AU2007334810A1 - Composite support systems using plastics in combination with other materials - Google Patents

Composite support systems using plastics in combination with other materials Download PDF

Info

Publication number
AU2007334810A1
AU2007334810A1 AU2007334810A AU2007334810A AU2007334810A1 AU 2007334810 A1 AU2007334810 A1 AU 2007334810A1 AU 2007334810 A AU2007334810 A AU 2007334810A AU 2007334810 A AU2007334810 A AU 2007334810A AU 2007334810 A1 AU2007334810 A1 AU 2007334810A1
Authority
AU
Australia
Prior art keywords
composite system
load
bonding
bearing
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2007334810A
Inventor
Martin Berkenkopf
Christian Eckhardt
Frank Machleid
Walter Meon
Carlo Schutz
Jochen Stahl
Michael Traxler
Johann-Dietrich Worner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Roehm GmbH
Original Assignee
Evonik Roehm GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Roehm GmbH filed Critical Evonik Roehm GmbH
Publication of AU2007334810A1 publication Critical patent/AU2007334810A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/28Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of materials not covered by groups E04C3/04 - E04C3/20

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Laminated Bodies (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Sliding-Contact Bearings (AREA)
  • Panels For Use In Building Construction (AREA)
  • Floor Finish (AREA)
  • Moulding By Coating Moulds (AREA)
  • Prostheses (AREA)

Description

WO 2008/074524 PCT/EP2007/059158 Composite support systems using plastics in combination with other materials Description of the invention 5 A load-bearing system is described and is composed of a plurality of components of different materials. At least one component that dissipates load here is composed of plastic. A frictional bond achieves load 10 transmission for the various components. The load-bearing system described here utilizes the different strengths and specific properties of materials in order to obtain a load-bearing structure 15 which is as slim as possible but nevertheless can withstand high loads, and which, depending on the nature of the plastics components, is in part transparent, translucent or opaque. The load-bearing system can be used either horizontally for example as a 20 transverse-load-bearing element or else vertically as a prop. Other load-bearing systems are also possible, examples being frameworks, Vierendeel trusses, arches, and also 25 three-dimensional structures, such as sheets, plates, folded-plate structures or load-bearing shell structures. Prior art 30 Various composite load-bearing elements are known, some of these being transparent. Timber-glass load-bearing elements: According to Prof. Julius Natterer and Dr. Klaus Kreher, a load-bearing 35 element has been developed by combining timber and glass at the Ecole Polytechnique Federale de Lausanne, Switzerland. The load-bearing element is composed of a vertical glass sheet, with a frame composed of timber WO 2008/074524 - 2 - PCT/EP2007/059158 adhesive-bonded to both of its sides. The timber frame distributes the loads and provides tensile reinforcement for the glass sheet in the event that the sheet cracks when its flexural tensile strength has 5 been exceeded. These timber-glass composite load bearing elements have been used in the construction of a hotel in Switzerland. (SOURCE: Dissertation by Klaus Kreher, EPFL Lausanne, 2002). 10 Concrete-glass load-bearing elements: Mr. Freytag has carried out experiments with a concrete-glass load bearing element at the Technical University in Graz, Austria. Glass sheets, which have the function of 15 dissipating stress loads, were combined with reinforced-concrete flanges. (SOURCE: Dissertation by B. Freytag, Technical University of Graz, October 2002) 20 Timber I-beams: In 1969, Trus Joist was the first company in the world to produce an I-beam completely composed of timber. The load-bearing capability of the beams is provided by their constitution composed of laminated timber veneer as flange material and OSB as 25 web material. The two fundamental materials are joined by a water-resistant glue, using heat and pressure. (SOURCE: Internet: http://www.trusjoist.com/GerSite/) WO 2003/023162 describes a transparent structural 30 element which has a sheet and which draws its load bearing and stiffening properties from a frame surrounding all sides of the sheet. The sheet is a multilayer element composed of glass and/or polymer variants, these having been adhesive-bonded to one 35 another. Various plastics are mentioned (Claim 8 to 10) , but only in a combination in a plurality of layers. Specifically, polycarbonate (PC), polyurethane (PU) and polyvinyl chloride (PVC) are used. There is no WO 2008/074524 - 3 - PCT/EP2007/059158 mention of polymethyl (meth)acrylates (PMMA) or of other transparent polymers, such as polystyrene (PS) , acrylonitrile-butadiene-styrene copolymers (ABS), styrene-acrylonitrile copolymers (SAN), polyolefins, 5 etc. Nor is there any mention of PMMA-glass laminates as material for the sheet of, and the web of, a load bearing structure. The stiffening frame material was moreover described as a material composed of layers. 10 Disadvantages of the prior art When transparent load-bearing systems are considered, composite load-bearing elements involving glass are extremely fragile. 15 Glass is the stiffer material in a timber-glass load bearing element and also in a concrete-glass load bearing element. The consequence of this, on exposure to stress, is that the relatively brittle and flexurally stiff glass attracts the load. The stress 20 within the glass is therefore higher than in the composite materials used. The glass is therefore also the first material to fail, and fails long before the materials in the combination can begin to exhibit their load-bearing capability. 25 Lack of transparency of a timber I-beam or other composite load-bearing elements prevents their use as a transparent design element with advantages in lighting and illumination, although their production is cost effective. 30 Object and achievement of object The object of the present invention consists in developing a composite load-bearing element in which 35 plastics are used in accordance with the properties of these materials. When they are compared to the conventional construction materials, such as timber, steel, aluminium, glass, etc., they feature comparably WO 2008/074524 - 4 - PCT/EP2007/059158 low modulus of elasticity and high ductility. The supposed disadvantage of the low modulus of elasticity becomes an advantage in the appropriately devised composite with other materials. The combination leads 5 to absorption of the high tensile and compressive stresses by the stronger materials and of the relatively small shear stresses by the softer materials. In contrast to other, known, load-bearing systems, the invention provides a frameless load 10 bearing structure which comprises a frictional bond between load-bearing parts of different materials. Plastics elements can be multilayer elements, or preferably single-layer elements composed of homogeneous materials. Another possibility is to 15 develop load-bearing systems which are in part transparent, or coloured, or indeed luminous. Lighting elements that can be used are not only incandescent bulbs or fluorescent tubes but also LEDs. It is thus possible to meet almost any particular request relating 20 to the optical properties of the load-bearing element. By virtue of the transparency of the plastics elements, the load-bearing structure is perceived as very filigree and lightweight. It is also possible to join props and transverse-load-bearing elements together to 25 give a construction system. The combination of plastics with other materials can produce a filigree load-bearing system. A load-bearing system here means a system involved in dissipation of 30 load. It can either, like a transverse-load-bearing element or a cantilever, transmit loads in a horizontal direction, or, like a prop, transmit loads in a vertical direction. 35 In the case of a transverse-load-bearing element, the upper and lower part, here called flange, is composed of a stiff, conventional material, such as timber, steel, aluminium or glass, and the central part, here WO 2008/074524 - 5 - PCT/EP2007/059158 called web, is composed of one or more plastics. On exposure to load, by virtue of the marked difference in the stiffnesses, the conventional material attracts the loads, and the web serves merely to achieve equilibrium 5 between the upper flange and lower flange. The two materials are bonded either via mechanical means of bonding, e.g. various screws or bolts, plugs, rivets, dowel pins, studs, etc., or by adhesive bonding. Other types of frictional bond are also conceivable here. The 10 selection of the bonding technique is related to the manner of force transmission and therefore also to the load-bearing system under consideration. In the case of a prop, the load-bearing system is 15 composed, for example, of a plurality of small cross sections composed of conventional materials, prevented from buckling via bonding of the cross section with sheets of plastic. 20 Selection of materials Examples of stiffer material that can be used are conventional materials such as timber, timber materials, metals, glass or concrete, or high 25 performance plastics or reinforced plastics. The less stiff material used can comprise plastics whose modulus of elasticity (measured to DIN EN ISO 527) is at least 150 N/mm 2 , examples being 30 poly (meth) acrylate (PMMA) , polycarbonate (PC) , acrylo nitrile-butadiene-styrene copolymers (ABS), styrene acrylonitrile copolymers (SAN), polyvinyl chloride (PVC) or polystyrene (PS). PMMA is marketed by R6hm GmbH with the trade mark Plexiglas . For this use, 35 Plexiglas® GS grades are particularly suitable, these being produced via cast polymerization. It is also possible to use filled grades of PMMA, these being marketed by way of example with the name Corian* or WO 2008/074524 - 6 - PCT/EP2007/059158 Creanit®. It is also possible to use laminates of different plastics or layered materials. Production of composite load-bearing elements 5 In the production of the inventive article, means of bonding are used to secure the linear, conventional materials to a sheet-like plastics component. The sheet-like plastics component is very much longer in 10 the direction of loading than perpendicularly to the direction of loading. The height:length ratio between two adjacent retention points of the component, also called bearing points, is by way of example from 1:1 to 1:80, preferably from 1:5 to 1:40 and very particularly 15 preferably from 1:10 to 1:25. The height of the component is by way of example from 10 to 300 cm, preferably from 15 to 120 cm and very particularly preferably from 20 to 80 cm. The thickness of the component can by way of example be from 3 to 500 mm. 20 The length of the component is selected as appropriate for the structural requirements, and the sheet-like plastics component can be converted to the required length via adhesive bonding. The linear, conventional materials are secured to the long edges. The bonding 25 between the plastic and the conventional material is produced via means of bonding. Production Example 1: 30 Two commercially available slating battens whose cross section is 24 * 48 mm and whose length is 3 m are secured to each of the longer edges of a transparent sheet composed of Plexiglass whose thickness is 10 mm and whose length is 3 m and whose width is 25 cm, with 35 the aid of screw clamps, the battens therefore having opposite location on the sheet of plastic. Holes whose diameter is 8 mm are drilled at regular intervals (about 10 cm) through these two timber battens and the WO 2008/074524 - 7 - PCT/EP2007/059158 intervening plastics layer. Hexagon head cap screws are inserted through these holes and secured by a nut. The screw clamps are removed after assembly. 5 Production Example 2: An adhesive which solvates the material is applied to both sides along the longer edges of a transparent sheet composed of PMMA whose length is substantially 10 greater than its width, an example being the adhesive marketed as Acrifix® by R6hm GmbH. Timber battens are pressed from both sides against the adhesion areas and fixed with screw clamps. After hardening and the resultant coherent bonding between plastic and timber, 15 the screw clamps are removed. Bonding of the material (means of bonding) The actual bonding of the material, between the 20 individual elements that dissipate load, is particularly important, since this contributes decisively to the stability and load-bearing capability of the load-bearing structure. 25 A coherent permanent bond, where the materials involved in the bond are held together at the atomic or molecular levels is ideal. Familiar methods here would be adhesive bonding (welding, soldering) or vulcanization. 30 Frictional- or interlock-bonding techniques are a conceivable alternative method, and these also give sufficiently stable bonds. Clamping methods, and particularly screwing methods, may be mentioned here as 35 a frictional bonding technique. Possibilities of producing the load-bearing systems described by way of interlock bonding are provided via WO 2008/074524 - 8 - PCT/EP2007/059158 riveting, pinning (plugging), compression, shrinking, compressive jointing or thermoforming of the component materials. Some advantageous bonding techniques are described in detail below: 5 Partial combinations of the various bonding techniques are also conceivable. Adhesive bonding 10 Adhesive bonding should be the preferred coherent bonding technique for using various materials to produce the load-bearing structure described here. 15 As a function of the selection of material, there is a wide variety of adhesive systems known in the literature which generally cover the following combinations: 20 metal-plastic, timber-plastic, metal-glass, metal-timber, etc. According to DIN 16920, an adhesive is a non-metallic material which bonds adherends to one another by virtue 25 of surface adhesion and internal strength. Suitable bonding adhesives therefore have to meet at least two requirements: they must produce sufficiently high adhesion to both the first and the second material, and they themselves must supply strength within the 30 adhesive layer. Assessment of an "adhesive" bond of a material depends on the typical type of stress encountered in the application. In the present case of a composite load-bearing structure, the main stress present comprises shear, and rarely tension or indeed 35 delamination. A sufficiently good criterion for assessment of adhesive bonds is therefore what is known as the shear strength, which involves separating the adherends from one another in a parallel direction. The WO 2008/074524 - 9 - PCT/EP2007/059158 more force required here, the better the bonding of the material. Welding or soldering is mainly reserved for load 5 bearing structures composed of unitary materials, but can also be used as bonding technique in special cases, e.g. in metal-lightweight metal variants or plastic A plastic B combinations. 10 Bonding via screwing methods Bonding via screwing methods can use almost any type of screwing method. This produces a frictional bond. In the case of relatively soft materials, it is even 15 possible to use self-tapping wood screws. If at least one hard material is involved at the bond, bonding of the materials involved has to be produced by way of the bearing surfaces within a hole, or screw threads on a screw or nut. 20 The force-transfer mechanism here in essence takes place in the bearing surfaces within the hole. The permissible stresses in the materials in the respective regions of the bearing surfaces within the hole cannot be exceeded, otherwise the material can break away or 25 crack, thus weakening the load-bearing system. The selected size of the hole which has the bearing surfaces is generally slightly larger than the diameter of the screw. Appropriate screw-fixing methods have to be selected as a function of the use of the load 30 bearing system. Pegged bonds Pegs used here comprise either timber pegs or else any 35 other types of peg, such as steel pins, or springs. These pegs are intended to produce a bond in pre drilled holes.
WO 2008/074524 - 10 - PCT/EP2007/059158 Bonding via thermoforming Bonding can also be achieved between the plastic and the other material via thermoforming. Here, a heated 5 thermoplastic material inserts itself into an irregular groove in the conventional material. The irregularity in the groove produces cavities into which the thermoplastic material inserts itself and therefore "grips". 10 Bonding via shrinkage Cooling is used to bring, for example, the plastics part to a very low temperature. This causes shrinkage 15 of this plastics part. The plastics part is now introduced with precise fit between two components composed of conventional material. Heating the plastics component to normal temperature causes it to expand and thus become clamped between the conventional material. 20 Means of bonding: screws or bolts, studs, pegs, adhesives, rivets, dowel pins, sintering, or any of the known mechanical and adhesive bonding techniques. 25 Examples: Timber-PMMA I-profile One possible example of the use of the load-bearing 30 system described in the construction industry is a transverse-load-bearing element with an I cross section composed of various materials. The upper and lower flange of the load-bearing element is composed here of a traditional construction material, e.g. metal or 35 timber, while the web is produced from a plastic. The web ideally has lower stiffness than the two flanges, since this ensures that the majority of the normal stresses occur in the flanges. The plastics web WO 2008/074524 - 11 - PCT/EP2007/059158 transfers the shear forces between the two flanges. The two different materials are bonded with means of bonding in the shape of pegs. Examples of means that can be used here are studs or plugs. Appropriate 5 adhesive bonding would also be possible. A transparent plastic, such as PMMA, gives the load-bearing element low perceived weight, which is of high aesthetic value. The height of the load-bearing element varies from 10 10 to 300 cm, the thickness of the plastics webs being from 3 to 500 mm. The cross-sectional area of the flanges is in the range from 5 to 3000 cm2 in the case of timber, and from 1 to 500 cm 2 in the case of steel. 15 In the example constructed (see drawing No. 1), a load bearing element of height 25 cm was constructed with a Plexiglas XT 20070 PMMA sheet of thickness 10 mm. The flange material used in each case comprised two commercially available slating battens of dimensions 20 24 * 48 mm. The means of bonding used comprised screws whose diameter was 8 mm with about 10 cm separation. A deflection of about 2 cm was measured on exposure to a load of 5000 kg (as shown in drawing 6). 25 Underbraced load-bearing element Another possibility for a load-bearing system composed of transparent plastics in conjunction with known types of structure is an underbraced load-bearing element 30 composed of a known material, for example aluminium or timber, of a plastic and of a bracing cable. The load bearing element has an upper flange which accepts the compressive forces and a possibly transparent plastics web whose underside has a milled groove which serves as 35 guide for a cable. The load-bearing element has a fish belly shape, thus permitting the cable to be connected at the end of the load-bearing element with the pressure flange. Both the upper flange and the WO 2008/074524 - 12 - PCT/EP2007/059158 underside of the load-bearing element here can have a curved shaped. Solid load-bearing element 5 The system described here can also be applied to a solid beam. Here, two lamellae of a conventional construction material are adhesive-bonded, or fixed with mechanical means of bonding, to the upper and 10 lower side of a solid plastics beam for reinforcement. In this case, too, the respective flange is again mainly responsible for the normal stresses. In selecting materials here, glass may also be mentioned as flange material, since this can give a completely 15 translucent load-bearing element in the case of combination with a transparent plastic. Another conceivable variation is a solid plastics beam with a filament composed of steel on the upper and lower edge of the load-bearing element. This steel filament 20 accepts the tensile forces and therefore provides a type of reinforcement for the plastics load-bearing element in a manner similar to that in reinforced concrete. 25 Prop Bonding of conventional materials to a plurality of transparent plastics sheets can give a prop which is perceived as extremely slim. In this multi-part member, 30 intended for compression, the compressive forces are accepted by, for example, four metal rods, while the sheets of plastic stabilize the individual compression rods and thus prevent buckling. The moment of inertia of the prop is more important here than the cross 35 sectional area, and a non-solid cross section therefore provides an alternative which is markedly more filigree and lightweight and moreover saves material. In plan view, there are many possible variants and shapes for WO 2008/074524 - 13 - PCT/EP2007/059158 the arrangement of the individual compression members and sheets, but for reasons of static efficiency the location of the metal elements or timber elements should be at maximum distance from the centre of 5 gravity. Key: 1: conventional material 10 2: plastic 3: means of bonding 4: steel filament 5: weight (1000 kg)

Claims (32)

1. Composite load-bearing system, 5 characterized in that plastics are joined with at least one further material to give a load-bearing system. 10
2. Composite system according to Claim 1, characterized in that the materials used have different moduli of 15 elasticity.
3. Composite system according to Claim 1, characterized in that 20 the modulus of elasticity of the plastics material is more than 150 N/mm 2 .
4. Composite system according to Claim 1 or 2, 25 characterized in that the stiffer material is further from the centre of-gravity axis. 30
5. Composite system according to any of Claims 1 to 4, characterized in that 35 the softer material is a transparent plastic. WO 2008/074524 - 15 - PCT/EP2007/059158
6. The composite system according to any of Claims 1 to 4, characterized in that 5 the softer material is a translucent plastic.
7. The composite system according to any of Claims 1 to 4, 10 characterized in that the softer material is a coloured plastic. 15
8. The composite system according to any of Claims 1 to 4, characterized in that 20 the softer material is a light-emitting plastic.
9. Composite system according to any of Claims 1 to 8, 25 characterized in that there are cavities in the softer material.
10. Composite system according to any of Claims 1 to 30 9, characterized in that the softer material can be a plastics laminate. 35
11. Composite system according to any of Claims 1 to 10, WO 2008/074524 - 16 - PCT/EP2007/059158 characterized in that the softer material can be a material composed of layers. 5
12. Composite system according to any of Claims 1 to 12, characterized in that 10 the harder material is timber or a timber material.
13. Composite system according to any of Claims 1 to 15 12, characterized in that the harder material is a metallic material. (iron, 20 steel, aluminium)
14. Composite system according to any of Claims 1 to 12, 25 characterized in that the harder material is glass.
15. Composite system according to any of Claims 1 to 30 12, characterized in that the harder material is concrete or a natural 35 stone.
16. Composite system according to any of Claims 1 to 12, WO 2008/074524 - 17 - PCT/EP2007/059158 characterized in that the harder material is a filled or glass-fibre 5 reinforced plastic.
17. Composite system according to any of Claims 1 to 16, 10 characterized in that the selected means of bonding comprise screws or bolts. 15
18. Composite system according to any of Claims 1 to 16, characterized in that 20 the selected means of bonding comprise pegs or dowel pins.
19. Composite system according to any of Claims 1 to 16, 25 characterized in that the selected means of bonding comprise studs. 30
20. Composite system according to any of Claims 1 to 16, characterized in that 35 the selected means of bonding comprise rivets.
21. Composite system according to any of Claims 1 to 16, WO 2008/074524 - 18 - PCT/EP2007/059158 characterized in that the selected means of bonding comprise adhesive. 5
22. Composite system according to any of Claims 1 to 16, characterized in that 10 the bonding is based on friction.
23. Composite system according to any of Claims 1 to 16, 15 characterized in that the bonding has been produced with the aid of thermoforming. 20
24. Composite system according to any of Claims 1 to 16, characterized in that 25 means of bonding from any of Claims 15 to 24 have been used in combination.
25. Composite system according to any of Claims 1 to 30 24, characterized in that it is loaded as a transverse-load-bearing element, 35 horizontally.
26. Composite system according to any of Claims 1 to 24, WO 2008/074524 - 19 - PCT/EP2007/059158 characterized in that it is loaded as a prop, vertically. 5
27. Composite system according to any of Claims 1 to 26, characterized in that 10 the two materials are involved in the structure in the shape of an I.
28. Composite system according to any of Claims 1 to 15 26, characterized in that the materials are bonded to give a solid load 20 bearing element.
29. Composite system according to any of Claims 1 to 26, 25 characterized in that viewed in cross section, it has the shape of a polygonal box.
30 30. Composite system according to any of Claims 1 to 26, characterized in that 35 viewed in cross section, it has the shape of a folded-plate structure. WO 2008/074524 - 20 - PCT/EP2007/059158
31. Composite system according to any of Claims 1 to 30, characterized in that 5 it has been underbraced with a stiffer material.
32. Composite system according to any of Claims 1 to 30, 10 characterized in that a combination of any of Claims 25 to 31 is used.
AU2007334810A 2006-12-18 2007-09-03 Composite support systems using plastics in combination with other materials Abandoned AU2007334810A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102006060160 2006-12-18
DE102006060160.2 2006-12-18
DE102007001651.6 2007-01-11
DE102007001651A DE102007001651A1 (en) 2006-12-18 2007-01-11 Composite systems using plastics in combination with other materials
PCT/EP2007/059158 WO2008074524A1 (en) 2006-12-18 2007-09-03 Composite support systems using plastics in combination with other materials

Publications (1)

Publication Number Publication Date
AU2007334810A1 true AU2007334810A1 (en) 2008-06-26

Family

ID=38686654

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2007334810A Abandoned AU2007334810A1 (en) 2006-12-18 2007-09-03 Composite support systems using plastics in combination with other materials

Country Status (12)

Country Link
US (1) US20100018143A1 (en)
EP (1) EP2102428A1 (en)
JP (1) JP2010513755A (en)
KR (1) KR20090092282A (en)
AU (1) AU2007334810A1 (en)
BR (1) BRPI0721071A2 (en)
CA (1) CA2671937A1 (en)
DE (1) DE102007001651A1 (en)
MX (1) MX2009006568A (en)
RU (1) RU2009127499A (en)
TW (1) TW200833915A (en)
WO (1) WO2008074524A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008054628A1 (en) 2008-12-15 2010-06-17 Evonik Röhm Gmbh Connection technique for a massive transparent plastic molded body using adapter elements or connecting elements, which have considerable higher elastic modulus than the plastic molded body
CH700137A1 (en) * 2008-12-19 2010-06-30 Swissfiber Ag BENDING SUPPORT ELEMENT COMPOSITE WOOD AND fiber-reinforced plastic.
JP5558744B2 (en) * 2009-06-25 2014-07-23 株式会社Cfcデザイン Composite beam joint structure
US8910455B2 (en) * 2010-03-19 2014-12-16 Weihong Yang Composite I-beam member
DE102011088147A1 (en) 2011-12-09 2013-06-13 Evonik Industries Ag Composite body comprising a composite material

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3817010A (en) * 1971-04-09 1974-06-18 C Stegmuller Beam strengthening method and apparatus
DE2547897A1 (en) * 1975-10-25 1977-05-05 Karl Welte Extruded hollow girder with reinforcement insert - has steel strips in slots inside beam in regions of high tensile stress
US4413459A (en) * 1981-03-16 1983-11-08 Boise Cascade Corporation Laminated wooden structural assembly
FR2650850B1 (en) * 1989-08-09 1991-11-29 Sipeg ELEMENT FOR REINFORCING AN EXISTING WOODEN BEAM, ITS MANUFACTURING METHODS AND INSTALLATION, USES THEREOF AND REINFORCED BEAM THUS OBTAINED
US5096525A (en) * 1989-09-12 1992-03-17 The Boeing Company Apparatus and method for forming and bonding a thermoplastic part from thermoplastic blanks
US5048256A (en) * 1989-09-27 1991-09-17 A/S Selvaagbygg Composite beam
FR2678971B1 (en) * 1991-07-08 1998-04-10 Andre Giraud TRANSPARENT COMPOSITE STRUCTURAL ELEMENTS AND METHODS OF MAKING SAME.
FR2714409B1 (en) * 1993-12-23 1996-03-15 Cogidev Load-bearing structure that can be used as a post or beam.
GB9408884D0 (en) * 1994-05-05 1994-06-22 Ollis William J B Building elements incorporation timber and insulation materials
DE19530572C2 (en) * 1995-04-15 2001-06-13 Seele Gmbh Building support structure
US5609006A (en) * 1995-10-17 1997-03-11 Boyer; Robert W. Wall stud
JP3786502B2 (en) * 1996-10-02 2006-06-14 宇部日東化成株式会社 Fiber-reinforced composite molded body and method for producing the same
DE19822417C2 (en) * 1997-05-21 1999-08-12 Erwin Fetterle Component with increased strength
EP1058760B1 (en) * 1998-02-24 2004-01-14 GLASFABRIK LAMBERTS GMBH & CO. KG Glass structural element for constructing a preferably self-supporting wall, roof or ceiling section or element
US20020157329A1 (en) * 1998-12-11 2002-10-31 Clarke Berdan Resilient construction member and retrofit system using same
AUPR704501A0 (en) * 2001-08-14 2001-09-06 University Of Southern Queensland, The A method of manufacturing structural units
ITBS20010068A1 (en) * 2001-09-12 2003-03-12 Michel Palumbo TRANSPARENT STRUCTURAL ELEMENT WITH INCREASED SECURITY
DE10148269A1 (en) * 2001-09-28 2003-04-17 Ulrich Kraemer Component and method for its production
DE20208538U1 (en) * 2002-05-29 2003-10-16 Arnold Christian Constructional system for roof over swimming pool or other structure has polyethylene hoses set up to form arches and filled with concrete to form strong structure
JP2004060406A (en) * 2002-07-31 2004-02-26 Nippon Oil Corp Structural member made of fiber reinforced plastics (frp)
US7197856B2 (en) * 2002-09-03 2007-04-03 Ian Nicholas Coles Modular truss assembly
DE10251651B3 (en) * 2002-11-06 2004-04-08 Feldmeier, Franz, Prof. Dr. Frame for door, window or facade is made up of metal base profile and side profiles, glass cladding panels being mounted on base profile
ATE556833T1 (en) * 2003-03-17 2012-05-15 Tech Wood Internat Ltd METHOD FOR PRODUCING A REINFORCED PLASTIC PROFILE
EP1778929A4 (en) * 2004-08-02 2008-12-31 Tac Technologies Llc Engineered structural members and methods for constructing same
DE102004050214A1 (en) * 2004-10-15 2006-04-27 Bauhaus-Universität Weimar Dezernat Forschungstransfer und Haushalt Constructional element made up of different materials for window panes has main framework made up of plastic disks which are connected in laminar manner to glass panes
JP2006125034A (en) * 2004-10-28 2006-05-18 Shoichi Hirata Composite horizontal member
DE202004018766U1 (en) * 2004-12-04 2005-03-31 Seele Gmbh & Co Kg Transparent glass column has two elongated glass shells linked by a front upright spar a rear upright spar
DE102005002302A1 (en) * 2005-01-17 2006-07-27 Thyssenkrupp Steel Ag Molded element e.g. for manufacturing lighting element, has guide slot formed in surface of web element into which functional part is inserted
JP2006328684A (en) * 2005-05-24 2006-12-07 Toray Ind Inc Reinforced wooden structure
US20090249742A1 (en) * 2007-05-11 2009-10-08 International Contractors Services Llc Composite construction beam
US7628111B2 (en) * 2007-06-11 2009-12-08 Trinity Industries, Inc. Temperature controlled railway car support post

Also Published As

Publication number Publication date
TW200833915A (en) 2008-08-16
KR20090092282A (en) 2009-08-31
US20100018143A1 (en) 2010-01-28
JP2010513755A (en) 2010-04-30
DE102007001651A1 (en) 2008-06-19
EP2102428A1 (en) 2009-09-23
RU2009127499A (en) 2011-01-27
MX2009006568A (en) 2009-10-26
WO2008074524A1 (en) 2008-06-26
CA2671937A1 (en) 2008-06-26
BRPI0721071A2 (en) 2014-02-04

Similar Documents

Publication Publication Date Title
US9611667B2 (en) Durable, fire resistant, energy absorbing and cost-effective strengthening systems for structural joints and members
Martens et al. Development of composite glass beams–A review
US20100018143A1 (en) Composite support systems using plastics in combination with other materials
US20160017596A1 (en) Method of forming adhesive connections
CA2707801A1 (en) Method for the production of a longitudinal connection for wooden components and a corresponding wooden component
RU2770825C2 (en) Multi-layer laminate panel
WO2006020261A2 (en) Confinement reinforcement for masonry and concrete structures
SE545955C2 (en) A set of structural panels, a production method, and an assembly method
US20230250655A1 (en) Fiber-reinforced polymer anchoring system
CN101558209A (en) Composite support systems using plastics in combination with other materials
JP2009228361A (en) Synthetic material for construction and its manufacturing method
RU2339774C2 (en) Stair step
CN110863601A (en) Composite board
Jockwer et al. Structural behaviour and design of timber connections with dowels and slotted-in plates made of bamboo composites
JP7239339B2 (en) wooden building material
US9809972B2 (en) Element for the connection of building components, particularly panels and beams
CN107283936B (en) Honeycomb plate composite structure
Ogunrinde Evaluation of bending performance of nail laminated and dowel laminated timber
US20150314565A1 (en) Construction Panel
JP6595239B2 (en) Architectural civil structures and bridges
Song et al. An evaluation of strength performance of the edge connections between cross-laminated timber panels reinforced with glass fiber-reinforced plastic
Bos et al. Designing and planning the world’s biggest experimental glass structure
CA3087831A1 (en) Method for producing a structure with a structural component, in particular a wall, a floor or the like, formed by a plurality of interconnected timber panels, a structural component, a wall produced using this method and a connecting element for timber panels.
Zheng Evaluation of the Structural Performance of Shear Walls Built by Multi-layer Composite Laminated Panels
KR20030040423A (en) Glass element assembly

Legal Events

Date Code Title Description
MK1 Application lapsed section 142(2)(a) - no request for examination in relevant period