31 10 strain 1A2, which has the complete genotype tonA ; E. coli W3110 strain 9E4, which has the complete genotype tonA ptr E. coli W3 110 strain 27C7 (ATCC55,244), which has the complete genotype tonA ptr3phoA E15 (argF-lac)169 degP oinpT ka[4 E. coliW31 10 strain 37D6, which 131 WO 2005/049075 PCT/US2004/038262 has the complete genotype tonA ptr3phoA E15 (argF-Iac)169 degP oinpT rbs7 ilvG kaf E. coliW3110 strain 40B4, which is strain 37D6 with a non-kanamycin resistant degP deletion mutation; and an E. coli strain having mutant periplasmic protease disclosed in U.S. Patent No. 4,946,783 issued 7 August 1990. Alternatively,in vitro methods of cloning, e.g., PCR or other nucleic acid polymerase reactions, are suitable. Full length antibody, antibody fragments, and antibody fusion proteins can be produced in bacteria, in 5 particular when glycosylation and Fc effector function are not needed, such as when the therapeutic antibody is conjugated to a cytotoxic agent (e.g., a toxin) and the immunoconjugate by itself shows effectiveness in tumor cell destruction. Full length antibodies have greater half life in circulation. Production in E. coli is faster and more cost efficient For expression of antibody fragments and polypeptides in bacteria, see, e.g., U.S. 5,648,237 (Carter et. al.), U.S. 5,789,199 (Joly et al.), and U.S. 5,840,523 (Simmons et al.) which describes translation initiation 10 regio (TIR) and signal sequences for optimizing expression and secretion, these patents incorporated herein by reference. After expression, the antibody is isolated from the E. coli cell paste in a soluble fraction and can be purified through, e.g., a protein A or G column depending on the isotype. Final purification can be carried out similar to the process for purifying antibody expressed e.g,, in CHO cells. In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning 15 or expression hosts for anti-TAHO antibody- or TAHO polypeptide-encoding vectors. Saccharonzyces cerevisiae is a commonly used lower eukaryotic host microorganism. Others include Schizosaccharomyces pombe (Beach and Nurse, Nature, 290: 140 [1981]; EP 139,383 published 2 May 1985); Kluyveromyces hosts (U.S. Patent No. 4,943,529; Fleer metal , Bio/Fechnology, 9:968-975 (1991)) such as, e.g4. lactis (MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacteriol., 154(2):737-742 [1983]), K fragilis (ATCC 12,424), K. bulgaricus (ATCC 20 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarun (ATCC 36,906; Van den Berg et al., Bio/Technology, 8:135 (1990)), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol., 28:265-278 [1988]); Candida; Trichoderna reesia (EP 244,234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA , 76:5259-5263 [1979]); Schwanniomyces such as Schwannionryces occidentalis (EP 394,538 published 31 October 1990); and filamentous 25 fungi such as, e.g., Neurospora, Penicillium, Tolypocladiun (WO 91100357 published 10 January 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun., 112:284-289 [1983]; Tilburn et al., Gene 26:205-221 [1983]; Yelton et al., Proc. Natl. Acad. Sci. USA, 81: 1470-1474 [1984]) andA. niger (Kelly and Hynes, EMBO J. 4:475-479 [1985]). Methylotropic yeasts are suitable herein and include, but are not limited to, yeast capable of growth on methanol selected from the genera consisting of Hansenula, 30 Candida, Kloeckera, Pichia, Saccharomyces, Torulopsis, and Rhodotorula. A list of specific species that are exemplary of this class of yeasts may be found in C. Anthony, The Biochemistry of Methylotrophs, 269 (1982). Suitable host cells for the expression of glycosylated anti-TAHO antibody or TAHO polypeptide are derived from multicellular organisms. Examples of invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plant cells, such as cell cultures of cotton, corn, potato, soybean, petunia, tomato, 35 and tobacco. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodopterafrugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and Bonibyx nori have been identified. A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bonbyx mori NPV, 132 WO 2005/049075 PCT/US2004/038262 and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodopterafrugiperda cells. However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells 5 subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod. 23:243-251 (1980)); monkey kidney cells (CVI ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC 10 CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL5 1); TRI cells (Mather et al., Annals N.Y. Acad. Sci, 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2). Host cells are transformed with the above-described expression or cloning vectors for anti-TAHO antibody or TAHO polypeptide production and cultured in conventional nutrient media modified as appropriate 15 for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. 3. Selection and Use of a Replicable Vector The nucleic acid (e.g., cDNA or genomic DNA) encoding anti-TAHO antibody or TAHO polypeptide may be inserted into a replicable vector for cloning (amplification of the DNA) or for expression. Various vectors are publicly available. The vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage. 20 The appropriate nucleic acid sequence may be inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site(s) using techniques known in the art. Vector components generally include, but are not limited to, one or more of a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these components employs standard ligation techniques 25 which are known to the skilled artisan. The TAHO may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the anti-TAHO antibody- or TAHO polypeptide-encoding DNA that is inserted into 30 the vector. The signal sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders. For yeast secretion the signal sequence may be, e.g., the yeast invertase leader, alpha factor leader (includinfaccharomyces and Kluyveromyces a-factor leaders, the latter described in U.S. Patent No. 5,010,182), or acid phosphatase leader, the C. albicans glucoamylase leader (EP 362,179 published 4 April 1990), or the signal described in WO 90/13646 published 15 35 November 1990. In mammalian cell expression, mammalian signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders. Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate 133 WO 2005/049075 PCT/US2004/038262 in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2p plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells. Expression and cloning vectors will typically contain a selection gene, also termed a selectable marker. 5 Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli. An example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the anti-TAHO antibody- or TAHO polypeptide-encoding nucleic acid, such as 10 DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., Proc. Natl. Acad. Sci. USA, 77:4216 (1980). A suitable selection gene for use in yeast is the trpl gene present in the yeast plasmid YRp7 [Stinchcomb et al., Nature, 282:39 (1979); Kingsman et al., Gene, 7:141 (1979); Tschemper et al., Gene, 10:157 (1980)]. The trpl gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in 15 tryptophan, for example, ATCC No. 44076 or PEP4-1 [Jones, Genetics, 85:12 (1977)]. Expression and cloning vectors usually contain a promoter operably linked to the anti-TAHO antibody or TAHO polypeptide-encoding nucleic acid sequence to direct mRNA synthesis. Promoters recognized by a variety of potential host cells are well known. Promoters suitable for use with prokaryotic hosts include the P lactamase and lactose promoter systems [Chang et al., Nature, 275:615 (1978); Goeddel et al., Nature, 281:544 2o (1979)], alkaline phosphatase, a tryptophan (trp) promoter system [Goeddel, Nucleic Acids Res., 8:4057 (1980); EP 36,776], and hybrid promoters such as the tac promoter [deBoer et al., Proc. Natl. Acad, Sci. USA, 80:21-25 (1983)]. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding anti-TAHO antibody or TAHO polypeptide. Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3 Z25 phosphoglycerate kinase [Hitzeman et al., J. Biol. Chem., 255:2073 (1980)] or other glycolytic enzymes [Hess et al., J. Adv. Enzyme Reg., 7:149 (1968); Holland, Biochemistry, 17:4900 (1978)], such as enolase, glyceraldehyde 3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. 30 Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3 phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657. 35 Anti-TAHO antibody or TAHO polypeptide transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), from heterologous mammalian 134 WO 2005/049075 PCT/US2004/038262 promoters, e.g., the actin promoter or an immunoglobulin promoter, and from heat-shock promoters, provided such promoters are compatible with the host cell systems. Transcription of a DNA encoding the anti-TAHO antibody or TAHO polypeptide by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Many enhancer sequences 5 are now known from mammalian genes (globin, elastase, albumin, a-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. The enhancer may be spliced into the vector at a position 5' or 3' to the anti-TAHO antibody or TAHO polypeptide coding sequence, but is preferably located at a site 5' 10 from the promoter. Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments 15 transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding anti-TAHO antibody or TAHO polypeptide. Still other methods, vectors, and host cells suitable for adaptation to the synthesis of anti-TAHO antibody or TAHO polypeptide in recombinant vertebrate cell culture are described in Gething et al., Nature, 293:620-625 (1981); Mantei et al., Nature, 281:40-46 (1979); EP 117,060; and EP 117,058. 20 4. Culturing the Host Cells The host cells used to produce the anti-TAHO antibody or TAHO polypeptide of this invention may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham et al., Meth. Enz. 58:44 25 (1979), Barnes et al., Anal. Biochem.102:255 (1980), U.S. Pat. Nos. 4,767,704;4,657,866; 4,927,762; 4,560,655; or 5,122,469; WO 90/03430; WO 87/00195; or U.S. Patent Re. 30,985 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as 30 GENTAMYCINTM drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan. 35 5. Detecting Gene Amplification/Expression Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription ofmRNA [Thomas, Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)], dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, 135 WO 2005/049075 PCT/US2004/038262 based on the sequences provided herein. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected. Gene expression, alternatively, may be measured by immunological methods, such as 5 immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native sequence TAHO polypeptide or against a synthetic peptide based on the DNA sequences provided herein or against exogenous sequence fused to TAHO DNA and encoding a specific 10 antibody epitope. 6. Purification of Anti-TAHO Antibody and TAHO Polypeptide Forms of anti-TAHO antibody and TAHO polypeptide may be recovered from culture medium or from host cell lysates. If membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g. Triton-X 100) or by enzymatic cleavage. Cells employed in expression of anti-TAHO antibody and TAHO 15 polypeptide can be disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or cell lysing agents. It may be desired to purify anti-TAHO antibody and TAHO polypeptide from recombinant cell proteins or polypeptides. The following procedures are exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation 20 exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; protein A Sepharose columns to remove contaminants such as IgG; and metal chelating columns to bind epitope-tagged forms of the anti-TAHO antibody and TAHO polypeptide. Various methods of protein purification may be employed and such methods are known in the art and described for example in Deutscher,Methods in Enzymolog 182 (1990); ScopesProtein Purification: Principles and Practice Springer 25 Verlag, New York (1982). The purification step(s) selected will depend, for example, on the nature of the production process used and the particular anti-TAHO antibody or TAHO polypeptide produced. When using recombinant techniques, the antibody can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody is produced intracellularly, as afirst step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter 30 et al., Bio/Technology 10:163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min. Cell debris can be removed by centrifugation. Where the antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore 35 Pellicon ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants. The antibody composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being 136 WO 2005/049075 PCT/US2004/038262 the preferred purification technique. The suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the antibody. Protein A can be used to purify antibodies that are based on human yl, y2 or y4 heavy chains (Lindmark et al., J. Immunol. Meth. 62:1-13 (1983)). Protein G is recommended for all mouse isotypes and for humany3 (Guss et al., EMBO J. 5:15671575 (1986)). The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. 5 Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the antibody comprises a C H 3 domain, the Bakerbond ABXTMresin (J. T. Baker, Phillipsburg, NJ) is useful for purification. Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSETm chromatography on an anion or 10 cation exchange resin (such as a polyaspartic acid column), chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody to be recovered. Following any preliminary purification step(s), the mixture comprising the antibody of interest and contaminants may be subjected to low pH hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5-4.5, preferably performed at low salt concentrations (e.g., from about 0-0.25M salt). 15 J. Pharmaceutical Formulations Therapeutic formulations of the anti-TAHO antibodies, TAHO binding oligopeptides, TAHO binding organic molecules and/or TAHO polypeptides used in accordance with the present invention are prepared for storage by mixing the antibody, polypeptide, oligopeptide or organic molecule having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizera(emington's Pharmaceutical Sciences 20 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as acetate, Tris, phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as 25 methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; tonicifiers such as trehalose and sodium chloride; sugars such as sucrose, 30 mannitol, trehalose or sorbitol; surfactant such as polysorbate; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEEN@, PLURONICS@ or polyethylene glycol (PEG). The antibody preferably comprises the antibody at a concentration of between 5-200 mg/mil, preferably between 10-100 mg/ml. The formulations herein may also contain more than one active compound as necessary for the particular 35 indication being treated, preferably those with complementary activities that do not adversely affect each other. For example, in addition to an anti-TAHO antibody, TAHO binding oligopeptide, or TAHO binding organic molecule, it may be desirable to include in the one formulation, an additional antibody, e.g., a second anti-TAHO antibody which binds a different epitope on the TAHO polypeptide, or an antibody to some other target such as 137 WO 2005/049075 PCT/US2004/038262 a growth factor that affects the growth of theparticular cancer. Alternatively, or additionally, the composition may further comprise a chemotherapeutic agent, cytotoxic agent, cytokine, growth inhibitory agent, anti-hormonal agent, and/or cardioprotectant. Such molecules are suitably present in combination in amounts that are effective for the purpose intended. The active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation 5 techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, incolloidal drug deliverysystems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Osol, A. Ed. (1980). Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations 10 include semi-permeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and y ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT@ (injectable microspheres 15 composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid. The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes. K. Treatment with Anti-TAHO Antibodies, TAHO Binding Oligopeptides and TAHO Binding Organic Molecules 20 To determine TAHO expression in the cancer, various detection assays are available. In one embodiment, TAHO polypeptide overexpression may be analyzed by immunohistochemistry (IHC). Parrafin embedded tissue sections from a tumor biopsy may be subjected to the IHC assay and accorded a TAHO protein staining intensity criteria as follows: Score 0 - no staining is observed or membrane staining is observed in less than 10% of tumor cells. 25 Score 1+ - a faint/barely perceptible membrane staining is detected in more than 10% of the tumor cells. The cells are only stained in part of their membrane. Score 2+ - a weak to moderate complete membrane staining is observed in more than 10% of the tumor cells. Score 3+ - a moderate to strong complete membrane staining is observed in more than 10% of the tumor 30 cells. Those tumors with 0 or 1+ scores for TAHO polypeptide expression may be characterized as not overexpressing TAHO, whereas those tumors with 2+ or 3+ scores may be characterized as overexpressing TAHO. Alternatively, or additionally, FISH assays such as the INFORM@ (sold by Ventana, Arizona) or PATHVISION@ (Vysis, Illinois) may be carried out on formalin-fixed, paraffin-embedded tumor tissue to 35 determine the extent (if any) of TAHO overexpression in the tumor. TAHO overexpression or amplification may be evaluated using an in vivo detection assay, e.g., by administering a molecule (such as an antibody, oligopeptide or organic molecule) which binds the molecule to be detected and is tagged with a detectable label (e.g., a radioactive isotope or a fluorescent label) and externally 138 WO 2005/049075 PCT/US2004/038262 scanning the patient for localization of the label. As described above, the anti-TAHO antibodies, oligopeptides and organic molecules of the invention have various non-therapeutic applications. The anti-TAHO antibodies, oligopeptides and organic molecules of the present invention can be useful for staging of TAHO polypeptide-expressing cancers (e.g., in radioimaging). The antibodies, oligopeptides and organic molecules are also useful for purification or immunoprecipitation of TAHO 5 polypeptide from cells, for detection and quantitation of TAHO polypeptide in vitro, e.g., in an ELISA or a Western blot, to kill and eliminate TAHO-expressing cells from a population of mixed cells as a step in the purification of other cells. Currently, depending on the stage of the cancer, cancer treatment involves one or a combination of the following therapies: surgery to remove the cancerous tissue, radiation therapy, and chemotherapy. Anti-TAHO 10 antibody, oligopeptide or organic molecule therapy may be especially desirable in elderly patients who do not tolerate the toxicity and side effects of chemotherapy well and in metastatic disease where radiation therapy has limited usefulness. The tumor targeting anti-TAHO antibodies, oligopeptides and organic molecules of the invention are useful to alleviate TAHO-expressing cancers upon initial diagnosis of the disease or during relapse. For therapeutic applications, the anti-TAHO antibody, oligopeptide or organic molecule can be used alone, or in 15 combination therapy with, e.g., hormones, antiangiogens, or radiolabelled compounds, or with surgery, cryotherapy, and/or radiotherapy. Anti-TAHO antibody, oligopeptide or organic molecule treatment can be administered in conjunction with other forms of conventional therapy, either consecutively with, pre- or post conventional therapy. Chemotherapeutic drugs such as TAXOTERE@ (docetaxel), TAXOL@ (palictaxel), estramustine and mitoxantrone are used in treating cancer, in particular, in good risk patients. In the present 20 method of the invention for treating or alleviating cancer, the cancer patient can be administered anti-TAHO antibody, oligopeptide or organic molecule in conjunction with treatment with the one or more of the preceding chemotherapeutic agents. In particular, combination therapy with palictaxel and modified derivatives (see, e.g., EP0600517) is contemplated. The anti-TAHO antibody, oligopeptide or organic molecule will be administered with a therapeutically effective dose of the chemotherapeutic agent. In another embodiment, the anti-TAHO 25 antibody, oligopeptide or organic molecule is administered in conjunction with chemotherapy to enhance the activity and efficacy of the chemotherapeutic agent, e.g., paclitaxel. The Physicians' Desk Reference (PDR) discloses dosages of these agents that have been used in treatment of various cancers. The dosing regimen and dosages of these aforementioned chemotherapeutic drugs that are therapeutically effective will depend on the particular cancer being treated, the extent of the disease and other factors familiar to the physician of skill in the 30 art and can be determined by the physician. In one particular embodiment, a conjugate comprising an anti-TAHO antibody, oligopeptide or organic molecule conjugated with a cytotoxic agent is administered to the patient. Preferably, the immunoconjugate bound to the TAHO protein is internalized by the cell, resulting in increased therapeutic efficacy of the immunoconjugate in killing the cancer cell to which it binds. In a preferred embodiment, the cytotoxic agent targets or interferes with 35 the nucleic acid in the cancer cell. Examples of such cytotoxic agents are described above and include maytansinoids, calicheamicins, ribonucleases and DNA endonucleases. The anti-TAHO antibodies, oligopeptides, organic molecules or toxin conjugates thereof are administered to a human patient, in accord with known methods, such as intravenous administration, e.g.,, as a bolus or by 139 WO 2005/049075 PCT/US20041038262 continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerobrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation routes. Intravenous or subcutaneous administration of the antibody, oligopeptide or organic molecule is preferred. Other therapeutic regimens may be combined with the administration of the anti-TAHO antibody, oligopeptide or organic molecule. The combined administration includes co-administration, using separate 5 formulations or a single pharmaceutical formulation, and consecutive administration in either order, wherein preferably there is a time period while both (or all) active agents simultaneously exert their biological activities. Preferably such combined therapy results in a synergistic therapeutic effect. It may also be desirable to combine administration of the anti-TAHO antibody or antibodies, oligopeptides or organic molecules, with administration of an antibody directed against another tumor antigen 10 associated with the particular cancer. In another embodiment, the therapeutic treatment methods of the present invention involves the combined administration of an anti-TAHO antibody (or antibodies), oligopeptides or organic molecules and one or more chemotherapeutic agents or growth inhibitory agents, including co-administration of cocktails of different chemotherapeutic agents. Chemotherapeutic agents include estramustine phosphate, prednimustine, cisplatin, 5 15 fluorouracil, melphalan, cyclophosphamide, hydroxyurea and hydroxyureataxanes (such as paclitaxel and doxetaxel) and/or anthracycline antibiotics. Preparation and dosing schedules for such chemotherapeutic agents may be used according to manufacturers' instructions or as determined empirically by the skilled practitioner. Preparation and dosing schedules for such chemotherapy are also described in Chemotherapy Service Ed., M.C. Perry, Williams & Wilkins, Baltimore, MD (1992). 20 The antibody, oligopeptide or organic molecule may be combined with an anti-hormonal compound; e.g., an anti-estrogen compound such as tamoxifen; an anti-progesterone such as onapristone (see, EP 616 812); or an anti-androgen such as flutamide, in dosages known for such molecules. Where the cancer to be treated is androgen independent cancer, the patient may previously have been subjected to anti-androgen therapy and, after the cancer becomes androgen independent, the anti-TAHO antibody, oligopeptide or organic molecule (and optionally other 25 agents as described herein) may be administered to the patient. Sometimes, it may be beneficial to also co-administer a cardioprotectant (to prevent or reduce myocardial dysfunction associated with the therapy) or one or more cytokines to the patient. In addition to the above therapeutic regimes, the patient may be subjected to surgical removal of cancer cells and/or radiation therapy, before, simultaneously with, or post antibody, oligopeptide or organic molecule therapy. Suitable dosages for any 30 of the above co-administered agents are those presently used and may be lowered due to the combined action (synergy) of the agent and anti-TAHO antibody, oligopeptide or organic molecule. For the prevention or treatment of disease, the dosage and mode of administration will be chosen by the physician according to known criteria. The appropriate dosage of antibody, oligopeptide or organic molecule will depend on the type of disease to be treated, as defined above, the severity and course of the disease, whether the 35 antibody, oligopeptide or organic molecule is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody, oligopeptide or organic molecule, and the discretion of the attending physician. The antibody, oligopeptide or organic molecule is suitably administered to the patient at one time or over a series of treatments. Preferably, the antibody, oligopeptide or organic molecule 140 WO 2005/049075 PCT/US2004/038262 is administered by intravenous infusion or by subcutaneous injections. Depending on the type and severity of the disease, about 1 pg/kg to about 50 mg/kg body weight (e.g., about 0.1-1 5mg/kg/dose) of antibody can be an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. A dosing regimen can comprise administering an initial loading dose of about 4 mg/kg, followed by a weekly maintenance dose of about 2 mg/kg of the anti-TAHO antibody. However, other dosage 5 regimens may be useful. A typical daily dosage might range from about pg/kg to 100 mg/kg or more, depending on the factors mentioned above. For repeated administrations over several days or longer, depending on the condition, the treatment is sustained until a desired suppression of disease symptoms occurs. The progress of this therapy can be readily monitored by conventional methods and assays and based on criteria known to the physician or other persons of skill in the art. 10 Aside from administration of the antibody protein to the patient, the present application contemplates administration of the antibody by gene therapy. Such administration of nucleic acid encoding the antibody is encompassed by the expression "administering a therapeutically effective amount of an antibody". See, for example, W096/07321 published March 14, 1996 concerning the use of gene therapy to generate intracellular antibodies. 15 There are two major approaches to getting the nucleic acid (optionally contained in a vector) into the patient's cells; in vivo and ex vivo. Forin vivo delivery the nucleic acid is injected directly into the patient, usually at the site where the antibody is required. For ex vivo treatment, the patient's cells are removed, the nucleic acid is introduced into these isolated cells and the modified cells are administered to the patient either directly or, for example, encapsulated within porous membranes which are implanted into the patient (see, e.g., U.S. Patent Nos. 20 4,892,538 and 5,283,187). There are a variety of techniques available for introducing nucleic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cellsin vitro, or in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc. A commonly used vector for ex vivo delivery of the gene is a retroviral 25 vector. The currently preferred in vivo nucleic acid transfer techniques include transfection with viral vectors (such as adenovirus, Herpes simplex I virus, or adeno-associated virus) and lipid-based systems (useful lipids for lipid-mediated transfer of the gene are DOTMA, DOPE and DC-Chol, for example). For review of the currently known gene marking and gene therapy protocols see Anderson et al., Science 256:808-813 (1992). See also WO 30 93/25673 and the references cited therein. The anti-TAHO antibodies of the invention can be in the different forms encompassed by the definition of "antibody" herein. Thus, the antibodies include full length or intact antibody, antibody fragments, native sequence antibody or amino acid variants, humanized, chimeric or fusion antibodies, immunoconjugates, and functional fragments thereof. In fusion antibodies an antibody sequence is fused to a heterologous polypeptide 35 sequence. The antibodies can be modified in the Fc region to provide desired effector functions. As discussed in more detail in the sections herein, with the appropriate Fc regions, the naked antibody bound on the cell surface can induce cytotoxicity, e.g., via antibody-dependent cellular cytotoxicity (ADCC) or by recruiting complement in complement dependent cytotoxicity, or some other mechanism. Alternatively, where it is desirable to eliminate 141 WO 2005/049075 PCT/US2004/038262 or reduce effector function, so as to minimize side effects or therapeutic complications, certain other Fc regions may be used. In one embodiment, the antibody competes for binding or bind substantially to, the same epitope as the antibodies of the invention. Antibodies having the biological characteristics of the present anti-TAHO antibodies of the invention are also contemplated, specifically including the in vivo tumor targeting and any cell proliferation 5 inhibition or cytotoxic characteristics. Methods of producing the above antibodies are described in detail herein. The present anti-TAHO antibodies, oligopeptides and organic molecules are useful for treating a TAHO expressing cancer or alleviating one or more symptoms of the cancer in a mammal. Such a cancer includes, but is not limited to, hematopoietic cancers or blood-related cancers, such as lymphoma, leukemia, myeloma or 10 lymphoid malignancies, but also cancers of the spleen and cancers of the lymph nodes. More particular examples of such B-cell associated cancers, including for example, high, intermediate and low grade lymphomas (including B cell lymphomas such as, for example, mucosa-associated-lymphoid tissue B cell lymphoma and non-Hodgkin's lymphoma, mantle cell lymphoma, Burkitt's lymphoma, small lymphocytic lymphoma, marginal zone lymphoma, diffuse large cell lymphoma, follicular lymphoma, and Hodgkin's lymphoma and T cell lymphomas) and 15 leukemias (includin-g secondary leukemia, chronic lymphocytic leukemia, such as B cell leukemia (CD5+ B lymphocytes), myeloid leukemia, such as acute myeloid leukemia, chronic myeloid leukemia, lymphoid leukemia, such as acute lymphoblastic leukemia and myelodysplasia), multiple myeloma, such as plasma cell malignancy, and other hematological and/or B cell- or T-cell-associated cancers. The cancers encompass metastatic cancers of any of the preceding. The antibody, oligopeptide or organic molecule is able to bind to at least a portion of the 20 cancer cells that express TAHO polypeptide in the mammal. In a preferred embodiment, the antibody, oligopeptide or organic molecule is effective to destroy or kill TAHO-expressing tumor cells or inhibit the growth of such tumor cells, in vitro or in vivo, upon binding to TAHO polypeptide on the cell. Such an antibody includes a naked anti-TAHO antibody (not conjugated to any agent). Naked antibodies that have cytotoxic or cell growth inhibition properties can be further harnessed with a cytotoxic agent to render them even more potent in tumor cell 25 destruction. Cytotoxic properties can be conferred to an anti-TAHO antibody by, e.g., conjugating the antibody with a cytotoxic agent, to form an immunoconjugate as described herein. The cytotoxic agent or a growth inhibitory agent is preferably a small molecule. Toxins such as calicheamicin or a maytansinoid and analogs or derivatives thereof, are preferable. The invention provides a composition comprising an anti-TAHO antibody, oligopeptide or organic 30 molecule of the invention, and a carrier. For the purposes of treating cancer, compositions can be administered to the patient in need of such treatment, wherein the composition can comprise one or more anti-TAHO antibodies present as an immunoconjugate or as the naked antibody. In a further embodiment, the compositions can comprise these antibodies, oligopeptides or organic molecules in combination with other therapeutic agents such as cytotoxic or growth inhibitory agents, including chemotherapeutic agents. The invention also provides formulations 35 comprising an anti-TAHO antibody, oligopeptide or organic molecule of the invention, and a carrier. In one embodiment, the formulation is a therapeutic formulation comprising a pharmaceutically acceptable carrier. Another aspect of the invention is isolated nucleic acids encoding the anti-TAHO antibodies. Nucleic acids encoding both the H and L chains and especially the hypervariable region residues, chains which encode the 142 WO 2005/049075 PCT/US2004/038262 native sequence antibody as well as variants, modifications and humanized versions of the antibody, are encompassed. The invention also provides methods useful for treating a TAHO polypeptide-expressing cancer or alleviating one or more symptoms of the cancer in a mammal, comprising administering a therapeutically effective amount of an anti-TAHO antibody, oligopeptide or organic molecule to the mammal. The antibody, oligopeptide 5 or organic molecule therapeutic compositions can be administered short term (acute) or chronic, or intermittent as directed by physician. Also provided are methods of inhibiting the growth of, and killing a TAHO polypeptide expressing cell. The invention also provides kits and articles of manufacture comprising at least one anti-TAHO antibody, oligopeptide or organic molecule. Kits containing anti-TAHO antibodies, oligopeptides or organic molecules find 10 use, e.g., for TAHO cell killing assays, for purification or immunoprecipitation of TAHO polypeptide from cells. For example, for isolation and purification of TAHO, the kit can contain an anti-TAHO antibody, oligopeptide or organic molecule coupled to beads (e.g., sepharose beads). Kits can be provided which contain the antibodies, oligopeptides or organic molecules for detection and quantitation of TAHO in vitro, e.g., in an ELISA or a Western blot. Such antibody, oligopeptide or organic molecule useful for detection may be provided with a label such as 15 a fluorescent or radiolabel. L. Articles of Manufacture and Kits Another embodiment of the invention is an article of manufacture containing materials useful for the treatment of anti-TAHO expressing cancer. The article of manufacture comprises a container and a label or package insert on or associated with the container. Suitable containers include, for example, bottles, vials, 20 syringes, etc. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition which is effective for treating the cancer condition and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). At least one active agent in the composition is an anti-TAHO antibody, oligopeptide or organic molecule of the invention. The label or package insert indicates that the composition is used for treating cancer. 25 The label or package insert will further comprise instructions for administering the antibody, oligopeptide or organic molecule composition to the cancer patient. Additionally, the article of manufacture may further comprise a second container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes. 30 Kits are also provided that are useful for various purposes, e.g., for TAHO-expressing cell killing assays, for purification or immunoprecipitation of TAHO polypeptide from cells. For isolation and purification of TAHO polypeptide, the kit can contain an anti-TAHO antibody, oligopeptide or organic molecule coupled to beads (e.g., sepharose beads). Kits can be provided which contain the antibodies, oligopeptides or organic molecules for detection and quantitation of TAHO polypeptide in vitro, e.g., in an ELISA or a Western blot. As with the article 35 of manufacture, the kit comprises a container and a label or package insert on or associated with the container. The container holds a composition comprising at least one anti-TAHO antibody, oligopeptide or organic molecule of the invention. Additional containers may be included that contain, e.g., diluents and buffers, control antibodies. The label or package insert may provide a description of the composition as well as instructions for the intended 143 WO 2005/049075 PCT/US2004/038262 in vitro or detection use. M. Uses for TAHO Polypeptides and TAHO-Polypeptide Encoding Nucleic Acids Nucleotide sequences (or their complement) encoding TAHO polypeptides have various applications in the art of molecular biology, including uses as hybridization probes, in chromosome and gene mapping and in the generation of anti-sense RNA and DNA probes. TAHO-encoding nucleic acid will also be useful for the 5 preparation of TAHO polypeptides by the recombinant techniques described herein, wherein those TAHO polypeptides may find use, for example, in the preparation of anti-TAHO antibodies as described herein. The full-length native sequence TAHO gene, or portions thereof, may be used as hybridization probes for a cDNA library to isolate the full-length TAHO cDNA or to isolate still other cDNAs (for instance, those encoding naturally-occurring variants of TAHO or TAHO from other species) which have a desired sequence 10 identity to the native TAHO sequence disclosed herein. Optionally, the length of the probes will be about 20 to about 50 bases. The hybridization probes may be derived from at least partially novel regions of the full length native nucleotide sequence wherein those regions may be determined without undue experimentation or from genomic sequences including promoters, enhancer elements and introns of native sequence TAHO. By way of example, a screening rnethod will comprise isolating the coding region of the TAHO gene using the known DNA 15 sequence to synthesize a selected probe of about 40 bases. Hybridization probes may be labeled by a variety of labels, including radionucleotides such as 3 2 P or 35S, or enzymatic labels such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems. Labeled probes having a sequence complementary to that of the TAHO gene of the present invention can be used to screen libraries of human cDNA, genomic DNA or mRNA to determine which members of such libraries the probe hybridizes to. Hybridization techniques are described in 20 further detail in the Examples below. Any EST sequences disclosed in the present application may similarly be employed as probes, using the methods disclosed herein. Other useful fragments of the TAHO-encoding nucleic acids include antisense or sense oligonucleotides comprising a singe-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target TAHO mRNA (sense) orTAHO DNA (antisense) sequences. Antisense or sense oligonucleotides, according to the present 25 invention, comprise a fragment of the coding region of TAHO DNA. Such a fragment generally comprises at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, for example, Stein and Cohen (Cancer Res. 48:2659, 1988) and van der Krol et al. (BioTechniques 6:958, 1988). Binding of antisense or sense oligonucleotides to target nucleic acid sequences results in the formation 30 of duplexes that block transcription or translation of the target sequence by one of several means, including enhanced degradation of the duplexes, premature termination of transcription or translation, or by other means. Such methods are encompassed by the present invention. The antisense oligonucleotides thus may be used to block expression of TAHO proteins, wherein those TAHO proteins may play a role in the induction of cancer in mammals. Antisense or sense oligonucleotides further comprise oligonucleotides having modified sugar 35 phosphodiester backbones (or other sugar linkages, such as those described in WO 91/06629) and wherein such sugar linkages are resistant to endogenous nucleases. Such oligonucleotides with resistant sugar linkages are stable in vivo (i.e., capable of resisting enzymatic degradation) but retain sequence specificity to be able to bind to target nucleotide sequences. 144 WO 2005/049075 PCT/US2004/038262 Preferred intragenic sites for antisense binding include the region incorporating the translation initiation/start codon (5'-AUG / 5'-ATG) or termination/stop codon (5'-UAA, 5'-UAG and 5-UGA / 5'-TAA, 5-TAG and 5'-TGA) of the open reading frame (ORF) of the gene. These regions refer to a portion of the mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation or termination codon. Other preferred regions for antisense binding include: introns; exons; 5 intron-exon junctions; the open reading frame (ORF) or "coding region," which is the region between the translation initiation codon and the translation termination codon; the 5' cap of an mRNA which comprises an N7-methylated guanosine residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage and includes 5' cap structure itself as well as the first 50 nucleotides adjacent to the cap; the 5' untranslated region (5'UTR), the portion of an mRNA in the 5' direction from the translation initiation codon, and thus including 10 nucleotides between the 5' cap site and the translation initiation codon of an mRNA or corresponding nucleotides on the gene; and the 3'untranslated region (3'UTR), the portion of an mRNA in the 3' direction from the translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA or corresponding nucleotides on the gene. Specific examples of preferred antisense compounds useful for inhibiting expression of TAHO proteins 15 include oligonucleotides containing modified backbones or non-natural internucleoside linkages. Oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides. Preferred modified oligonucleotide backbones include, for example, 20 phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotri-esters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates, 5'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, selenophosphates and borano-phosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those 25 having inverted polarity wherein one or more internucleotide linkages is a 3' to 3', 5' to 5' or 2' to 2' linkage. Preferred oligonucleotides having inverted polarity comprise a single 3' to 3'linkage at the 3-most internucleotide linkage i.e. a single inverted nucleoside residue which may be abasic (the nucleobase is missing or has a hydroxyl group in place thereof). Various salts, mixed salts and free acid forms are also included. Representative United States patents that teach the preparation of phosphorus-containing linkages include, but are not limited to, U.S. Pat. 30 Nos.: 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717;5,321,131;5,399,676;5,405,939; 5,453,496; 5,455,233;5,466,677;5,476,925;5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,194,599; 5,565,555; 5,527,899;5,721,218;5,672,697 and 5,625,050, each of which is herein incorporated by reference. Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have 35 backbones that are formed by short chain alkyl orcycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; 145 WO 2005/049075 PCT/US2004/038262 methylene formacetyl and thioformacetyl backbones; riboacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneirnino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, 0, S and CH.sub.2 component parts. Representative United States patents that teach the preparation of such oligonucleosides include, but are not limited to,. U.S. Pat. Nos.: 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; 5,792,608; 5,646,269 and 5,677,439, each of which is herein incorporated by reference. In other preferred antisense oligonucleotides, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization 10 with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an aide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the 15 preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos.: 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science, 1991, 254, 1497-1500. Preferred antisense oligonucleotides incorporate phosphorothioate backbones and/or heteroatom backbones, and in particular -CH 2 -NH-O-CH-, -CH-N(CH 3 )-O-CH- [known as a methylene (methylimino) or 20 MMI backbone], -CIj-O-N(CH 3 )-CH, -CH-N(CH)-N(CH)-CH,- and -O-N(CI)-CH-CH- [wherein the native phosphodiester backbone is represented as -O-P-O-CH r1 described in the above referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above referenced U.S. Pat. No. 5,602,240. Also preferred are antisense oligonucleotides having morpholino backbone structures of the above-referenced U.S. Pat. No. 5,034,506. Modified oligonucleotides may also contain one or more substituted sugar moieties. Preferred 25 oligonucleotides comprise one of the following at the 2' position: OH; F; O-alkyl, S-alkyl, or N-alkyl; O-alkenyl, S-alkeynyl, or N-alkenyl; O-alkynyl, S-alkynyl or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C, to C,, alkyl or C 2 to C,, alkenyl and alkynyl. Particularly preferred are O[(CH 2 )nO],CH 3 , O(CH 2 )nOCH 3 , O(CH 2
).NH
2 , O(CH 2 )nCH 3 , O(CH 2
),ONH
2 , and O(CH 2 )nON[(CH 2 )nCH 3
)]
2 , where n and m are from I to about 10. Other preferred antisense oligonucleotides comprise one of the following 30 at the 2' position: C, to C, 0 lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, 0-alkaryl or O-aralkyl, SH, SCH 3 , OCN, Cl, Br, CN, CF 3 , OCF 3 , SOCH 3 , SO 2
CH
3 , ONO 2 , NO2, N 3 , NH 2 , heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. 35 A preferred modification includes 2'-methoxyethoxy (2'-O-CH 2
CH
2
OCH
3 , also known as 2'-O-(2-methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta, 1995,78,486-504) i.e., an alkoxyalkoxy group. A further preferred modification includes 2'-dimethylaminooxyethoxy, i.e., a O(CH 2
)
2 0N(CH 3
)
2 group, also known as 2'-DMAOE, as described in examples hereinbelow, and 2'-dimethylaminoethoxyethoxy (also known in the art as 146 WO 2005/049075 PCT/US2004/038262 2'-O-dimethylaminoethoxyethyl or 2'-DMAEOE), i.e., 2'-O-CH2-O-CH 2 -N(CH2). A further prefered modification includes Locked Nucleic Acids (LNAs) in which the 2'-hydroxyl group is linked to the 3' or 4' carbon atom of the sugar ring thereby forming a bicyclic sugar moiety. The linkage is preferably a methelyne (-CH 2 -), group bridging the 2' oxygen atom and the 4' carbon atom wherein n is 1 or 2. LNAs and preparation thereof are described in WO 98/39352 and WO 99/14226. 5 Otherpreferred modifications include 2'-methoxy (2'-O-CH2),2'-aminopropoxy (2'-OCHCH 2
CH
2
NH
2 ), 2'-allyl (2'-CH 2 -CH=CH2), 2'-O-allyl (2'-O-CH 2 -CH=CH2) and 2'-fluoro (2'-F). The 2'-modification may be in the arabino (up) position or ribo (down) position. A preferred 2'-arabino modification is 2'-F. Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5'linked oligonucleotides and the position of5' terminal nucleotide. Oligonucleotides 10 may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos.: 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; 5,792,747; and 5,700,920, each of which is herein incorporated by reference in its entirety. 15 Oligonucleotides may also include nucleobase(often referred to in the art simply as "base") modifications or substitutions. As used herein, "unmodified" or "natural" nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other 20 alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl (-C=C-CH 3 or -CH-CCH) uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines,5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 2-F-adenine, 2-amino-adenine, 25 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Further modified nucleobases include tricyclic pyrimidines such as phenoxazine cytidine(1H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), phenothiazine cytidine (lH-pyrimido[5,4-b][1,4]benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazine cytidine (e.g. 9-(2-aminoethoxy) -H-pyrimido(5,4-b] [1,4]benzoxazin-2(3H)-one), carbazole cytidine 30 (2H-pyrimido[4,5-b]indol-2-one), pyridoindole cytidine (H-pyrido[3',2':4,5]pyrrolo[2,3-d]pyrimidin-2-one). Modified nucleobases may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, and those 35 disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have 147 WO 2005/049075 PCT/US2004/038262 been shown to increase nucleic acid duplex stability by 0.6-1.2.degree. C. (Sanghvi et al, Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are preferred base substitutions, even more particularly when combined with 2'-0-methoxyethyl sugar modifications. Representative United States patents that teach the preparation of modified nucleobases include, but are not limited to: U.S. Pat. No.3,687,808, as well as U.S. Pat. Nos.: 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121,5,596,091; 5,614,617; 5,645,985; 5,830,653; 5,763,588; 6,005,096; 5,681,941 and 5,750,692, each of which is herein incorporated by reference. Another modification of antisense oligonucleotides chemically linking to the oligonucleotide oneor more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. The compounds of the invention can include conjugate groups covalently bound to functional groups such as 10 primary or secondary hydroxyl groups. Conjugate groups of the invention include intercalators, reporter molecules, polyanunes, polyanides, polyethylene glycols, polyethers, groups that enhance the pharmacodynamic properties of oligomers, and groups that enhance the pharmacokinetic properties of oligomers. Typical conjugates groups include cholesterols, lipids, cation lipids, phospholipids, cationic phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes. Groups that enhance the 15 pharmacodynamic properties, in the context of this invention, include groups that improve oligomer uptake, enhance oligomer resistance to degradation, and/or strengthen sequence-specific hybridization with RNA. Groups that enhance the pharmacokinetic properties, in the context of this invention, include groups that improve oligomer uptake, distribution, metabolism or excretion. Conjugate moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), cholic acid 20 (Manoharan et al., Bioorg. Med. Chem. Let., 1994,4, 1053-1060), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), a phospholipid, e.g., 25 di-hexadecyl-rac-glycerol or triethyl-ammonium 1,2-di-0-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36,3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety. 30 Oligonucleotides of the invention may also be conjugated to active drug substances, for example, aspirin, warfarin, phenylbutazone, ibuprofen, suprofen, fenbufen, ketoprofen, (S)-(+)-pranoprofen, carprofen, dansylsarcosine, 2,3,5-triiodobenzoic acid, flufenamic acid, folinic acid, a benzothiadiazide, chlorothiazide, a diazepine, indomethicin, a barbiturate, a cephalosporin, a sulfa drug, an antidiabetic, an antibacterial or an antibiotic. Oligonucleotide-drug conjugatesand their preparation are described in U.S. patent application Ser. No.09/334,130 35 (filed Jun. 15, 1999) and United States patents Nos.: 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730;5,552,538; 5,578,717,5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 148 WO 2005/049075 PCT/US2004/038262 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241,5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941, each of which is herein incorporated by reference. It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside 5 within an oligonucleotide. The present invention also includes antisense compounds which are chimeric compounds. "Chimeric" antisense compounds or "chimeras," in the context of this invention, are antisense compounds, particularly oligonucleotides, which contain two or more chemically distinct regions, each made up of at least onemonomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the 10 oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide inhibition of gene expression. 15 Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothioate deoxyoligonucleotides hybridizing to the same target region. Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide mimetics as described above. Preferred chimeric antisense oligonucleotides incorporate at least one 2' modified sugar (preferably 2'-0-(CA-0 20 CH 3 ) at the 3' terminal to confer nuclease resistance and a region with at least 4 contiguous 2'-H sugars to confer RNase H activity. Such compounds have also been referred to in the art as hybrids or gapmers. Preferred gapmers have a region of 2' modified sugars (preferably 2'-0-(CH 2
)
2 -0-CH 3 ) at the 3'-terminal and at the 5' terminal separated by at least one region having at least 4 contiguous 2'-H sugars and preferably incorporate phosphorothioate backbone linkages. Representative United States patents that teach the preparation of such hybrid 25 structures include, but are not limited to, U.S. Pat. Nos. 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922, each of which is herein incorporated by reference in its entirety. The antisensecompounds used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several 30 vendors including, for example, Applied Biosystems (Foster City, Calif.). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives. The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor targeted molecules, oral, rectal, topical or other 35 formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption assisting formulations include, but are not limited to, U.S. Pat. Nos. 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534,899; 5,013,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619; 149 WO 2005/049075 PCT/US2004/038262 5,416,016; 5,417,978; 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference. Other examples of sense or antisense oligonucleotides include those oligonucleotides which are covalently linked to organic moieties, such as those described in WO 90/10048, and other moieties that increases affinity of the oligonucleotide for a target nucleic acid sequence, such as poly-(L-lysine). Further still, intercalating agents, 5 such as ellipticine, and alkylating agents or metal complexes may be attached to sense or antisense oligonucleotides to modify binding specificities of the antisense or sense oligonucleotide for the target nucleotide sequence. Antisense or sense oligonucleotides may be introduced into a cell containing the target nucleic acid sequence by any gene transfer method, including, for example, CaPO 4 -mediated DNA transfection, electroporation, or by using gene transfer vectors such as Epstein-Barr virus. In a preferred procedure, an antisense or sense 10 oligonucleotide is inserted into a suitable retroviral vector. A cell containing the target nucleic acid sequence is contacted with the recombinant retroviral vector, either in vivo or ex vivo. Suitable retroviral vectors include, but are not limited to, those derived from the murine retrovirus M-MuLV, N2 (a retrovirus derived from M-MuLV), or the double copy vectors designated DCT5A, DCT5B and DCT5C (see WO 90/13641). Sense or antisense oligonucleotides also may be introduced into a cell containing the target nucleotide 15 sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. 20 Alternatively, a sense or an antisense oligonucleotide may be introduced into a cell containing the target nucleic acid sequence by formation of an oligonucleotide-lipid complex, as described in WO 90/10448. The sense or antisense oligonucleotide-lipid complex is preferably dissociated within the cell by an endogenous lipase. Antisense or sense RNA or DNA molecules are generally at least about 5 nucleotides in length, alternatively at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 25 30, 35, 40, 45, 50, 55,60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160,165, 170, 175, 180, 185, 190, 195, 200, 210,220, 230,240, 250, 260, 270, 280,290, 300, 310, 320, 330,340, 350, 360, 370, 380, 390, 400,410, 420,430, 440,450,460,470,480,490,500,510, 520, 530,540,550, 560,570, 580,590, 600,610,620, 630, 640, 650, 660,670,680,690, 700, 710, 720, 730, 740, 750, 760,770,780,790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, or 1000 30 nucleotides in length, wherein in this context the term "about" means the referenced nucleotide sequence length plus or minus 10% of that referenced length. The probes may also be employed in PCR techniques to generate a pool of sequences for identification of closely related TAHO coding sequences. Nucleotide sequences encoding a TAHO can also be used to construct hybridization probes for mapping 35 the gene which encodes that TAHO and for the genetic analysis of individuals with genetic disorders. The nucleotide sequences provided herein may be mapped to a chromosome and specific regions of a chromosome using known techniques, such as in situ hybridization, linkage analysis against known chromosomal markers, and hybridization screening with libraries. 150 WO 2005/049075 PCT/US2004/038262 When the coding sequences for TAHO encode a protein which binds to another protein (example, where the TAHO is a receptor), the TAHO can be used in assays to identify the other proteins or molecules involved in the binding interaction. By such methods, inhibitors of the receptor/ligand binding interaction can be identified. Proteins involved in such binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction. Also, the receptor TAHO can be used to isolate correlative ligand(s). 5 Screening assays can be designed to find lead compounds that mimic the biological activity of a native TAHO or a receptor for TAHO. Such screening assays will include assays amenable to high-throughput screening of chemical libraries, making them particularly suitable for identifying small molecule drug candidates. Small molecules contemplated include synthetic organic or inorganic compounds. The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays and cell LO based assays, which are well characterized in the art. Nucleic acids which encode TAHO or its modified forms can also be used to generate either transgenic animals or "knock out" animals which, in tum, are useful in the development and screening of therapeutically useful reagents. A transgenic animal (e.g., a mouse or rat) is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage. A 15 transgene is a DNA which is integrated into the genome of a cell from which a transgenic animal develops. In one embodiment, cDNA encoding TAHO can be used to clone genomic DNA encoding TAHO in accordance with established techniques and the genomic sequences used to generate transgenic animals that contain cells which express DNA encoding TAHO. Methods for generating transgenic animals, particularly animals such as mice or rats, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 20 4,870,009. Typically, particular cells would be targeted for TAHO transgene incorporation with tissue-specific enhancers. Transgenic animals that include a copy of a transgene encoding TAHO introduced into the germ line of the animal at an embryonic stage can be used to examine the effect of increased expression of DNA encoding TAHO. Such animals can be used as tester animals for reagents thought to confer protection from, for example, pathological conditions associated with its overexpression. In accordance with this facet of the invention, an 25 animal is treated with the reagent and a reduced incidence of the pathological condition, compared to untreated animals bearing the transgene, would indicate a potential therapeutic intervention for the pathological condition. Alternatively, non-human homologues of TAHO can be used to construct a TAHO "knock out" animal which has a defective or altered gene encoding TAHO as a result of homologous recombination between the endogenous gene encoding TAHO and altered genomic DNA encoding TAHO introduced into an embryonic stem 30 cell of the animal. For example, cDNA encoding TAHO can be used to clone genomic DNA encoding TAHO in accordance with established techniques. A portion of the genomic DNA encoding TAHO can be deleted or replaced with another gene, such as a gene encoding a selectable marker which can be used to monitor integration. Typically, several kilobases of unaltered flanking DNA (both at the 5' and 3' ends) are included in the vector [see e.g., Thomas and Capecchi, Cell 51:503 (1987) for a description of homologous recombination vectors]. The 35 vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected [see e.g., Li et al., Cell, 69:915 (1992)]. The selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras [see e.g., Bradley, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, 151 WO 2005/049075 PCT/US2004/038262 E. J. Robertson, ed. (IRL, Oxford, 1987), pp. 113-152]. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term to create a "knock out" animal. Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA. Knockout animals can be characterized for instance, for their ability to defend against certain pathological conditions and for their 5 development of pathological conditions due to absence of the TAHO polypeptide. Nucleic acid encoding the TAHO polypeptides may also be used in gene therapy. In gene therapy applications, genes are introduced into cells in order to achieve in vivo synthesis of a therapeutically effective genetic product, for example for replacement of a defective gene. "Gene therapy" includes both conventional gene therapy where a lasting effect is achieved by a single treatment, and the administration of gene therapeutic agents, 10 which involves the one time or repeated administration of a therapeutically effective DNA or mRNA. Antisense RNAs and DNAs can be used as therapeutic agents for blocking the expression of certain genes in vivo. It has already been shown that short antisense oligonucleotides can be imported into cells where they act as inhibitors, despite their low intracellular concentrations caused by their restricted uptake by the cell membrane. (Zamecnik etaL, Proc. Natl. Acad. Sci. USA 83:4143-4146 [1986]). The oligonucleotides can be modified to enhance their 15 uptake, e.g. by substituting their negatively charged phosphodiester groups by uncharged groups. There are a variety of techniques available for introducing nucleic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation 20 method, etc. The currently preferred in vivo gene transfer techniques include transfection with viral (typically retroviral) vectors and viral coat protein-liposome mediated transfection (Dzau et al., Trends in Biotechnology 11, 205-210 [1993]). In some situations it is desirable to provide the nucleic acid source with an agent that targets the target cells, such as an antibody specific for a cell surface membrane protein or the target cell, a ligand for a receptor on the target cell, etc. Where liposomes are employed, proteins which bind to a cell surface membrane 25 protein associated with endocytosis may be used for targeting and/or to facilitate uptake, e.g. capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, proteins that target intracellular localization and enhance intracellular half-life. The technique of receptor mediated endocytosis is described, for example, by Wu et al., J. Biol. Chem. 262,4429-4432 (1987); and Wagner et al., Proc. Natl. Acad. Sci. USA 87, 3410-3414 (1990). For review of gene marking and gene therapy protocols 30 see Anderson et al., Science 256, 808-813 (1992). The nucleic acid molecules encoding the TAHO polypeptides or fragments thereof described herein are useful for chromosome identification. In this regard, there exists an ongoing need to identify new chromosome markers, since relatively few chromosome marking reagents, based upon actual sequence data are presently available. Each TAHO nucleic acid molecule of the present invention can be used as a chromosome marker. 35 The TAHO polypeptides and nucleic acid molecules of the present invention may also be used diagnostically for tissue typing, wherein the TAHO polypeptides of the present invention may be differentially expressed in one tissue as compared to another, preferably in a diseased tissue as compared to a normal tissue of the same tissue type. TAHO nucleicacid molecules will find use for generating probes for PCR,Northern analysis, 152 WO 2005/049075 PCT/US2004/038262 Southern analysis and Western analysis. This invention encompasses methods of screening compounds to identify those that mimic the TAHO polypeptide (agonists) or prevent the effect of the TAHO polypeptide (antagonists). Screening assays for antagonist drug candidates are designed to identify compounds that bind or complex with the TAHO polypeptides encoded by the genes identified herein, or otherwise interfere with the interaction of the encoded polypeptides with 5 other cellular proteins, including e.g., inhibiting the expression of TAHO polypeptide from cells. Such screening assays will include assays amenable to high-throughput screening of chemical libraries, making them particularly suitable for identifying small molecule drug candidates. The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays, and cell-based assays, which are well characterized in the art. 10 All assays for antagonists are common in that they call for contacting the drug candidate with a TAHO polypeptide encoded by a nucleic acid identified herein under conditions and for a time sufficient to allow these two components to interact. In binding assays, the interaction is binding and the complex formed can be isolated or detected in the reaction mixture. In a particular embodiment, the TAHO polypeptide encoded by the gene identified herein or the 15 drug candidate is immobilized on a solid phase, e.g., on a microtiter plate, by covalent or non-covalent attachments. Non-covalent attachment generally is accomplished by coating the solid surface with a solution of the TAHO polypeptide and drying. Alternatively, an immobilized antibody, e.g., a monoclonal antibody, specific for the TAHO polypeptide to be immobilized can be used to anchor it to a solid surface. The assay is performed by adding the non-immobilized component, which may be labeled by a detectable label, to the immobilized 20 component, e.g., the coated surface containing the anchored component. When the reaction is complete, the non reacted components are removed, e.g., by washing, and complexes anchored on the solid surface are detected. When the originally non-immobilized component carries a detectable label, the detection of label immobilized on the surface indicates that complexing occurred. Where the originally non-immobilized component does not carry a label, complexing can be detected, for example, by using a labeled antibody specifically binding the immobilized 25 complex. If the candidate compound interacts with but does not bind to a particular TAHO polypeptide encoded by a gene identified herein, its interaction with that polypeptide can be assayed by methods well known for detecting protein-protein interactions. Such assays include traditional approaches, such as, e.g., cross-linking, co immunoprecipitation, and co-purification through gradients or chromatographic columns. In addition, protein 30 protein interactions can be monitored by using a yeast-based genetic system described by Fields and co-workers (Fields and Song, Nature (London), 340:245-246 (1989); Chien et al., Proc. Natl. Acad. Sci. USA, 88:9578-9582 (1991)) as disclosed by Chevray and Nathans, Proc. Nat]. Acad. Sci. USA , 89: 5789-5793 (1991). Many transcriptional activators, such as yeast GAL4, consist of two physically discrete modular domains, one acting as the DNA-binding domain, the other one functioning as the transcription-activation domain. The yeast expression 35 system described in the foregoing publications (generally referred to as the "two-hybrid system") takes advantage of this property, and employs two hybrid proteins, one in which the target protein is fused to the DNA-binding domain of GAL4, and another, in which candidate activating proteins are fused to the activation domain. The expression of a GAL1-lacZ reporter gene under control of a GAL4-activated promoter depends on reconstitution 153 WO 2005/049075 PCT/US2004/038262 of GAL4 activity via protein-protein interaction. Colonies containing interacting polypeptides are detected with achromogenic substrate for P-galactosidase. A complete kit (MATCHMAKEI) for identifying protein-protein interactions between two specific proteins using thetwo-hybrid technique is commercially available from Clontech. This system can also be extended to map protein domains involved in specific protein interactions as well as to pinpoint amino acid residues that are crucial for these interactions. 5 Compounds that interfere with the interaction of a gene encoding a TAHO polypeptide identified herein and other intra- or extracellular components can be tested as follows: usually a reaction mixture is prepared containing the product of the gene and the intra- or extracellular component under conditions and for a time allowing for the interaction and binding of the two products. To test the ability of a candidate compound to inhibit binding, the reaction is run in the absence and in the presence of the test compound. In addition, a placebo may to be added to a third reaction mixture, to serve as positive control. The binding (complex formation) between the test compound and the intra- or extracellular component present in the mixture is monitored as described hereinabove. The formation of a complex in the control reaction(s) but not in the reaction mixture containing the test compound indicates that the test compound interferes with the interaction of the test compound and its reaction partner. 15 To assay for antagonists, the TAHO polypeptide may be added to a cell along with the compound to be screened for a particular activity and the ability of the compound to inhibit the activity of interest in the presence of the TAHO polypeptide indicates that the compound is an antagonist to the TAHO polypeptide. Alternatively, antagonists may be detected by combining the TAHO polypeptide and a potential antagonist with membrane-bound TAHO polypeptide receptors or recombinant receptors under appropriate conditions for a competitive inhibition 20 assay. The TAHO polypeptide can be labeled, such as by radioactivity, such that the number of TAHO polypeptide molecules bound to the receptor can be used to determine the effectiveness of the potential antagonist. The gene encoding the receptor can be identified by numerous methods known to those of skill in the art, for example, ligand panning and FACS sorting. Coligan et al.,Current Protocols in Immun., 1(2): Chapter 5 (1991). Preferably, expression cloning is employed wherein polyadenylated RNA is prepared from a cell responsive to the 25 TAHO polypeptide and a cDNA library created from this RNA is divided into pools and used to transfect COS cells or other cells that are not responsive to the TAHO polypeptide. Transfected cells that are grown on glass slides are exposed to labeled TAHO polypeptide. The TAHO polypeptide can be labeled by a variety of means including iodination or inclusion of a recognition site for a site-specific protein kinase. Following fixation and incubation, the slides are subjected to autoradiographic analysis. Positive pools are identified and sub-pools are 30 prepared and re-transfected using an interactive sub-pooling and re-screening process, eventually yielding a single clone that encodes the putative receptor. As an alternative approach for receptor identification, labeled TAHO polypeptide can be photoaffinity linked with cell membrane or extract preparations that express the receptor molecule. Cross-linked material is resolved by PAGE and exposed to X-ray film. The labeled complex containing the receptor can be excised, 35 resolved into peptide fragments, and subjected to protein micro-sequencing. The amino acid sequence obtained from micro- sequencing would be used to design a set of degenerate oligonucleotide probes to screen a cDNA library to identify the gene encoding the putative receptor. In another assay for antagonists, mammalian cells or a membrane preparation expressing the receptor 154 WO 2005/049075 PCT/US2004/038262 would be incubated with labeled TAHO polypeptide in the presence of the candidate compound. The ability of the compound to enhance or block this interaction could then be measured. More specific examples of potential antagonists include an oligonucleotide that binds to the fusions of immunoglobulin with TAHO polypeptide, and, in particular, antibodies including, without limitation, poly- and monoclonal antibodies and antibody fragments, single-chain antibodies, anti-idiotypic antibodies, and chimeric 5 or humanized versions of such antibodies or fragments, as well as human antibodies and antibody fragments. Alternatively, a potential antagonist may be a closely related protein, for example, a mutated form of the TAHO polypeptide that recognizes the receptor but imparts no effect, thereby competitively inhibiting the action of the TAHO polypeptide. Another potential TAHO polypeptide antagonist is an antisense RNA or DNA construct prepared using 10 antisense technology, where, e.g., an antisense RNA or DNA molecule acts to block directly the translation of mRNA by hybridizing to targeted mRNA and preventing protein translation. Antisense technology can be used to control gene expression through triple-helix formation or antisense DNA or RNA, both of which methods are based on binding of a polynucleotide to DNA or RNA. For example, the 5' coding portion of the polynucleotide sequence, which encodes the mature TAHO polypeptides herein, is used to design an antisense RNA 15 oligonucleotide of from about 10 to 40 base pairs in length. A DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res., 6:3073 (1979); Cooney et al., Science 241: 456 (1988); Dervan et al., Science, 251:1360 (1991)), thereby preventing transcription and the production of the TAHO polypeptide. The antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into the TAHO polypeptide 20 (antisense - Okano, Neurochem., 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression (CRC Press: Boca Raton, FL, 1988). The oligonucleotides described above can also be delivered to cells such that the antisense RNA or DNA may be expressed in vivo to inhibit production of the TAHO polypeptide. When antisense DNA is used, oligodeoxyribonucleotides derived from the translation-initiation site, e.g., between about -10 and +10 positions of the target gene nucleotide sequence, are preferred. 25 Potential antagonists include small molecules that bind to the active site, the receptor binding site, or growth factor or other relevant binding site of the TAHO polypeptide, thereby blocking the normal biological activity of the TAHO polypeptide. Examples of small molecules include, but are not limited to, small peptides orpeptide-like molecules, preferably soluble peptides, and synthetic non-peptidyl organic or inorganic compounds. Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. 30 Ribozymes act by sequence-specific hybridization to the complementary target RNA, followed by endonucleolytic cleavage. Specific ribozyme cleavage sites within a potential RNA target can be identified by known techniques. For further details see, e.g., Rossi, Current Biology, 4:469-471 (1994), and PCT publication No. WO 97/33551 (published September 18, 1997). Nucleic acid molecules in triple-helix formation used to inhibit transcription should be single-stranded 35 and composed of deoxynucleotides. The base composition of these oligonucleotides is designed such that it promotes triple-helix formation via Hoogsteen base-pairing rules, which generally require sizeable stretches of purines or pyrimidines on one strand of a duplex. For further details see, e.g., PCT publication No. WO 97/33551, supra. 155 WO 2005/049075 PCT/US2004/038262 These small molecules can be identified by any one or more of the screening assays discussed hereinabove and/or by any other screening techniques well known for those skilled in the art. Isolated TAHO polypeptide-encoding nucleic acid can be used herein for recombinantly producing TAHO polypeptide using techniques well known in the art and as described herein. In turn, the produced TAHO polypeptides can be employed for generating anti-TAHO antibodies using techniques well known in the art and 5 as described herein. Antibodies specifically binding a TAHO polypeptide identified herein, as well as other molecules identified by the screening assays disclosed hereinbefore, can be administered for the treatment of various disorders, including cancer, in the form of pharmaceutical compositions. If the TAHO polypeptide is intracellular and whole antibodies are used as inhibitors, internalizing 10 antibodies are preferred. However, lipofections or liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is preferred. For example, based upon the variable-regiqn sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, 15 e.g., Marasco et aL, Proc. Nat]. Acad. Sci. USA, 20: 7889-7893 (1993). The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition may comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are 20 suitably present in combination in amounts that are effective for the purpose intended. The following examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. All patent and literature references cited in the present specification are hereby incorporated by reference in their entirety. 25 EXAMPLES Commercially available reagents referred to in the examples were used according to manufacturer's instructions unless otherwise indicated. Antibodies used in the examples are commercially available antibodies and include, but are not limited to, anti-CD180(eBioscience MRH73-11, BD Pharmingen G28-8) and Serotec 30 MHR73), anti-CD20 (Ancell 2H7 and BD Pharmingen 2H7), anti-CD72 (BD Pharmingen J4-117), anti-CXCR5 (R&D Systems 51505), anti-CD22 (Ancell RFB4, DAKO Tol5, Diatec 157, Sigma HIB-22 and Monosan BL BC34), anti-CD22 (Leinco RFB-4 and NeoMarkers 22C04), anti-CD21 (ATCC HB-135 and ATCC HB5), anti HLA-DOB (BD Pharmingen DOB.L1), anti-CD79a (Caltag Z7U-4 and Serotec ZL7-4), anti-CD79b (Biomeda SN8 and BD Pharmingen CB-3), anti-CD19 (Biomeda CB-19),anti-FCER2 (Ancell BU38 and Serotec D3.6 and BD 35 Pharmingen M-L233). The source of those cells identified in the following examples, and throughout the specification, by ATCC accession numbers is the American Type Culture Collection, Manassas, VA. EXAMPLE 1: Microarray Data Analysis of TAHO Expression 156 WO 2005/049075 PCT/US2004/038262 Microarray data involves the analysis of TAHO expression by the performance of DNA microarray analysis on a wide a variety of RNA samples from tissues and cultured cells. Samples include normal and cancerous human tissue and various kinds of purified immune cells both at rest and following external stimulation. These RNA samples may be analyzed according to regular microarray protocols on Agilent microarrays. In this experiment, RNA was isolated from cells and cyanine-3 and cyanine-5 labeled cRNA probes 5 were generated by in vitro transcription using the Agilent Low Input RNA Fluorescent Linear Amplification Kit (Agilent). Cyanine-5 was used to label the samples to be tested for expression of the PRO polypeptide, for example, the myeloma and plasma cells, and cyanine-3 was used to label the universal reference (the Stratagene cell line pool) with which the expression of the test samples were compared. 0.1 gg - 0.2 mg of cyanine-3 and cyanine-5 labeled cRNA probe was hybridized to Agilent 60-mer oligonucleotide array chips using the In Situ [0 Hybridization Kit Plus (Agilent). These probes were hybridized to microarrays. For multiple myeloma analysis, probes were hybridized to Agilent Whole Human Genome oligonucleotide microarrays using standard Agilent recommended conditions and buffers (Agilent). The cRNA probes are hybridized to the microarrays at 60"C for 17 hours on a hybridization rotator set at 4 RPM. After washing, the microarrays are scanned with the Agilent microarray scanner which is capable of 15 exciting and detecting the fluorescence from the cyanine-3 and cyanine-5 fluorescent molecules (532 and 633 nm laser lines). The data for each gene on the 60-mer oligonucleotide array was extracted from the scanned microarray image using Agilent feature extraction software which accounts for feature recognition, background subtraction and normalization and the resulting data was loaded into the software package known as the Rosetta Resolver Gene Expression Data Analysis System (Rosetta Inpharmatics, Inc.). Rosetta Resolver includes a relational database 20 and numerous analytical tools to store, retrieve and analyze large quantities of intensity or ratio gene expression data. In this example, B cells and T cells (control) were obtained for microarray analysis. For isolation of naive and memory B cells and plasma cells, human peripheral blood mononuclear cells (PBMC) were separated from either leukopack provided by four healthy male donors or from whole blood of several normal donors. CD138+ 25 plasma cells were isolated from PBMC using the MACS (Miltenyi Biotec) magnetic cell sorting system and anti CD 138 beads. Alternatively, total CD19+ B cells were selected with anti-CD19 beads and MACS sorting. After enrichment of CD19+ (purity around 90%), FACS (Moflo) sorting was performed to separate naive and memory B cells. Sorted cells were collected by subjecting the samples to centrifugation. The sorted cells were immediately lysed in LTR buffer and homogenized with QlAshredder (Qiagen) spin column and followed by RNeasy mini kit 30 for RNA purification. RNA yield was variable from 0.4-10 gg and depended on the cell numbers. As a control, T cells were isolated for microarray analysis. Peripheral blood CD8 cells were isolated from leukopacks by negative selection using the Stem Cell Technologies CD8 cell isolation kit (Rosette Sep aration) and further purified by the MACS magnetic cell sorting system using CD8 cell isolation kit and CD45RO microbeads were added to remove CD45RO cells (Miltenyi Biotec). CD8 T cells were divided into 3 samples with each 35 sample subjected to the stimulation as follows: (1) anti-CD3 and anti-CD28, plus IL-12 and anti-IL4 antibody, (2) anti-CD3 and anti-CD29 without adding cytokines or neutralizing antibodies and (3) anti-CD3 and anti-CD28, plus IL-4, anti-1L12 antibody and anti-IFN-yantibody. 48 hours after stimulation, RNA was collected. After 72 hours, 157 WO 2005/049075 PCT/US2004/038262 cells were expanded by adding diluting 8-fold with fresh media. 7 days after the RNA was collected, CD8 cells were collected, washed and restimulated by anti-CD3 and anti-CD28. 16 hours later, a second collection of RNA was made. 48 hours after restimulation, a third collection of RNA was made. RNA was collected by using Qiagen Midi preps as per the instructions in the manual with the addition of an on-column DNAse I digestion after the first RWl wash step. RNA was eluted in RNAse free water and subsequently concentrated by ethanol precipitation. 5 Precipitated RNA was taken up in nuclease free water to a final minimurn concentration of 0.5 pg/pl. Additional control microrrays were performed on RNA isolated from CD4+ T helperT cells, natural killer (NK) cells, neutrophils (N'phil), CD14+, CD16+ and CD16- monocytes and dendritic cells (DC). Additional microarrays were performed on RNA isolated from cancerous tissue, such as Non-Hodgkin's Lymphoma (NHL), follicular lymphoma (FL) and multiple myeloma (MM). Additional microarrays were 10 performed on RNA isolated from normal cells, such as normal lymph node (NLN), normal B cells, such as B cells from centroblasts, centrocytes and follicular mantel, memory B cells, and normal plasma cells (PC), which are from the B cell lineage and are normal counterparts of the myeloma cell, such as tonsil plasma cells, bone marrow plasma cells (BM PC), CD19+ plasma cells (CD19+ PC), CD19- plasma cells (CD19- PC). Additional microarrays were performed on normal tissue, such as cerebellum, heart, prostate, adrenal, bladder, small intestine 15 (s. intestine), colon, fetal liver, uterus, kidney, placenta, lung, pancreas, muscle, brain, salivary, bone marrow (marrow), blood, thymus, tonsil, spleen, testes, and mammary gland. The molecules listed below have been identified as being significantly expressed in B cells as compared to non-B cells. Specifically, the molecules are differentially expressed in naive B cells, memory B cells that are either IgGA+ or IgM+ and plasma cells from either PBMC or bone marrow, in comparison to non-B cells, for 20 example T cells. Accordingly, these molecules represent excellent targets for therapy of tumors in mammals. Molecule specific expression in: as compared to: DNA105250 (TAHOl) B cells non-B cells DNA150004 (TAHO2) B cells non-B cells 25 DNA182432 (TAHO3) B cells non-B cells DNA225785 (TAHO4) B cells non-B cells DNA225786 (TAHOS) B cells non-B cells DNA225875 (TAHO6) B cells non-B cells DNA226179 (TAHO7) B cells non-B cells 30 DNA226239 (TAHO8) B cells non-B cells DNA226394 (TAHO9) B cells non-B cells DNA226423 (TAHOIO) B cells non-B cells DNA227781 (TAHO1 1) B cells non-B cells DNA227879 (TAHOI2) B cells non-B cells 35 DNA256363 (TAHOI3) B cells non-B cells DNA332467 (TAHOl4) B cells non-B cells DNA58721 (TAHO15) B cells non-B cells 158 WO 2005/049075 PCT/US2004/038262 DNA335924 (TAHO16) B cells non-B cells DNA340394 (TAHO17) B cells non-B cells DNA56041 (TAHO18) B cells non-B cells DNA59607 (TAHO19) B cells non-B cells DNA257955 (TAHO20) B cells non-B cells 5 DNA329863 (TAHO21) B cells non-B cells DNA346528 (TAHO22) B cells non-B cells DNA212930 (TAHO23) B cells non-B cells DNA335918 (TAHO24) B cells non-B cells DNA225820 (TAHO25) B cells non-B cells 10 DNA88116 (TAHO26) B cells non-B cells DNA227752 (TAHO27) B cells non-B cells DNA1 19476 (TAHO28) B cells non-B cells DNA254890 (TAHO29) B cells non-B cells DNA219240 (TAHO30) B cells non-B cells 15 DNA37151 (TAHO31) B cells non-B cells DNA210233 (TAHO32) B cells non-B cells DNA35918 (TAHO33) B cells non-B cells DNA260038 (TAHO34) B cells non-B cells DNA334818 (TAHO35) B cells non-B cells 20 DNA257501 (TAHO36) B cells non-B cells Summary In Figures 73-101, significant mRNA expression was generally indicated as a ratio value of greater than 2 (vertical axis of Figures 73-101). In Figures 73-101, any apparent expression in non-B cells, such as in prostate, 25 spleen, etc. may represent an artifact, infiltration of normal tissue by lymphocytes or loss of sample integrity by the vendor. (1) TAHO1 (also referred herein as LY64 and CD180) was significantly expressed in non-hodgkin's lymphoma (NHL) and normal B (NB) cell samples (Figure 73). (2) TAHO2 (also referred herein as MS4A1 and CD20) was significantly expressed in non-hodgkin's 30 lymphoma (NHL), follicular lymphoma (FL), normal lymph node (NLN) and normal B (NB) cells. Further, TAHO2 was significantly expressed in normal tonsil and spleen (Figure 74). (3) TAHO3 (also referred herein as SPAP1 and FcRH2) was significantly expressed in non-hodgkin's lymphoma (NHL) and follicular lymphoma (FL) and memory B cells (mem B). Further TAHO3 was significantly expressed in blood and spleen (Figure 75). However, as indicated above, any apparent expression in non-B cells, 35 such as in prostate, spleen, blood etc. may represent an artifact, infiltration of normal tissue by lymphocytes or loss of sample integrity by the vendor. (4) TAHO4 (also referred herein as CD79a) was significantly expressed in non-hodgkin's lymphoma (NHL) multiple myeloma (MM) samples and normal cerebellum and normal blood. Further TAHO4 was 159 WO 2005/049075 PCT/US2004/038262 significantly expressed in cerebellum, blood and spleen (Figure 76). However, as indicated above, any apparent expression in non-B cells, such as in prostate, spleen, blood etc. may represent an artifact, infiltration of normal tissue by lymphocytes or loss of sample integrity by the vendor. (5) TAHOS (also referred herein as CD79b) was significantly expressed in non-hodgkin's lymphoma (NHL) (Figure 77). 5 (6) TAHO6 (also referred herein as CR2 and CD21) was significantly expressed in non-hodgkin's lymphoma (NHL) and normal lymph node (NLN). Further TAHO6 was significantly expressed in spleen Figure 78). (7) TAHO8 (also referred herein as CD72) was significantly expressed in non-hodgkin's lymphoma (NHL), multiple myleoma (MM) and follicular lymphoma (FL) and normal tonsil (Figure 79). However, as 10 indicated above, any apparent expression in non-B cells, such as in prostate, spleen, blood, tonsil etc. may represent an artifact, infiltration of normal tissue by lymphocytes or loss of sample integrity by the vendor. (8) TAHO9 (also referred herein as P2RX5) was significantly expressed in normal B cells (circulating and lymph-node derived B cells)and not significantly expressed in non B cells. Further, TAHO9 was significantly expressed in normal plasma cells and in multiple myeloma (Figures 80A-80B). In normal tissues, expression of 15 TAHO9 is relatively low, but with significant expression in lymphoid organs such as spleen and thymus. Figures 80A-80B are shown as two panels. The panel in Figure 80A represents normal tissue from left to right as follows: salivary gland (1), bone marrow (2), tonsil (3), fetal liver (4), blood (5), bladder (6), thymus (7), spleen (8), adrenal gland (9), fetal brain (10), small intestine (11), testes (12), heart (13), colon (14), lung (15), prostate (16), brain cerebellum(17), skeletal muscle (18), kidney (19), pancrease (20), placenta (21), uterus (22) and 20 mammary gland (23). The panel in Figure 80B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells (9-11), memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myeloma cells (39), CD138+ cells (40), multiple myeloma cells (41-46), tonsil plasma cells (47), bone marrow 25 plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma cell CD19+ (71), plasma cell CD19- (72), multiple myeloma cells (73-75). (9) TAHO10(also referred herein as HLA-DOB) was significantly expressed in multiple myeloma (MM), non-hodgkin's lymphoma (NHL) (Figure 81). (10) TAHOl1 (also referred herein as CXCR5 and BLRI) was significantly expressed in non-hodgkin's 30 lymphoma (NHL), follicular lymphoma (FL), normal lymph node (NLN), normal B cells (NB), centroblasts and follicular mantle cells, and normal spleen and normal tonsil (Figure 82). However, as indicated above, any apparent expression in non-B cells, such as in prostate, spleen, blood, tonsil, etc. may represent an artifact, infiltration of nonnal tissue by lymphocytes or loss of sample integrity by the vendor. (11) TAHOl2 (also referred herein as FCER2) was significantly expressed in normal B cells (NB) , 35 multiple myeloma (MM) and prostate (Figure 83). However, as indicated above, any apparent expression in non-B cells, such as in prostate, spleen, blood, tonsil, etc. may represent an artifact, infiltration of normal tissue by lymphocytes or loss of sample integrity by the vendor. 160 WO 2005/049075 PCT/US2004/038262 (12) TAHO13 (also referred herein as GPR2) was significantly expressed in multiple myeloma (MM), and normal blood (Figures 84A-84B). Figures 84A-84B are shown as two panels. The panel in Figure 84A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon (8), prostate (9), lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), blood (17), fetal brain (18)., salivary gland (19), testes 5 (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 84B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8 + cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells (9-11), memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myeloma cells (39), CD 138+ cells (40), multiple inyeloma cells (41-46), tonsil 10 plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma cell CD19+ (71), plasma cell CD19- (72), multiple myeloma cells (73-75). (13) TAHO 15 (also referred herein as LRRC4 and NAG 14) was significantly expressed in non-hodgkin's lymphoma (NHL) (Figure 85). As shown in Figure 72, PRO 1111 (TAHO 15) was significantly expressed and upregulated in bone marrow plasma cells and multiple myeloma as compared to low expression in non-B cells, 15 including neutrophils, T cells and natural killer (NK) cells. PRO1 111 is also significantly expressed in some non hodgkin lymphoma cells. (14) TAHO17 (also referred herein as FcRH1) was significantly expressed in normal B cells (NB), and memory B cells (Figure 86). (15) TAHOl 8 (also referred herein as IRTA2) was significantly expressed in non-hodgkin's lymphoma 20 (NHL) (Figure 87). (16) TAHO20 (also referred herein as FcRH3) was significantly expressed in normal B cells (NB) and multiple myeloma (MM). Further, TAHO20 was detected in expressed in colon, placenta, lung and spleen (Figure 88). However, as indicated above, any apparent expression in non-B cells, such as in prostate, spleen, blood, tonsil, etc. may represent an artifact, infiltration of normal tissue by lymphocytes or loss of sample integrity by the 25 vendor. (17) TAHO21 (also referred herein as IRTAl) was significantly expressed in non-hodgkin's lymphoma (NHL), centrocytes and memory B cells (Figure 89). (18) TAHO25 (also referred herein as CD19) was significantly expressed in non-hodgkin's lymphoma (NHL), normal lymph node (NLN), follicular lymphoma (FL), centroblasts, centrocytes, memory B cells and 30 follicular mantle cells. Further TAHO25 was significantly expressed in tonsil and spleen (Figure 90). However, as indicated above, any apparent expression in non-B cells, such as in prostate, spleen, blood, tonsil, etc. may represent an artifact, infiltration of normal tissue by lymphocytes or loss of sample integrity by the vendor. (19) TAHO26 (also referred herein as CD22) was significantly expressed in normal B cells (NB)(Figure 91). 35 (20) TAHO27 (also referred herein as CXCR3) was significantly expressed in multiple myeloma cells (Figure 92A-92B). Figures 92A-92B are shown as two panels. The panel in Figure 92A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon (8), prostate (9), lung (10), uterus (11), bladder (12), bone marrow (13), tonsil 161 WO 2005/049075 PCT/US2004/038262 (14), spleen (15), thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 92B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells (9-11), memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells 5 (20-38), multiple myeloma cells (39), CD138+ cells (40), multiple myeloma cells (41-46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62 70), plasma cell CD19+ (71), plasma cell CD19- (72), multiple myeloma cells (73-75). (21) TAHO28 (also referred herein as SILV1) was significantly expressed in normal plasma cells, and more significantly expressed on multiple myeloma cells (Figures 93A-93B). Figures 93A-93B are shown as two [0 panels. The panel in Figure 93A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon (8), prostate (9), lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 93B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells 15 (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells (9-11), memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myeloma cells (39), CD138+ cells (40), multiple myeloma cells (41-46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma cell CD19+ (71), plasma cell CD19- (72), multiple 20 myeloma cells (73-75). (22) TAHO29 (also referred herein as KCNK4) was significantly expressed in normal plasma cells and in multiple myeloma cells (Figures 94A-94B). In normal tissues, expression of TAHO29 is significantly expressed in normal testes. Figures 94A-94B are shown as two panels. The panel in Figure 94A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal 25 gland (5), kidney (6), small intestine (7), colon (8), prostate (9), lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 94B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells (9-11), memory B cells (12), naive B cells (13), 30 centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myeloma cells (39), CD138+ cells (40), multiple myeloma cells (41-46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62 70), plasma cell CD19+ (71), plasma cell CD19- (72), multiple myelorna cells (73-75). (23) TAHO30 (also referred herein as CXorfl) was significantly expressed in normal plasma cells, and 35 more significantly expressed on multiple myeloma cells (Figures 95A-95B). In normal tissues, expression of TAHO30 is significantly expressed in normal testes. Figures 95A-95B are shown as two panels. The panel in Figure 95A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon (8), prostate (9), lung (10), uterus (11), 162 WO 2005/049075 PCT/US2004/038262 bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 95B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells (9-11), memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes(17), memory B cells (18), naive 5 B cells (19), normalB cells (20-38), multiple myeloma cells (39), CD138+ cells (40), multiple myeloma cells (41 46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma cell CD19+ (71), plasma cell CD19- (72), multiple myeloma cells (73 75). (24) TAHO31 (also referred herein as LRRN5) was significantly expressed in normal plasma cells, and 10 more significantly expressed on multiple myeloma cells (Figures 96A-96B). In normal tissues, expression of TAHO31 is significantly expressed in cerebellum. Figures 96A-96B are shown as two panels. The panel in Figure 96A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon (8), prostate (9), lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), blood (17), fetal brain (18), salivary gland 15 (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 96B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells (9-11), memory B cells (12), naiveB cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myeloma cells (39), CD138+ cells (40), multiple myeloma cells (41 20 46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma cell CD19+ (71), plasma cell CD19- (72), multiple myeloma cells (73 75). (25) TAHO32 (also referred herein as UNQ9308) was significantly expressed in nor-mal plasma cells, and more significantly expressed on multiple myeloma cells (Figures 97A-97B). TAHO32 was also significantly 25 expressed in normal prostate. Figures 97A-97B are shown as two panels. The panel in Figure 97A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon (8), prostate (9), lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 97B represents the samples tested from left 30 to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells (9-11), memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myeloma cells (39), CD138+ cells (40), multiple myelomacells (41-46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62 35 70), plasma cell CD19+ (71), plasma cell CD19- (72), multiple myeloma cells (73-75). (26) TAHO33 (also referred herein as IGSF4B) was significantly expressed in multiple myeloma cells (Figures 98A-98D). Figures 98A-98B are shown as two panels. The panel in Figure 98A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), 163 WO 2005/049075 PCT/US2004/038262 kidney (6), small intestine (7), colon (8), prostate (9), lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 98B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells (9-11), memory B cells (12), naive B cells (13), 5' centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myelomacells (39), CD138+ cells (40), multiple myelomacells (41-46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62 70), plasma cell CD19+ (71), plasma cell CD19- (72), multiple myelomacells (73-75). (27) TAHO34 (also referred herein as UNQ13267) was significantly expressed in normal plasma cells, 10 and more significantly expressed on multiple myeloma cells (Figures 99A-99D). TAHO34 was also significantly expressed in normal blood. Figures 99A-99B are shown as two panels. The panel in Figure 99A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon (8), prostate (9), lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), 15 skeletal muscle (22) and mammary gland (23). The panel in Figure 99B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells (9-11), memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myeloma cells (39), CD138+ cells (40), multiple myeloma cells (41-46), tonsil plasma cells (47), 20 bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62 70), plasma cell CD19+ (71), plasma cell CD 19- (72), multiple myeloma cells (73-75). (28) TAHO35 (also referred herein as FLJ12681) was significantly expressed in normal plasma cells, and more significantly expressed on multiple myeloma cells (Figures 1OA-1OB). Figures 1OA-1O0B are shown as two panels. The panel in Figure 100A represents normal tissue from left to right as follows: brain cerebellum (1), 25 pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon (8), prostate (9), lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure IOOB represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells 30 (9-11), memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myeloma cells (39), CD 138+ cells (40), multiple myeloma cells (41-46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma cell CD19+ (71), plasma cell CD19- (72), multiple myeloma cells (73-75). 35 (29) TAHO36 (also referred herein as UNQ12376) was significantly expressed in normal plasma cells, and more significantly expressed on multiple myeloma cells (Figures 10 1A-101B). Figures 10 IA-I 01B are shown as two panels. The panel in Figure 101A represents normal tissue from left to right as follows: brain cerebellum (1), pancreas (2), fetal liver (3), placenta (4), adrenal gland (5), kidney (6), small intestine (7), colon (8), prostate 164 WO 2005/049075 PCT/US2004/038262 (9), lung (10), uterus (11), bladder (12), bone marrow (13), tonsil (14), spleen (15), thymus (16), blood (17), fetal brain (18), salivary gland (19), testes (20), heart (21), skeletal muscle (22) and mammary gland (23). The panel in Figure 101B represents the samples tested from left to right as follows: NK cells (1), neutrophils (2), CD4+ cells (3), CD8+ cells (4), CD34+ cells (5), normal B cells (6), monocytes (7), dendritic cells (8), multiple myeloma cells (9-11), memory B cells (12), naive B cells (13), centrocytes (14), centroblasts (15-16), centrocytes (17), 5 memory B cells (18), naive B cells (19), normal B cells (20-38), multiple myeloma cells (39), CD138+ cells (40), multiple myeloma cells (41-46), tonsil plasma cells (47), bone marrow plasma cells (48), multiple myeloma cells (49-60), centrocytes (61), plasma bone marrow cells (62-70), plasma cell CD19+ (71), plasma cell CD19- (72), multiple myeloma cells (73-75). . As TAHO1-36 have ben identified as being significantly expressed in B cells and in samples from B-cell 10 associated diseases, such as Non-Hodgkin's lymphoma, follicular lymphoma and multiple myeloma as compared to non-B cells as detected by microarray analysis, the molecules are excellent targets for therapy of tumors in mammals, including B-cell associated cancers, such as lymphomas, leukemias, myelomas and other cancers of hematopoietic cells. 15 EXAMPLE 2: Ouantitative Analysis of TAHO mRNA Expression In this assay, a5' nuclease assay (for example, TaqMan@) and real-time quantitative PCR (for example, Mx3000PTm Real-Time PCR System (Stratagene, La Jolla, CA)), were used to find genes that are significantly overexpressed in a specific tissue type, such as B cells, as compared to a different cell type, such as other primary white blood cell types, and which further may be overexpressed in cancerous cells of the specific tissue type as 20 compared to non-cancerous cells of the specific tissue type. The 5' nuclease assay reaction is a fluorescent PCR-based technique which makes use of the 5' exonuclease activity of Taq DNA polymerase enzyme to monitor gene expression in real time. Two oligonucleotide primers (whose sequences are based upon the gene or EST sequence of interest) are used to generate an amplicon typical of a PCR reaction. A third oligonucleotide, or probe, is designed to detect nucleotide sequence located between the two PCR primers. The probe is non-extendible by 25 Taq DNA polymerase enzyme, and is labeled with a reporter fluorescent dye and a quencher fluorescent dye. Any laser-induced emission from the reporter dye is quenched by the quenching dye when the two dyes are located close together as they are on the probe. During the PCR amplification reaction, the Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resultant probe fragments disassociate in solution, and signal from the released reporter dye is free from the quenching effect of the second fluorophore. One molecule 30 of reporter dye is liberated for each new molecule synthesized, and detection of the unquenched reporter dye provides the basis for quantitative interpretation of the data. The 5'nuclease procedure is run on a real-time quantitative PCR device such as the Mx3000TM Real-Time PCR System. The system consists of a thermocycler, a quartz-tungsten lamp, a photomultiplier tube (PMT) for detection and a computer. The system amplifies samples in a 96-well format on a thermocycler. During 35 amplification, laser-induced fluorescent signal is collected in real-time through fiber optics cables for all 96 wells, and detected at the PMT. The system includes software for running the instrument and for analyzing the data. The starting material for the screen was mRNA (50 ng/well run in duplicate) isolated from a variety of different white blood cell types (Neturophil (Neutr), Natural Killer cells (NK), Dendritic cells (Dend.), Monocytes (Mono), 165 WO 2005/049075 PCT/US2004/038262 T cells (CD4+ and CD8+ subsets), stem cells (CD34+) as well as 20 separate B cell donors (donor Ids 310, 330, 357, 362,597, 635, 816, 1012, 1013, 1020, 1072, 1074, 1075, 1076, 1077, 1086, 1096, 1098, 1109, 1112) to test for donor variability. All RNA was purchased commercially (AllCells, LLC, Berkeley, CA) and the concentration of each was measured precisely upon receipt. The mRNA is quantitated precisely, e.g., fluorometrically. 5' nuclease assay data are initially expressed as Ct, or the threshold cycle. This is defined as the cycle 5 at which the reporter signal accumulates above the background level of fluorescence. The ACt values are used as quantitative measurement of the relative number of starting copies of a particular target sequence in a nucleic acid sample. As one Ct unit corresponds to 1 PCR cycle or approximately a 2-fold relative increase relative to normal, two units corresponds to a 4-fold relative increase, 3 units corresponds to an 8-fold relative increase and so on, one can quantitatively measure the relative fold increase in mRNA expression between two or more different [0 tissues. The lower the Ct value in a sample, the higher the starting copy number of that particular gene. If a standard curve is included in the assay, the relative amount of each target can be extrapolated and facilitates viewing of the data as higher copy numbers also have relative quantities (as opposed to higher copy numbers have lower Ct values) and also corrects for any variation of the generalized lCt equals a 2 fold increase rule. Using this technique, the molecules listed below have been identified as being significantly overexpressed (i.e., at least 2 fold) 15 in a single (or limited number) of specific tissue or cell types as compared to a different tissue or cell type (from both the same and different tissue donors) with some also being identified as being significantly overexpressed (i.e., at least 2 fold) in cancerous cells when compared to normal cells of the particular tissue or cell type, and thus, represent excellent polypeptide targets for therapy of cancer in mammals. 20 Molecule specific expression in: as compared to: DNA105250 (TAHOI) B cells non-B cells DNA150004 (TAHO2) B cells non-B cells DNA182432 (TAHO3) B cells non-B cells DNA225785 (TAHO4) B cells non-B cells 25 DNA225786 (TAHOS) B cells/CD34+ cells non-B cells DNA225875 (TAHO6) B cells non-B cells DNA226239 (TAHO8) B cells non-B cells DNA226394 (TAHO9) B cells non-B cells DNA226423 (TAHOl0) B cells non-B cells 30 DNA227781 (TAHO 11) B cells non-B cells DNA227879 (TAHO12) B cells non-B cells DNA260953 (TAH013) B cells non-B cells DNA335924 (TAHO16) B cells non-B cells DNA340394 (TAH017) B cells non-B cells 35 DNA225820 (TAHO25) B cells non-B cells DNA88116 (TAHO26) B cells non-B cells Summary 166 WO 2005/049075 PCT/US2004/038262 TAHO1-TAHO6, TAHO8-TAHO13, TAHOl6-TAHO17 and TAH025-TAHO26 expression levels in total RNA isolated from purified B cells or from B cells from 20 B cell donors (310-1112) (AllCells) and averaged (Avg. B) was significantly higher than respective TAHO1-TAHO6, TAHO8-TAHO13, TAHO16-17 and TAHO25-TAHO26 expression levels in total RNA isolated from several white blood cell types, neutrophils (Neutr), natural killer cells (NK) (a T cell subset), dendritic cells (Dend), monocytes (Mono), CD4+ T cells, CD8+ 5 T cells, CD34+ stem cells (data not shown). Accordingly, as TAHOl-TAHO6, TAHO8-TAHO13, TAHO16-TAHO17 and TAHO25-TAHO26 are significantly expressed on B cells as compared to non-B cells as detected by TaqMan analysis, the molecules are excellent targets for therapy of tumors in mammals, including B-cell associated cancers, such as lymphomas (i.e. Non-Hodgkin's Lyphoma), leukemias (i.e. chronic lymphocytic leukemia), myelomas (i.e. multiple myeloma) and [0 other cancers of hematopoietic cells. EXAMPLE 3: In Situ Hybridization In situ hybridization is a powerful and versatile technique for the detection and localization of nucleic acid sequences within cell or tissue preparations. It may be useful, for example, to identify sites of gene 15 expression, analyze the tissue distribution of transcription, identify and localize viral infection, follow changes in specific mRNA synthesis and aid in chromosome mapping. In situ hybridization was performed following an optimized version of the protocol by Lu and Gillett, Cell Vision 1:169-176 (1994), using PCR-generated 3P-labeled riboprobes. Briefly, formalin-fixed, paraffin embedded human tissues were sectioned, deparaffinized, deproteinated in proteinase K (20 g/ml) for 15 minutes 20 at 37*C, and further processed for in situ hybridization as described by Lu and Gillett, supra. A [ 33 -P] UTP labeled antisense riboprobe was generated from a PCR product and hybridized at 55*C overnight. The slides were dipped in Kodak NTB2 nuclear track emulsion and exposed for 4 weeks. 33 P-Riboprobe synthesis 6.0 p1 (125 mCi) Of 33 P-UTP (Amersham BF 1002, SA<2000 Ci/mmol) were speed vac dried. To each 25 tube containing dried 33 P-UTP, the following ingredients were added: 2.0 pL 5x transcription buffer 1.0 p1 DTT (100 mM) 2.0 pl NTP mix (2.5 mM: 10 p; each of 10 mM GTP, CTP & ATP + 10 pl H 2 0) 1.0 pl UTP (50 pM) 30 1.0 pl Rnasin 1.0 p1 DNA template (1pg) 1.0 pl H 2 0 1.0 pl RNA polymerase (for PCR products T3 = AS, T7 = S, usually) The tubes were incubated at 37*C for one hour. 1.0 p1 RQ1 DNase were added, followed by incubation 35 at 37*C for 15 minutes. 90 pl TE (10 mM Tris pH 7.6/1mM EDTA pH 8.0) were added, and the mixture was pipetted onto DE81 paper. The remaining solution was loaded in a Microcon-50 ultrafiltration unit, and spun using program 10 (6 minutes). The filtration unit was inverted over a second tube and spun using program 2 (3 minutes). 167 WO 2005/049075 PCT/US2004/038262 After the final recovery spin, 100 Il TE were added. 1 p1 of the final product was pipetted on DE81 paper and counted in 6 ml of Biofluor II. The probe was run on a TBE/urea gel. 1-3 p1 of the probe or 5 p1 of RNA Mrk III were added to 3 pl of loading buffer. After heating on a 95*C heat block for three minutes, the probe was immediately placed on ice. The wells of gel were flushed, the sample loaded, and run at 180-250 volts for 45 minutes. The gel was wrapped 5 in saran wrap and exposed to XAR film with an intensifying screen in -70*C freezer one hour to overnight. 33 P-Hybridization A. Pretreatment of frozen sections The slides were removed from the freezer, placed on aluminium trays and thawed at room temperature for 5 minutes. The trays were placed in 55'C incubator for five minutes to reduce condensation. The slides were [0 fixed for 10 minutes in 4% paraformaldehyde on ice in the fume hood, and washed in 0.5 x SSC for 5 minutes, at room temperature (25 ml 20 x SSC + 975 ml SQ H 20). After deproteination in 0.5 pg/ml proteinase K for 10 minutes at 37 0 C (12.5 pl of 10 mg/ml stock in 250 ml prewarmed RNase-free RNAse buffer), the sections were washed in 0.5 x SSC for 10 minutes at room temperature. The sections were dehydrated in 70%, 95%, 100% ethanol, 2 minutes each. 15 B. Pretreatment of paraffin-embedded sections The slides were deparaffinized, placed in SQ H 2 0, and rinsed twice in 2 x SSC at room temperature,,for 5 minutes each time. The sections were deproteinated in 20 pg/ml proteinase K (500 p1 of 10 rng/ml in 250 ml RNase-free RNase buffer; 37*C, 15 minutes) -human embryo, or 8 x proteinase K (100 p1 in 250 ml Rnase buffer, 37'C, 30 minutes) - formalin tissues. Subsequent rinsing in 0.5 x SSC and dehydration were performed as 20 described above. C. Prehybridization The slides were laid out in a plastic box lined with Box buffer (4 x SSC, 50% formamide) - saturated filter paper. D. Hybridization 25 1.0 x 106 cpm probe and 1.0 pl tRNA (50 mg/ml stock) per slide were heated at 95*C for 3 minutes. The slides were cooled on ice, and 48 p1 hybridization buffer were added per slide. After vortexing, 5Qil P mix were added to 50 p1 prehybridization on slide. The slides were incubated overnight at 55*C. E. Washes Washing was done 2 x 10 minutes with 2xSSC, EDTA at room temperature (400 ml 20 x SSC + 16 ml 30 0.25M EDTA, Vf=4L), followed by RNaseA treatment at 37*C for 30 minutes (500 p1 of 10 ing/ml in 250 ml Rnase buffer = 20 pg/ml), The slides were washed 2 x 10 minutes with 2 x SSC, EDTA at room temperature. The stringency wash conditions were as follows: 2 hours at 55*C, 0.1 x SSC, EDTA (20 ml 20 x SSC + 16 ml EDTA, Vi=4L). F. Oligonucleotides 35 In situ analysis was performed on a variety of DNA sequences disclosed herein. The oligonucleotides employed for these analyses were obtained so as to be complementary to the nucleic acids (or the complements thereof) as shown in the accompanying figures. (1) DNA225785 (TAHO4) 168 WO 2005/049075 PCT/US2004/038262 p 1 5'-GGGCACCAAGAACCGAATCAT-3' (SEQ ID NO: 72) p2 5'-CCTAGAGGCAGCGATTAAGGG-3' (SEQ ID NO:73) (2) DNA257955 (TAH020) p 1 5'-TCAGCACGTGGATTCGAGTCA-3'(SEQ ID NO: 74) 5 p2 5'-GTGAGGACGGGGCGAGAC-3'(SEQ ID NO: 75) G. Results In situ analysis was performed on a variety of DNA sequences disclosed herein. The results from these analyses are as follows. 10 (1) DNA225785 (TAHO4) Expression was observed in lymphoid cells. Specifically, in normal tissues, expression was observed in spleen and lymph nodes and coincides with B cell areas, such as germinal centers, mantle, and marginal zones. Significant expression was also observed in tissue sections of a variety of malignant lymphomas, including Hodgkin's lymphoma, follicular lymphoma, diffuse large cell lymphoma, small lymphocytic lymphoma and non 15 Hodgkin's lymphoma. This data is consistent with the potential role of this molecule in hematopoietic tumors, specifically B-cell tumors. (2) DNA257955 (TAHO20) Expression was observed in benign and neoplastic lymphoid cells. Specifically, in normal tissues, 20 expression was observed in B cell areas, such as germinal centers, mantle and marginal zones, and in white pulp tissue of the spleen. This data is consistent with the potential role of this molecule in hematopoietic tumors, specifically B-cell tumors. EXAMPLE 4: Use of TAHO as a hybridization probe 25 The following method describes use of a nucleotide sequence encoding TAHO as a hybridization probe for, i.e., detection of the presence of TAHO in a mammal. DNA comprising the coding sequence of full-length or mature TAHO as disclosed herein can also be employed as a probe to screen for homologous DNAs (such as those encoding naturally-occurring variants of TAHO) in human tissue cDNA libraries or human tissue genomic libraries. 30 Hybridization and washing of filters containing either library DNAs is performed under the following high stringency conditions. Hybridization of radiolabeled TAHO-derived probe to the filters is performed in a solution of 50% formamide, 5x SSC, 0.1% SDS, 0.1% sodium pyrophosphate, 50 mM sodium phosphate, pH 6.8, 2x Denhardt's solution, and 10% dextran sulfate at 42*C for 20 hours. Washing of the filters is performed in an aqueous solution of 0. lx SSC and 0.1% SDS at 42*C. 35 DNAs having a desired sequence identity with the DNA encoding full-length native sequence TAHO can then be identified using standard techniques known in the art. EXAMPLE 5: Expression of TAHO in E. coli 169 WO 2005/049075 PCT/US2004/038262 This example illustrates preparation of an unglycosylated form of TAHO by recombinant expression in E. coli. The DNA sequence encoding TAHO is initially amplified using selected PCR primers. The primers should contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector. A variety of expression vectors may be employed. An example of a suitable vector is pBR322 (derived 5 from E. coli; see Bolivar et al., Gene, 2:95 (1977)) which contains genes for ampicillin and tetracycline resistance. The vector is digested with restriction enzyme and dephosphorylated. The PCR amplified sequences are then ligated into the vector. The vector will preferably include sequences which encode for an antibiotic resistance gene, a trp promoter, a polyhis leader (including the first six STI codons, polyhis sequence, and enterolcinase cleavage site), the TAHO coding region, lambda transcriptional terminator, and an argU gene. [0 The ligation mixture is then used to transform a selected E coli strain using the methods described in Sambrook et al., sura. Transformants are identified by their ability to grow on LB plates and antibiotic resistant colonies are then selected. Plasmid DNA can be isolated and confirmed by restriction analysis and DNA sequencing. Selected clones can be grown overnight in liquid culture medium such as LB broth supplemented with [5 antibiotics. The overnight culture may subsequently be used to inoculate a larger scale culture. The cells are then grown to a desired optical density, during which the expression promoter is turned on. After culturing the cells for several more hours, the cells can be harvested by centrifugation. The cell pellet obtained by the centrifugation can be solubilized using various agents known in the art, and the solubilized TAHO protein can then be purified using a metal chelating column under conditions that allow tight binding of 20 the protein. TAHO may be expressed in E. coli in a poly-His tagged form, using the following procedure. The DNA encoding TAHO is initially amplified using selected PCR primers. The primers will contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector, and other useful sequences providing for efficient and reliable translation initiation, rapid purification on a metal chelation column, and 25 proteolytic removal with enterokinase. The PCR-amplified, poly-His tagged sequences are then ligated into an expression vector, which is used to transform an E. coli host based on strain 52 (W3 110 fuhA(tonA) Ion galE rpoHts(htpRts) clpP(laclq). Transformants are first grown in LB containing 50 mg/ml carbenicillin at 30*C with shaking until an O.D.600 of 3-5 is reached. Cultures are then diluted 50-100 fold into CRAP media (prepared by mixing 3.57 g (NH4) 2
SO
4 , 0.71 g sodium citrate.2H20, 1.07 g KCl, 5.36 g Difco yeast extract, 5.36 g Sheffield 30 hycase SF in 500 mL water, as well as 110 mM MPOS, pH 7.3, 0.55% (w/v) glucose and 7 mM MgSO 4 ) and grown for approximately 20-30 hours at 30*C with shaking. Samples are removed to verify expression by SDS-PAGE analysis, and the bulk culture is centrifuged to pellet the cells. Cell pellets are frozen until purification and refolding. E. coli paste from 0.5 to 1 L fermentations (6-10 g pellets) is resuspended in 10 volumes (w/v) in 7 M 35 guanidine, 20 mnM Tris, pH 8 buffer. Solid sodium sulfite and sodium tetrathionate is added to make final concentrations of 0.1M and 0.02 M, respectively, and the solution is stirred overnight at 4*C. This step results in a denatured protein with all cysteine residues blocked by sulfitolization. The solution is centrifuged at 40,000 rpm in a Beckman Ultracentifuge for 30 min. The supernatant is diluted with 3-5 volumes of metal chelate column 170 WO 2005/049075 PCT/US2004/038262 buffer (6 M guanidine, 20 mM Tris, pH 7.4) and filtered through 0.22 micron filters to clarify. The clarified extract is loaded onto a5 ml Qiagen Ni-NTA metal chelate column equilibrated in the metal chelate column buffer. The column is washed with additional buffer containing 50 mM imidazole (Calbiochem, Utrol grade), pH7.4. 'The protein is eluted with buffer containing 250 mM imidazole. Fractions containing the desired protein are pooled and stored at 4*C. Protein concentration is estimated by its absorbance at 280 nm using the calculated extinction 5 coefficient based on its amino acid sequence. The proteins are refolded by diluting the sample slowly into freshly prepared refolding buffer consisting of: 20 mM Tris, pH 8.6, 0.3 M NaCl, 2.5 M urea, 5 mM cysteine, 20 mM glycine and 1 mM EDTA. Refolding volumes are chosen so that the final protein concentration is between 50 to 100 micrograms/mL. The refolding solution is stirred gently at 4 0 C for 12-36 hours. The refolding reaction is quenched by the addition of TFA to a [0 final concentration of 0.4% (pH of approximately 3). Before further purification of the protein, the solution is filtered through a 0.22 micron filter and acetonitrile is added to 2-10% final concentration. The refolded protein is chromatographed on a Poros RI/H reversed phase column using a mobile buffer of 0.1% TFA with elution -with a gradient of acetonitrile from 10 to 80%. Aliquots of fractions with A280 absorbance are analyzed on SDS polyacrylamide gels and fractions containing homogeneous refolded protein are pooled. Generally, the properly 15 refolded species of most proteins are eluted at the lowest concentrations of acetonitrile since those species are the most compact with their hydrophobic interiors shielded from interaction with the reversed phase resin. Aggregated species are usually eluted at higher acetonitrile concentrations. In addition to resolving misfolded forms of proteins from the desired form, the reversed phase step also removes endotoxin from the samples. Fractions containing the desired folded TAHO polypeptide are pooled and the acetonitrile removed using 20 a gentle stream of nitrogen directed at the solution. Proteins are formulated into 20 mM Hepes, pH 6.8 with 0.14 M sodium chloride and 4% mannitol by dialysis or by gel filtration using G25 Superfine (Pharmacia) resins equilibrated in the formulation buffer and sterile filtered. Certain of the TAHO polypeptides disclosed herein have been successfully expressed and purified using this technique(s). 25 EXAMPLE 6: Expression of TAHO in mammalian cells This example illustrates preparation of a potentially glycosylated form of TAHO by recombinant expression in mammalian cells. The vector, pRK5 (see EP 307,247, published March 15, 1989), is employed as the expression vector. 30 Optionally, the TAHO DNA is ligated into pRK5 with selected restriction enzymes to allow insertion of the TAHO DNA using ligation methods such as described in Sambrook et al., supra. The resulting vector is called pRK5 TAHO. In one embodiment, the selected host cells may be 293 cells. Human 293 cells (ATCC CCL 1573) are grown to confluence in tissue culture plates in medium such as DMEM supplemented with fetal calf serurn and 35 optionally, nutrient components and/or antibiotics. About 10 pg pRK5-TAHO DNA is mixed with about I jig DNA encoding the VA RNA gene [Thimmappaya et al., Cell, 31:543 (1982)] and dissolved in 500 pl of 1 mM Tris-HCl, 0.1 mM EDTA, 0.227 M CaCl 2 . To this mixture is added, dropwise, 500 pl of 50 mM HEPES (pH 7.35), 280 mM NaCl, 1.5 mM NaPO 4 , and a precipitate is allowed to form for 10 minutes at 25*C. The precipitate 171 WO 2005/049075 PCTIUS2004/038262 is suspended and added to the 293 cells and allowed to settle for about four hours at 37*C. The culture medium is aspirated off and 2 ml of 20% glycerol in PBS is added for 30 seconds. The 293 cells are then washed with serum free medium, fresh medium is added and the cells are incubated for about 5 days. Approximately 24 hours after the transfections, the culture medium is removed and replaced with culture medium (alone) or culture medium containing 200 piCi/ml "S-cysteine and 200 pCi/mi "S-methionine. After a 5 12 hour incubation, the conditioned medium is collected, concentrated on a spin filter, and loaded onto a 15% SDS gel. The processed gel may be dried and exposed to film for a selected period of time to reveal the presence of TAHO polypeptide. The cultures containing transfected cells may undergo further incubation (in serum free medium) and the medium is tested in selected bioassays. In an alternative technique, TAHO may be introduced into 293 cells transiently using the dextran sulfate 10 method described by Somparyrac et al., Proc. Natl. Acad. Sci., l2:7575 (1981). 293 cells are grown to maximal density in a spinner flask and 700 pg pRK5-TAHO DNA is added. The cells are first concentrated from the spinner flask by centrifugation and washed with PBS. The DNA-dextran precipitate is incubated on the cell pellet for four hours. The cells are treated with 20% glycerol for 90 seconds, washed with tissue culture medium, and re-introduced into the spinner flask containing tissue culture medium, 5 pg/ml bovine insulin and 0.1 pg/ml bovine 15 transferrin. After about four days, the conditioned media is centrifuged and filtered to remove cells and debris. The sample containing expressed TAHO can then be concentrated and purified by any selected method, such as dialysis and/or column chromatography. In another embodiment, TAHO can be expressed in CHO cells. The pRK5-TAHO can be transfected into CHO cells using known reagents such as CaPO 4 or DEAE-dextran. As described above, the cell cultures can be 20 incubated, and the medium replaced with culture medium (alone) or medium containing a radiolabel such as "S methionine. After determining the presence of TAHO polypeptide, the culture medium may be replaced with serum free medium. Preferably, the cultures are incubated for about 6 days, and then the conditioned medium is harvested. The medium containing the expressed TAHO can then be concentrated and purified by any selected method. 25 Epitope-tagged TAHO may also be expressed in host CHO cells. The TAHO may be subcloned out of the pRK5 vector. The subclone insert can undergo PCR to fuse in frame with a selected epitope tag such as a poly his tag into a Baculovirus expression vector. The poly-his tagged TAHO insert can then be subcloned into a SV40 driven vector containing a selection marker such as DHFR for selection of stable clones. Finally, the CHO cells can be transfected (as described above) with the SV40 driven vector. Labeling may be performed, as described 30 above, to verify expression. The culture medium containing the expressed poly-His tagged TAHO can then be concentrated and purified by any selected method, such as by Ni 2 -chelate affinity chromatography. TAHO may also be expressed in CHO and/or COS cells by a transient expression procedure or in CHO cells by another stable expression procedure. Stable expression in CHO cells is performed using the following procedure. The proteins are expressed 35 as an IgG construct (immunoadhesin), in which the coding sequences for the soluble forms (e.g. extracellular domains) of the respective proteins are fused to an IgG1 constant region sequence containing the hinge, CH2 and CH2 domains and/or is a poly-His tagged form. 172 WO 2005/049075 PCT/US2004/038262 Following PCR amplification, the respective DNAs are subcloned in a CHO expression vector using standard techniques as described in Ausubel et al., Current Protocols of Molecular Biology, Unit 3.16, John Wiley and Sons (1997). CHO expression vectors are constructed to have compatible restriction sites 5' and 3' of the DNA of interest to allow the convenient shuttling of cDNA's. The vector used expression in CHO cells is as described in Lucas et al., Nucl. Acids Res. 24:9 (1774-1779 (1996), and uses the SV40 early promoter/enhancer 5 to drive expression of the cDNA of interest and dihydrofolate reductase (DHFR). DHFR expression permits selection for stable maintenance of the plasmid following transfection. Twelve micrograms of the desired plasmid DNA is introduced into approximately 10 million CHO cells using commercially available transfection reagents Superfect* (Quiagen), Dosper* or Fugene* (Boehringer Mannheim). The cells are grown as described in Lucas et al., supra. Approximately 3 x 107 cells are frozen in an 10 ampule for further growth and production as described below. The ampules containing the plasmid DNA are thawed by placement into water bath and mixed by vortexing. The contents are pipetted into a centrifuge tube containing 10 mLs of media and centrifuged at 1000 rpm for 5 minutes. The supernatant is aspirated and the cells are resuspended in 10 mL of selective media (0.2 Im filtered PS20 with 5% 0.2 skm diafiltered fetal bovine serum). The cells are then aliquoted into a 100 mL 15 spinner containing 90 ml of selective media. After 1-2 days, the cells are transferred into a 250 mL spinner filled with 150 mL selective growth medium and incubated at 37*C. After another 2-3 days, 250 mL, 500 mL and 2000 mL spinners are seeded with 3 x 10' cells/mL. The cell media is exchanged with fresh media by centrifugation and resuspension in production medium. Although any suitable CHO media may be employed, a production medium described in U.S. Patent No. 5,122,469, issued June 16, 1992 may actually be used. A 3L production 20 spinner is seeded at 1.2 x 106 cells/mL. On day 0, the cell number pH ie determined. On day 1, the spinner is sampled and sparging with filtered air is commenced. On day 2, the spinner is sampled, the temperature shifted to 33*C, and 30 mL of 500 g/L glucose and 0.6 mL of 10% antifoam (e.g., 35% polydimethylsiloxane emulsion, Dow Coming 365 Medical Grade Emulsion) taken. Throughout the production, the pH is adjusted as necessary to keep it at around 7.2. After 10 days, or until the viability dropped below 70%, the cell culture is harvested by 25 centrifugation and filtering through a 0.22 tm filter. The filtrate was either stored at 4*C or immediately loaded onto columns for purification. For the poly-His tagged constructs, the proteins are purified using a Ni-NTA column (Qiagen). Before purification, imidazole is added to the conditioned media to a concentration of 5 mM. The conditioned media is pumped onto a 6 ml Ni-NTA column equilibrated in 20 mM Hepes, pH 7.4, buffer containing 0.3 M NaCl and 5 30 mM imidazole at a flow rate of 4-5 ml/min. at 4*C. After loading, the column is washed with additional equilibration buffer and the protein eluted with equilibration buffer containing 0.25 M imidazole. The highly purified protein is subsequently desalted into a storage buffer containing 10 mM Hepes, 0.14 M NaCl and 4% mannitol, pH 6.8, with a 25 ml G25 Superfine (Pharmacia) column and stored at -80*C. Immunoadhesin (Fc-containing) constructs are purified from the conditioned media as follows. The 35 conditioned medium is pumped onto a 5 ml Protein A column (Pharmacia) which had been equilibrated in 20 mM Na phosphate buffer, pH 6.8. After loading, the column is washed extensively with equilibration buffer before elution with 100 mM citric acid, pH 3.5. The eluted protein is immediately neutralized by collecting 1 ml fractions into tubes containing 275 tL of I M Tris buffer, pH 9. The highly purified protein is subsequently desalted into 173 WO 2005/049075 PCT/US2004/038262 storage buffer as described above for the poly-His tagged proteins. The homogeneity is assessed by SDS polyacrylamide gels and by N-terminal amino acid sequencing by Edman degradation. Certain of the TAHO polypeptides disclosed herein have been successfully expressed and purified using this technique(s). 5 EXAMPLE 7: Expression of TAHO in Yeast The following method describes recombinant expression of TAHO in yeast. First, yeast expression vectors are constructed for intracellular production or secretion of TAHO from the ADH2/GAPDH promoter. DNA encoding TAHO and the promoter is inserted into suitable restriction enzyme sites in the selected plasmid to direct intracellular expression of TAHO. For secretion, DNA encoding TAHO can 10 be cloned into the selected plasind, together with DNA encoding the ADH2/GAPDH promoter, a native TAHO signal peptide or other mammalian signal peptide, or, for example, a yeast alpha-factor or invertase secretary signal/leader sequence, and linker sequences (if needed) for expression of TAHO. Yeast cells, such as yeast strain AB 110, can then be transformed with the expression plasmids described above and cultured in selected fermentation media. The transformed yeast supernatants can be analyzed by 15 precipitation with 10% trichloroacetic acid and separation by SDS-PAGE, followed by staining of the gels with Coomassie Blue stain. Recombinant TAHO can subsequently be isolated and purified by removing the yeast cells from the fermentation medium by centrifugation and then concentrating the medium using selected cartridge filters. The concentrate containing TAHO may further be purified using selected column chromatography resins. 20 Certain of the TAHO polypeptides disclosed herein have been successfully expressed and purified using this technique(s). EXAMPLE 8: Expression of TAHO in Baculovirus-Infected Insect Cells The following method describes recombinant expression of TAHO in Baculovirus-infected insect cells. 25 The sequence coding for TAHO is fused upstream of an epitope tag contained within a baculovirus expression vector. Such epitope tags include poly-his tags and immunoglobulin tags (like Fc regions of IgG). A variety of plasmids may be employed, including plasmids derived from commercially available plasmids such as pVL1393 (Novagen). Briefly, the sequence encoding TAHO or the desired portion of the coding sequence of TAHO such as the sequence encoding an extracellular domain of a transmembrane protein or the sequence 30 encoding the mature protein if the protein is extracellular is amplified by PCR with primers complementary to the 5 and 3 regions. The 5' primer may incorporate flanking (selected) restriction enzyme sites. The product is then digested with those selected restriction enzymes and subcloned into the expression vector. Recombinant baculovirus is generated by co-transfecting the above plasmid and BaculoGoldT" virus DNA (Pharmingen) into Spodoptera frugiperda ("Sf9") cells (ATCC CRL 1711) using lipofectin (commercially 35 available from GIBCO-BRL). After 4 - 5 days of incubation at 28*C, the released viruses are harvested and used for further amplifications. Viral infection and protein expression are performed as described by O'Reilley et al., Baculovirus expression vectors: A Laboratory Manual, Oxford: Oxford University Press (1994). 174 WO 2005/049075 PCT/US2004/038262 Expressed poly-his tagged TAHO can then be purified, for example, by Ni 2 +-chelate affinity chromatography as follows. Extracts are prepared from recombinant virus-infected Sf9 cells as described by Rupert et al., Nature: 362175-179 (1993). Briefly, Sf9 cells are washed, resuspended in sonication buffer (25 mL Hepes, pH 7.9; 12.5 mM MgCl 2 ; 0.1 mM EDTA; 10% glycerol; 0.1% NP-40; 0.4 M KCI), and sonicated twice for 20 seconds on ice. The sonicates are cleared by centrifugation, and the supernatant is diluted 50-fold in loading 5 buffer (50 mM phosphate, 300 mM NaCl, 10% glycerol, pH 7.8) and filtered through a 0.45 ptm filter. A Ni 2
+
NTA agarose column (commercially available from Qiagen) is prepared with a bed volume of 5 mL, washed with 25 mL of water and equilibrated with 25 mL of loading buffer. The filtered cell extract is loaded onto the column at 0.5 mL per minute. The column is washed to baseline A2sc with loading buffer, at which point fraction collection is started. Next, the column is washed with a secondary wash buffer (50 mM phosphate; 300 mM NaCl, 10% 1o glycerol, pH 6.0), which elutes nonspecifically bound protein. After reaching A 2 Mo baseline again, the column is developed with a 0 to 500 mM Imidazole gradient in the secondary wash buffer. One mL fractions are collected and analyzed by SDS-PAGE and silver staining or Western blot with Ni 2 *-NTA-conjugated to alkaline phosphatase (Qiagen). Fractions containing the eluted His,6-tagged TAHO are pooled and dialyzed against loading buffer. Alternatively, purification of the IgG tagged (or Fc tagged) TAHO can be performed using known 15 chromatography techniques, including for instance, Protein A or protein G column chromatography. Certain of the TAHO polypeptides disclosed herein have been successfully expressed and purified using this technique(s). EXAMPLE 9: Preparation of Antibodies that Bind TAHO 20 This example illustrates preparation of monoclonal antibodies which can specifically bind TAHO. Techniques for producing the monoclonal antibodies are known in the art and are described, for instance, in Goding, supra. Immunogens that may be employed include purified TAHO, fusion proteins containing TAHO, and cells expressing recombinant TAHO on the cell surface. Selection of the immunogen can be made by the skilled artisan without undue experimentation. 25 Mice, such as Balb/c, are immunized with the TAHO immunogen emulsified in complete Freund's adjuvant and injected subcutaneously or intraperitoneally in an amount from 1-100 micrograms. Alternatively, the immunogen is emulsified in MPL-TDM adjuvant (Ribi Immunochemical Research, Hamilton, MT) and injected into the animal's hind foot pads. The immunized mice are then boosted 10 to 12 days later with additional immunogen emulsified in the selected adjuvant. Thereafter, for several weeks, the mice may also be boosted with 30 additional immunization injections. Serum samples may be periodically obtained from the mice by retro-orbital bleeding for testing in ELISA assays to detect anti-TAHO antibodies. After a suitable antibody titer has been detected, the animals "positive" for antibodies can be injected with a final intravenous injection of immunogen. Three to four days later, the mice are sacrificed and the spleen cells are harvested. The spleen cells are then fused (using 35% polyethylene glycol) to a selected murine myeloma 35 cell line such as P3X63AgU.1, available from ATCC, No. CRL 1597. The fusions generate hybridoma cells which can then be plated in 96 well tissue culture plates containing HAT (hypoxanthine, arninopterin, and thymidine) medium to inhibit proliferation of non-fused cells, myeloma hybrids, and spleen cell hybrids. 175 WO 2005/049075 PCT/US2004/038262 The hybridoma cells will be screened in an ELISA for reactivity against immunogen. Determination of "positive" hybridoma cells secreting the desired monoclonal antibodies against immunogen is within the skill in the art. The positive hybridoma cells can be injected intraperitoneally into syngeneic Balb/c mice to produce ascites containing the anti-immunogen monoclonal antibodies. Alternatively, the hybridoma cells can be grown 5 in tissue culture flasks or roller bottles. Purification of the monoclonal antibodies produced in the ascites can be accomplished using ammonium sulfate precipitation, followed by gel exclusion chromatography. Alternatively, affinity chromatography based upon binding of antibody to protein A or protein G can be employed. Antibodies directed against certain of the TAHO polypeptides disclosed herein can be successfully produced using this technique(s). More specifically, functional monoclonal antibodies that are capable of '0 recognizing and binding to TAHO protein (as measured by standard ELISA, FACS sorting analysis and/or immunohistochemistry analysis)can be successfully generated against the following TAHO proteins as disclosed herein: TAHO1 (DNA105250), TAHO2 (DNA150004), TAHO3 (DNA182432), TAHO4 (DNA225785), TAHO5 (DNA225786), TAHO6 (DNA225875), TAHO7 (DNA226179), TAHO8 (DNA226239), TAHO9 (DNA226239), TAHO10 (DNA226423), TAHO11 (DNA227781), TAHO12 (DNA227879), TAHO13 [5 (DNA256363), TAHO14 (DNA332467), TAHO15 (DNA58721), TAHO16 (DNA335924), TAHO17 (DNA340394), TAH018 (DNA56041), TAHO19 (DNA59607), TAHO20 (DNA257955), TAHO21 (DNA329863), TAHO22 (DNA346528), TAH023 (DNA212930) and TAHO24 (DNA335918), TAHO 25 (DNA225820), TAHO26 (DNA88116), and TAHO27 (DNA227752), TAHO28 (DNA119476), TAHO29 (DNA254890), TAHO30 (DNA219240), TAHO31 (DNA37151), TAHO32 (DNA210233), TAHO33 20 (DNA35918), TAHO34 (DNA260038), TAHO35 (DNA334818) and TAHO36 (DNA257501). In addition to the preparation of monoclonal antibodies directed against the TAHO polypeptides as described herein, many of the monoclonal antibodies can be successfully conjugated to a cell toxin for use in directing the cellular toxin to a cell (or tissue) that expresses a TAHO polypeptide of interested (both in vitro and in vivo). For example, toxin (e.g., DM1) derivitized monoclonal antibodies can be successfully generated to the 25 following TAHO polypeptides as described herein: TAHO1 (DNA105250), TAHO2 (DNA150004), TAHO3 (DNA182432), TAHO4 (DNA225785), TAHO5 (DNA225786), TAHO6 (DNA225875), TAHO7 (DNA226179), TAHO8 (DNA226239), TAHO9 (DNA226239), TAHOIO (DNA226423), TAHOl1 (DNA227781), TAHO12 (DNA227879), TAHO13 (DNA256363), TAHO14 (DNA332467), TAHO15 (DNA58721), TAHO16 (DNA335924), TAHO17 (DNA340394), TAHO18 (DNA56041), TAHO19 (DNA59607), TAHO20 30 (DNA257955), TAHO21 (DNA329863), TAHO22 (DNA346528), TAHO23 (DNA212930) and TAHO24 (DNA335918), TAHO 25 (DNA225820), TAHO26 (DNA88116), TAHO27 (DNA227752), TAHO28 (DNA119476), TAHO29 (DNA254890), TAHO30 (DNA219240), TAHO31 (DNA37151), TAHO32 (DNA210233), TAHO33 (DNA35918), TAHO34 (DNA260038), TAHO35 (DNA334818) and TAHO36 (DNA257501). 35 EXAMPLE 10: Purification of TAHO Polypeptides Using Specific Antibodies Native or recombinant TAHO polypeptides may be purified by a variety of standard techniques in the art of protein purification. For example, pro-TAHO polypeptide, mature TAHO polypeptide, or pre-TAHO polypeptide is purified by immunoaffinity chromatography using antibodies specific for the TAHO polypeptide 176 WO 2005/049075 PCT/US2004/038262 of interest. In general, an immunoaffinity column is constructed by covalently coupling the anti-TAHO polypeptide antibody to an activated chromatographic resin. Polyclonal immunoglobulins are prepared from immune sera either by precipitation with ammonium sulfate or by purification on immobilized Protein A (Pharmacia LKB Biotechnology, Piscataway, N.J.). Likewise, monoclonal antibodies are prepared from mouse ascites fluid by ammonium sulfate precipitation or 5 chromatography on immobilized Protein A. Partially purified immunoglobulin is covalently attached to a chromatographic resin such as CnBr-activated SEPHAROSET" (Pharmacia LKB Biotechnology). The antibody is coupled to the resin, the resin is blocked, and the derivative resin is washed according to the manufacturer's instructions. Such an immunoaffinity column is utilized in the purification of TAHO polypeptide by preparing a to fraction from cells containing TAHO polypeptide in a soluble form. This preparation is derived by solubilization of the whole cell or of a subcellular fraction obtained via differential centrifugation by the addition of detergent or by other methods well known in the art. Alternatively, soluble TAHO polypeptide containing a signal sequence may be secreted in useful quantity into the medium in which the cells are grown. A soluble TAHO polypeptide-containing preparation is passed over the immunoaffinity column, and the 15 column is washed under conditions that allow the preferential absorbance of TAHO polypeptide (e.g., high ionic strength buffers in the presence of detergent). Then, the column is eluted under conditions that disrupt antibody/TAHO polypeptide binding (e.g., a low pH buffer such as approximately pH 2-3, or a high concentration of a chaotrope such as urea or thiocyanate ion), and TAHO polypeptide is collected. 20 EXAMPLE 11: In Vitro Tumor Cell Killing Assay Mammalian cells expressingthe TAHOpolypeptideof interest may beobtained usingstandard expression vector and cloning techniques. Alternatively, many tumor cell lines expressing TAHO polypeptides of interest are publicly available, for example, through the ATCC and can be routinely identified using standard ELISA or FACS analysis. Anti-TAHO polypeptide monoclonal antibodies (commercially available and toxin conjugated 25 derivatives thereof) may then be employed in assays to determine the ability of the antibody to kill TAHO polypeptide expressing cells in vitro. For example, cells expressing the TAHO polypeptide of interest are obtained as described above and plated into 96 well dishes. In one analysis, the antibody/toxin conjugate (or naked antibody) is included throughout the cell incubation for a period of 4 days. In a second independent analysis, the cells are incubated for 1 hour with 30 the antibody/toxin conjugate (or naked antibody) and then washed and incubated in the absence of antibody/toxin conjugate for a period of 4 days. Cell viability is then measured using the CellTiter-Glo Luminescent Cell Viability Assay from Promega (Cat# G757 1). Untreated cells serve as a negative control. B cell lines (ARH-77, BJAB, Daudi, DOHH-2, Su-DHL-4, Raji and Ramos) were prepared at 5000 cells/well in separate sterile round bottom 96 well tissue culture treated plates (Cellstar 650 185). Cells were assay 35 media (RPMI 1460, 1% L-Glutamine, 10% fetal bovine serum (FBS; from Hyclone) and 10 mM HEPES). Cells were immediately placed in a 37*C incubator overnight Antibody drug conjugates (using commercially available anti-CD19, anti-CD20, anti-CD21, anti-CD79A, anti-CD79B) were diluted at 2 x 10 Rg/ml in assay medium. Conjugates were linked with crosslinkers SMCC or disulfide linker SPP to DM1 toxin. Further, conjugates may 177 WO 2005/049075 PCT/US2004/038262 be linked with Vc-PAB to MMAE toxin. Herceptin based conjugates (SMCC-DM1 or SPP-DM1) were used as negative controls. Free L-DMI equivalent to the conjugate loading dose was used as a positive control. Samples were vortexed to ensure homogenous mixture prior to dilution. The antibody drug conjugates were further diluted serially 1:3. The cell lines were loaded 50 p of each sample per row using a Rapidplate@ 96/384 Zymark automation system. When the entire plate was loaded, the plates were reincubated for 3 days to permit the toxins 5 to take effect. The reactions were stopped by applying 10(.1/well of Cell Glo (Promega, Cat. #G7571/2/3) to all the wells for 10 minutes. The 100p1 of the stopped well were transferred into 96 well white tissue culture treated plates, clear bottom (Costar 3610) and the luminescence was read and reported as relative light units (RLU). TAHO antibodies for this experiment included commercially available antibodies, including anti-TAHO4/CD79a (Caltag ZL7-4), anti-TAHO5/CD79b (Biomeda SN8), anti-TAHO6/CD21 (ATCC HB5), anti-TAHO26/CD22 0 (Leinco RFB-4) and anti-TAHO25/CD19 (Biomeda CB-19). Summary (1) Anti-TAHO26/CD22 antibody conjugated to DM1 toxin (CD22-SPP-DMI and CD22-SMCC-DM1) showed significant tumor cell killing when compared to anti-TAHO26/CD22 antibody alone or negative control anti-HER2 conjugated to DM1 toxin (anti-HER2-SMCC-DM1) in RAJI or RAMOS cells. Further, greater tumor .5 cell killing was observed with CD22-SPP-DMI compared to CD22-SMCC-DMl. (2) Anti-TAHO25/CD19 antibody conjugated to DM1 toxin (CD19-SPP-DM1 and CD19-SMCC-DMI) showed significant tumor cell killing when compared to anti-TAHO25/CD19 antibody alone or negative control anti-HER2 conjugated to DM1 toxin (anti-HER2-SMCC-DM1) in RAJI or RAMOS cells. Further, greater tumor cell killing was observed with CD19-SMCC-DM1 compared to CD19-SPP-DM1. 0 (3) Anti-TAHO6/CD21 antibody conjugated to DM1 toxin (CD21-SPP-DMI and CD21-SMCC-DM1) showed weak tumor cell killing when compared to anti-TAHO6/CD21 antibody alone or negative control anti HER2 conjugated to DM1 toxin (anti-HER2-SMCC-DM1) in RAJI or RAMOS cells. Further, greater tumor cell killing was observed with CD21-SPP-DM1 compared to CD21-SMCC-DM1. (4) Anti-TAHO4/CD79A antibody conjugated to DM1 toxin (CD79A-SMCC-DM1) showed significant !5 tumor cell killing when compared to anti-TAHO4/CD79A antibody alone or negative control anti-HER2 conjugated to DM1 toxin (anti-HER2-SMCC-DM1) in RAMOS cells. (5) Anti-TAHO5/CD79B antibody conjugated to DM1 toxin (CD79BSMCC-DM1) showed significant tumor cell killing when compared to anti-TAHO5/CD79B antibody alone or negative control anti-HER2 conjugated to DM1 toxin (anti-HER2-SMCC-DMI) in RAJI or RAMOS cells. 30 Anti-TAHO polypeptide monoclonal antibodies are useful for reducing in vitro tumor growth of tumors, including B-cell associated cancers, such as lymphomas (i.e. Non-Hodgkin's Lyphoma), leukemias (i.e. chronic lymphocytic leukemia), myelomas (i.e. multiple myeloma) and other cancers of hematopoietic cells. EXAMPLE 12: In Vivo Tumor Cell Killing Assay 35 To test the efficacy of conjugated or unconjugated anti-TAHO polypeptide monoclonal antibodies, the effect of anti-TAHO antibody on tumors in mice were analyzed. Female CB 17 ICR SCID mice (6-8 weeks of age from Charles Rivers Laboratories; Hollister, CA) were inoculated subcutaneously with 5 X10 6 RAJI cells or 2 X 107 BJAB-luciferase cells. Tumor volume was calculated based on two dimensions, measured using calipers, and 178 WO 2005/049075 PCT/US2004/038262 was expressed in mm 3 according to the formula: V= 0.5a X b 2 , where a and b are the long and the short diameters of the tumor, respectively. Data collected from each experimental group were expressed as mean + SE. Mice were separated into groups of 8-10 mice with a mean tumor volume between 100-200 mm 3 , at which point intravenous (i.v.) treatment began at the antibody dose of 5 mg/kg weekly for two to three weeks. Tumors were measured either once or twice a week throughout the experiment. Mice were euthanized before tumor volumes reached 3000 mm 3 5 or when tumors showed signs of impending ulceration. All animal protocols were approved by an Institutional Animal Care and Use Committee (IACUC). Linkers between the antibody and the toxin that were used were SPP, SMCC or cys-MC-vc-PAB (a valine-citrulline (vc) dipeptide linker reagent having a maleimide component and a para-aninobenzylcarbamoyl (PAB) self-immolative component. Toxins used were DM1 or MMAE. TAHO antibodies for this experiment included commercially available antibodies, including anti-TAHO4/CD79a (Caltag [0 ZL7-4), anti-TAHO5/CD79b (Biomeda SN8), anti-TAHO6/CD21 (ATCC HRB135) and anti-TAHO25/CD19 (Biomeda CB-19). Summary (1) Anti-TAHO6/CD21 antibody conjugated with DM1 toxin (anti-CD21-SPP-DM1) showed inhibition of tumor growth in SCID mice with RAJI tumors when treated weekly with 5 mg/kg of antibody 15 compared to anti-CD21 antibodies and herceptin antibodies conjugated to DM1 toxin (anti-Herceptin-SMCC-DMI and anti-Herceptin-SPP-DM1). Specifically, at day 19,8 out of 8 mice treated with anti-CD21-SPP-DM1 showed complete regression of tumors. At day 19, 8 out of 8 mice treated with anti-CD21, anti-herceptin-SPP-DM1, anti herceptin-SMCC-DM1 or anti-CD21-SMCC-DM1 showed tumor incidence. At day 19, 7 out of 8 mice treated with anti-CD20-SMCC-DM1 antibody showed tumor incidence. 20 (2) Anti-TAHO6/CD21 antibody conjugated with MMAE toxin (anti-CD21-cys-Mc-vc-PAB-MMAE) showed inhibition of tumor growth in SCID mice with RAJI tumors when treated with 5 mg/kg of antibody compared to negative control anti-CD 1 antibody or anti-herceptin antibody. Specifically at day 14, 5 out of 9 mice treated with anti-CD21-cys-MC-vc-PAB-MMAE showed partical regression of tumors and 4 out of 9 mice treated with anti-CD21 -cys-MC-vc-PAB-MMAE showed complete regression of tumors. At day 14, 10 out of 10 mice 25 treated with anti-herceptin or anti-CD21antibody showed tumor incidence. (3) Anti-TAHO25/CD19 antibody conjugated with DM1 toxin (anti-CD19-SPP-DM1) showed inhibition of tumor growth in SCD) mice with RAJI tumors when treated with 5 mg/kg of antibody compared to negative control anti-CD19 antibody conjugated to DM1 (anti-CD19-SMCC-DM1), anti-CD22 antibody conjugated to DM1 (anti-CD22-SMCC-DMI) and anti-herceptin antibody conjugated to DM1 (anti-herceptin-smcc-DM1 or anti 30 herceptin-spp-DM1). Specifially at day 14, 2 out of 6 mice treated with anti-CD19-SPP-DM1 showed partical regression of tumors and 3 out of 6 mice treated with anti-CD19-SPP-DM1 showed complete regression of tumors. At day 14,8 out of 8 mice treated with anti-herceptin-SPP-DM1, anti-herceptin-SMCC-DM1, anti-CD19-SMCC DM1 or anti-CD22-SMCC-DM1 showed tumor incidence. (4) Anti-TAHO4/CD79A antibody conjugated with DM1 (anti-CD79A-SMCC-DM1) showed inhibition 35 of tumor growth in SCID mice with RAMOS tumors compared to negative control, anti-herceptin-SMCC-DM 1. (5) Anti-TAHO5/CD79B antibody conjugated with DM1 (anti-CD79B-SMCC-DMI) showed inhibition of tumor growth in SCID mice with RAMOS tumors compared to negative control, anti-herceptin-SMCC-DMA. Anti-TAHO5/CD79B antibody conjugated with DM1 (anti-CD79B-SMCC-DMI) showed inhibition of tumor 179 WO 2005/049075 PCT/US2004/038262 growth in SCID mice with BJAB-luciferase tumors compared to negative control, anti-herceptin-SMCC-DMI or anti-herceptin antibody. The level of inhibiton by anti-CD79B-SMCC-DM1 antibodies was similar to the level of inhibition by anti-CD20 antibodies. Specifially at day 15, 1 out of 10 mice treated with anti-CD79B-SMCC DM1 showed partical regression of tumors and 9 out of 10 mice treated with anti-CD79B-SMCC-DM1 showed complete regression of tumors. At day 15, 10 out of 10 mice treated with anti-herceptin-SMCC-DMl, anti 5 herceptin antibody showed tumor incidence. At day 15, 5 out of 10 mice treated with anti-CD20 antibodies showed partial regression of tumors. Anti-TAHO polypeptide monoclonal antibodies are useful for reducing in vivo tumor growth of tumors in mammals, including B-cell associated cancers, such as lymphomas (i.e. Non-Hodgkin's Lyphoma), leukemias (i.e. chronic lymphocytic leukemia), myelomas (i.e. multiple myeloma) and other cancers of hematopoietic cells. 0 EXAMPLE 13: Immunohistochemistry To determine tissue expression of TAHO polypeptide and to confirm the microarray results fromExample 1, immunohistochemical detection of TAHO polypeptide expression was examined in snap-frozen and formalin fixed paraffin-embedded (FFPE) lymphoid tissues, including palatine tonsil, spleen, lymph node and Peyer's [5 patches from the Genentech Human Tissue Bank. Prevalence of TAHO target expression was evaluated on FFPE lymphoma tissue microarrays (Cybrdi) and a panel of 24 frozen human lymphoma specimens. Frozen tissue specimens were sectioned at 5 pm, air-dried and fixed in acetone for 5 minutes prior to immunostaining. Paraffin-embedded tissues were sectioned at5 pm and mounted on SuperFrost Plus microscope slides (VWR). 20 For frozen sections, slides were placed inTBST, 1%BSA and 10% normal horse serum containing0.05% sodium azide for 30 minutes, then incubated with Avidin/Biotin blocking kit (Vector) reagents before addition of primary antibody. Mouse monoclonal primary antibodies (commercially available) were detected with biotinylated horse anti-mouse IgG (Vector), followed by incubation in Avidin-Biotin peroxidase complex (ABC Elite, Vector) and metal-enhanced diaminobenzidine tetrahydrochloride (DAB, Pierce). Control sections were incubated with 25 isotype-matched irrelevant mouse monoclonal antibody (Pharmingen) at equivalent concentration. Following application of the ABC-HRP reagent, sections were incubated with biotinyl-tyramide (Perkin Elmer) in amplification diluent for 5-10 minutes, washed, and again incubated with ABC-HRP reagent. Detection was using DAB as described above. FFPE human tissue sections were dewaxed into distilled water, treated with Target Retrieval solution 30 (Dako) in a boiling water bath for 20 minutes, followed by a 20 minute cooling period. Residual endogenous peroxidase activity was blocked using IX Blocking Solution (KPL) for 4 minutes. Sections were incubated with Avidin/Biotin blocking reagents and Blocking Buffer containing 10% normal horse serum before addition of the monoclonal antibodies, diluted to 0.5 - 5.0 sg/ml in Blocking Buffer. Sections were then incubated sequentially with biotinylated anti-mouse secondary antibody, followed by ABC-HRP and chromogenic detection with DAB. 35 Tyramide Signal Amplification, described above, was used to increase sensitivity of staining for a number of TAHO targets (CD21, CD22, HLA-DOB). Summary 180 WO 2005/049075 PCT/US2004/038262 (1) TAHO26 (CD22) showed strong labeling of mantle zone B cells and weaker, but significant labeling of germinal centers as detected with primary antibody clone RFB-4 (Leinco) in frozen human tonsil tissue and clone 22C04 (Neomarkers) in FFPE human tonsil tissue (data not shown). (2) TAHO10 (HLA-DOB) showed punctuate labeling pattern, possibly due to labeling of TAHO10 on intracellular vesicles as detected with clone DOB.L1 (BD/Pharmingen) in FFPE human tonsil tissue (data not 5 shown). (3) TAHO8 (CD72) showed punctuate labeling pattern, possibly due to labeling of TAHO8 on intracellular vesicles as detected with clone J4-l17 (BD/Pharmingen) in frozen human tonsil tissue (data not shown). (4) TAHOI (CDI80) showed punctuate labeling pattern, possibly due to labeling of TAHOI on [0 intracellular vesicles as detected with clone MHR73 (Serotec) in frozen human tonsil tissue (data not shown). (5) TAHO6 (CD21) showed strong labeling of follicular dendritic cells in germinal centers and mature B cells within mantle zone as detected with clone HB-135 (ATCC) in FFPE human tonsil tissue and using tyramide signal amplification (TSA) (data not shown). (6) TAHO11(CXCR5) showed significant labeling in both mantle zone and germinal centers as detected 15 with clone 51505 (R&D Systems) and using a Cy3-conjugated anti-mouse antibody (R&D Systems) in frozen human tonsil. Accordingly, in light of TAHOl, TAHO6, TAHO8, TAHO10,TAHOI1 and TAHO26 expression pattern as assessed by immunohistochemistry in tonsil samples, a lymphoid organ where B cells develop, the molecules are excellent targets for therapy of tumors in mammals, including B-cell associated cancers, such as lymphomas 20 (i.e. Non-Hodgkin's Lyphoma), leukemias (i.e. chronic lymphocytic leukemia), myelomas (i.e. multiple myeloma) and other cancers of hematopoietic cells. EXAMPLE 14: Flow Cytometry To determine the expression of TAHO molecules, FACS analysis was performed using a variety of cells, 25 including normal cells and diseased cells, such as chronic lymphocytic leukemia (CLL) cells A. Normal Cells: TAHO2 (CD20), TAHO1 (CD180), TAHO26 (CD22). TAHO4 (CD79A), TAHO5 (CD79B. TAHO8 (CD72). TAHO1 I (CXCR5) For tonsil B cell subtypes, the fresh tonsil was minced in cold HBSS and passed through a 70um cell 30 strainer. Cells were washed once and counted. CD19+ B cells were enriched using the AutoMACS (Miltenyi). Briefly, tonsil cells were blocked with human IgG, incubated with anti-CD19 microbeads, and washed prior to positive selection over the AutoMACS. A fraction of CD19+ B cells were saved for flow cytometric analysis of plasma cells. Remaining CD19+ cells were stained with FITC-CD77, PE-IgD, and APC-CD38 for sorting of B cell subpopulations. CD19+ enrichment was analyzed using PE-Cy5-CD19, and purity ranged from 94-98% 35 CD19+. Tonsil B subpopulations were sorted on the MoFlo by Michael Hamilton at flow rate 18,000-20,000 cells/second. Follicular mantle cells were collected as the lgD+/CD38- fraction, memory B cells were IgD-/CD38-, 181 WO 2005/049075 PCT/US2004/038262 centrocytes were IgD-/CD38+/CD77-, and centroblasts were IgD-/CD38+/CD77+. Cells were either stored in 50% semm overnight, or stained and fixed with 2% paraformaldehyde. For plasma cell analysis, total tonsil B cells were stained with CD138-PE, CD20-FITC, and biotinylated antibody to the target of interest detected with streptavidin-PE-Cy5. Tonsil B subpopulations were stained with biotinylated antibody to the target of interest, detected with streptavidin-PE-Cy5. Flow analysis was done on the BD FACSCaliber, and data was further 5 analyzed using FlowJo software v 4.5.2 (TreeStar). Biotin-conjugated antibodies which were commercially available such as TAHO2/CD20 (2H7 from Ancell), TAHO1I/CD180 (MHR73-11 from eBioscience), TAHO8/CD72 (JF-1 17 from BD Pharmingen), TAHO26/CD22 (RFB4 from Ancell), TAHOI 1/CXCR5 (51505 from R&D Systems), TAHO4/CD79A (ZL7-4 from Serotec) and TAHO5/CD79B (CB-3 from BD Pharmingen) were used in the flow cytometry. 0 Summary of TAHO2 (CD20), TAHO1 (CD180), TAHO26 (CD22), TAHO4 (CD79A), TAHO5 (CD79B), TAHO8 (CD72), TAHO 11 (CXCR5) on Normal Cells The expression pattern on sorted tonsil-B subtypes was performed using monoclonal antibody specific to the TAHO polypeptide of interest. TAHO2 (CD20) (using anti-CD20, 2H7 from BD Pharmingen), TAHO26 (CD22) (using anti-CD22, RFB4 from Ancell), TAHO4 (CD79A) (using anti-CD79A), TAHO5 (CD79B) (using L5 anti-CD79B), TAHO8 (CD72) (using anti-CD72), TAHO1 (CD180) (using anti-CD180, MHR73-l 1 from eBioscience) and TAHO 11 (using anti-CXCR5, 51505 from R&D Systems) showed significant expression in memory B cells, follicular mantle cells, centroblasts and centrocytes (data not shown). The expression pattern on tonsil plasma cells was performed using monoclonal antibody specific to the TAHO polypeptide of interest. TAHO26 (CD22) (using anti-CD22, RFB4 from Ancell), TAHO4 (CD79A) (using 20 anti-CD79A) , TAHO5 (CD79B) (using anti-CD79B), TAHOl (CD180) (using anti-CD180, MHR73-11 from eBioscience) and TAHO8 (CD72) (using anti-CD72) showed significant expression in plasma cells (data not shown). Accordingly, in light ofTAHO2, TAHO1, TAHO26, TAHO4, TAHO5, TAHO8 and TAHO 11 expression pattern on tonsil-B subtypes as assessed by FACS, the molecules are excellent targets for therapy of tumors in 25 mammals, including B-cell associated cancers, such as lymphomas (i.e. Non-Hodgkin's Lyphoma), leukemias (i.e. chronic lymphocytic leukemia), myelomas (i.e. multiple myeloma) and other cancers of hematopoietic cells. B. CLL Cells: TAHO 11 (CXCR5). TAHO4 (CD79A). TAHO5 (CD79B), TAHO26 (CD22), TAHO12 (CD23/FCER2), TAHO1 (CD180) The following purified or fluorochrome-conjugated mAbs were used for flow cytometry of CLL 30 samples: CD5-PE, CD19-PerCP Cy5.5, CD20-FITC, CD20-APC (commercially available fromBD Pharmingen). Further, commercially available biotinylated antibodies against CD22 (RFB4 from Ancell), CD23 (M-L233 from BD Pharmingen), CD79A (ZL7-4 from Serotec), CD79B (CB-3 from BD Pharmingen), CD 180 (MHR73-11 from eBioscience), CXCR5 (51505 from R&D Systems) were used for the flow cytometry. The CD5, CD19 and CD20 antibodies were used to gate on CLL cells and PI staining was performed to check the cell viability. 35 Cells (106 cells in 100m volume) were first incubated with 1mg of each CD5, CD 19 and CD20 antibodies and 10mg each of human and mouse gamma globulin (Jackson ImmunoResearch Laboratories, West Grove, PA) 182 WO 2005/049075 PCT/US2004/038262 to block the nonspecific binding, then incubated with optimal concentrations of mAbs for 30 minutes in the dark at 4'C. When biotinylated antibodies were used, streptavidin-PE or streptavidin-APC(Jackson ImunoResearch Laboratories) were then added according to manufacture's instructions. Flow cytometry was performed on a FACS calibur (BD Biosciences, San Jose, CA). Forward scatter (FSC) and side scatter (SSC) signals were recorded in linear mode, fluorescence signals in logarithmic mode. Dead cells and debris were gated out using scatter 5 properties of the cells. Data were analysed using CellQuest Pro software (BD Biosciences) and FlowJo (Tree Star Inc.). Summary of TAHO 11 (CXCR5), TAHO4 (CD79A), TAHO5 (CD79B), TAHO26 (CD22). TAHO12 (CD23/FCER2). TAHOI (CD 180) on CLL Samples The expression pattern on CLL samples was performed using monoclonal antibody specific to the TAHO 10 polypeptide of interest. TAHO 11 (CXCR5), TAHO4 (CD79A), TAHO5 (CD79B), TAHO26 (CD22), TAHO12 (CD23/FCER2), TAHO1 (CD180) showed significant expression in CLL samples (data not shown). Accordingly, in light ofTAHOI 1, TAHO4, TAH05,TAHO26,TAHO12 and TAHO1 expression pattern on chronic lymphocytic leukemia (CLL) samples as assessed by FACS, the molecules are excellent targets for therapy of tumors in mammals, including B-cell associated cancers, such as lymphomas (i.e. Non-Hodgkin's 15 Lyphoma), leukemias (i.e. chronic lymphocytic leukemia), myelomas (i.e. multiple myeloma) and other cancers of hematopoietic cells. Example 15: TAHO Internalization Internalization of the TAHO antibodies into B-cell lines was assessed in Raji, Ramos, Daudi and other 20 B cell lines, including ARH77, SuDHL4, U698M, huB and BJAB cell lines. One ready-to-split 15 cm dish of B-cells (-50 x 106 cells) with cells for use in up to 20 reactions was used. The cells were below passage 25 (less than 8 weeks old) and growing healthily without any mycoplasma. In a loosely-capped 15 ml Falcon tube add 1 pig/ml mouse anti-TAHO antibody to 2.5 x 106 cells in 2 ml normal growth medium (e.g. RPMI/10% FBS/1% glutamine) containing 1:10 FcR block (MACS kit, dialyzed to 25 remove azide), 1% pen/strep, 5 FM pepstatin A, 10 ig/mI leupeptin (lysosomal protease inhibitors) and 25 jig/mil Alexa488-transferrin (which labeled the recycling pathway and indicated which cells were alive; alternatively Ax488 dextran fluid phase marker may be used to mark all pathways) for 24 hours in a 37'C 5% CO 2 incubator. For quickly-internalizing antibodies, time-points every 5 minutes were taken. For time-points taken less than 1 hour, lml complete carbonate-free medium (Gibco 18045-088 + 10% FBS, I % glutamine, 1% pen/strep, 10 mM 30 Hepes pH 7.4) was used and the reactions were performed in a 37'C waterbath instead of the CO 2 incubator. After completion of the time course, the cells were collected by centrifugation (1500 rpm4'C for 5 minutes in G6-SR or 2500 rpm 3 minutes in 4'C benchtop eppendorf centrifuge), washed once in 1.5 ml carbonate free medium (in Eppendorfs) or 10 ml medium for 15ml Falcon tubes. The cells were subjected to a second centrifugation and resuspended in 0.5 ml 3% paraformaldehyde (EMS) in PBS for 20 minutes at room temp to 35 allow fixation of the cells. 183 WO 2005/049075 PCT/US2004/038262 All following steps are followed by a collection of the cells via centrifugation. Cells were washed in PBS and then quenched for 10 minutes in 0.5 ml 50mM NH 4 C1 (Sigma) in PBS and permeablized with 0.5ml 0.1% Triton-X- 100 in PBS for 4 minutes during a 4 minute centrifugation spin. Cells were washed in PBS and subjected to centrifugation. 1 pg/ml Cy3-anti mouse (or anti-species l' antibody was) was added to detect uptake of the antibody in 200 41 complete carbonate free medium for 20 minutes at room temperature. Cells were washed twice 5 in carbonate free medium and resuspendd in 25 p1 carbonate free medium and the cells were allowed to settle as a drop onto one well of a polylysine-coated 8-well Labteki slide for at least one hour (or overnight in fridge). Any non-bound cells were aspirated and the slides were mounted with one drop per well of DAPI-containing Vectashield under a 5Ox24mm coverslip. The cells were examined under 100x objective for internalization of the antibodies. 0 Summary (1) TAHO25/CD19 (as detected using anti-CD19 antibody Biomeda CB-19) was internalized within 20 minutes in Ramos and Daudi cells, arriving in lysosomes by 1 hour. In Raji and ARH77 cells, TAHO25/CD19 internalization was not detectable in 20 hours. (2) Significant TAHO6/CR2 (as detected using anti-CR2 antibody ATCC HB-135) internalization was not 5 detectable in Raji cells and in Daudi cells in 20 hours. (3) TAHO26/CD22 (as detected using anti-CD22 antibody Leinco RFB4) was internalized in 5 minutes in Raji cells, in 5 minutes in Ramos cells, in 5 minutes in Daudi cells, and in 5 minutes in ARH77 cells and was delivered to lysosomes by 1 hour. TAHO26/CD22 (as detected using anti-CD22 antibodies , DAKO Tol5, Diatec 157, Sigma HIB-22 or Monosan BL-BC34) was internalized in 5 minutes in Raji cells and was delivered to !0 lysosomes by 1 hour. (4) Significant TAHOl2/FCER2 (as detected using anti-FCER2 antibody Ancell BU38 or Serotec D3.6) internalization was not detectable in ARH77 cells in 20 hours. (5) Significant TAHO8/CD72 (as detected using anti-CD72 antibody BD Pharmingen J4-117) internalization was not detectable in 20 hours in SuDHL4 cells. 25 (6) TAHO4/CD79a (as detected using anti-CD79a antibody Serotec ZL7-4) was internalized in 1 hour in Ramos cells, in 1 hour in Daudi cells and in 1 hour in SuDHLA cells, and was delivered to lysosomes in 3 hours. (7) TAHO1/CD180 (as detected using anti-CD180 antibody BD Pharmingen G28-8) was internalized in 5 minutes in SuDHIA cells and was delivered to lysosomes in 20 hours. (8) Significant TAHOll/CXCR5 (as detected using anti-CXCR5 antibody R&D Systems 51505) 30 internalization was not detectable in 20 hours in U698M cells. (9) TAHO5/CD79b (as detected using anti-CD79b antibody Ancell SN8) internalizes in 20 minutes in Ramos, Daudi and Su-DHL4 cells and is delivered to the lysosomes in 1 hour. Accordingly, in light of TAHO25, TAHO26, TAHO4, TAHO 1 and TAHO5 internalization on B-cell lines as assessed by immunofluorescence using respective anti-TAHO antibodies, the molecules are excellent targets 35 for therapy of tumors in mammals, including B-cell associated cancers, such as lymphomas (i.e. Non-Hodgkin's 184 WO 2005/049075 PCT/US2004/038262 Lyphoma), leukemias (i.e. chronic lymphocytic leukemia), myelomas (i.e. multiple myeloma) and other cancers of hematopoietic cells. 185

Claims (29)

1. A method of inhibiting the growth of a cell that expresses a protein having at least 80% amino acid sequence identity to: 5 (a) a polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 51 (SEQ ID NO: 51), with or without its associated signal peptide; (b) an extracellular domain of the polypeptide having the 0 amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 51 (SEQ ID NO: 51); (c) a polypeptide encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence .5 shown in Figure 50 (SEQ ID NO: 50;) or (d) a polypeptide encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 50 (SEQ ID NO: 50), 20 wherein said method comprises contacting said cell with an antibody that binds to said protein thereby causing an inhibition of cell growth, wherein said antibody is conjugated to a growth inhibitory agent or cytotoxic agent and wherein said antibody is internalized by the cell. 25
2. A method of inhibiting the growth of a cell, wherein the growth of said cell is at least in part dependent upon a growth potentiating effect of a protein having at least 80% amino acid sequence identity to: 30 (a) a polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 51 (SEQ ID NO: 51),with or without its associated signal peptide; (b) an extracellular domain of the polypeptide having the 35 amino acid sequence selected from the group consisting of -186 2733288_1 (GHMatters) P60826 AU 2 7107111 the amino acid sequence shown in Figure 51 (SEQ ID NO: 51); (c) a polypeptide encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence 5 shown in Figure 50 (SEQ ID NO: 50); or (d) a polypeptide encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 50 (SEQ ID NO: 50), .0 wherein said method comprises contacting said protein with an antibody that binds to said protein thereby causing an inhibition of cell growth, wherein said antibody is conjugated to a growth inhibitory agent or cytotoxic agent and wherein said antibody is internalized by the cell. .5
3. A method according to claim 1 or 2, wherein said protein has: (a) the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 51 (SEQ ID NO: 51) with or without its associated signal ?0 peptide; (b) an amino acid sequence of an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 51 (SEQ ID NO: 51); 25 (c) an amino acid sequence encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 50 (SEQ ID NO: 50) ; or (d) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence selected from the group 30 consisting of the nucleotide sequence shown in Figure 50 (SEQ ID NO: 50).
4. A method of treating or preventing a cell proliferative disorder associated with increased expression or activity of a 35 protein having at least 80% amino acid sequence identity to: -187 2733288_1 (GHMaters) P60826 AU.2 7/07111 (a) a polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 51 (SEQ ID NO: 51) with or without its associated signal peptide; 5 (b) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 51 (SEQ ID NO: 51); (c) a polypeptide encoded by the nucleotide sequence selected .0 from the group consisting of the nucleotide sequence shown in Figure 50 (SEQ ID NO: 50); or (d) a polypeptide encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 50 L5 (SEQ ID NO: 50), wherein said method comprises administering to a subject an effective amount of an antagonist of said protein, wherein said antagonist is conjugated to a growth inhibitory agent or a cytotoxic agent and wherein said antagonist is internalized 20 by the cell.
5. Use of an antibody conjugated to a growth inhibitory agent or a cytotoxic agent in the manufacture of a medicament for inhibiting the growth of a cell that expresses a protein 25 having at least 80% amino acid sequence identity to: (a) a polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 51 (SEQ ID NO: 51); (b) an extracellular domain of the polypeptide having the 30 amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 51 (SEQ ID NO: 51); (c) a polypeptide encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence 35 shown in Figure 50 (SEQ ID NO: 50); or - 188 2733288_1 (GHMamers) P60826.AU.2 7107/11 (d) a polypeptide encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 50 (SEQ ID NO: 50), wherein said antibody binds to said 5 protein, wherein the binding of said antibody to said protein causes an inhibition of growth of said cell and wherein said antibody is internalized by the cell.
6. Use of an antibody conjugated to a growth inhibitory agent or .0 a cytotoxic agent in the manufacture of a medicament for inhibiting the growth of a cell, wherein the growth of said cell is at least in part dependent upon a growth potentiating effect of a protein having at least 80% amino acid sequence identity to: .5 (a) a polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 51 (SEQ ID NO: 51) with or without its associated signal peptide; (b) an extracellular domain of the polypeptide having the ?o amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 51 (SEQ ID NO: 51); (c) a polypeptide encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence 25 shown in Figure 50 (SEQ ID NO: 50); or (d) a polypeptide encoded by the full-length coding region of the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 50 (SEQ ID NO: 50), wherein said antibody specifically binds 30 to said protein, wherein the binding of said antibody to said protein inhibits the growth of said cell and wherein said antibody is internalized by the cell.
7. A method according to claim 2 or use according to claim 6, 35 wherein said protein is expressed by said cell. -189 2733288_1 (GHMatters) P60826.AU.2 7/07/11
8. A method according to claim 2 or use according to claim 6 or a method or use according to claim 7, wherein the binding of said antibody to said protein antagonizes a cell growth 5 potentiating activity of said protein.
9. A method according to any one of claims 1 to 3 or use according to claim 5 or 6 or a method or use according to claim 7 or 8, wherein said antibody is a monoclonal antibody. .0
10. A method according to any one of claims 1 to 3 or use according to claim 5 or 6 or a method or use according to any one of claims 7 to 8, wherein said antibody is an antibody fragment. .5
11. A method according to any one of claims 1 to 3 or use according to claim 5 or 6 or a method or use according to any one of claims 7 to 10, wherein said antibody is a chimeric or a humanized antibody. 20
12. A method according to any one of claims 1 to 3 or use according to claim 5 or 6 or a method or use according to any one of claims 7 to 11, wherein said cytotoxic agent is selected from the group consisting of toxins, antibiotics, 25 radioactive isotopes and nucleolytic enzymes.
13. A method according to any one of claims 1 to 3 or use according to claim 5 or 6 or a method or use according to any one of claims 7 to 12, wherein the cytotoxic agent is a toxin. 30
14. A method or use according to claim 13, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin. 35
15. A method or use according to claim 14 or 15, wherein the toxin -190 2733288_1 (GHMatiers) P60826 AU 2 7/07/11 is a maytansinoid.
16. A method according to any one of claims 1 to 3 or use according to claim 5 or 6 or a method or use according to any 5 one of claims 7 to 15, wherein said antibody is produced in bacteria or CHO cells.
17. A method according to any one of claims 1 to 3 or use according to claim 5 or 6 or a method or use according to any 0 one of claims 7 to 16, wherein said cell is a hematopoietic cell.
18. A method or use according to claim 17, wherein said hematopoietic cell is selected from the group consisting of a 5 lymphocyte, leukocyte, platelet, erythrocyte and natural killer cell.
19. A method or use according to claim 18, wherein said lymphocyte is a B cell or T cell. !0
20. A method or use according to claim 19 or 20, wherein said lymphocyte is a cancer cell.
21. A method or use according to claim 20, wherein said cancer 25 cell is further exposed to radiation treatment or a chemotherapeutic agent.
22. A method or use according to claim 20 or 21, wherein said cancer cell is selected from the group consisting of a 30 lymphoma cell, a myeloma cell and a leukemia cell.
23. A method or use according to any one of claims 17 to 22, wherein said protein is more abundantly expressed by said hematopoietic cell as compared to a non-hematopoietic cell. 35 - 191 2733288.1 (GH{Maners) P60826.AU 2 7/07/11
24. A method according to any one of claims 1 to 3 or use according to claim 5 or 6 or a method or use according to any one of claims 7 to 23, which causes the death of said cell. 5
25. Use according to any one of claims 5 to 24, wherein said protein has: (a) the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 51 (SEQ ID NO: 51) with or without its associated signal .0 peptide; (b) an amino acid sequence of an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 51 (SEQ ID NO: 51); 5 (c) an amino acid sequence encoded by the nucleotide sequence selected from the group consisting of the nucleotide sequence shown in Figure 50 (SEQ ID NO: 50) ; or (d) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence selected from the group 0 consisting of the nucleotide sequence shown in Figure 50 (SEQ ID NO: 50).
26. Use of an antagonist of a protein in the manufacture of a medicament for treating or preventing a cell proliferative 25 disorder, wherein the disorder is associated with increased expression or activity of the protein, and the protein has at least 80% amino acid sequence identity to: (a) a polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in 30 Figure 51 (SEQ ID NO: 51) with or without its associated signal peptide; (b) an extracellular domain of the polypeptide having the amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 51 (SEQ ID NO: 51); 35 (c) a polypeptide encoded by the nucleotide sequence selected - 192 2733288_1 (GHMatter) P60826 AU.2 7/07/11 from the group consisting of the nucleotide sequence shown in Figure 50 (SEQ ID NO: 50); or (d) a polypeptide encoded by the full-length coding region of the nucleotide sequence selected from the group consisting 5 of the nucleotide sequence shown in Figure 50 (SEQ ID NO: 50), wherein said use comprises contacting said cell with an antagonist that binds to said protein thereby causing inhibition of cell growth, wherein said antagonist is conjugated to a growth 0 inhibitory agent or cytotoxic agent and wherein said antagonist is internalised by the cell.
27. A method according to claim 4 or use according to claim 26, wherein said cell proliferative disorder is cancer. 5
28. A method according to claim 4 or use according to claim 26 or a method or use according to claim 27, wherein said antagonist is an anti-CD22 polypeptide antibody. !0
29. A method according to any one of claims 1, 2 and 4, or the use according to any one of claims 5, 6 and 26, substantially as herein described with reference to any one of the examples and/or figures. 25 - 193 2733288_1 (GHMaters)P60826.AU.2 7/07/11
AU2011203347A 2003-11-17 2011-07-07 Compositions and methods for the treatment of tumor of hematopoietic origin Active AU2011203347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2011203347A AU2011203347B2 (en) 2003-11-17 2011-07-07 Compositions and methods for the treatment of tumor of hematopoietic origin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US60/520,842 2003-11-17
US60/532,426 2003-12-24
AU2009213070A AU2009213070B9 (en) 2003-11-17 2009-09-11 Compositions and methods for the treatment of tumor of hematopoietic origin
AU2011203347A AU2011203347B2 (en) 2003-11-17 2011-07-07 Compositions and methods for the treatment of tumor of hematopoietic origin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2009213070A Division AU2009213070B9 (en) 2003-11-17 2009-09-11 Compositions and methods for the treatment of tumor of hematopoietic origin

Publications (2)

Publication Number Publication Date
AU2011203347A1 true AU2011203347A1 (en) 2011-07-28
AU2011203347B2 AU2011203347B2 (en) 2013-09-05

Family

ID=45420087

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2011203347A Active AU2011203347B2 (en) 2003-11-17 2011-07-07 Compositions and methods for the treatment of tumor of hematopoietic origin

Country Status (1)

Country Link
AU (1) AU2011203347B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1485130A4 (en) * 2002-02-21 2006-11-22 Univ Duke Reagents and treatment methods for autoimmune diseases

Also Published As

Publication number Publication date
AU2011203347B2 (en) 2013-09-05

Similar Documents

Publication Publication Date Title
AU2009213070B2 (en) Compositions and methods for the treatment of tumor of hematopoietic origin
CA2505705C (en) Compositions and methods for the diagnosis and treatment of tumor
AU2002330015B2 (en) Compositions and methods for the diagnosis and treatment of tumor
AU2009202783B2 (en) Compositions and methods for the treatment of tumor of hematopoietic origin
US9085630B2 (en) Compositions and methods for the treatment of tumor of hematopoietic origin
US20090053226A1 (en) Compositions and methods for the treatment of tumor of hematopoietic origin
AU2003230874A1 (en) Compositions and methods for the diagnosis and treatment of tumor
AU2003259913A1 (en) Compositions and methods for the diagnosis and treatment of tumor
ZA200404849B (en) Compositions and methods for the diagnosis and treatment of tumor
US8388973B2 (en) Compositions and methods for the treatment of tumor of hematopoietic origin
US20110042260A1 (en) Compositions and methods for the treatment of tumor of hematopoietic origin
ZA200506507B (en) Identification of cellular polypeptides differentially expressed by tumor cells
AU2004293787A1 (en) Compositions and methods for the diagnosis and treatment of tumor
AU2011203347B2 (en) Compositions and methods for the treatment of tumor of hematopoietic origin
US20090311259A1 (en) Compositions and Methods for Treatment of Tumor of Hematopoietic Origin
AU2008201998B2 (en) Compositions and methods for the diagnosis and treatment of tumor
WO2006130135A1 (en) Compositions and methods for the treatment of tumor of hematopoietic origin
AU2012211366A1 (en) Compositions and methods for the treatment of tumor of hematopoietic origin
NZ548096A (en) Compositions and methods for the treatment of tumor of hematopoietic origin
AU2002335054A1 (en) Compositions and methods for the diagnosis and treatment of tumor
CA2708411A1 (en) Compositions and methods for the diagnosis and treatment of tumor
ZA200503798B (en) Compositions and methods for the diagnosis and treatment of tumor
ZA200501302B (en) Compositions and methods for the diagnosis and treatment of tumor

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)