AU2009306026A1 - Phosphodiestarase inhibitors - Google Patents

Phosphodiestarase inhibitors Download PDF

Info

Publication number
AU2009306026A1
AU2009306026A1 AU2009306026A AU2009306026A AU2009306026A1 AU 2009306026 A1 AU2009306026 A1 AU 2009306026A1 AU 2009306026 A AU2009306026 A AU 2009306026A AU 2009306026 A AU2009306026 A AU 2009306026A AU 2009306026 A1 AU2009306026 A1 AU 2009306026A1
Authority
AU
Australia
Prior art keywords
compound
ethyl
formula
pyrazolo
pyridin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2009306026A
Inventor
Kakade Ganesh Chandrakant
Sunanda G. Dastidar
Nidhi Gupta
Tarun Jain
Abhijit Ray
Sonali Rudra
Lalitha Vijaykrishnan
Sreedhara Rao Voleti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ranbaxy Laboratories Ltd
Original Assignee
Ranbaxy Laboratories Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ranbaxy Laboratories Ltd filed Critical Ranbaxy Laboratories Ltd
Publication of AU2009306026A1 publication Critical patent/AU2009306026A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Description

WO 2010/046791 PCT/IB2009/054115 1 PHOSPHODIESTERASE INHIBITORS Field of the Invention The present invention relates to phosphodiesterase (PDE) type 4, phosphodiesterase (PDE) type 7 and dual PDE type 4 /PDE type 7 inhibitors. 5 Compounds disclosed herein can be useful in the treatment, prevention, inhibition or suppression of CNS diseases, for example, multiple sclerosis; various pathological conditions such as diseases affecting the immune system, including AIDS, rejection of transplant, auto-inimune disorders such as T-cell related diseases, for example, rheumatoid arthritis; inflammatory diseases such as respiratory inflammation diseases including 10 chronic obstructive pulmonary disease (COPD), asthma, bronchitis, allergic rhinitis, adult respiratory distress syndrome (ARDS) and other inflammatory diseases including but not limited to psoriasis, shock, atopic dermatitis, eosinophilic granuloma, allergic conjunctivitis, osteoarthritis; gastrointestinal inflammation diseases such as Crohn's disease, colitis, pancreatitis as well as different types of cancers including leukaemia; 15 especially in humans. Processes for the preparation of disclosed compounds, pharmaceutical compositions containing the disclosed compounds and their use as PDE type 4, PDE type 7 and dual PDE type 4 /PDE type 7 inhibitors are provided. Background of the Invention 20 It is known that cyclic adenosine-3', 5'-monophosphate (cAMP) exhibits an important role of acting as an intracellular secondary messenger (Pharmacol. Rev., 12, (1960), 265). Its intracellular hydrolysis to adenosine 5'-monophosphate (AMP) causes number of inflammatory conditions which are not limited to COPD, asthma, arthritis, psoriasis, allergic rhinitis, shock, atopic dermatitis, Crohn's disease, adult respiratory 25 distress syndrome (ARDS), eosinophilic granuloma, allergic conjunctivitis, osteoarthritis or colitis. PDE4 inhibitors are designed to inhibit the activity of PDE4, the enzyme which breaks down neuronal cAMP. Studies have shown that administering PDE4 inhibitors can have a restorative effect on memory loss in animal models, including those of Alzheimer's disease (Expert Opin. Ther. Targ., 9_(6): (2005) 1283-1305; Drug Discovery Today, 10, 30 22: (2005), 1503-1519). The most important role in the control of cAMP (as well as of WO 2010/046791 PCT/IB2009/054115 2 cGMP (cyclic guanosine monophosphate)) level is played by cyclic nucleotide phosphodiesterases (PDE) which represent a biochemically and functionally highly variable super family of enzymes. Eleven distinct families of cyclic nucleotide phosphodiesterases with more than 25 gene products are currently recognized. Although 5 PDE1, PDE2, PDE3, PDE4, and PDE7 all use cAMP as a substrate, only PDE4 and PDE7 are highly selective for hydrolysis of cAMP. Inhibitors of PDE, particularly the PDE4 inhibitors, such as rolipram or Ro-1724 are therefore known as cAMP-enhancers. Immune cells contain type 4 and type 3 PDE, the PDE4 type being prevalent in human mononuclear cells. Thus the inhibition of phosphodiesterase type 4 has been a target for 10 modulation and, accordingly, for therapeutic intervention in a range of disease processes. The initial observation that xanthine derivatives, theophylline and caffeine inhibit the hydrolysis of cAMP led to the discovery of the required hydrolytic activity in the cyclic nucleotide phosphodiesterase (PDE) enzymes. Distinct classes of PDE's have been recognized (TIPS, 11, (1990), 150), and their selective inhibition has led to improved drug 15 therapy (TIPS, 12, (1991), 19). Thus it was recognized that inhibition of PDE4 could lead to inhibition of inflammatory mediator release (J Mol. Cell. Cardiol., 12 (Suppl. II), (1989), S 61) and airway smooth muscle relaxation. The current approach of targeting PDE4 for alleviating the chronic inflammation associated with COPD is compromised by the dose limiting side effects that are proving 20 difficult to overcome. Theoretically, an alternate strategy would be to use small molecule inhibitors to target other members of the cAMP dependent PDE family that share a common pulmonary cellular distribution to PDE4. It is hypothesized that such an approach would yield compounds with an improved therapeutic ratio. Of the novel cAMP family of proteins discovered so far, PDE7A offers itself as a promising candidate because of its 25 cellular distribution in almost all pro inflammatory and immune cells (Curr Pharm Des., 12, (2006), 1-14). Additionally, it has been shown to be a prime modulator of human T cell function as well (Science; 283 (5403): Feb 5, (1999), 848-851). Thus, dual specificity inhibitors that target both PDE4 and PDE7 would in principle, have an improved spectrum and a wider therapeutic window in the clinics. 30 Compounds with dual PDE4 and PDE7 inhibitory effects have been shown to inhibit T cell function such as cytokine production, proliferation and activation of CD25 expression WO 2010/046791 PCT/IB2009/054115 3 markers on T cells induced by antigen stimulation (Eur. J. Pharmacol., 541, (2006), 106 114). Development of dual PDE4-PDE7 inhibitors would yield a novel class of drugs blocking T cell component of a disease partly through PDE7 inhibition as well as possess anti-inflammatory activity. (Eur. J Pharmacol., 550, (2006), 166-172 Eur. J 5 Pharmacol., 559, (2007), 219-226). More importantly, such a pharmacophore would be less limited by nausea and vomiting, a major side effect associated with PDE4 inhibition. WO 03/047520 discloses substituted aminomethyl compounds and derivatives thereof, which have been described to be useful as inhibitors of factor Xa. WO 00/59902 discloses aryl sulfonyls, which have been described to be useful as inhibitors of factor Xa. 10 WO 97/48697 discloses substituted azabicyclic compounds and their use as inhibitors of the production of TNF and cyclic AMP phosphodiesterase. WO 98/57951 and U.S. Patent No. 6,339,099 describe nitrogen containing heteroaromatics and derivatives, which have been said to be the inhibitors of factor Xa. WO 2005/063767 and WO 2006/001894 disclose indoles, 1H-indazoles, 1,2-benzisoxazoles, and 1,2-benzisothiazoles, preparation 15 and uses thereof. WO 2007/031838, WO 2007/031977, WO 2008/111009 and WO 2008/111010 discloses substituted pyrazolo [3,4-b] pyridines as phosphodiesterase inhibitors. Summary of the Invention The present invention provides phosphodiesterase (PDE) type 4, PDE type 7 and 20 dual PDE type 4 /PDE type 7 inhibitors, which can be used for treatment, prevention, inhibition or suppression of CNS diseases, for example, multiple sclerosis; various pathological conditions such as diseases affecting the immune system, including AIDS, rejection of transplant, auto-immune disorders such as T-cell related diseases, for example, rheumatoid arthritis; inflammatory diseases such as respiratory inflammation diseases 25 including chronic obstructive pulmonary disease (COPD), asthma, bronchitis, allergic rhinitis, adult respiratory distress syndrome (ARDS) and other inflammatory diseases including but not limited to psoriasis, shock, atopic dermatitis, eosinophilic granuloma, allergic conjunctivitis, osteoarthritis; gastrointestinal inflammation diseases such as Crohn's disease, colitis, pancreatitis as well as different types of cancers including 30 leukaemia; especially in humans.
WO 2010/046791 PCT/IB2009/054115 4 Pharmaceutically acceptable salts, pharmaceutically acceptable solvates, stereoisomers, tautomers, racemates, regioisomers, geometric isomers, prodrugs, metabolites, polymorphs or N-oxides of these compounds having the same type of activity are also provided. 5 Pharmaceutical compositions containing the compounds, which may also contain pharmaceutically acceptable carriers, excipients or diluents, can be used for treatment, prevention, inhibition or suppression of CNS diseases, for example, multiple sclerosis; various pathological conditions such as diseases affecting the immune system, including AIDS, rejection of transplant, auto-immune disorders such as T-cell related diseases, for 10 example, rheumatoid arthritis; inflammatory diseases such as respiratory inflammation diseases including chronic obstructive pulmonary disease (COPD), asthma, bronchitis, allergic rhinitis, adult respiratory distress syndrome (ARDS) and other inflammatory diseases including but not limited to psoriasis, shock, atopic dermatitis, eosinophilic granuloma, allergic conjunctivitis, osteoarthritis; gastrointestinal inflammation diseases 15 such as Crohn's disease, colitis, pancreatitis as well as different types of cancers including leukemia; especially in humans. Other aspects will be set forth in the accompanying description which follows and in part will be apparent from the description or may be learnt by the practice of the invention. 20 In accordance with one aspect, there are provided compounds having the structure of Formula I: R'3
NR
1
R
2
N-
0
R
5 N R6 N N R4 I R3 Formula I 25 or their pharmaceutically acceptable salts, pharmaceutically acceptable solvates, stereoisomers, tautomers, racemates, regioisomers, geometric isomers, prodrugs, WO 2010/046791 PCT/IB2009/054115 5 metabolites, polymorphs or N-oxides, wherein R 1 and R 2 independently can be hydrogen, aryl, heteroaryl, -COR 7 , -S(O)mR 7 (wherein R 7 can be hydrogen, alkyl, cycloalkyl, aryl, ()M x )m aralkyl, heteroaryl or heterocyclyl and m can be an integer from 0-2), or (wherein m can be an integer from 0-2 and X can be -0-, S(O)m (wherein m can be an 5 integer from 0-2), NR 8 {wherein R 8 can be hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl, heteroaryl, heterocyclyl, -COR 7 , -S(O)mR 7 , -COOR 7 or -CONR 7
R'
7 (wherein R 7 and R' 7 can be hydrogen, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or heterocyclyl and m can be the same as defined earlier)}, C(=O), C=NOH or CRfRq (wherein Rf and Rq independently can be hydrogen, halogen, hydroxy, cyano, NR 8
R'
8 10 [wherein R 8 and R' 8 can be hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl, heteroaryl, heterocyclyl, -COR 7 , -S(O)mR 7 , -COOR 7 or -CONR 7
R'
7 {wherein m, R 7 and R' 7 can be the same as defined earlier}], -CONR 7
R
7 ', -COONR 7
R
7 ' or -COOR 7 (wherein R 7 and R' 7 can be the same as defined earlier)),
R
3 can be alkyl, aryl, cycloalkyl, heterocyclyl or heteroaryl, 15 R' 3 can be hydrogen, alkyl, aryl, cycloalkyl, heteroaryl, heterocyclyl or (un) substituted amine, R4 can be alkyl, aryl, cycloalkyl, halogen, cyano, heteroaryl, heterocyclyl, or (un) substituted amine,
R
5 and R 6 independently can be alkyl, -CN, heterocyclyl, -(CH 2 )mC(=O)NRjR'j {wherein 20 m can be an integer from 0-2 and R and R'j independently can be hydrogen, alkyl, alkenyl, cycloalkyl, aryl, aralkyl, heterocyclyl, heteroaryl, heterocyclylalkyl, heteroarylalkyl or Rj and R'j taken together with the nitrogen atom to which they are attached can form a optionally substituted heterocyclyl ring}, -(CH 2 )mC(=O)ORj {wherein m and Rj can be the same as defined earlier}, -(CH2)miORj {wherein ml can be an integer from 0-3 and Rj can 25 be the same as defined earlier} or -(CH 2 )mC(=0)heterocyclyl {wherein m can be the same as defined earlier}, or R 5 and R 6 together can form a 3-7 membered saturated, partially saturated or unsaturated ring containing carbon atoms wherein one or more carbon atoms optionally can be replaced by heteroatoms selected from 0, S(O)m {wherein m can be an WO 2010/046791 PCT/IB2009/054115 6 integer from 0-2} or NRs {wherein R 8 can be the same as defined earlier}, or one or more carbon atoms optionally can be substituted with oxo, spiro-attached heterocyclyl, cyano, alkyl, heteroaryl, heteroarylalkyl, -(CH 2 )mhalogen, -(CH 2 )mNR 7
R'
7 , -(CH 2 )mOR 7 , (CH 2 )mCONR 7
R'
7 , -(CH 2 )mNR 7
COR
7 or -(CH 2 )mCOOR 7 (wherein m, R 7 and R' 7 can be 5 the same as defined earlier). In one embodiment, there are provided compounds having the structure of Formula II:
R
2 aRlbN N- O R5a / I Rea /N N R4a R3a Formula II 10 or their pharmaceutically acceptable salts, pharmaceutically acceptable solvates, stereoisomers, tautomers, racemates, regioisomers, geometric isomers, prodrugs, metabolites, polymorphs or N-oxides, wherein Rib and R2a independently can be Xa ( )m hydrogen, or (wherein m can be an integer from 0-2 and Xa can be -0 15 or -CH 2 -),
R
3 a can be alkyl, R4a can be alkyl, which may optionally be substituted with halogen,
R
5 a and R 6 a independently can be -(CH 2 )miOH {wherein ml can be an integer from 0-3} or R5a and R6a together can form a 3-7 membered saturated, partially saturated or unsaturated 20 ring containing carbon atoms wherein one or more carbon atoms optionally can be replaced by heteroatoms selected from 0, S(O)m {wherein m can be an integer from 0-2} or NR 8 {wherein R 8 can be hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, WO 2010/046791 PCT/IB2009/054115 7 aryl, heteroaryl, heterocyclyl, -COR 7 , -S(O)mR 7 , -COOR 7 or -CONR 7
R'
7 (wherein R 7 and R'7 can be hydrogen, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or heterocyclyl and m can be the same as defined earlier)}, or one or more carbon atoms optionally can be substituted with oxo, spiro-attached heterocyclyl, cyano, heteroaryl, heteroarylalkyl, -(CH 2 )mhalogen, 5 -(CH 2 )mOR 7 , or -(CH 2 )mCOOR 7 (wherein R 7 and m can be the same as defined earlier). The following definitions apply to terms as used herein. The term "alkyl," unless otherwise specified, refers to a monoradical branched or unbranched saturated hydrocarbon chain having from 1 to 20 carbon atoms. This term can be exemplified by groups such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, 10 sec-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, n-decyl, tetradecyl, and the like. Alkyl groups may be substituted further with one or more substituents selected from alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, or aryl groups, The term "alkenyl," unless otherwise specified, refers to a monoradical of a branched or unbranched unsaturated hydrocarbon group having from 2 to 20 carbon atoms 15 with cis, trans or geminal geometry. Alkenyl groups may be substituted further with one or more substituents selected from alkyl, alkenyl, alkynyl, , cycloalkyl, cycloalkenyl, aryl, aralkyl, , heterocyclyl, heteroaryl, heterocyclylalkyl, or heteroarylalkyl groups The term "alkynyl," unless otherwise specified, refers to a monoradical of an unsaturated hydrocarbon, having from 2 to 20 carbon atoms. Alkynyl groups may be 20 substituted further with one or more substituents selected from alkyl, alkenyl, alkoxy, cycloalkyl, cycloalkenyl, aryl, or aralkyl groups. The term "cycloalkyl," unless otherwise specified, refers to cyclic alkyl groups of from 3 to 20 carbon atoms having a single cyclic ring or multiple condensed rings, which may optionally contain one or more olefinic bonds, unless otherwise constrained by the 25 definition. Such cycloalkyl groups can include, for example, single ring structures, including cyclopropyl, cyclobutyl, cyclooctyl, cyclopentyl, cyclohexyl and the like or multiple ring structures, including adamantanyl, and bicyclo [2.2.1] heptane or cyclic alkyl groups to which is fused an aryl group, for example, indane, and the like. Spiro and fused ring structures can also be included. Cycloalkyl groups may be substituted further with WO 2010/046791 PCT/IB2009/054115 8 one or more substituents selected from alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, aryl, or aralkyl groups. The term "cycloalkylalkyl" refers to alkyl-cycloalkyl group linked through alkyl portion, wherein the alkyl and cycloalkyl are as defined earlier. 5 The term "alkoxy" denotes the group O-alkyl wherein alkyl is the same as defined above. The term "aryl," unless otherwise specified, refers to aromatic system having 6 to 14 carbon atoms, wherein the ring system can be mono-, bi- or tricyclic and carbocyclic aromatic groups. For example, aryl groups include, but are not limited to, phenyl, 10 biphenyl, anthryl or naphthyl ring and the like, optionally substituted with 1 to 3 substituents selected from halogen (e.g., F, Cl, Br, I), hydroxy, alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, acyl, aryloxy, CF 3 , cyano, nitro, -COOR,, -NHC(=O)Rx, -NRxRt, C(=O)NRxR,, -NHC(=O)NRxR., -O-C(=O)NRxR2, -SOmRV, carboxy, heterocyclyl, heteroaryl, heterocyclylalkyl, heteroarylalkyl, amino carbonyl amino, mercapto, haloalkyl, 15 optionally substituted aryl, optionally substituted heterocyclylalkyl, thioalkyl, -CONHR, OCOR., -COR, -NHSO 2 R. or -SO 2 NHR, (wherein m is an integer from 0-2; R , R,, and R, are independently selected from hydrogen, halogen, hydroxy, alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, cycloalkenyl, aryl, aralkyl, heterocyclyl, heteroaryl, heterocyclylalkyl, heteroarylalkyl or carboxy). Aryl groups optionally may be fused with a cycloalkyl group, 20 wherein the cycloalkyl group may optionally contain heteroatoms selected from 0, N or S. The term "aralkyl," unless otherwise specified, refers to alkyl-aryl linked through an alkyl portion (wherein alkyl and aryl are as defined above). Examples of aralkyl groups include benzyl, ethylphenyl, propylphenyl, naphthylmethyl and the like. The term "aralkenyl," unless otherwise specified, refers to alkenyl-aryl linked 25 through alkenyl portion (wherein alkenyl and aryl are as defined above). The term "aryloxy" denotes the group O-aryl, wherein aryl is as defined above. The term "cycloalkoxy" denotes the group O-cycloalkyl, wherein cycloalkyl is as defined above. The term "carboxy," as defined herein, refers to -C(=0)OR,, wherein R' is the 30 same as defined above.
WO 2010/046791 PCT/IB2009/054115 9 The term "heteroaryl," unless otherwise specified, refers to a monocyclic aromatic ring structure containing 5 or 6 ring atoms or a bicyclic or tricyclic aromatic group having from 8 to 10 ring atoms, with one or more heteroatom(s) independently selected from N, 0 or S and optionally substituted with 1 to 4 substituent(s) selected from halogen (e.g., F, Cl, 5 Br, I), hydroxy, alkyl, alkenyl, alkynyl, cycloalkyl, acyl, carboxy, aryl, alkoxy, aralkyl, cyano, nitro, heterocyclyl, heteroaryl, -NRxRs, -CH=NOH, -(CH 2 )wC(=O)R {wherein w is an integer from 0-4 and R, is hydrogen, hydroxy, OR?, NRxR., -NHOR. or -NHOH}, C(=O)NRxR., -NHC(=0)NRxR., -SOmR., -0-C(=O)NRxR, -O-C(=0)Rx, or -0-C(=0)OR? (wherein m, R,, R, and R, are as defined earlier and R. is alkyl, cycloalkyl, aryl, 10 heteroaryl, heterocyclyl, heteroarylalkyl or heterocyclylalkyl). Unless otherwise constrained by the definition, the substituents are attached to a ring atom, i.e., carbon or heteroatom in the ring. Examples of heteroaryl groups include oxazolyl, imidazolyl, pyrrolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, tetrazolyl, thiazolyl, oxadiazolyl, benzoimidazolyl, thiadiazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, thienyl, isoxazolyl, triazinyl, 15 furanyl, benzofuranyl, indolyl, benzthiazinyl, benzthiazinonyl, benzoxazinyl, benzoxazinonyl, quinazonyl, carbazolyl phenothiazinyl, phenoxazinyl, benzothiazolyl or benzoxazolyl, and the like. The term "heterocyclyl," unless otherwise specified, refers to a non-aromatic cycloalkyl group having 5 to 10 atoms wherein I to 4 carbon atoms in a ring are replaced 20 by heteroatoms selected from 0, S(O)m (wherein m is an integer from 0-2) or N, and optionally are benzofused or fused heteroaryl having 5-6 ring members and/or optionally are substituted, wherein the substituents are selected from halogen (e.g., F, Cl, Br, I), hydroxy, alkyl, alkenyl, alkynyl, cycloalkyl, acyl, optionally substituted aryl, alkoxy, alkaryl, cyano, nitro, oxo, carboxy, optionally substituted heterocyclyl, optionally 25 substituted heterocyclylalkyl, optionally substituted heteroaryl, -O-C(=0)Rk, -0 C(=0)ORx, -C(=0)NRxR,, -SOmRv, -0-C(=0)NRxR 2 , -NHC(=0)NRxR,, -NRxR", mercapto, haloalkyl, thioalkyl, -COORJ, -COONHR), -COR),, -NHS0 2 R, or SO 2 NHRx (wherein m, R., R), and R, are as defined earlier) or guanidine. Such ring systems can be mono-, bi- or tricyclic. Carbonyl or sulfonyl group can replace carbon atom(s) of 30 heterocyclyl. Unless otherwise constrained by the definition, the substituents are attached to the ring atom, i.e., carbon or heteroatom in the ring. Also, unless otherwise constrained by the definition, the heterocyclyl ring optionally may contain one or more olefinic WO 2010/046791 PCT/IB2009/054115 10 bond(s). Examples of heterocyclyl groups include tetrahydropyranyl, oxazolidinyl, tetrahydrofuranyl, dihydrofuranyl, benzoxazinyl, benzthiazinyl, imidazolyl, benzimidazolyl, tetrazolyl, carbaxolyl, indolyl, phenoxazinyl, phenothiazinyl, dihydropyridinyl, dihydroisoxazolyl, dihydrobenzoftiryl, azabicyclohexyl, thiazolidinyl, 5 dihydroindolyl, isoindole 1,3-dione, piperidinyl, piperazinyl, 3H-imidazo[4,5-b]pyridine, isoquinolinyl, dioxolanyl, 1H-pyrrolo[2,3-b]pyridine or piperazinyl and the like. "Spiro-attached heterocyclyl" refers to heterocyclyl group attached to ring formed by R 5 and R 6 of Formula I or R5a and R6a of Formula II via one carbon atom common to both rings, i.e. ring formed by R 5 and R 6 or R 5 a and R 6 a and heterocyclyl ring. 10 "Heteroarylalkyl" refers to alkyl-heteroaryl group linked through alkyl portion, wherein the alkyl and heteroaryl are as defined earlier. "Heterocyclylalkyl" refers to alkyl-heterocyclyl group linked through alkyl portion, wherein the alkyl and heterocyclyl are as defined earlier. "Acyl" refers to -C(=0)Rz (wherein Rz is alkyl, cycloalkyl, aryl, aralkyl, 15 heteroaryl, heterocyclyl, heteroarylalkyl or heterocyclylalkyl). "Amine," unless otherwise specified, refers to -NH 2 . "Substituted amine" unless otherwise specified, refers to a group -N(R)2 wherein each Rk is independently selected from the group hydrogen provided that both Rk groups are not hydrogen (defined as "amine"), alkyl, alkenyl, alkynyl, aralkyl, cycloalkyl, aryl, heteroaryl, heterocyclyl, 20 heterocyclylalkyl, or heteroarylalkyl groups. "Thiocarbonyl" refers to -C(=S)H. Thiocarbonyl may be substituted and "substituted thiocarbonyl" refers to -C (=S) R"', wherein R"' is selected from alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, heterocyclyl, heteroarylalkyl, heterocyclylalkyl, amine or substituted amine. 25 The term "oxo" means "=0". Oxo is attached at a carbon atom unless otherwise noted. Oxo, together with the carbon atom to which it is attached forms a carbonyl group (i.e., C=0). The term "halogen" refers to fluorine, chlorine, bromine or iodine.
WO 2010/046791 PCT/IB2009/054115 11 The compounds of the present invention can be used for treatment, prevention, inhibition or suppression of CNS diseases, for example, multiple sclerosis; various pathological conditions such as diseases affecting the immune system, including AIDS, rejection of transplant, auto-immune disorders such as T-cell related diseases, for example, 5 rheumatoid arthritis; inflammatory diseases such as respiratory inflammation diseases including chronic obstructive pulmonary disease (COPD), asthma, bronchitis, allergic rhinitis, adult respiratory distress syndrome (ARDS) and other inflammatory diseases including but not limited to psoriasis, shock, atopic dermatitis, eosinophilic granuloma, allergic conjunctivitis, osteoarthritis; gastrointestinal inflammation diseases such as 10 Crohn's disease, colitis, pancreatitis as well as different types of cancers including leukaemia; especially in humans. In accordance with yet another aspect, there are provided processes for the preparation of the compounds as described herein. Detailed Description of the Invention 15 The compounds described herein may be prepared by techniques well known in the art and familiar to the average synthetic organic chemist. In addition, the compounds of present invention may be prepared by the following, for example, reaction sequences as depicted in Schemes I, II, III IV and V.
WO 2010/046791 PCT/IB2009/054115 12 Scheme I RjaOOC COORja RN H3) HO X S / Formula I (a) RNaO N
H
2 N
R
3 (ii) POX 3 H 3 C Formula III Formula III (b) R3
(CF
3
CO)
2 0
R'
3 R'3 SPh3P Cl N >- N NH R Chlorinated N R
F
3 C R 3 hydrocarbon F 3 C Formula Ill (c) solvent Formula Ill (d)
CH
2 (COORia) 2 Formula Ill (e)
R'
3 R1aOOC N R 1aO O C N NH NH R
F
3 C 3 Formula IlIl (f)
POX
3 0 X
R.
3 0 OH RiaOF N
POX
3 RiaO
F
3 N j N
R
3 C F 3 C N N R3u Formula IIl (h) Formula III (g) WO 2010/046791 PCT/IB2009/054115 13 The compounds of Formula III (b) and III (h) can be prepared by following Scheme I. Accordingly, compounds of Formula III are reacted with (a) compounds of Formula III (a) followed by the reaction with phosphorous oxy 5 halide to give compounds of Formula III (b) (wherein Ria is alkyl , X is a halogen and R 3 and R' 3 are the same as defined earlier). (b) trifluoro acetic anhydride to give compounds of Formula III (c), which are reacted with triphenylphosphine to give compounds of Formula 111(d) , which are reacted with compounds of Formula III (e) to give compounds of Formula III (f), which 10 (i) on reaction with phosphorous oxy halide give compounds of Formula III (h) (wherein Ria, X, R 3 and R' 3 are the same as defined earlier). (ii) on refluxing gives compounds of Formula III (g), which on reaction with phosphorous oxy halide give compounds of Formula III (h) (wherein Ria, X, R 3 and R' 3 are the same as defined earlier). 15 The compounds of Formula III (b) can be prepared by the reaction of compounds of Formula III with compounds of Formula III (a) on heating followed by the reaction with phosphorous oxy halide. The reaction of compounds of Formula III with trifluoro acetic anhydride to give compounds of Formula III (c) can be carried out in one or more solvents, for example, 20 nitriles, for example, acetonitrile; ketones, for example, acetone; ethers, for example, diethyl ether or tetrahydrofuran; amides, for example, dimethylformamide or dimethylacetamide; sulfoxides, for example, dimethylsulfoxide; hydrocarbons, for example, hexane or toluene; halogenated hydrocarbons, for example, dichloromethane, dichloroethane, chloroform or carbon tetrachloride; or mixture(s) thereof. 25 The reaction of compounds of Formula III (c) with triphenylphosphine to give compounds of Formula 111(d) can be carried out in one or more chlorinated hydrocarbon solvents, for example, dichloromethane, dichloroethane, chloroform or carbon tetrachloride; or mixture(s) thereof.
WO 2010/046791 PCT/IB2009/054115 14 The reaction of compounds of Formula III(d) with compounds of Formula III (e) to give compounds of Formula III (f) can be carried out in the presence of one or more bases, for example, triethylamine, pyridine, potassium tert- butoxide, sodium hydride or mixture(s) thereof. 5 The reaction of compounds of Formula III(d) with compounds of Formula III (e) to give compounds of Formula III (f) can be carried out in one or more solvents, for example, nitriles, for example, acetonitrile; ethers, for example, diethyl ether or tetrahydrofuran; amides, for example, dimethylformamide or dimethylacetamide; sulfoxides, for example, dimethylsulfoxide; hydrocarbons, for example, hexane or toluene or mixture(s) thereof. 10 The compounds of Formula III (f) on refluxing in one or more solvents, for example, nitriles, for example, acetonitrile; ketones, for example, acetone; alcohols, for example, methanol, ethanol, propanol or butanol; ethers, for example, tetrahydrofuran; amides, for example, dimethylformamide or dimethylacetamide; sulfoxides, for example, dimethylsulfoxide; hydrocarbons, for example toluene; dipolar aprotic solvents, for 15 example, N-methylpyrrolidone; or mixture(s) thereof can give compounds of Formula III (g). The compounds of Formula III (g) on heating with phosphorous oxy halide can give compounds of Formula III (h). Alternatively, the compounds of Formula III (f) on heating with phosphorous oxy 20 halide can give compounds of Formula III (h).
WO 2010/046791 PCT/IB2009/054115 15 Scheme II O X R03 0
NR
1
R
2 R'3 RiaO N
R
1
NHR
2 , RiaO N / N N Formula V R N N N R4 NR4 N
R
3 R 3 Formula IV Formula VI O NR 1
R
2 R'3 H 0 NR 1
R
2
R'
3 Rla\ O N R1a-N-R a .HCI HO R10O N N Formula VIII NM N R4 N R N
R
3 R 3 Formula IX Formula VII O NR 1
R
2 R'3 NR1R2 R'3 H N - HO-N R4 N NR4 N
R
3 Formula XI R3 Formula X R5 Formula XII 2 ~R6 1 R5 0--N
NR
1
R
2 R'3 R6 N R4 N R4 I
R
3 Formula I WO 2010/046791 PCT/IB2009/054115 16 The compounds of Formula I can be prepared by following Scheme II. Accordingly, compounds of Formula IV (represents Formula III (b), when R 4 is -CH 3 and Formula III (h) when R 4 is -CF 3 ) are reacted with compounds of Formula V to give 5 compounds of Formula VI, which on ester hydrolysis give compounds of Formula VII, which are reacted with compounds of Formula VIII (wherein Ria is the same as defined earlier) to give compounds of Formula IX, which on reduction give compounds of Formula X, which on reaction with hydroxylamine hydrochloride give compounds of Formula XI, which are finally reacted with compounds of Formula XII to give compounds 10 of Formula I (wherein R 1 , R 2 , R 3 , R' 3 , R 4 , R 5 and R 6 are the same as defined earlier). The reaction of compounds of Formula IV with compounds of Formula V to give compounds of Formula VI can be carried out in one or more solvents, for example, nitriles, for example, acetonitrile; ketones, for example, acetone; alcohols, for example, methanol, ethanol, propanol or butanol; ethers, for example, diethyl ether or 15 tetrahydrofuran; amides, for example, dimethylformamide or dimethylacetamide; sulfoxides, for example, dimethylsulfoxide; hydrocarbons, for example, hexane or toluene; dipolar aprotic solvents, for example, N-methylpyrrolidone; or mixture(s) thereof. The reaction of compounds of Formula IV with compounds of Formula V can be carried out in the optional presence of one or more bases, for example, triethylamine, 20 pyridine, potassium tert- butoxide, sodium hydride or mixture(s) thereof. The ester hydrolysis of compounds of Formula VI to give compounds of Formula VII can be carried out in one or more solvents, for example, alcohols, for example, methanol, ethanol, propanol or butanol; or an alcohol and water mixture. The ester hydrolysis of compounds of Formula VI to give compounds of Formula 25 VII can be carried out in the presence of one or more inorganic bases, for example, alkali metal hydroxides, for example, potassium hydroxide, sodium hydroxide, lithium hydroxide or mixture(s) thereof. The reaction of compounds of Formula VII with compounds of Formula VIII to give compounds of Formula IX can be carried out in the presence of one or more 30 activating reagents, for example, hydroxybenzotriazole, acetone oxime, 2-hydroxypyridine WO 2010/046791 PCT/IB2009/054115 17 or mixture(s) thereof, and one or more coupling reagents, for example, 1 -ethyl-3-(3 dimethylaminopropyl) carbodiimide hydrochloride, 1,3-dicyclohexyl carbodiimide or mixture(s) thereof in one or more solvents, for example, ethers, for example, diethyl ether or tetrahydrofuran; amides, for example, dimethylformamide or dimethylacetamide; 5 sulfoxides, for example, dimethylsulfoxide; or mixture(s) thereof. The reaction of compounds of Formula VII with compounds of Formula VIII can be carried out in the presence of one or more bases, for example, N-methylmorpholine; N ethyldiisopropylamine; 4-dialkylaminopyridines, for example, 4-dimethylaminopyridine; or mixture(s) thereof. 10 The reduction of compounds of Formula IX to give compounds of Formula X can be carried out in one or more solvents, for example, ethers, for example, diethyl ether or tetrahydrofuran; amides, for example, dimethylformamide or dimethylacetamide; sulfoxides, for example, dimethylsulfoxide; hydrocarbons, for example, hexane or toluene; or mixture(s) thereof. 15 The reduction of compounds of Formula IX to give compounds of Formula X can be carried out in the presence of one or more reducing agents, for example, sodium bis (2 methoxyethoxy)aluminum hydride (vitride), lithium aluminium hydride or mixture(s) thereof. The reaction of compounds of Formula X with hydroxylamine hydrochloride to 20 give compounds of Formula XI can be carried out in the presence of sodium acetate in one or more solvents, for example, alcohols, for example, methanol, ethanol, propanol, butanol or mixture(s) thereof. The reaction of compounds of Formula XI with compounds of Formula XII to give compounds of Formula I can be carried out in the presence of one or more 25 halogenating agents, for example, sodium hypochlorite, N-chlorosuccinimide, N-bromosuccinimide or mixture(s) thereof, in one or more solvents, for example, nitriles, for example, acetonitrile; ketones, for example, acetone; alcohols, for example, methanol, ethanol, propanol or butanol; ethers, for example, diethyl ether or tetrahydrofuran; amides, for example, dimethylformamide or dimethylacetamide; sulfoxides, for example, 30 dimethylsulfoxide; hydrocarbons, for example, hexane or toluene; halogenated WO 2010/046791 PCT/IB2009/054115 18 hydrocarbons, for example, dichloromethane, dichloroethane or chloroform; or mixture(s) thereof. The reaction of compounds of Formula XI with compounds of Formula XII can be carried out in the optional presence of one or more bases, for example, triethyl amine, 5 trimethyl amine or mixture(s) thereof. Scheme III R'3 NR1R2 N.-O R.3 NR1R2 N-O I COORla 3 COOH N N 4 N N R4 R3 R3 Formula XIII Formula XIV RI3
NR
1
R
2 N---O I ~ CH2 X
R'
3
NR
1
R
2
N-
0 2 \N CH2OHR N Formula XVI N N 4RiaX R 1a R'sNR1 R2 N-O Formula XV
CH
2 ORla N 4 N N R 4 R3 Formula XVII The compounds of Formulae XIV, XV, XVI and XVII can be prepared by 10 following Scheme III. Accordingly, compounds of Formula XIII (wherein Ria is alkyl), (i) on ester hydrolysis give compounds of Formula XIV (wherein R 1 , R 2 , R 3 ,
R'
3 and R4 are the same as defined earlier).
WO 2010/046791 PCT/IB2009/054115 19 (ii) on reduction give compounds of Formula XV, (a) which are halogenated to give compounds of Formula XVI (wherein
R
1 , R 2 , R 3 , R' 3 , R 4 are the same as defined earlier and X is halogen). (b) which are reacted with compounds of Formula RiaX (wherein X is 5 halogen) to give compounds of Formula XVII (wherein R 1 , R 2 , R 3 ,
R'
3 , R 4 and Ria are the same as defined earlier). The ester hydrolysis of compounds of Formula XIII to give compounds of Formula XIV can be carried out in one or more solvents, for example, water; ethers, for example, diethyl ether or tetrahydrofuran; alcohols, for example, methanol, ethanol, propanol or 10 butanol; or mixture(s) thereof. The ester hydrolysis of compounds of Formula XIII can be carried out in the presence of one or more inorganic bases, for example, alkali metal hydroxides, for example, potassium hydroxide, sodium hydroxide, lithium hydroxide or mixture(s) thereof. 15 The reduction of compounds of Formula XIII to give compounds of Formula XV can be carried out in the presence of one or more reducing agents, for example, sodium borohydride, lithium boro hydride, lithium aluminium hydride or hydrogen in the presence of palladium/carbon or mixture(s) thereof in one or more solvents, for example, ethers, for example, diethyl ether, dioxane or tetrahydrofuran; alcohols, for example, methanol, 20 ethanol, propanol or butanol; or mixture(s) thereof. The halogenation of compounds of Formula XV to give compounds of Formula XVI can be carried out with one or more halogenating agents, for example, diethylamino sulphurtrifluoride, thionyl chloride, phosphoryl chloride, thionyl bromide, phosphoryl bromide or mixture(s) thereof in one or more solvents, for example, nitriles, for example, 25 acetonitrile; ketones, for example, acetone; alcohols, for example, methanol, ethanol, propanol or butanol; ethers, for example, diethyl ether or tetrahydrofuran; amides, for example, dimethylformamide or dimethylacetamide; sulfoxides, for example, dimethylsulfoxide; hydrocarbons, for example, hexane or toluene; halogenated hydrocarbons, for example, dichloromethane, dichloroethane or chloroform; or mixture(s) 30 thereof.
WO 2010/046791 PCT/IB2009/054115 20 The reaction of compounds of Formula XV with compounds of Formula RiaX to give compounds of Formula XVII can be carried out in one or more solvents, for example, amides, for example, dimethylformamide or dimethylacetamide; sulfoxides, for example, dimethylsulfoxide; or mixture(s) thereof. 5 The reaction of compounds of Formula XV with compounds of Formula RiaX can be carried out in presence of one or more inorganic bases, for example, alkali metal hydrides, for example, potassium hydride or sodium hydride, alkali metal carbonates, for example, potassium carbonate, or mixture(s) thereof. Scheme IV R,3 NR 1
R
2
N--
0 3~ CN N N N R4 Formula XVIll R' NRjR2 N.--O N, 3 / N 10/ N-N N H NN R4 R3 Formula XIX 10 The compounds of Formula XIX can be prepared by following Scheme IV. Accordingly, compounds of Formula XVIII are cyclized to give compounds of Formula XIX (wherein R 1 , R 2 , R 3 , R' 3 and R 4 are the same as defined earlier).
WO 2010/046791 PCT/IB2009/054115 21 The cyclization of compounds of Formula XVIII to give compounds of Formula XIX can be carried out in the presence of sodium azide and triethyl amine hydrochloride in one or more solvents, for example, amides, for example, dimethylformamide or dimethylacetamide; sulfoxides, for example, dimethylsulfoxide; hydrocarbons, for 5 example, hexane or toluene; or mixture(s) thereof. Scheme V R'3 NRjR2 N..--O O NO N N R4 R3 Formula XX /I R'3 NR1 R2
N...
0 N N N R4
R
3 Formula XXI The compounds of Formula XXI can be prepared by following Scheme V. Accordingly, hydrolysis of compounds of Formula XX gives compounds of Formula XXI (wherein R 1 , R 2 , R 3 , R' 3 and R 4 are the same as defined earlier). 10 The hydrolysis of compounds of Formula XX to give compounds of Formula XXI can be carried out in the presence of one or more acids, for example trifluoroacetic acid, p toluene sulphonic acid or mixture(s) thereof in one or more solvents, for example, halogenated hydrocarbons, for example, dichloromethane, dichloroethane or chloroform; water or mixture(s) thereof.
WO 2010/046791 PCT/IB2009/054115 22 Compounds of Formula II can also be prepared by following the Schemes I, II, III IV and V. In the above schemes, where the specific solvents, bases, reducing agents, activating reagents, coupling reagents, acids, halogenating agents, etc., are mentioned, it is 5 to be understood that other solvents, bases, reducing agents, activating reagents, coupling reagents, acids, halogenating agents, etc., known to those skilled in the art may be used. Similarly, reaction parameters such as the reaction temperature and duration may be adjusted according to the desired needs. An illustrative list of compounds of the invention includes these listed below: 10 - N-cyclohexyl-1-ethyl-6-methyl-5-[(cis*)-2-(1H-tetrazol-5-yl)-5-oxa-6 azaspiro[3.4]oct-6-en-7-yl]-1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 1), - N-cyclohexyl-1 -ethyl-5-[(cis*)-8-(fluoromethyl)- 1-oxa-2-azaspiro[4.5]dec-2-en-3 15 yl]-6-methyl-1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 2), - (Cis*)-7-[4-(cyclohexylamino)-1 -ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl] 5-oxa-6-azaspiro[3.4]oct-6-ene-2-carbonitrile (Compound No. 3), - {(Cis *)-3- [4-(cyclohexylamino)- 1 -ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridin-5 yl]-1 -oxa-2-azaspiro [4.5]dec-2-en-8-yl}methanol (Compound No. 4), 20 - (Trans*)-3-[4-(cyclohexylamino)- 1-ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridin-5 yl]-1 -oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylic acid (Compound No. 5), - (Cis*)-3-[4-(cyclohexylamino)-1 -ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl] 1-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylic acid (Compound No. 6), - N-cyclohexyl-1-ethyl-6-methyl-5-(1-oxa-2-azaspiro[4.4]non-2-en-3-yl)-1H 25 pyrazolo[3,4-b]pyridin-4-amine (Compound No. 7), - 1-Ethyl-6-methyl-5-(1-oxa-2-azaspiro[4.4]non-2-en-3-yl)-N-(tetrahydro-2H-pyran 4-yl)-1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 8), - 1-Ethyl-6-methyl-5-(1-oxa-2-azaspiro[4.5]dec-2-en-3-yl)-N-(tetrahydro-2H pyran-4-yl)-1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 9), 30 - N-cyclohexyl-1-ethyl-6-methyl-5-(1-oxa-2-azaspiro[4.5]dec-2-en-3-yl)-1H pyrazolo [3,4-b]pyridin-4-amine (Compound No. 10), - 1-Ethyl-6-methyl-5-(5-oxa-6-azaspiro[3.4]oct-6-en-7-yl)-N-(tetrahydro-2H-pyran 4-yl)-1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 11), - Ethyl (cis*)-3-[4-(cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridin 35 5-yl]-1-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 12), - Ethyl (trans*)-3-[4-(cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo[3,4 b]pyridin-5-yl]- 1 -oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 13), WO 2010/046791 PCT/IB2009/054115 23 - {3-[4-(Cyclohexylamino)- I -ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl]-4,5 dihydroisoxazole-5,5 -diyl} dimethanol (Compound No. 14), - N-Cyclohexyl- 1 -ethyl-6-methyl-5-(5-oxa-6-azaspiro[3.4]oct-6-en-7-yl)-1H pyrazolo[3,4-b]pyridin-4-amine (Compound No. 15), 5 - 5- {(Cis*)-2-[(benzyloxy)methy1]-5-oxa-6-azaspiro[3.4]oct-6-en-7-yl} -N cyclohexyl- 1-ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 16), - 5- {(Trans *)-2-[(benzyloxy)methyl]-5-oxa-6-azaspiro[3.4]oct-6-en-7-yl} -N cyclohexyl- 1 -ethyl-6-methyl- 1 H-pyrazolo [3,4-b]pyridin-4-amine (Compound No. 10 17), - {(Trans*)-3 -[4-(cyclohexylamino)- I -ethyl-6-methyl- 1H-pyrazolo [3,4-b]pyridin-5 yl]-1 -oxa-2-azaspiro [4.5]dec-2-en-8-yl}methanol (Compound No. 18), - N-cyclohexyl- 1 -ethyl-5- [(cis*)-8-(methoxymethyl)- 1 -oxa-2-azaspiro[4.5]dec-2-en 3 -yl] -6-methyl-1 H-pyrazolo [3,4-b]pyridin-4-amine (Compound No. 19), 15 - N-cyclohexyl-5- [(cis*)-8-(ethoxymethyl)- 1 -oxa-2-azaspiro[4.5]dec-2-en-3 -yl] -1 ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 20), - Ethyl (trans*)-3-[1-ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H pyrazolo[3,4-b]pyridin-5-yl]-1-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 21), 20 - Ethyl (cis*)-3-[1-ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H pyrazolo[3,4-b]pyridin-5-yl]-1-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 22), - 5-{2-[(Benzyloxy)methyl]-5-oxa-6-azaspiro[3.4]oct-6-en-7-yl}-1 -ethyl-6-methyl N-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 25 23), - (Trans*)-3-[1 -ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)- 1H pyrazolo[3,4-b]pyridin-5-yl]-1-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylic acid (Compound No. 24), - (Cis*)- 3-[1-ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4 30 b]pyridin-5-yl]-1 -oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylic acid (Compound No. 25), - N-cyclohexyl-1 -ethyl-6-methyl-5-(1,9,12-trioxa-2-azadispiro[4.2.4.2]tetradec-2 en-3-yl)-1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 26), - 3-[4-(Cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl]-1-oxa 35 2-azaspiro[4.5]dec-2-en-8-one (Compound No. 27), - N-cyclohexyl-1-ethyl-5-(1-oxa-2-azaspiro[4.5]dec-2-en-3-yl)-6-(trifluoromethyl) 1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 28), - N-cyclohexyl-1-ethyl-5-(1-oxa-2-azaspiro[4.4]non-2-en-3-yl)-6-(trifluoromethyl) 1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 29), 40 - N-cyclohexyl-1-ethyl-5-(5-oxa-6-azaspiro[3.4]oct-6-en-7-yl)-6-(trifluoromethyl) 1H-pyrazolo[3 ,4-b]pyridin-4-amine (Compound No. 30), WO 2010/046791 PCT/IB2009/054115 24 - {3-[4-(Cyclohexylamino)-1 -ethyl-6-(trifluoromethyl)- 1H-pyrazolo[3,4-b]pyridin 5-yl]-4,5-dihydro- 1,2-oxazole-5,5-diyl}dimethanol (Compound No. 31), - (Trans*)- 3-[4-(cyclohexylamino)-I-ethyl-6-(trifluoromethyl)-1H-pyrazolo[3,4 b]pyridin-5- yl]-1-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylic acid 5 (Compound No. 32), - (Cis*)- 3-[4-(cyclohexylamino)-1-ethyl-6-(trifluoromethyl)-1H-pyrazolo[3,4 b]pyridin-5-yl]-1 -oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylic acid (Compound No. 33), - 1-Ethyl-5-(5-oxa-6-azaspiro[3.4]oct-6-en-7-yl)-N-(tetrahydro-2H-pyran-4-yl)-6 10 (trifluoromethyl)-1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 34), - 1-Ethyl-5-(1-oxa-2-azaspiro[4.4]non-2-en-3-yl)-N-(tetrahydro-2H-pyran-4-yl)-6 (trifluoromethyl)- 1 H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 35), - 1-Ethyl-5 -(1 -oxa-2-azaspiro [4. 5]dec-2-en-3 -yl)-N-(tetrahydro-2H-pyran-4-yl)-6 (trifluoromethyl)-1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 36), 15 - 1 -Ethyl-N-(tetrahydro-2H-pyran-4-yl)-6-(trifluoromethyl)-5 -(1,9,12-trioxa-2 azadispiro[4.2.4.2]tetradec-2-en-3 -yl)- 1H-pyrazolo [3,4-b]pyridin-4-amine (Compound No. 37), - Ethyl (trans*)- 3-[4-(cyclohexylamino)-1-ethyl-6-(trifluoromethyl)-1H pyrazolo[3,4-b]pyridin-5-yl]-1-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate 20 (Compound No. 38), - Ethyl (cis*)- 3-[4-(cyclohexylamino)-1-ethyl-6-(trifluoromethyl)-1H-pyrazolo[3,4 b]pyridin-5-yl]- 1 -oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 39), - tert-butyl 3-[1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-6-(trifluoromethyl)-1H pyrazolo[3,4-b]pyridin-5-yl]-l-oxa-2,8-diazaspiro[4.5]dec-2-ene-8-carboxylate 25 (Compound No. 40), or their pharmaceutically acceptable salts, pharmaceutically acceptable solvates, stereoisomers, tautomers, racemates, regioisomers, geometric isomers, prodrugs, metabolites, polymorphs or N-oxides. wherein * represent tentative regiochemical assignments. 30 The term "pharmaceutically acceptable" means approved by regulatory agency of the federal or a state government or listed in the U.S. Pharmacopoeia or other generally recognized pharmacopoeia for use in mammals, and more particularly in humans. The term "pharmaceutically acceptable salts" refers to the derivates of compounds that can be modified by forming their corresponding acid or base salts. Examples of 35 pharmaceutically acceptable salts include, but are not limited to, mineral or organic acids salts of basic residues (such as amines), or alkali or organic salts of acidic residues (such as carboxylic acids), and the like.
WO 2010/046791 PCT/IB2009/054115 25 The term "pharmaceutically acceptable solvates" refers to solvates with water such as hydrates, hemihydrate or sesquihydrate, or pharmaceutically acceptable solvents, for example solvates with common organic solvents as ethanol and the like. Such solvates are also encompassed within the scope of the disclosure. 5 The present invention also includes within its scope prodrugs of these agents. In general, such prodrugs will be functional derivatives of these compounds, which are readily convertible in vivo into the required compound. Conventional procedures for the selection and preparation of prodrugs are known. The disclosed compounds may get metabolized in vivo and these metabolites are 10 also encompassed within the scope of this invention. The term "polymorphs" includes all crystalline form as well as amorphous form for compounds described herein and are included in the present invention. All stereoisomers of the compounds of the invention are contemplated, either in admixture or in pure form. The compounds of the present invention can have asymmetric 15 centers at any of the carbon atoms including all the substituents. Consequently, compounds of present invention can exist in enantiomeric or diastereomeric forms or in mixture thereof. The processes for the preparation can utilize racemates, enantiomers, or diastereomers as starting materials. When diastereomeric or enantiomeric products are prepared, they can be separated by conventional methods, for example, chromatographic 20 or fractional crystallization. The term "tautomer" includes one of two or more structural isomers that exist in equilibrium and are readily converted from one isomeric form to another. Certain compounds of the invention may furthermore be present in tautomeric forms. The term "regioisomers" refers to compounds, which have the same molecular 25 formula but differ in the connectivity of the atoms. The term, "geometric isomers", refers to compounds, having the same molecular formula as another but a different geometric configuration, as when atoms or groups of atoms are attached in different spatial arrangements on either side of a double bond or other rigid bond.
WO 2010/046791 PCT/IB2009/054115 26 The term "racemate" includes a mixture of equal amounts of left- and right-handed stereoisomers of chiral molecules. In another aspect, the present invention includes pharmaceutical compositions comprising, as an active ingredient, at least one of the disclosed compound or a 5 pharmaceutically acceptable salt, a pharmaceutically acceptable solvate, stereoisomer, tautomer, racemate, regioisomer, geometric isomer, prodrug, metabolite, polymorph or N oxide, along with a pharmaceutically acceptable carrier, excipient or diluent. Compounds disclosed herein may be administered to mammal for treatment by any route, which effectively transports the active compound to the appropriate or desired site of action such 10 as oral, nasal, pulmonary, transdermal or parenteral (rectal, subcutaneous, intravenous, intraurethral, intramuscular, intranasal). The pharmaceutical composition of the present invention comprises a pharmaceutically effective amount of a compound of the present invention formulated along with one or more pharmaceutically acceptable carriers, excipients or diluents. The choice of pharmaceutical carrier, excipient or diluent can be 15 made with regard to the intended route of administration and standard pharmaceutical practice. Where desired, the compounds of the invention and/or their pharmaceutically acceptable salts, pharmaceutically acceptable solvates, stereoisomers, tautomers, racemates, regioisomers, geometric isomers, prodrugs, metabolites, polymorphs or N 20 oxides may be advantageously used in combination with one or more other compounds. Examples of other compounds, which may be used in combination with compounds of this invention and/ or their pharmaceutically acceptable salts, pharmaceutically acceptable solvates, stereoisomers, tautomers, racemates, regioisomers, geometric isomers, prodrugs, metabolites, polymorphs or N-oxides include B2- agonists, corticosteroids, leukotriene 25 antagonists, 5-lipoxygenase inhibitors, chemokine inhibitors, p38 kinase inhibitors, anticholinergics, antiallergics, PAF (platelet activating factor) antagonists, EGFR (epidermal growth factor receptor) kinase inhibitors, muscarinic receptor antagonists or combination(s) thereof. The one or more B2- agonist as described herein may be chosen from those 30 described in the art. The B2-agonists may include one or more compounds described in WO 2010/046791 PCT/IB2009/054115 27 U.S. Patent Nos. 3,705,233; 3,644,353; 3,642,896; 3,700,681; 4,579,985; 3,994,974; 3,937,838; 4,419,364; 5,126,375; 5,243,076; 4,992,474; and 4,011,258. B2-agonists include, for example, one or more of albuterol, salbutamol, biltolterol, pirbuterol, levosalbutamol, tulobuterol, terbutaline, bambuterol, metaproterenol, fenoterol, 5 salmeterol, carmoterol, arformoterol, formoterol, and their pharmaceutically acceptable salts or solvates thereof. Corticosteroids as described herein may be chosen from those described in the art. Corticosteroids may include one or more compounds described in U.S. Patent Nos. 3,312,590; 3,983,233; 3,929,768; 3,721,687; 3,436,389; 3,506,694; 3,639,434; 3,992,534; 10 3,928,326; 3,980,778; 3,780,177; 3,652,554; 3,947,478; 4,076,708; 4,124,707; 4,158,055; 4,298,604; 4,335,121; 4,081,541; 4,226,862; 4,290,962; 4,587,236; 4,472,392; 4,472,393; 4,242,334; 4,014,909; 4,098,803; 4,619,921; 5,482,934; 5,837,699; 5,889,015; 5,278,156; 5,015,746; 5,976,573; 6,337,324; 6,057,307; 6,723,713; 6,127,353; and 6,180,781. Corticosteroids may include, for example, one or more of alclometasone, 15 ameinonide, amelometasone, beclometasone, betamethasone, budesonide, ciclesonide, clobetasol, cloticasone, cyclomethasone, deflazacort, deprodone, dexbudesonide, diflorasone, difluprednate, fluticasone, flunisolide, halometasone, halopredone, hydrocortisone, methylprednisolone, mometasone, prednicarbate, prednisolone, rimexolone, tixocortol, triamcinolone, ulobetasol, rofleponide, GW 215864, KSR 592, ST 20 126, dexamethasone and pharmaceutically acceptable salts, solvates thereof. Preferred corticosteroids include, for example, flunisolide, beclomethasone, triamcinolone, budesonide, fluticasone, mometasone, ciclesonide, and dexamethasone. Examples of possible salts or derivatives include: sodium salts, sulfobenzoates, phosphates, isonicotinates, acetates, propionates, dihydrogen phosphates, palmitates, pivalates, or 25 furoates. In some cases, the corticosteroids may also occur in the form of their hydrates. The leukotriene antagonist can be selected from compounds, for example, those described in U.S. Patent Nos. 5,565,473; 5,583,152; 4,859,692 or 4,780,469. Examples of leukotriene antagonist include, but are not limited to, montelukast, zafirlukast, pranlukast and pharmaceutically acceptable salts thereof.
WO 2010/046791 PCT/IB2009/054115 28 5-Lipoxygenase inhibitors can be selected from, for example, compounds in U.S. Patent Nos. 4,826,868, or 4,873,259, or European Patent Nos. 0 419 049, 0 542 356 or 0 542 355. Examples may include, but are not limited to, atreleuton, zyflo (zileuton), ABT 761, fenleuton or tepoxalin. 5 Examples of the chemokine inhibitors include, but are not limited to, endogenous ligands of chemokine receptors or derivatives thereof, and non-peptidic low molecular compounds or antibodies for chemokine receptors. Examples of the endogenous ligands of chemokine receptors include, but are not limited to, MIP-la, MIP-1 , Rantes, SDF-la, SDF-Is, MCP-1, MCP-2, MCP4, Eotaxin, 10 and MDC. Examples of the derivatives of endogenous ligands include, but are not limited to, AOP-RANTES, Met-SDF-la, and Met-SDF-1 P. Examples of the antibodies for chemokine receptors include, but are not limited to, Pro-140. Examples of the non-peptidic low molecular compounds include, but are not 15 limited to, antagonists and agonists for CCR1, CCR2, CCR3, CCR4, CCR5, CXCR1, CXCR2, CXCR3 and CXCR4 receptors. p38 kinase inhibitors include compounds disclosed in WO 2006/021848, WO 2006/016237, WO 2006/056863, WO 2006/117657 and WO 2006/082492. Any reference to the above mentioned p38 kinase inhibitors also include any pharmacologically 20 acceptable salts thereof which may exist. Anticholinergics include, for example, tiotropium salts, ipratropium salts, oxitropium salts, salts of the compounds known from WO 02/32899: tropenol N-methyl 2,2-diphenylpropionate, scopine N-methyl-2,2-diphenylpropionate, scopine N-methyl-2 fluoro-2,2-diphenylacetate and tropenol N-methyl-2-fluoro-2,2-diphenylacetate; as well as 25 salts of the compounds known from WO 02/32898: tropenol N-methyl-3,3',4,4' tetrafluorobenzilate, scopine N-methyl-3,3',4,4'-tetrafluorobenzilate, scopine N-methyl 4,4'-dichlorobenzilate, scopine N-methyl-4,4'-difluorobenzilate, tropenol N-methyl-3,3' difluorobenzilate, scopine N-methyl-3,3'-difluorobenzilate, and tropenol N-ethyl-4,4' difluorobenzilate, optionally in the form of their hydrates and solvates. By salts are meant 30 those compounds which contain, in addition to the above mentioned cations, as counter- WO 2010/046791 PCT/IB2009/054115 29 ion, an anion with a single negative charge selected from among the chloride, bromide, and methanesulfonate. Preferred anticholinergics include, for example, tiotropium bromide, ipratropium bromide, oxitropium bromide, tropenol 2,2-diphenylpropionate methobromide, scopine 5 2,2-diphenylpropionate methobromide, scopine 2-fluoro-2,2-diphenylacetate methobromide, tropenol 2-fluoro-2,2-diphenylacetate methobromide, tropenol 3,3',4,4' tetrafluorobenzilate methobromide, scopine 3,3',4,4'-tetrafluorobenzilate methobromide, scopine 4,4'-dichlorobenzilate methobromide, scopine 4,4'-difluorobenzilate methobromide, tropenol 3,3'-difluorobenzilate methobromide, scopine 3,3' 10 difluorobenzilate methobromide, and tropenol 4,4'-difluorobenzilate ethylbromide. Antiallergics include, for example, epinastine, cetirizine, azelastine, fexofenadine, levocabastine, loratadine, mizolastine, ketotifene, emedastine, dimetindene, clemastine, bamipine, hexachloropheniramine, pheniramine, doxylamine, chlorophenoxamine, dimenhydrinate, diphenhydramine, promethazine, ebastine, desloratadine, and meclizine. 15 Preferred antiallergic agents include, for example, epinastine, cetirizine, azelastine, fexofenadine, levocabastine, loratadine, ebastine, desloratadine, and mizolastine. Any reference to the above-mentioned antiallergic agents also includes any pharmacologically acceptable salts thereof, which may exist. PAF antagonists include, for example, 4-(2-chlorophenyl)-9-methyl-2-[3-(4 20 morpholinyl)-3-propanon-1-yl]-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine and 6-(2-chlorophenyl)-8,9-dihydro-1-methyl-8-[(4-morpholinyl)carbonyl]-4H,7H cyclopenta[4.5]thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine. EGFR kinase inhibitors include, for example, 4-[(3-chloro-4-fluorophenyl)amino] 7-(2-f{4-[(S)-(2-oxotetrahydrofuran-5-yl)carbonyl]piperazin-1-yl}-ethoxy)-6 25 [(vinylcarbonyl)amino]quinazoline, 4-[(3-chloro4-fluorophenyl)amino]-7-[4-((S)-6 methyl-2- oxomorpholin-4-yl)butyloxy]-6-[(vinylcarbonyl)amino]quinazoline, 4-[(3 chloro4-fluorophenyl) amino]-7-[4-((R)-6-methyl-2-oxomorpholin-4-yl)butyloxy] -6 [(vinylcarbonyl)amino]quinazoline, 4-[(3-chloro-4-fluorophenyl)amino]-7-[2-((S)-6 methyl-2-oxomorpholin-4-yl)ethoxy]-6-[(vinylcarbonyl)amino]quinazoline, 4-[(3-chloro 30 4-fluorophenyl)amino]-6-[(4-{N-[2-(ethoxycarbonyl)ethyl]-N-[(ethoxycarbonyl)methyl] amino } -1 -oxo-2-buten- 1 -yl)amino]-7-cyclopropylmethoxyquinazoline, 4-[(R)-(1- WO 2010/046791 PCT/IB2009/054115 30 phenylethyl)amino]-6-{[4-(morpholin-4-yl)- 1 -oxo-2-buten-1 -yl]amino} -7-cyclopropyl methoxyquinazoline, and 4-[(3-chloro-4-fluorophenyl)amino]-6-[3-(morpholin-4 yl)propyloxy]-7-methoxyquinazoline. Any reference to the above-mentioned EGFR kinase inhibitors also includes any pharmacologically acceptable salts thereof which may exist. 5 Muscarinic receptor antagonists include substances that directly or indirectly block activation of muscarinic cholinergic receptors. Examples include, but are not limited to, quaternary amines (e.g., methantheline, ipratropium, propantheline), tertiary amines (e.g., dicyclomine, scopolamine) and tricyclic amines (e.g., telenzepine). Other muscarinic receptor antagonists include benztropine, hexahydro-sila-difenidol hydrochloride (HHSID 10 hydrochloride), (+/-)-3-quinuclidinyl xanthene-9-carboxylate hemioxalate (QNX hemioxalate), telenzepine dihydrochloride, tolterodine, oxybutynin and atropine. Examples set forth below demonstrate the synthetic procedures for the preparation of the representative compounds. The examples are provided to illustrate particular aspect of the disclosure and do not constrain the scope of the present invention. 15 Experimental Details Example 1: Preparation of tetrahydro-2H-pyran-4-amine hydrochloride This compound was synthesized according to the procedure reported in Tetrahedron letters, 42, 4257-4259, (2001). Yield: 79.20% 20 m/z: (M*+1) 101.81 Example 2: Preparation of 1-ethyl-1H-pyrazol-5-amine Hydrazine hydrate (98.7 gm, 1.97 moles) was added drop wise to a solution of acrylonitrile (100 gm, 1.88 moles) in tetrahydrofuran (350 ml) at 0-5 0 C. The reaction mixture was stirred at room temperature for about 3 hrs and acetaldehyde (86.9 gm, 1.9 25 moles) was added drop wise followed by stirring at room temperature for about 3 hrs. The solvent was removed at reduced pressure to give yellow oil, which was dissolved in n butanol (100 ml) and further, n-butanol (250 ml) containing potassium t-butoxide (221 gm, 1.9 moles) was added. The resulting mixture was gradually heated from room temperature to 120 0 C and heating was continued for about 3 hrs. The reaction mixture was 30 cooled to room temperature and water (500 ml) was added. Extraction was done with ethyl WO 2010/046791 PCT/IB2009/054115 31 acetate (3x 500 ml). The organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The crude compound was purified by column chromatography using silica gel (100-200 mesh) saturated with triethyl amine. Elution was done by using 20% ethyl acetate in hexane. 5 Yield: 66.0 gm (15%) m/z: (M*+1) 111.98 Example 3: Preparation of 2-(1-ethoxy-ethylidene)-malonic acid diethyl ester This compound was prepared according to the procedure reported in Journal of Medicinal Chemistry, 49, 21, 6351-6363, (2006). 10 Yield: 59.6% m/z: (M*+1) 231.14 Example 4: Preparation of ethyl 4-chloro- 1 -ethyl-6-methyl- 1 H-pyrazolo [3,4-bl pyridine 5-carboxylate 15 A mixture of 1-ethyl-1H-pyrazol-5-amine (16 gm, 0.144 moles) (example 2) and 2 (1 -ethoxy-ethylidene)-malonic acid diethyl ester (29 gm, 0.12 moles) (example 3) was stirred at 120 0 C for about 2 hrs. When the reaction was complete on TLC, crude reaction mixture was concentrated in vacuo to remove ethanol, which was formed as byproduct. Crude residue was taken in phosphorous oxychloride (50 ml) and heated at 115 0 C for 20 about 12-13 hrs. The reaction mixture was poured into ice-cooled water with continuous stirring. Solid which precipitated out was filtered and dried under vacuum to afford title compound as creamy white solid. Yield: 12 gin (57.17%) m/z: (M*+1) 268.28 25 Example 4 (a): Preparation of N-(1-ethyl- 1H-pyrazol-5-yl)-2,2,2-trifluoroacetamide A solution of trifluoro acetic anhydride (10.40 gm, 0.0495 moles) was added dropwise to a solution of 1-ethyl-1H-pyrazol-5-amine (6.0 gm, 0.045 moles) (example 2) in dichloromethane (50 ml) at 0 0 C. After completion of addition, ice bath was removed 30 and reaction mixture was stirred for about 3 hrs at room temperature. Saturated sodium bicarbonate solution was added and the mixture was stirred for about 10 minutes. Organic layer was separated and washed with water and brine, dried and concentrated in vacuo to WO 2010/046791 PCT/IB2009/054115 32 give crude product, which was purified by column chromatography over silica gel. Elution was done by using 25% ethyl acetate in hexane. Yield: 6.1 gm (80%) m/z: (M*+1) 208.5 5 Example 4 (b): Preparation of (1Z)-N-(1-ethyl-1 H-pyrazol-5-yl)-2,2,2 trifluoroethanimidoyl chloride Triphenylphosphine (1.39 gm, 0.00531 moles) was added to a solution of N-(1 ethyl-1H-pyrazol-5-yl)-2,2,2-trifluoroacetamide (1.0 gm, 0.00483 moles) (example 4 (a)) 10 in carbon tetrachloride (20 ml). The reaction mixture was refluxed for about 12 hrs. It was cooled at room temperature, diluted with dichloromethane and washed with water and brine. The organic layer was dried over anhydrous sodium sulphate and concentrated under vacuo to get crude mixture, which was used as such for further step. Example 4 (c): Preparation of diethyl {1 -[(1-ethyl-1H-pyrazol-5-yllaminol-2,2,2 15 trifluoroethylidene}propanedioate Sodium hydride (250 mg, 0.00724 moles) was added to a solution of diethyl malonate (850 mg, 0.00531 moles) in tetrahydrofuran (10 ml) at 0 0 C. The reaction mixture was stirred at room temperature for about 30 minutes. It was cooled again to 0 0 C and 20 solution of (I Z)-N-(1-ethyl-I H-pyrazol-5-yl)-2,2,2-trifluoroethanimidoyl chloride (2.5 gm crude) (example 4 (b)) in tetrahydrofuran (25 ml) was added gradually. After completion of addition, the reaction mixture was stirred at room temperature for about 18 hrs. The reaction was quenched by slow addition of water at 0 0 C. The solvent was removed and ethyl acetate was added. Extraction was done with water. The organic layer was dried over 25 anhydrous sodium sulphate and concentrated under vacuo to get crude mixture which was purified by column chromatography. Elution was done by using 5% ethyl acetate in hexane. Yield: 400 mg m/z: (M*+1) 350.93 30 Example 4 (d): Preparation of ethyl 1-ethyl-4-hydroxy-6-(trifluoromethyl)-1H pyrazolo[3,4-blpyridine-5-carboxylate Diethyl { 1- [(1-ethyl-i H-pyrazol-5 -yl)amino]-2,2,2 trifluoroethylidene}propanedioate (4.5 gm, 0.0129 moles) (example 4 (c)) was dissolved WO 2010/046791 PCT/IB2009/054115 33 in toluene (50 ml) and the mixture was refluxed for about 15 hrs. The solvent was removed under reduced pressure and crude product was purified by column chromatography over silica gel. Elution was done by using 50% ethyl acetate in hexane. Yield: 2.2 gm (56 %) 5 m/z: (M*+1) 304.58 Example 4 (e): Preparation of ethyl 4-chloro-1 -ethyl-6-(trifluoromethyl)-1H-pyrazolor3,4 blpyridine-5-carboxylate Phosphorus oxy chloride (500 mg, 0.0033 moles) was added to ethyl 1-ethyl-4 10 hydroxy-6-(trifluoromethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (500 mg, 0.0016 moles) (example 4(d)) and the mixture was heated at 11 0 0 C for about 24 hrs. It was diluted with dichloromethane and poured over crushed ice. The organic layer was separated, concentrated and purified over silica gel (elution was done using 10% ethyl acetate in hexane) to give the title compound. 15 Yield: 28% m/z: (M*+1) 322.65 Example 4 (f): Preparation of ethyl 4-chloro- 1 -ethyl-6-(trifluoromethyl)-1H-pyrazolo[3,4 blpyridine-5-carboxylate 20 The title compound was also prepared by reacting diethyl { 1-[(l-ethyl-1H pyrazol-5-yl)amino]-2,2,2-trifluoroethylidene}propanedioate (example 4 (c)) (3.0 gm, 0.0085 moles) with phosphorus oxy chloride (1.60 ml, 0.0172 moles) by following the procedure given in example 4 (e). Yield: 52% 25 Example 5: Preparation of ethyl 4-(cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo [3,4 blpyridine-5-carboxylate Cyclohexyl amine (30 gm, 0.1137 moles) was added to a mixture of ethyl 4 chloro-1-ethyl-6-methyl-1H-pyrazolo [3, 4-b] pyridine-5-carboxylate (38 ml, 0.331 moles) 30 (example 4) in acetonitrile (100 ml). After stirring for about 2 h at 1100 C, acetonitrile was removed under reduced pressure. Water was added and the reaction mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous sodium sulfate and concentrated in vacuo to give brownish solid. Yield: 35 gm (94.41%), WO 2010/046791 PCT/IB2009/054115 34 m/z: (M*+1) 331.39 The following compounds were prepared similarly - Ethyl 1-ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4 b]pyridine-5-carboxylate 5 m/z: (M*+1) 333.73 - Ethyl 4-(cyclohexylamino)-1-ethyl-6-(trifluoromethyl)-1H-pyrazolo[3,4-b]pyridine-5 carboxylate m/z: (M*+l) 394.98 - Ethyl 1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-6-(trifluoromethyl)-1H 10 pyrazolo[3,4-b]pyridine-5-carboxylate m/z: (M*+1)386.80 Example 6: Preparation of 4-cyclohexylamino- 1 -ethyl-6-methyl- 1 H-pyrazolo [3,4-b] pyridine-5-carboxylic acid Sodium hydroxide solution (16.9 gm, 0.106 moles in 100 ml water) was added to a 15 solution of ethyl 4-(cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridine-5 carboxylate (35 gm, 0.106 moles) (example 5) in ethanol (150 ml). The reaction mixture was stirred for about 14 hrs at room temperature. Ethanol was removed under reduced pressure. Water was added and the reaction mixture was extracted with ethyl acetate. Aqueous layer was acidified by using hydrochloric acid (2N) to pH of about 4-5. White 20 solid, which was obtained, was filtered and dried under vacuo. Yield: 30 gm (crude) (93.66%) m/z: (M*+1) 303.44 The following compounds were prepared similarly - 1 -Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-6-methyl-1H-pyrazolo[3,4-b]pyridine-5 25 carboxylic acid m/z: (M*+1) 305.65 - 1 -Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-6-(trifluoromethyl)-1H-pyrazolo[3,4 b]pyridine-5-carboxylic acid m/z: (M*+1) 358.78 30 - 4-(Cyclohexylamino)- 1 -ethyl-6-(trifluoromethyl)- 1H-pyrazolo[3,4-b]pyridine-5 carboxylic acid m/z: (M*+1) 356.90 WO 2010/046791 PCT/IB2009/054115 35 Example 7: Preparation of 4-(cyclohexylamino)- 1 -ethyl-6-methyl-N-methoxy-N-methyl 1H-pyrazolo[3,4-blpyridine-5-carboxamide 4-Cyclohexylamino- 1 -ethyl-6-methyl-1 H-pyrazolo[3,4-b]pyridine-5-carboxylic acid (30.0 gm, 0.099 moles) (example 6) and N,O-dimethylhydroxylamine hydrochloride 5 (14 gm, 0.149 moles) were taken in dimethylformamide (200 ml). At 0 0 C, hydroxybenzotriazole (26 gm, 0.198 moles) and N-methylmorpholine (65 ml, 0.594 moles) were added and the reaction mixture was stirred for about 1 hr. 1 -Ethyl-3-(3 dimethylaminopropyl) carbodiimide hydrochloride (37 gm, 0.198 moles) was added and the reaction mixture was stirred for about 14 hrs. Water was added and extraction was 10 carried out with ethyl acetate. The organic layer was washed with brine, dried over anhydrous sodium sulfate and concentrated in vacuo. The compound was purified over column chromatography using 40% ethyl acetate in hexane. Yield: 28 gm (81.70%) m/z: (M*+1) 346.76 15 The following compounds were prepared similarly - 1 -Ethyl-N-methoxy-N-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-6-methyl-1H pyrazolo[3,4-b]pyridine-5-carboxamide m/z: (M*+1) 348.14 - 4-(Cyclohexylamino)-1 -ethyl-N-methoxy-N-methyl-6-(trifluoromethyl)-1H 20 pyrazolo[3,4-b]pyridine-5-carboxamide m/z: (M*+1) 400.03 - 1 -Ethyl-N-methoxy-N-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-6 (trifluoromethyl)- 1H-pyrazolo[3,4-b]pyridine-5-carboxamide Example 8: Preparation of 4-(cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo[3,4 25 blpyridine-5-carbaldehyde Toluene (50 ml) was cooled to -30 to -35 0 C and vitride (31.6 ml, 0.162 moles) was added. After about 10 min., 4-(cyclohexylamino)- 1 -ethyl-6-methyl-N-methoxy-N-methyl 1H-pyrazolo[3,4-b]pyridine-5-carboxamide (28 gm, 0.081moles) (example 7) was added and the reaction mixture was stirred for about 4 hrs. Citric acid (10%) solution was added 30 dropwise to quench the reaction and the reaction mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous sodium sulfate and concentrated in vacuo. The compound was purified over column chromatography using 60% ethyl acetate in hexane.
WO 2010/046791 PCT/IB2009/054115 36 Yield: 20 gm (86.16%). m/z: (M*+1) 287.72 The following compounds were prepared similarly - 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-6-methyl-1H-pyrazolo[3,4-b]pyridine-5 5 carbaldehyde m/z: (M*+1) 289.66 - 4-(Cyclohexylamino)-1-ethyl-6-(trifluoromethyl)-1H-pyrazolo[3,4-b]pyridine-5 carbaldehyde m/z: (M+l) 342.86 10 - 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-6-(trifluoromethyl)-1H-pyrazolo[3,4 b]pyridine-5-carbaldehyde m/z: (M*+1) 344.8 Example 9: Preparation of 4-(cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo[3,4 blpyridine-5-carbaldehyde oxime 15 Hydroxylamine hydrochloride (7.2 gm, 0.117 moles) and sodium acetate (8.4 gm, 0.117 moles) were added to a stirred solution of 4-(cyclohexylamino)-1-ethyl-6-methyl 1H-pyrazolo[3,4-b]pyridine-5-carbaldehyde (6 gm, 0.0234 moles) (example 8) in ethanol (150 ml). The reaction mixture was allowed to stir at room temperature for about 14 hrs. Ethanol was removed under reduced pressure and residue was poured in water. The 20 reaction mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous sodium sulfate and concentrated in vacuo. Yield: 5.5gm (87.16 %) m/z: (M*+1) 302.69 25 The following compounds were prepared similarly - 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-6-methyl-1H-pyrazolo[3,4-b]pyridine-5 carbaldehyde oxime m/z: (M*+1) 304.27 - 1-Ethyl-5-[(E)-(hydroxyimino)methyl]-N-(tetrahydro-2H-pyran-4-yl)-6 30 (trifluoromethyl)-1H-pyrazolo[3,4-b]pyridin-4-amine - N-cyclohexyl-1-ethyl-5-[(E)-(hydroxyimino)methyl]-6-(trifluoromethyl)-1H pyrazolo[3,4-b]pyridin-4-amine Example 10: Preparation of N-cyclohexyl-1-ethyl-6-methyl-5-(1-oxa-2-azaspiro[4.41non 2-en-3-yl)-1H-pyrazolo[3,4-blpyridin-4-amine (Compound No. 7) WO 2010/046791 PCT/IB2009/054115 37 Methylene cyclopentane (0.048 ml, 0.00046 moles) was added to 4 (cyclohexylamino)-1-ethyl -6-methyl-1H-pyrazolo[3,4-b]pyridine-5-carbaldehyde oxime (70 mg, 0.00023 moles) (example 9) in mixture of dichloromethane : chloroform (1:1, 10 ml). The reaction mixture was stirred at room temperature for about 5 minutes. Sodium 5 hypochlorite (0.7 ml) was added slowly to the reaction mixture over a period of about 5 minutes and the mixture was allowed to stir at room temperature for about 14 hrs. The organic solvent was evaporated and the residue was extracted in chloroform. The organic layer was concentrated and the title compound obtained was purified by preparative thin layer chromatography using 60% ethyl acetate in hexane. 10 Yield: 20 mg (22.73%) m/z: (M*+1) 382.30 1 HNMR (8, CDCI 3 ): 7.89 (1H, s), 6.75-6.77 (1H, d), 4.41-4.47 (2H, q), 3.83-3.85 (1H, t), 3.21 (2H, s), 2.52 (3H, s), 2.10-2.17 (4H, m), 1.87-1.9 (2H, m), 1.74-1.77 (3H, t), 1.41 1.72 (12H, m) 15 The following compounds were prepared similarly - 1-Ethyl-6-methyl-5-(I-oxa-2-azaspiro[4.4]non-2-en-3-yl)-N-(tetrahydro-2H-pyran-4 yl)-1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 8), m/z: (M*+1) 384.18 1 HNMR (8, CDCl 3 ): 7.89 (1H, s), 7.00 (1H, bs), 4.42-4.48 (2H, q), 4.02 (1H, s), 3.99 20 (2H, bs), 3.57-3.6 (2H, m), 3.23 (2H, s), 2.54 (3H, s), 2.10-2.13 (6H, m), 1.68 -1.78 (6H, m), 1.47-1.49 (3H, t) - 1-Ethyl-6-methyl-5-(1-oxa-2-azaspiro[4.5]dec-2-en-3-yl)-N-(tetrahydro-2H-pyran-4 yl)- 1 H-pyrazolo [3 ,4-b]pyridin-4-amine (Compound No. 9), m/z: (M*+1) 398.29; Purity: 86.37% 25 'IHNMR (S, CDCl 3 ): 7.88 (1H, s), 6.92 (1H, bs), 4.42-4.47 (2H, q), 3.98-4.11 (3H, m), 3.57-3.64 (2H, m), 3.03 (2H, s), 2.53 (3H, s), 1.84- 2.12 (14H, m), 1.49- 1.59 (3H, t) - N-cyclohexyl-1-ethyl-6-methyl-5-(1-oxa-2-azaspiro[4.5]dec-2-en-3-yl)-1H pyrazolo[3,4-b]pyridin-4-amine (Compound No. 10), 30 m/z: (M+1) 396.19 1 HNMR (8, CDCl 3 ): 7.89 (1H, s), 6.67 (1H, bs), 4.41-4.47 (2H, q), 3.83 (1H, bs), 3.01 (2H, s), 2.51 (3H, s), 2.10-2.30 (2H, m), 1.78-1.84 (6H, m), 1.61-1.72 (6H, m), 1.25-1.50 (9H, m) - 1-Ethyl-6-methyl-5-(5-oxa-6-azaspiro[3.4]oct-6-en-7-yl)-N-(tetrahydro-2H-pyran-4 35 yl)-1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 11), m/z: (M*+1) 370.30; Purity: 93.80% WO 2010/046791 PCT/IB2009/054115 38 HNMR (8, CDC1 3 ): 7.88 (11H, s), 6.9 (1H, bs), 4.42-4.47 (2H, q), 3.98- 4.0 (3H, m), 3.57-3.61 (3H, t), 3.35 (2H, s), 2.54-2.58 (5H, m), 2.08-2.24 (4H, m), 1.55-1.85 (3H, m), 1.47-1.51 (3H, t) - {3-[4-(Cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl]-4,5 5 dihydroisoxazole-5,5 -diyl} dimethanol (Compound No. 14), m/z: (M*+1) 388.21 'HNMR (8, CDC1 3 ): 7.87 (1H, s), 5.69-5.7 (11H, d), 4.42-4.47 (2H, q), 3.86-3.89 (2H, d), 3.78 (LH, bs), 3.75-3.77 (2H, q), 3.27 (2H, s), 2.17 (3H, s), 2.09-2.12 (2H, d), 1.71-1.82 (2H, m), 1.61- 1.66 (3H, t), 1.18- 1.51 (8H, m) 10 - N-Cyclohexyl-1-ethyl-6-methyl-5-(5-oxa-6-azaspiro[3.4]oct-6-en-7-yl)-1H pyrazolo[3,4-b]pyridin-4-amine (Compound No. 15), m/z: (M*+1) 368.19 'HNMR (8, CDCl 3 ): 7.89 (1H, s), 6.74 (1H, bs), 4.41-4.47 (2H, q), 3.83 (1H, bs), 3.33 (2H, s), 2.55 - 2.60 (5H, m), 2.21-2.26 (2H, m), 2.07-2.10 (2H, m) 1.84-1.92 15 (2H, m), 1.63-1.68 (5H, m), 1.27-1.51 (6H, m) - 5-{2-[(Benzyloxy)methyl]-5-oxa-6-azaspiro[3.4]oct-6-en-7-yl}-1-ethyl-6-methyl N-(tetrahydro-2H-pyran-4-yl)- 1 H-pyrazolo [3,4-b]pyridin-4-amine (Compound No. 23), m/z: (M*+1) 490.93 20 1 HNMR (6, CDC1 3 ): 7.87 (1H, s), 7.28-7.35 (5H, m), 4.53 (2H, s), 4.42-4.47 (2H, m), 3.96-4.00 (3H, m), 3.49-3.57 (4H, m), 3.26 (2H, s), 2.66-2.68 (3H, m), 2.47 (3H, m), 2.17-2.19 (2H, m), 1.25-2.11 (8H, m) - N-cyclohexyl-1-ethyl-6-methyl-5-(1,9,12-trioxa-2-azadispiro[4.2.4.2]tetradec-2 25 en-3-yl)-1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 26), m/z: (M*+1) 454.92 1 HNMR (8, CDCl 3 ): 7.89 (1H, s), 6.75 (1H, s), 4.41-4.46 (2H, q), 3.98-4.01 (4H, m), 3.84-3.97 (1H, m), 3.06 (2H, s), 2.51 (3H, s), 1.25-2.08 (21H, m) 30 - N-cyclohexyl-1-ethyl-5-(1-oxa-2-azaspiro[4.5]dec-2-en-3-yl)-6-(trifluoromethyl) 1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 28), m/z: (M*+1) 450.02 'HNMR (6, CDCl 3 ): 7.95 (1H , s), 6.12-6.16 (1H, m), 4.47-4.51 (2H, m), 3.84-3.88 (1H, m), 2.91 (2H, s), 2.60-2.63 (2H, m), 2.10-2.22 (4H, m), 1.56-1.79 (12H, m), 35 1.34-1.37 (2H, m). - N-cyclohexyl- 1 -ethyl-5-(1 -oxa-2-azaspiro[4.4]non-2-en-3 -yl)-6-(trifluoromethyl) 1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 29), m/z: (M*+1) 435.91 WO 2010/046791 PCT/IB2009/054115 39 HNMR (6, CDC1 3 ): 7.95 (1H, s), 6.20-6.23 (1H, m), 4.46-4.51 (2H, m), 3.82-3.88 (1H, m), 3.11-3.13 (2H, m), 2.60-2.63 (2H, m), 2.15-2.22 (4H, m), 1.58-1.88 (10H, m), 1.46-1.51 (3H, m), 1.33-1.37 (2H, m). - N-cyclohexyl-1-ethyl-5-(5-oxa-6-azaspiro[3.4]oct-6-en-7-yl)-6-(trifluoromethyl) 5 1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 30), m/z: (M*+1) 422.00 'HNMR (6, CDC1 3 ): 7.95 (1H, s), 6.14-6.16 (1H, m), 4.47-4.53 (2H, m), 3.86-3.92 (1H, m), 3.22 (2H, s), 2.54-2.63 (2H, m), 2.08-2.34 (4H, m), 1.59-1.78 (8H, m), 1.49-1.53 (3H, m), 1.33-1.36 (2H, m). 10 - {3-[4-(Cyclohexylamino)-1-ethyl-6-(trifluoromethyl)-1H-pyrazolo[3,4-b]pyridin 5-yl]-4,5-dihydro-1,2-oxazole-5,5-diyl}dimethanol (Compound No. 31), m/z: (M*+1) 441.83 'HNMR (6, CDCl 3 ): 7.95 (1H, s), 5.84-5.86 (1H, d), 4.48-4.53 (2H, m), 3.88-3.92 (2H, m), 3.77-3.79 (LH, m), 3.64-3.69 (2H, m), 3.24 (2H, s), 2.04-2.18 (4H, m), 15 1.69-1.83 (4H, m), 1.49-1.52 (3H, m), 1.34-1.38 (2H, m). - 1-Ethyl-5-(5-oxa-6-azaspiro[3.4]oct-6-en-7-yl)-N-(tetrahydro-2H-pyran-4-yl)-6 (trifluoromethyl)- 1H-pyrazolo[3,4-blpyridin-4-amine (Compound No. 34), m/z: (M*+1) 424.43 'HNMR (6, CDCl 3 ): 7.98 (1H, s), 6.33-6.34 (1H, d), 4.49-4.54 (2H, m), 4.08-4.15 20 (2H, m), 3.99-4.02 (2H, m), 3.56-3.63 (2H, m), 3.26 (2H, s), 2.54-2.63 (2H, m), 2.22-2.28 (2H, m), 2.09-2.13 (2H, m), 1.86-1.91 (2H, m), 1.65-1.71 (2H, m), 1.49 1.53 (3H, t). - 1 -Ethyl-5-(1-oxa-2-azaspiro[4.4]non-2-en-3-yl)-N-(tetrahydro-2H-pyran-4-yl)-6 (trifluoromethyl)- I H-pyrazolo [3,4-b]pyridin-4-amine (Compound No. 35), 25 m/z: (M*+1) 438.34 HNMR (6, CDC1 3 ): 7.98 (1H, s), 6.39-6.41 (1H, d), 4.48-4.54 (2H, m), 4.09-4.13 (2H, m), 3.99-4.03 (2H, m), 3.58-3.64 (2H, m), 3.15 (2H, s), 2.11-2.18 (4H, m), 1.87-1.91 (2H, m), 1.63-1.81 (6H, m), 1.49-1.53 (3H, t). - 1 -Ethyl-5-(1-oxa-2-azaspiro[4.5]dec-2-en-3-yl)-N-(tetrahydro-2H-pyran-4-yl)-6 30 (trifluoromethyl)-1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 36), m/z: (M*+1) 452.39 'HNMR (6, CDCl 3 ): 7.98 (1H, s), 6.33-6.35 (1H, d), 4.47-4.54 (2H, q), 4.00-4.11 (3H, m), 3.56-3.66 (2H, m), 2.96 (2H, s), 2.10-2.18 (2H, m), 1.82-1.84 (2H, m), 1.50-1.73 (13H, m). 35 - 1-Ethyl-N-(tetrahydro-2H-pyran-4-yl)-6-(trifluoromethyl)-5-(1,9,12-trioxa-2 azadispiro[4.2.4.2]tetradec-2-en-3-yl)-lH-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 37), m/z: (M*+1) 510.34 WO 2010/046791 PCT/IB2009/054115 40 'HNMR (5, CDCl 3 ): 7.98 (1H, s), 6.33-6.34 (1H, d), 4.49-4.54 (211, q), 4.13-4.15 (1H, in), 3.97-4.00 (6H, in), 3.58-3.63 (2H, m), 3.00 (2H, s), 1.90-2.10 (8H, m), 1.68-1.72 (4H, m), 1.49-1.53 (3H, t). - tert-butyl 3-[1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-6-(trifluoromethyl)-IH 5 pyrazolo[3,4-b]pyridin-5-yl]-1-oxa-2,8-diazaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 40), m/z: (M++1) 553.44 1 HNMR (5, CDCl 3 ): 7.99 (1H, s), 6.38-6.39 (1H, d), 4.50-4.54 (2H, q), 4.10-4.15 (1H, in), 3.99-4.04 (2H, in), 3.72-3.84 (2H, in), 3.58-3.64 (2H, in), 3.44 -3.48 (2H, 10 in), 3.00 (2H, s), 2.11-2.14 (211, in), 1.92-1.96 (211, m), 1.63-1.69 (4H, in), 1.51 1.54 (3H, t), 1.48 (9H, s). Example 10 (a): Preparation of 4-methylene cyclohexanecarboxylic acid ethyl ester Potassium tert-butoxide (24 gm, 0.22 moles) and triphenylphosphine methyl iodide (78 gm, 28.22 moles) were dissolved in dry tetrahydrofuran (150 ml). The mixture was 15 cooled to -78 0 C and stirred at the same temperature for about 15 minutes. Ethyl 4 oxocyclohexane carboxylate (25 gm, 0.147 moles) in tetrahydrofuran was added drop wise and the mixture was stirred at the same temperature for about 30 minutes and then it was warmed to room temperature and stirred overnight, extraction was done with ethyl acetate and water. The organic layer was dried over sodium sulfate and concentrated. Purification 20 was done by column chromatography using 5% ethyl acetate in hexane. Yield: 19 gm (67%); m/z: (M*+1) 169.26 NMR: (6, CDCl 3 ): 4.64 (2H, s), 4.09- 4.15 (2H, q), 2.42- 2.47 (1H, in), 2.31- 2.39 (2H, in), 1.96- 2.09 (4H, in), 1.43- 1.62 (2H, m), 1.23- 1.26 (3H, t) The following compounds were prepared similarly 25 - {[ (3-Methylidenecyclobutyl)methoxy]methyl}benzene NMR: (6, CDCl 3 ): 7.25-7.31 (5H, in), 4.74-4.76 (2H, in), 4.53 (2H, s), 3.48-3.51 (2H, in), 2.78-2.82 (2H, in), 2.55-2.62 (1H, in), 2.40-2.45 (2H, m) - 8-Methylidene-1,4-dioxaspiro[4.5]decane 30 NMR: (6, CDCl 3 ): 4.66 (2H, s), 3.95 (4H, s), 2.29-2.26 (4H, t), 1.71-1.67 (4H, t) - tert-Butyl 4-methylidenepiperidine-1-carboxylate NMR: (6, CDCl 3 ) :4.74 (211, s), 3.41-3.42 (41H, d), 2.16- 2.18 (4H, d), 1.41 (9H, s) Example 11: Preparation of Ethyl (cis*)-3-[4-(cyclohexylamino)-1-ethyl-6-methyl-1H pyrazolo[3,4-blpyridin-5-yll-1-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (Compound 35 No. 12) and Ethyl (trans*)-3 - [4-(cyclohexylamino)- I -ethyl-6-methyl- 1H-pyrazolo [3,4 blpyridin-5-vll-1-oxa-2-azaspiro[4.51dec-2-ene-8-carboxylate (Compound No. 13) WO 2010/046791 PCT/IB2009/054115 41 4-Methylene cyclohexanecarboxylic acid ethyl ester (2.2 gm, 0.0120 moles) (example 10 (a)) was added to 4-(cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo[3,4 b]pyridine-5-carbaldehyde oxime (2 gm, 0.00632 moles) (example 9) in tetrahydrofuran (30 ml). The reaction mixture was stirred at room temperature for about 5 minutes. 5 Sodium hypochlorite (20 ml) was added slowly to the reaction mixture over a period of about 5 minutes and the mixture was allowed to stir at room temperature for about 14 hrs. The organic solvent was evaporated and the residue was extracted in chloroform. The organic layer was concentrated and isomers were separated by column chromatography using 40% ethyl acetate in hexane. 10 Ethyl (cis*)-3- [4-(cyclohexylamino)- 1 -ethyl-6-methyl- 1H-pyrazolo [3,4-b]pyridin-5-yl]- 1 oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 12), Yield: 300 mg (9.67 %); m/z: (M*+1) 468.15; HPLC purity : 98.14% HNMR (6, CDCl 3 ): 7.89 (1H, s), 6.86 (1H, bs), 4.41-4.46 (2H, q), 4.13-4.18 (2H, q), 3.84 (1H, bs), 3.02 (2H, s), 2.51 (3H, s), 2.27-2.35 (1H, m), 2.02-2.07 (4H, in), 1.95-1.99 (2H, 15 in), 1.62-1.77 (2H, m), 1.58-1.60 (6H, m), 1.43-1.48 (3H, t), 1.25-1.29 (7H, m) Ethyl (trans*)-3 - [4-(cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl] 1 -oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 13), Yield: 500 mg (16.12 %); m/z: (M*+1) 468.15; HPLC purity : 93.53% 'HNMR: (6, CDCl 3 ): 7.89 (1H, s), 6.73 (1H, bs), 4.41-4.46 (2H, q), 4.11-4.17 (2H, q), 20 3.84 (1H, bs), 3.06 (2H, s), 2.46 -2.5 (4H, in), 1.90- 2.08 (4H, in), 1.79-1.85 (4H, in), 1.58 1.67 (13H, m), 1.44-1.50 (3H, t) The following compounds were prepared similarly - (Cis*)-7-[4-(cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl]-5 oxa-6-azaspiro[3.4]oct-6-ene-2-carbonitrile (Compound No. 3), 25 m/z: (M*+1) 393.53; HPLC purity: 99.81% 'HNMR: (8, CDCl 3 ): 7.89 (1H, s), 6.99 (1H, bs), 4.41-4.47 (2H, q), 3.77 (1H, bs), 3.51 (2H, s), 3.20-3.22 (1H, in), 2.98-3.00 (2H, in), 2.95-2.97 (2H, in), 2.53 (3H, s), 2.10 2.16 (2H, in), 1.80-2.08 (4H, m), 1.44-1.70 (6H, in), 1.42 (3H, t) - 5-{ (Cis*)-2- [(benzyloxy)methyl]-5-oxa-6-azaspiro [3.4]oct-6-en-7-yl } -N-cyclohexyl- 1 30 ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 16), m/z: (M*+1) 488.16; HPLC purity: 94.06% HNMR: (6, CDC 3 ): 7.88- 7.89 (1H, d), 7.33-7.34 (5H, in), 5.01 (2H, s), 4.43-4.53 (4H, q), 3.89 (1H, bs), 3.47 -3.48 (2H, in), 3.23 (2H, s), 2.10-2.27 (4H, in), 1.50-1.78 (5H, in), 1.25-1.49 (11H, m) 35 - 5- { (Trans *)-2-[(benzyloxy)methyl]-5-oxa-6-azaspiro[3.4]oct-6-en-7-yl} -N cyclohexyl-1-ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridin-4-amine (Compound No. 17), WO 2010/046791 PCT/IB2009/054115 42 m/z: (M*+1) 488.89; HPLC purity: 99.0% 'HNMR: (8, CDC1 3 ): 7.88 (1H, s), 7.29- 7.36 (5H, m), 6.71 (111, bs), 4.54 (2H, s), 4.41- 4.46 (2H, q), 3.82 (1H, bs), 3.49 -3.53 (2H, in), 3.33 (2H, s), 2.50 (3H, s), 2.25 2.38 (5H, in), 1.49-1.78 (5H, in), 1.25-1.40 (8H, in) 5 - Ethyl (Trans*)- 3-[1-ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H pyrazolo[3,4-b]pyridin-5-yl]-1-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 21), m/z: (M*+1) 470.91 'HNMR (8, CDC1 3 ): 7.88 (1H, s), 6.99 (1H, s), 4.42-4.47 (211, q), 4.12-4.17 (3H, in), 10 3.98-4.01 (2H, in), 3.57-3.62 (2H, m), 3.09 (2H, s), 2.53 (3H, s), 2.47 (1H, s), 2.10 2.12 (411, m), 1.82-1.86 (411, m), 1.26-1.60 (1011, in). HPLC purity: 94% - Ethyl (cis*)-3-[1-ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4 b]pyridin-5-yl]- 1 -oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 22), 15 m/z: (M*+1) 470.91 HNMR: (6, CDCl 3 ): 7.88 (111, s), 7.08 (1H, s), 4.43-4.45 (2H, q), 4.13-4.18 (311, in), 3.98-4.01 (211, m), 3.60-3.62 (2H, in), 3.05 (211, s), 2.53 (311, s), 1.26-2.35 (18H, in). HPLC purity: 85.39% - Ethyl (Trans*)- 3-[4-(cyclohexylamino)-1-ethyl-6-(trifluoromethyl)-IH-pyrazolo[3,4 20 b]pyridin-5-yl]-1-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 38), m/z: (M*+1) 522.41 1 HNMR: (8, CDC1 3 ): 7.98 (111, s), 6.10-6.12 (1H, d), 4.47-4.53 (211, in), 4.12-4.17 (2H, m), 3.86-3.87 (111, s), 2.98 (211, s), 2.43-2.47 (111, in), 2.09-2.11 (411, in), 1.80 1.94 (14H, m), 1.45-1.49 ( 311, in), 1.24-1.28 (3H, in). 25 - Ethyl (cis*)- 3-[4-(cyclohexylamino)-1-ethyl-6-(trifluoromethyl)-1H-pyrazolo[3,4 b]pyridin-5-yl]-1-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 39), m/z: (M*+1) 522.48 'HNMR: (6, CDC1 3 ): 7.98 (1H, s), 6.27-6.28 (11H, d), 4.47-4.53 (2H, in), 4.13-4.19 (211, in), 3.86 (11, s), 2.95 (2H, s), 2.34-2.38 (111, in), 1.79-2.17 (18H, in), 1.49-1.52 30 (3H, in), 1.26-1.29 (311, t). Example 12: Preparation of I (Cis*)-3 -[4-(cyclohexvylamino)- 1 -ethyl-6-methyl- 1 H pyrazolo [3,4-b]pyridin-5 -vll -1 -oxa-2-azaspiro [4.51dec-2-en-8-yl Imethanol (Compound No. 4) Lithium aluminium hydride (12 mg, 0.00032 moles) was added portion wise under 35 inert atmosphere to tetrahydrofuran (5 ml) cooled to 0 0 C. After about 15 minutes, solution of ethyl (cis*)-3 - [4-(cyclohexylamino)- 1 -ethyl-6-methyl- 1 H-pyrazolo [3,4-b]pyridin-5-yl] 1-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (100 mg, 0.00024 moles) (example 11) in tetrahydrofuran (2 ml) was added drop wise at 0 0 C. The reaction mixture was stirred for WO 2010/046791 PCT/IB2009/054115 43 about 3 hrs at room temperature. It was quenched by aqueous sodium sulfate, filtered through celite pad and the filtrate was extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo and the title compound obtained was purified by preparative thin layer chromatography using 80% ethyl acetate in 5 hexane. Yield: 80 mg (87.91%); m/z: (M*+1) 426.55; HPLC purity: 97.05% 'HNMR: (6, CDCl 3 ): 7.89 (1H, s), 6.76-6.78 (1H, d), 4.41-4.46 (2H, q), 3.84-3.86 (1H, bs), 3.54-3.55 (2H, d), 3.01 (2H, s), 2.51 (3H, s), 2.07-2.10 (4H, t), 1.77-1.79 (4H, t), 1.56 1.65 (10H, m), 1.50-1.54 (3H, t) 10 The following compound was prepared similarly - {(Trans*)-3-[4-(cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl] 1 -oxa-2-azaspiro[4.5]dec-2-en-8-yl}methanol (Compound No. 18), m/z: (M*+1) 426.89 ; HPLC purity: 94.89% 1HNMR: (6, CDCl 3 ): 7.89 (1H, s), 6.66 (lH, s), 4.41-4.47 (2H, q), 3.70 (1H, bs), 3.51 15 3.53 (2H, d), 3.05 (2H, s), 2.51 (3H, s), 1.58- 2.17 (20H, in), 1.47-1.50 (3H, t) Example 13: Preparation of N-cyclohexyl- 1 -ethyl-5-[(cis*)-8-(fluoromehyl)- 1 -oxa-2 azaspiro[4.5]dec-2-en-3-yll-6-methyl-1H-pyrazolo[3,4-blpyridin-4-amine (Compound No. 2) { (Cis*)-3-[4-(cyclohexylamino)- 1 -ethyl-6-methyl- 1 H-pyrazolo [3,4-b]pyridin-5 20 yl]-1-oxa-2-azaspiro[4.5]dec-2-en-8-yl}methanol (25 mg, 0.00058 moles) (example 12) was dissolved in chloroform (5 ml). At 0 0 C, diethylamino sulphurtrifluoride (0.011 ml, 0.000088 moles) was added drop wise. The reaction mixture was stirred at 0QC for about 10 minutes and then at room temperature for about 30 minutes. It was quenched by using 5% sodium carbonate solution. Extraction was done by using chloroform. The organic 25 layer was dried and concentrated in vacuo. Crude product was purified by preparative thin layer chromatography using 50% ethyl acetate in hexane. Yield: 10 mg (40%); m/z: (M+I1) 428.45; HPLC purity: 86.62% 1 HNMR: (6, CDCl 3 ): 7.89 (1H, s), 6.80 (1H, bs), 4.41-4.46 (2H, q), 4.35-4.37 (1H, d), 4.23-4.25 (1H, d), 3.86 (1H, bs), 3.02 (2H, s), 2.08-2.10 (4H, in), 1.67-1.77 (14H, in), 30 1.56-1.59 (4H, in), 1.47-1.50 (3H, t). Example 14: Preparation of (trans*)-3-[4-(cyclohexylamino)-1-ethyl-6-methyl-1H pyrazolo[3,4-blpyridin-5-yll-1-oxa-2-azaspiro[4.51dec-2-ene-8-carboxylic acid (Compound No. 5) Ethyl (trans*)-3-[4-(cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo[3,4 35 b]pyridin-5-yl]-1-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (50 mg, 0.000107 moles) WO 2010/046791 PCT/IB2009/054115 44 (example 11) was dissolved in ethanol (5 ml). Lithium hydroxide (22 mg, 0.00053 moles) in water (2 ml) was added and mixture was stirred at room temperature for about 14 hrs. The solvent was removed under vacuo, mixture was acidified with aqueous hydrochloric acid and extracted with ethyl acetate. The organic layer was dried and concentrated in 5 vacuo to give final product. Yield: 40 mg (79.78%); m/z: (M*+1) 440.52; HPLC purity: 98.13 % 1HNMR (8, CDCl 3 ): 7.89 (1H, s), 6.77 (1H, bs), 4.41-4.47 (2H, q), 3.84 (1H, bs), 3.06 (2H, s), 2.55 (1H, bs), 2.51 (3H, s), 1.85-2.18 (19H, in), 1.46-1.50 (3H, t) The following compounds were prepared similarly 10 - (Cis*)-3-[4-(cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl]-1 oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylic acid (Compound No. 6), m/z: (M*+1) 440.75 ; HPLC purity: 99.26% 'HNMR: (6, CDC1 3 ): 7.90 (1H, s), 6.87 (1H, bs), 4.41-4.46 (2H, d), 3.86 (1H, bs), 3.03 (2H, s), 2.51 (3H, s), 2.39-2.44 (1H, in), 1.25-2.10 (22 H, in) 15 - (Trans*)-3- [1 -ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)- 1 H-pyrazolo [3,4 b]pyridin-5-yl]-1-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylic acid (Compound No. 24), m/z: (M*+1) 442.83 'HNMR: (6, CDCl 3 ): 7.89 (1H, s), 7.08 (1H, bs), 4.43-4.48 (2H, q) 3.98-4.01 (3H, in), 3.58-3.64 (2H, in), 3.09 (2H, s), 2.54 (3H, s), 1.21-2.13 (16H, in). 20 HPLC purity: 91.41% - (Cis*)-3-[1-ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4 b]pyridin-5-yl]-1-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylic acid (Compound No. 25), m/z: (M+1) 442.76 HNMR: (6, CDCl 3 ): 7.89 (1H, s), 7.09 (1H, s), 4.42-4.48 (2H, q), 3.99-4.09 (3H, in), 25 3.58-3.63 (2H, in), 3.45-3.49 (1H, in), 3.06 (2H, s), 2.54 (3H, s), 1.21-2.13 (15H, in). HPLC purity: 91.71% - (Trans*)-3 -[4-(cyclohexylamino)- 1 -ethyl-6-(trifluoromethyl)- 1 H-pyrazolo[3,4 b]pyridin-5-yl]- 1 -oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylic acid (Compound No. 32), m/z: (M*+1) 494.34 30 'HNMR: (d, CDCl 3 ): 7.94 (1H, s), 6.11 (1H, bs), 4.45-4.48 (2H, in), 3.82-3.85 (1H, in), 2.94 (2H, s), 2.48-2.52 (2H, in), 2.08-2.13 (3H, m), 1.67-1.88 (12H, in), 1.42-1.46 (311, m), 1.32-1.38 (2H, in). HPLC purity: 99.38% - (Cis*)-3-[4-(cyclohexylamino)-1-ethyl-6-(trifluoromethyl)-1H-pyrazolo[3,4-b]pyridin 35 5-yl]-1 -oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylic acid (Compound No. 33), m/z: (M*+1) 494.34 WO 2010/046791 PCT/IB2009/054115 45 'HNMR: (8, CDCl 3 ): 7.94 (111, s), 6.22-6.24 (1H, d), 4.43-4.48 (2H, in), 3.80-3.85 (111, in), 2.91 (2H, s), 2.33-2.39 (2H, in), 1.94-2.08 (10H, m), 1.74-1.77 (2H, in), 1.55 1.66 (411, in), 1.46-1.48 (3H, m), 1.34-1.36 (2H, in). HPLC purity: 98.40% 5 Example 15: Preparation of N-cyclohexyl-1 -ethyl-6-methyl-5-[(cis*)-2-(1H-tetrazol-5-yl) 5-oxa-6-azaspiro[3.41oct-6-en-7-yll-1H-pyrazolor3,4-blpyridin-4-amine (Compound No. 1)1 (Cis*)-7-[4-(cyclohexylamino)- 1 -ethyl-6-methyl- 1H-pyrazolo [3,4-b]pyridin-5-yl] 5-oxa-6-azaspiro[3.4]oct-6-ene-2-carbonitrile (30 mg, 0.000076 moles) (example 11) was 10 dissolved in toluene (5 ml). Sodium azide (7.5 mg, 0.00011 moles) and triethyl amine hydrochloride (20 mg, 0.00015 moles) were added and reaction mixture was refluxed overnight. Toluene was removed under reduced pressure and reaction was neutralized by aqueous hydrochloric acid. Extraction was done by using chloroform, organic layer was dried and concentrated in vacuo. Crude product was purified by preparative thin layer 15 chromatography using 50% ethyl acetate in hexane. Yield: 30 mg (15.3 8%); m/z: (M*+1) 436.39; HPLC purity: 99.64% 1 HNMR: (6, CDCl 3 ): 7.79 (111, s), 7.13 (1H, bs), 4.33 (2H, bs), 3.67 (111, bs), 3.18 (2H, s), 2.7 (2H, bs), 2.51 (211, bs), 2.31 (3H, s), 2.00 (2H, bs), 1.68 (2H, bs), 1.33-1.39 (3H, q), 1.23-1.28 (8H, in). 20 Example 16: Preparation of N-cyclohexyl-1-ethyl-5-r(cis*)-8-(methoxymethyl)-1-oxa-2 azaspiror4.51dec-2-en-3-yll-6-methyl-1H-pyrazolor3,4-blpyridin-4-amine (Compound No. 19) {(Cis*)-3-[4-(cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridin-5 yl] -1 -oxa-2-azaspiro[4.5]dec-2-en-8-yl}methanol (30 mg, 0.0000705 moles) (example 12) 25 in dimethylformamide (2 ml) was added to solution of sodium hydride (18 mg, 0.000077 moles) in dimethylformamide (5 ml) at 00 C and the mixture was stirred for about 30 minutes. Methyl iodide (43 microlitre, 0.0000075 moles) was added dropwise at 0 0 C. The reaction mixture was stirred for about 3 hrs at room temperature. It was diluted with water and extracted with ethyl acetate. The organic layer was dried and concentrated in vacuo. 30 Crude product was purified by preparative thin layer chromatography using ethyl acetate. Yield: 12 mg (40%); m/z: (M++1) 440.82; HPLC purity: 96.46.% 1 HNMR: (6, CDCl 3 ): 8.02 (1H, s), 7.91 (1H, s), 4.45-4.51 (21H, q), 3.72-3.78 (1H, m), 3.64 (311, s), 3.53-3.55 (2H, d), 3.36 (2H, s), 2.57 (3H, s), 2.08-2.09 (21H, in), 1.75-1.84 (4H, in), 1.48-1.68 (12 H, m), 1.11-1.39 (4 H, m). 35 The following compound was prepared similarly WO 2010/046791 PCT/IB2009/054115 46 - N-cyclohexyl-5-[(cis*)-8-(ethoxymethyl)-1 -oxa-2-azaspiro[4.5]dec-2-en-3 -yl]- 1-ethyl 6-methyl-1 H-pyrazolo [3,4-b]pyridin-4-amine (Compound No. 20) m/z: (M*+1) 454.81 ; HPLC purity: 95.32% 'HNMR: (8, CDC1 3 ): 7.94 (1H, s), 4.47-4.53 (2H, q), 3.64-3.91 (1H, m), 3.54-3.58 5 (2H, m), 2.96 (2H, s), 2.60 (3H, s), 1.86-2.10 (4H, m), 1.75-1.83 (12H, m), 1.62-1.67 (8H, m), 1.55-1.58 (3H, t). Example 17: Preparation of 3-[4-(cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo[3,4 blpyridin-5 -yll -1 -oxa-2-azaspiroF4.51 dec-2-en-8-one (Compound No. 27) 10 N-cyclohexyl-1-ethyl-6-methyl-5-(1,9,12-trioxa-2-azadispiro[4.2.4.2]tetradec-2 en-3-yl)-1H-pyrazolo[3,4-b]pyridin-4-amine (120 mg, 0.00026moles) (example 10) was dissolved in dichloromethane (4 ml). Water (0.120 ml) was added to it followed by drop wise addition of trifluoroacetic acid (0.150 ml, 0.00132 moles) at 0 0 C. The reaction mixture was stirred at room temperature for about 6 hrs. Quenching was done by sodium 15 bicarbonate solution. Extraction was done by ethyl acetate. Organic layer was dried over anhydrous sodium sulphate and concentrated in vacuo. Yield: 80 mg (73.8%) m/z: (M*+1) 409.52 20 1HNMR: (8, CDCl 3 ): 7.90 (1H, s), 6.94 (1H, s), 4.41-4.47 (2H, q), 3.86 (1H, bs), 3.18 (2H, s), 2.53 (3H, s), 2.34-2.42 (4H, m), 2.02-2.12 (4H, m), 1.25-1.78 (13H, m). Example 18: Efficacy of compounds (a)(i) PDE4B enzyme assay 25 The efficacy of compounds as PDE4 inhibitors was determined by an enzyme assay using cell lysate of HEK293 cells transfected with PDE4B2 plasmids as PDE4B source. The enzyme reaction was carried out in the presence of cAMP (1 IM) at 30 C in the presence or absence of test compound for 45 -60 minutes. An aliquot of this reaction mixture was taken further for the ELISA assay and the protocol of the kit followed to 30 determine level of cAMP in the sample. The concentration of the cAMP in the sample directly correlated with the degree of PDE4 enzyme inhibition. Results were expressed as percent control and the IC 50 values of test compounds were reported. IC 50 values of test compounds were found to be in the range of 5 nM to > 1 pM.
WO 2010/046791 PCT/IB2009/054115 47 (a)(ii) PDE7 enzyme assay The efficacy of compounds as PDE7 inhibitors was determined by an enzyme assay using recombinant human PDE7A enzyme (J Med. Chem., 43, (2000), 683-689). The enzyme reaction was carried out in the presence of cAMP (1 pLM) at 37*C in the 5 presence or absence of test compound for 60 minutes. An aliquot of this reaction mixture was taken further for the ELISA assay and the protocol of the kit was followed to determine level of cAMP in the sample. The concentration of the cAMP in the sample directly correlated with the degree of PDE7 enzyme inhibition. Results were expressed as percent control and the IC 5 0 values of test compounds, calculated using Graph pad prism, 10 were found to be in the range of 55 nM to > 1 pM. (b) Cell based assay for TNF-a release Method of Isolation of Human Peripheral Blood Mononuclear Cells (PBMNC's) Human whole blood was collected in vacutainer tubes containing heparin or EDTA as an anti coagulant. The blood was diluted (1:1) in sterile phosphate buffered saline and 15 10 ml was carefully layered over 5 ml Ficoll Hypaque gradient (density 1.077 g/ml) in a 15 ml conical centrifuge tube. The sample was centrifuged at 3000 rpm for 25 minutes in a swing-out rotor at room temperature. After centrifugation, interface of cells were collected, diluted at least 1:5 with PBS (phosphate buffered saline) and washed three times by centrifugation at 2500 rpm for 10 minutes at room temperature. The cells were 20 resuspended in serum free RPMI 1640 medium at a concentration of 2 million cells/ml. LPS (Lipopolysaccharide) Stimulation of Human PBMNC's PBMN cells (0.1 ml; 2 million/ml) were co-incubated with 20 pld of compound (final DMSO concentration of 0.2 %) for 10 minutes in a flat bottom 96 well microtiter plate. Compounds were dissolved in DMSO initially and diluted in medium for a final 25 concentration of 0.2 % DMSO. LPS (1 pg/ml, final concentration) was then added at a volume of 10 1tl per well. After 30 minutes, 20 pl of fetal calf serum (final concentration of 10 %) was added to each well. Cultures were incubated overnight at 37 C in an atmosphere of 5% CO 2 and 95% air. Supernatant were then removed and tested by ELISA for TNF-a release using a commercial kit (e.g. BD Biosciences). The level of TNF-a in 30 treated wells was compared with the vehicle (0.2% DMSO in RPMI medium) treated controls and inhibitory potency of compound was expressed as IC 5 o values calculated by using Graph pad prism.
WO 2010/046791 PCT/IB2009/054115 48 Percent TNF-a in drug treated Percent inhibition = 100 - ----------------------------------- x 100 Percent TNF-a in vehicle treated 5 IC 50 values for some of the compounds were found to be in the range of -6 nM to 176 nM. (c) In-vitro assay to evaluate efficacy of compounds in combination with p38 MAP Kinase inhibitors or corticosteroids The assay is performed as described in (b) above, with individual compounds and 10 their combinations tested at sub-optimal doses. (d) In-vitro assay to evaluate efficacy of compounds in combination with P2- agonists Measurement of intracellular cAMP elevation in U937 Cells U937 cells (human promonocytic cell line) are grown in endotoxin-free RPMI 1640 with 25 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) medium 15 containing 10% (v/v) heat-inactivated foetal bovine serum and 1% (v/v) of an antibiotic solution (5000 IU/ml penicillin, 5000 Rg/ml streptomycin). Cells (0.25 x 106/200 pl) are resuspended in Krebs' buffer solution and incubated at 370 C for 15 minutes in the presence of test compounds or vehicle (0.2% DMSO in RPMI medium). The individual compounds and their combinations at sub-optimal doses are tested to evaluate synergistic 20 or additive effect of the compounds. Generation of cAMP is initiated by adding 50 Pl of 10 pM prostaglandin (PGE2) and the reaction stopped after 15 minutes, by adding IN HCl (50 [pl) and placed on ice for 30 minutes. The samples are centrifuged (450g, 3 minutes), and levels of cAMP in the supernatant measured using cAMP enzyme-linked immunosorbent assay kit (Assay Designs). Percent inhibition is calculated by the 25 following formula and IC 50 value determined using Graph pad prism. Percent conversion in drug treated Percent inhibition = 100 - ----------------------------- x 100 Percent conversion in vehicle treated 30

Claims (15)

We claim:
1. A compound having the structure of Formula I:
Formula I and its pharmaceutically acceptable salts, pharmaceutically acceptable solvates, stereoisomers, tautomers, racemates, regioisomers, geometric isomers, prodrugs, metabolites, polymorphs and N-oxides, wherein R1 and R2 independently are hydrogen, aryl, heteroaryl, -COR7, -S(O)1nR7 (wherein R7 is hydrogen, alkyl, cycloalkyl, aryl,
aralkyl, heteroaryl or heterocyclyl and m is an integer from 0-2), or (wherein m is an integer from 0-2 and X is -O-, S(O)m (wherein m is an integer from 0-2), NRg {wherein R8 is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl, heteroaryl, heterocyclyl, -COR7, -S(O)1nR7, -COOR7 or -CONR7R'7 (wherein R7 and R'7 are hydrogen, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or heterocyclyl and m is the same as defined above)}, C(=O), C=NOH or CRfRq (wherein Rf and Rq independently are hydrogen, halogen, hydroxy, cyano, NR8R'g [wherein Rg and R'8 are hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl, heteroaryl, heterocyclyl, -COR7, - S(O)mR7, -COOR7 or -CONR7R'? {wherein m, R7 and R'7 are the same as defined above}], -CONR7R7', -COONR7R7' or -COOR7 (wherein R7 and R'7 are the same as defined above)), R3 is alkyl, aryl, cycloalkyl, heterocyclyl or heteroaryl, R'3 is hydrogen, alkyl, aryl, cycloalkyl, heteroaryl, heterocyclyl or (un) substituted amine, R4 is alkyl, aryl, cycloalkyl, halogen, cyano, heteroaryl, heterocyclyl, or (un) substituted amine, R5 and R6 independently are alkyl, -CN, heterocyclyl, -(CH2)mC(=O)NRjR'j {wherein m is an integer from 0-2 and R} and R'j independently are hydrogen, alkyl, alkenyl, cycloalkyl, aryl, aralkyl, heterocyclyl, heteroaryl, heterocyclylalkyl, heteroarylalkyl or R, and R'j taken together with the nitrogen atom to which they are attached can form a optionally substituted heterocyclyl ring}, -(CH2)mC(=O)ORj {wherein m and R1 are the same as defined above}, -(CH2)mlORj {wherein ml is an integer from 0-3 and R, is the same as defined above} or -(CH2)mC(=O)heterocyclyl {wherein m is the same as defined above}, or R5 and R6 together can form a 3-7 membered saturated, partially saturated or unsaturated ring containing carbon atoms wherein one or more carbon atoms optionally can be replaced by heteroatoms selected from O, S(O)m {wherein m is an integer from 0- 2} or NR8 {wherein R8 is the same as defined above}, or one or more carbon atoms optionally can be substituted with oxo, 577/ro-attached heterocyclyl, cyano, alkyl, heteroaryl, heteroarylalkyl, -(CH2)mhalogen, -(CH2)mNR7R'7, -(CH2)mOR7, - (CH2)mCONR7R'7, -(CH2)mNR7COR7 or -(CH2)mCOOR7 (wherein m, R7 and R'7 are the same as defined above). 2. A compound according to claim 1 having the structure of Formula II:
Formula II and its pharmaceutically acceptable salts, pharmaceutically acceptable solvates, stereoisomers, tautomers, racemates, regioisomers, geometric isomers, prodrugs, metabolites, polymorphs and N-oxides, wherein R^ and R2a independently are hydrogen,
or (wherein m is an integer from 0-2 and Xa is -O- or -CH2-) , R3a is alkyl, R43 is alkyl, which may optionally be substituted with halogen, R5a and R^ independently are -(CH2)mlOH {wherein ml is an integer from 0-3} or R5a and R63 together can form a 3-7 membered saturated, partially saturated or unsaturated ring containing carbon atoms wherein one or more carbon atoms optionally can be replaced by heteroatoms selected from O, S(O)m {wherein m is an integer from 0-2} or NR8 {wherein Rs is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl, heteroaryl, heterocyclyl, -COR7, -S(O)1nR7, -COOR7 or -CONR7R'7 (wherein R7 and R'7 are hydrogen, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or heterocyclyl and m is the same as defined above)}, or one or more carbon atoms optionally can be substituted with oxo, spiro-attached heterocyclyl, cyano, heteroaryl, heteroarylalkyl, -(CH2)mhalogen, - (CH2)m0R7, or -(CH2)mCOOR7 (wherein R7 and m are the same as defined above). 3. A compound, which is selected from - N-cyclohexyl-l-ethyl-6-methyl-5-[(cis*)-2-(lH-tetrazol-5-yl)-5-oxa-6- azaspiro[3.4]oct-6-en-7-yl]-lH-pyrazolo[3,4-6]pyridin-4-amine (Compound No. 1), - N-cyclohexyl-l-ethyl-5-[(cis*)-8-(fluoromethyl)-l-oxa-2-azaspiro[4.5]dec-2-en-3- yl]-6-methyl-lH-pyrazolo[3,4-6]pyridin-4-amine (Compound No.
2), - (Cis*)-7-[4-(cyclohexylamino)- 1 -ethyl-6-methyl- lH-pyrazolo[3 ,4-&]pyridin-5-yi]- 5-oxa-6-azaspiro[3.4]oct-6-ene-2-carbonitrile (Compound No.
3), - {(Cis*)-3-[4-(cyclohexylamino)-l-ethyl-6-methyl-lH-pyrazolo[3,4-δ]pyridin-5- yl]-l-oxa-2-azaspiro[4.5]dec-2-en-8-yl}methanol (Compound No. 4), - (Trans*)-3 - [4-(cyclohexylamino)- 1 -ethyl-6-methyl- 1 H-pyrazolo [3 ,4-ό]pyridin-5- yl]-l -oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylic acid (Compound No. 5), - (Cis*)-3-[4-(cyclohexylamino)-l-ethyl-6-methyl-lH-pyrazolo[3,4-6]pyridin-5-yl]- l-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylic acid (Compound No. 6), - iV-cyclohexyl-l-ethyl-6-methyl-5-(l-oxa-2-azaspiro[4.4]non-2-en-3-yl)-lH- pyrazolo[3,4-Z>]pyridin-4-amine (Compound No. 7), - l-Ethyl-6-methyl-5-(l-oxa-2-azaspiro[4.4]non-2-en-3-yl)-N-(tetrahydro-2H-pyran- 4-yl)-lH-pyrazolo[3,4-6]pyridin-4-amine (Compound No. 8), - l-Ethyl-6-methyl-5-(l-oxa-2-azaspiro[4.5]dec-2-en-3-yl)-N-(tetrahydro-2H- pyran-4-yl)-l H-pyrazolo [3 ,4-δ]pyridin-4-amine (Compound No. 9), - N-cyclohexyl-1 -ethyl-6-methyl-5-(l-oxa-2-azaspiro[4.5]dec-2-en-3-yl)-lH- pyrazolo[3,4-Z>]pyridin-4-amine (Compound No. 10), - l-Ethyl-6-methyl-5-(5-oxa-6-azaspiro[3.4]oct-6-en-7-yl)-JV-(tetrahydro-2H-pyran- 4-yl)-lH-pyrazolo[3,4-έ]pyridin-4-amine (Compound No. 11), - Ethyl (cis*)-3-[4-(cyclohexylamino)-l-ethyl-6-methyl-lH-pyrazolo[3,4-6]pyridin- 5-yl]-l-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 12), - Ethyl (trans*)-3-[4-(cyclohexylammo)-l-ethyl-6-methyl-lH-pyrazolo[3,4- &]pyridin-5-yl]-l-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 13), - {3-[4-(Cyclohexylamino)-l-ethyl-6-methyl-lH-pyrazolo[3,4-Z>]pyridin-5-yl]-4,5- dihydroisoxazole-5,5-diyl}dimethanol (Compound No. 14), - N-Cyclohexyl-1 -ethyl-6-methyl-5-(5-oxa-6-azaspiro[3.4]oct-6-en-7-yl)-lH- pyrazolo[3,4-Z>]pyridin-4-amine (Compound No. 15), - 5-{(Cis*)-2-[(benzyloxy)methyl]-5-oxa-6-azaspiro[3.4]oct-6-en-7-yl}-7V- cyclohexyl-l-ethyl-6-methyl-lH-pyrazolo[3,4-έ]pyridin-4-amine (Compound No. 16), - 5-{(Trans*)-2-[(benzyloxy)methyl]-5-oxa-6-azaspiro[3.4]oct-6-en-7-yl}-iV- cyclohexyl-l-ethyl-6-methyl-lH-pyrazolo[3,4-&]pyridin-4-amine (Compound No. 17), - { (Trans*)-3 - [4-(cyclohexylamino)- 1 -ethyl-6-methyl- 1 H-pyrazolo[3 ,4-Z>]pyridin-5- yl]-l-oxa-2-azaspiro[4.5]dec-2-en-8-yl}methanol (Compound No. 18), - jV-cyclohexyl-l-ethyl-5-[(cis*)-8-(methoxymethyl)-l-oxa-2-azaspiro[4.5]dec-2-en- 3-yl]-6-methyl-lH-pyrazolo[3,4-δ]pyridin-4-amine (Compound No. 19), - iV-cyclohexyl-5-[(cis*)-8-(ethoxymethyl)-l-oxa-2-azaspiro[4.5]dec-2-en-3-yl]-l- ethyl-6-methyl- l//-pyrazolo [3 ,4-&]pyridin-4-amine (Compound No. 20), - Ethyl (trans5H)-3-[l-ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-lH- pyrazolo[3,4-5]pyridin-5-yl]-l-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 21), - Ethyl (cis*)-3-[l-ethyl-6-niethyl-4-(tetrahydro-2H-pyran-4-ylamino)-lH- pyrazolo[3,4-Z)]pyridin-5-yl]-l-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 22), - 5-{2-[(Benzyloxy)methyl]-5-oxa-6-azaspiro[3.4]oct-6-en-7-yl}-l-ethyl-6-methyl- N-(tetrahydro-2H-pyran-4-yl)-lH-pyrazolo[3,4-6Jpyridin-4-amine (Compound No. 23), - (Trans*)-3-[l-ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-lH- pyrazolo[3,4-Zj]pyridin-5-yl]-l-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylic acid (Compound No. 24), - (Cis*)- 3-[l-ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-lH-pyrazolo[3,4- 6]pyridin-5-yl]-l-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylic acid (Compound No. 25), - N-cyclohexyl-l-ethyl-6-methyl-5-(l,9,12-trioxa-2-azadispiro[4.2.4.2]tetradec-2- en-3-yl)-lH-pyrazolo[3,4-Z>]pyridin-4-amine (Compound No. 26), - 3 -[4-(Cyclohexylamino)- 1 -ethyl-6-methyl- 1 H-pyrazolo [3 ,4-ό]pyridin-5-yl] - 1 -oxa- 2-azaspiro[4.5]dec-2-en-8-one (Compound No. 27), - N-cyclohexyl-l-ethyl-5-(l-oxa-2-azaspiro[4.5]dec-2-en-3-yl)-6-(trifluoromethyl)- lH-pyrazolo[3,4-Z)]pyridin-4-amine (Compound No. 28), - N-cyclohexyl-l-ethyl-5-(l-oxa-2-azaspiro[4.4]non-2-en-3-yl)-6-(trifluoromethyl)- lH-pyrazolo[3,4-Z>]pyridin-4-amine (Compound No. 29), - N-cyclohexyl-l-ethyl-5-(5-oxa-6-azaspiro[3.4]oct-6-en-7-yl)-6-(trifluoromethyl)- lH-pyrazolo[3,4-Z?]pyridin-4-amine (Compound No. 30), - { 3- [4-(Cyclohexylamino)- 1 -ethyl-6-(trifluoromethyl)- 1 H-pyrazolo [3 ,4-ό]pyridin- 5-yl]-4,5-dihydro-l,2-oxazole-5,5-diyl}dimethanol (Compound No. 31), - (Trans*)- 3-[4-(cyclohexylamino)-l-ethyl-6-(trifluoromethyl)-lH-pyrazolo[3,4- δ]pyridin-5-yl]-l-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylic acid (Compound No. 32), - (Cis*)- 3-[4-(cyclohexylamino)-l-ethyl-6-(trifluoromethyl)-lH-pyrazolo[3,4- &]pyridin-5-yl]-l-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylic acid (Compound No. 33), - l-Ethyl-5-(5-oxa-6-azaspiro[3.4]oct-6-en-7-yl)-N-(tetrahydro-2H-pyran-4-yl)-6- (trifluoromethyl)-lH-pyrazolo[3,4-&]pyridin-4-amine (Compound No. 34), - 1 -Ethyl-5-(l -oxa-2-azaspiro[4.4]non-2-en-3-yl)-N-(tetrahydro-2H-pyran-4-yl)-6- (trifluoromethyl)-lH-pyrazolo[3,4-έ]pyridin-4-amine (Compound No. 35), - 1 -Ethyl-5-(l -oxa-2-azaspiro[4.5]dec-2-en-3-yl)-N-(tetrahydro-2H-pyran-4-yl)-6- (trifluoromethyl)-lH-pyrazolo[3,4-Z)]pyridin-4-amine (Compound No. 36), - 1 -Ethyl-N-(tetrahydro-2H-pyran-4-yl)-6-(trifluoromethyl)-5 -( 1 ,9,12-trioxa-2- azadispiro[4.2.4.2]tetradec-2-en-3-yl)-lH-pyrazolo[3,4-Z?]pyridin-4-amine (Compound No. 37), - Ethyl (trans*)- 3-[4-(cyclohexylamino)-l-ethyl-6-(trifluoromethyl)-lH- pyrazolo[3,4-Z)]pyridin-5-yl]-l-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 38), - Ethyl (cis*)- 3-[4-(cyclohexylamino)-l-ethyl-6-(trifluoromethyl)-lH-pyrazolo[3,4- ft]pyridin-5-yl]-l-oxa-2-azaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 39), - tert-butyl 3-[l-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-6-(trifluoromethyl)-lH- pyrazolo[3,4-ό]pyridin-5-yl]-l-oxa-2,8-diazaspiro[4.5]dec-2-ene-8-carboxylate (Compound No. 40), and its pharmaceutically acceptable salts, pharmaceutically acceptable solvates, stereoisomers, tautomers, racemates, regioisomers, geometric isomers, prodrugs, metabolites, polymorphs and N-oxides.
4. A pharmaceutical composition comprising a therapeutically effective amount of a compound as defined in claim 1, 2 or 3 along with one or more of pharmaceutically acceptable carriers, excipients or diluents. 5. A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 1, 2 or 3, along with one or more of pharmaceutically acceptable carriers, excipients or diluents and at least one other compound selected from B2- agonists, corticosteroids, leukotriene antagonists,
5 -lipoxygenase inhibitors, chemokine inhibitors, p38 kinase inhibitors, anticholinergics, antiallergics, PAF antagonists, EGFR kinase inhibitors, muscarinic receptor antagonists and combination(s) thereof.
6. A method for treating, preventing, inhibiting or suppressing inflammatory diseases, CNS diseases, pathological conditions and auto-immune disorders, in a mammal, comprising administering a therapeutically effective amount of a compound of claim 1 , 2 or 3 or a therapeutically effective amount of a pharmaceutical composition of claim 4 or 5.
7. A method for the treatment, prevention, inhibition or suppression of multiple sclerosis, AIDS, rejection of transplant, rheumatoid arthritis, chronic obstructive pulmonary disease (COPD), asthma, bronchitis, allergic rhinitis, adult respiratory distress syndrome (ARDS), psoriasis, shock, atopic dermatitis, eosinophilic granuloma, allergic conjunctivitis, osteoarthritis, Crohn's disease, colitis, pancreatitis and cancer in a mammal comprising administering a therapeutically effective amount of a compound of claim 1 , 2 or 3 or a therapeutically effective amount of a pharmaceutical composition of claim 4 or 5.
8. The method according to claim 6 or 7, wherein the disease is mediated through phosphodiesterase type 4 and/or 7.
9. A method for the preparation of a compound of Formula I,
the method comprising, (a) reacting a compound of Formula IV (wherein X is halogen and Ria is alkyl) with a compound of Formula V to give a compound of Formula VI,
(b) carrying out ester hydrolysis of the compound of Formula VI to give a compound of Formula VII,
Formula VII
(c) reacting the compound of Formula VII with a compound of Formula VIII (wherein R1 a is alkyl) to give a compound of Formula IX,
Formula IX
(d) carrying out reduction of the compound of Formula IX to give a compound of Formula X,
Formula X
(e) reacting the compound of Formula X with hydroxylamine hydrochloride to give a compound of Formula XI,
(f) reacting the compound of Formula XI with a compound of Formula XII
Formula XII to give a compound of Formula I (wherein Ri, R2, R3, R'3, R4, R5 and R6 are the same as defined in claim 1).
10. A method for the preparation of a compound of Formula XIV,
Formula XIV the method comprising carrying out ester hydrolysis of a compound of Formula XIII (wherein Rj3 is alkyl)
Formula XIII to give a compound of Formula XIV (wherein R1, R2, R3, R'3 and R4 are the same as defined in claim 1).
11. A method for the preparation of a compound of Formula XV,
Formula XV the method comprising carrying out reduction of a compound of Formula XIII (wherein R1 a is alkyl)
Formula XIII to give a compound of Formula XV (wherein R1, R2, R3, R'3 and R4 are the same as defined in claim 1).
12. A method for the preparation of a compound of Formula XVI,
Formula XVI the method comprising halogenating a compound of Formula XV
Formula XV to give a compound of Formula XVI (wherein R1, R2, R3, R'3, R4 are the same as defined in claim 1 and X is halogen).
13. A method for the preparation of a compound of Formula XVII,
Formula XVII the method comprising reacting a compound of Formula XV
Formula XV with a compound of Formula R1 aX (wherein X is halogen) to give a compound of Formula XVII (wherein R1, R2, R3, R'3, R4 are the same as defined in claim 1 and R1 a is alkyl).
14. A method for the preparation of a compound of Formula XIX,
Formula XIX the method comprising cyclizing a compound of Formula XVIII
to give a compound of Formula XIX (wherein R1, R2, R3, R'3 and R4 are the same as defined in claim 1).
15. A method for the preparation of a compound of Formula XXI, the method comprising carrying out hydrolysis of a compound of Formula XX
Formula XX to give a compound of Formula XXI (wherein Rj, R2, R3, R'3 and R4 are the same as defined in claim 1).
AU2009306026A 2008-09-19 2009-09-19 Phosphodiestarase inhibitors Abandoned AU2009306026A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN2205DE2008 2008-09-19
IN2205/DEL/2008 2008-09-19
PCT/IB2009/054115 WO2010046791A1 (en) 2008-09-19 2009-09-19 Phosphodiestarase inhibitors

Publications (1)

Publication Number Publication Date
AU2009306026A1 true AU2009306026A1 (en) 2010-04-29

Family

ID=41382068

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2009306026A Abandoned AU2009306026A1 (en) 2008-09-19 2009-09-19 Phosphodiestarase inhibitors

Country Status (7)

Country Link
EP (1) EP2346867A1 (en)
JP (1) JP2012502977A (en)
AP (1) AP2011005623A0 (en)
AU (1) AU2009306026A1 (en)
CA (1) CA2735956A1 (en)
WO (1) WO2010046791A1 (en)
ZA (1) ZA201102837B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103547267A (en) 2010-11-08 2014-01-29 奥默罗斯公司 Treatment of addiction and impulse-control disorders using PDE7 inhibitors
US9220715B2 (en) 2010-11-08 2015-12-29 Omeros Corporation Treatment of addiction and impulse-control disorders using PDE7 inhibitors
WO2017089347A1 (en) 2015-11-25 2017-06-01 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods and pharmaceutical compositions for the treatment of braf inhibitor resistant melanomas
CN110117271A (en) * 2018-02-06 2019-08-13 中国科学院上海药物研究所 Tetrahydroisoquinolicompounds compounds, preparation method, the medical composition and its use comprising such compound
WO2024038089A1 (en) 2022-08-18 2024-02-22 Mitodicure Gmbh Use of a therapeutic agent with phosphodiesterase-7 inhibitory activity for the treatment and prevention of diseases associated with chronic fatigue, exhaustion and/or exertional intolerance

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0230045D0 (en) * 2002-12-23 2003-01-29 Glaxo Group Ltd Compounds
EP1931668A2 (en) * 2005-09-16 2008-06-18 Ranbaxy Laboratories Limited Substituted pyrazolo [3,4-b]pyridines as phosphodiesterase inhibitors
US7915286B2 (en) * 2005-09-16 2011-03-29 Ranbaxy Laboratories Limited Substituted pyrazolo [3,4-b] pyridines as phosphodiesterase inhibitors
ATE503756T1 (en) * 2005-09-29 2011-04-15 Glaxo Group Ltd PYRAZOLOA3,4-BUPYRIDINE COMPOUNDS AND THEIR USE AS PDE4 INHIBITORS
EP2124943A1 (en) * 2007-03-14 2009-12-02 Ranbaxy Laboratories Limited Pyrazolo [3, 4-b]pyridine derivatives as phosphodiesterase inhibitors
EP2124944B1 (en) * 2007-03-14 2012-02-15 Ranbaxy Laboratories Limited Pyrazolo[3,4-b]pyridine derivatives as phosphodiesterase inhibitors

Also Published As

Publication number Publication date
EP2346867A1 (en) 2011-07-27
AP2011005623A0 (en) 2011-04-30
WO2010046791A1 (en) 2010-04-29
CA2735956A1 (en) 2010-04-29
JP2012502977A (en) 2012-02-02
ZA201102837B (en) 2011-12-28

Similar Documents

Publication Publication Date Title
CA2680625C (en) Pyrazolo (3, 4-b) pyridine derivatives as phosphodiesterase inhibitors
KR101381092B1 (en) Heterocyclic janus kinase 3 inhibitors
KR20190111068A (en) Chemical Compounds as Inhibitors of Interleukin-1 Activity
JP6117208B2 (en) Compounds and compositions as c-kit kinase inhibitors
JP6571653B2 (en) Fused tricyclic imidazole derivatives as modulators of TNF activity
TWI805595B (en) Bicyclic ketone compounds and methods of use thereof
HUE028723T2 (en) Piperidin-4-yl azetidine derivatives as jak1 inhibitors
KR20140117427A (en) Novel dihydropyrimidinoisoquinolinones and pharmaceutical compositions thereof for the treatment of inflammatory disorders
KR20170068585A (en) Ethyl n-boc piperidinyl pyrazolo pyridones as janus kinase inhibitors
US20170114078A1 (en) Purine inhibitors of human phosphatidylinositol 3-kinase delta
AU2009306026A1 (en) Phosphodiestarase inhibitors
JP2016514710A (en) N- (2-cyanoheterocyclyl) pyrazolopyridone as Janus kinase inhibitor
EP1958947A1 (en) Inhibitors of phosphodiesterase type 4
US20220389034A1 (en) Thienopyrrole compounds
US20130217666A1 (en) Tricyclic compounds and methods of use therefor
US20110130403A1 (en) Pyrazolo [3, 4-b] pyridine derivatives as phosphodiesterase inhibitors
WO2007036791A1 (en) Pyrido-pyridimidine derivatives useful as antiinflammatory agents
CN116783202A (en) Thienopyrrole compounds
US20120004201A1 (en) Phosphodiestarase inhibitors
KR101737724B1 (en) Inhibitors of bruton's tyrosine kinase

Legal Events

Date Code Title Description
MK1 Application lapsed section 142(2)(a) - no request for examination in relevant period